2013 10 17_delft_mvd_broeke

7
10/18/13 1 !"# %&# '"##(' )* +,##-./-0 /-0 1-(/,&2&/3 ")4 */'( /,# ("#5 6#.2-78 9%&"%#. :/- 0#- ;,)#<# /-0 6/-5 &)=4),<#,' "#$%&'# "()*%$+)#,- .(+/#0#% 12$ 34$)(% 4(5 6#72+8'%$)& 9%+%4$&' :.36"; <" =%>? @>)74#% .(+/#0#%- A&#2B%$ CD- EFCG >#/ .#:#. ,%'#3 ?)(#-2/. &)-(,%@A2)-' *,)6 ./-0 %&# !"#$%&'( "#$%&'('% )&**#+%#, "++ -./#$%0# 1+%'0*&2 1,#/ BCD E <6 F G CFHI CHJ DHK 9#/- ("%&<-#'' B6G FDDL CJDE CDD=FED M).A6# BCD E <6 I G FNHJ FHO DHDK=DHCI 3.$*#(%+ 2*% +*4*+ &02* 5-6 7898 :9; <9=7><9;: PA6A./2:# %&# '"##( 6/'' .)'' BCOOD=FDCDG Q9;QR &)-'),2A6S FDCF3 1 T#&)-&%.#0 R'26/(# )* Q&#=>"##( 9/'' ;/./-&#S H&)%(&% ;;?S CCLI=CCLOI >/(#..%(# %6/7# 6)'/%& )* ("# 1,&2& <2 0(5%$+#4(5 #'% )&% +'%%#+- ,20 (%%5 #2 0(5%$+#4(5 #'% J%4#'%$K

description

On 17/10/2013 TU Delft Climate Institute organised the symposium The Greenland and Antarctic ice sheets: present, future, and unknowns. This is one of the four presentations given there. http://www.tudelft.nl/nl/actueel/agenda/event/detail/symposium-tu-delft-climate-institute-17th-october-2013/

Transcript of 2013 10 17_delft_mvd_broeke

Page 1: 2013 10 17_delft_mvd_broeke

10/18/13

1

!"#$%&#$'"##('$)*$+,##-./-0$/-0$1-(/,&2&/3$")4$*/'($/,#$("#5$6#.2-78$

9%&"%#.$:/-$0#-$;,)#<#$/-0$6/-5$&)=4),<#,'$!

"#$%&'#!"()*%$+)#,-!.(+/#0#%!12$!34$)(%!4(5!6#72+8'%$)&!9%+%4$&'!:.36";!

<"!=%>?!@>)74#%!.(+/#0#%-!A&#2B%$!CD-!EFCG! >#/$.#:#.$,%'#3$?)(#-2/.$&)-(,%@A2)-'$*,)6$./-0$%&#$

!"#$%&'(! "#$%&'('%! )&**#+%#,! "++!-./#$%0#!1+%'0*&2!

1,#/$BCDE$<6FG$ CFHI$$ CHJ$ DHK$

9#/-$("%&<-#''$B6G$ FDDL$ CJDE$ CDD=FED$

M).A6#$BCDE$<6IG$ FNHJ$ FHO$ DHDK=DHCI$

3.$*#(%+!2*%!+*4*+!&02*!5-6! 7898! :9;! <9=7><9;:!

PA6A./2:#$%&#$'"##($6/''$.)''$BCOOD=FDCDG$

Q9;QR$&)-'),2A6S$FDCF3$1$T#&)-&%.#0$R'26/(#$)*$Q&#=>"##($9/''$;/./-&#S$H&)%(&%!;;?S$

CCLI=CCLOI$$

>/(#..%(#$%6/7#$6)'/%&$)*$("#$1,&2&$

<2!0(5%$+#4(5!#'%!)&%!+'%%#+-!,20!(%%5!#2!0(5%$+#4(5!#'%!J%4#'%$K!

Page 2: 2013 10 17_delft_mvd_broeke

10/18/13

2

>/(#..%(#$%6/7#$6)'/%&$)*$("#$1-(/,&2&$

<2!0(5%$+#4(5!#'%!J%4#'%$-!,20!(%%5!#2!0(5%$+#4(5!#'%!)&%!+'%%#+K!

1-(/,&2&$1A()6/2&$U#/("#,$>(/2)-$$$$$$$$$$$$$$$

6LH!H&4$!.(>%#-!M4$+%(!N!)&%!+'%>1-!6(#4$&/&4!

!!

O'2#2P!<47+)(!Q$4,-!N6H!

S10

!.!.!.!.!.!.!.!.!.!.!.!.!.!.!.!.

$+

$+

$+

#*

$+

!(

#*

!.

!(

!(

!.

!(!(

!(

!.!.

#*

#*

$1

!(

#*

!(

#*

!(

#*

#*

!(

#*

!(

#*#*

!(

$1$1

#*

!(

!.

!(

$1

!(!(#*!(!(!(#*

#*

!(

!(!(

#*

!(

!(#*

#*!(

!(

!(

!(!(

#*

#*

#*

!(

#*

#*#*

!($1#*#*$1

#*

!(

#*

!(!(

!(

#*

!(

#*

$1

#*

!(

#*

!(

#*

!(

$1

!(

!(

#*

#*

#*

!(!(

!(

#*

#*

#*

!(

!(

#*

!(#*

#*#*!($1

#* #*

#*

!(#*!(

#*

!(

!(

#*

!(

!(#* $1

#*

!(

#*

!(

#*

!(

!(

!(

#*#*

#*

!(

!(

#*

#*

!(

!(

#*

!(

#*

!(

!(

$1

#*

!/

#*

#*

!/

!(

!(!(#* $1$1

#*

!(

!(!(

#*#*

!(

Schwerdtfeger

Modesta Sofia-B

Kominko-Slade (WAIS)

Lindsey Island

PANDA-NorthEagleDome A

Mt Brown

WhoopWhoop

CapePoinsett

SnyderRocks

CaseySkiway

Law Dome

Haupt Nunatak

See Inset Map B

See Inset Map A

Nascent

Baldrick

PANDA-South

Cape Hallett

JASE2007

D-85

E-66

Summit/A

Shackleton

Halvfarryggen

Plateau Station B

Hugo Is

Margaret

Skinner Saddle

Darwin GlCentral Valley

Dome C II

Bisco Island

AWS 3AWS 2AWS 1

Larsen Ice Shelf

Pole ofInaccessibility

Thiel Mountains

Dome C

D-0D-1D-3D-17

D-47

DC N/S

Dome Fuji

Atka Bay

Jurassic

Cape Burks

Utsteinen

Thurston Island

Evans Knoll

Bear PeninsulaSabrina

Marlene

Atka &

Ekstrom &

Leningradskaya

Russkaya

Molodeznaya

Druznaja-4

Paola

Cierva CoveAmsler Island

Vito

Nico

MaryGill

Erin

Eric

Tom

D-47 (FRN)

D-10

Byrd

Henry

Harry

Wilkins RunwayWest 4m / East ICAO

AGO-5

AGO-4

AGO-3

AGO-2

AGO-1

Mizuho

LettauElaine

Sky Blu

Limbert

Brianna

Carolyn

Elizabeth

Dome Fuji (JPN)

Concordia

Ekstrom Shelf Ice

Siple DomeJanet

Port Martin

Mt Siple

Kohnen Base

Irene

Giulia

Cp Denison

Relay Station

Dismal Is

Butler Is

Fossil Bluff

Bonaparte Pt

Camp Maudheimvida

AWS 17AWS 14AWS 15

Possession Is

Joinville Is

Union Glacier

Theresa

Marilyn

!(

!(!(

!(

!(#*

!(

!(

!(

#*

!(

Arelis

Inset Map A

!.

!.

!.!.!.!.!.!.!.

!.

!.

!.

!.

!.!.

!.

#*

!(

$1

!(

!(

#*

$1

$1

$1

#*

!(

$1

#*#*$1

!(

!(

$1

$1

#*

#*

#*

#*#*!($1

!(

#*!(

!($1

#*

$1

!(!(

$1

$1#*

#*

EmiliaLinda

Minna Bluff

Arelis

Cp Bird

Marble Pt

Butter Pt -Ferrar

Jules

Laurie II

FerrellBiesiada Crevasse

Cp Royds

Herbie Alley N

Tent Is

WindlessBight

N Crevasse

Cp Spencer

Willie Field

Pegasus N

Ford RockRoss Ice Shelf White Out

LorneWhite Is S

Bull Pass

Minna Bluff

Bratina Island

Miers ValleyGarwood Valley

Mt Fleming

Granite Harbour

Victoria Valley

Victoria Lower Gl

Evans Piedmont Gl

Cones

AlexanderTall Tower

Ferrell II

LTER AWS (18)

Marble Pt II

Alessandra

Silvia

Lola

Zoraida

EneideRita

0 100 km

Inset Map B

0 50 km 0 500 km

Coastline: ADD v4.1, 20032012_AWS_Sites_ALL

August 2012 Sam Batzli SSECUniversity of Wisconsin-Madison

National Science Foundation ANT-0944018

Manuela

Univ. of Wisconsin (UW)

Brazil

Italy

Netherlands

!(

!(

China/Australia

!(

!(

#* Australia!(

SPAWAR$1$+ AGO

United States AWS International AWS

United Kingdom!(

Russia!(

!. Other US

South Korea!(

Automatic Weather StationsAntarctica - 2012

#*

#*#*

#*#*

UW / AustraliaUW / ChinaUW / FranceUW / JapanUW / New Zealand Commercial!/

Other AWS France!(

Japan!(

Jang Bogo

Whitlock

Belgium/Netherlands!(

New Zealand!(

Germany!(

Lucia

Penguin

Pool belevenis 2009 is initiated by:

Scientific symposium 5 & 6 March

Q$4*)#,!9%&2*%$,!4(5!@>)74#%!RS8%$)7%(#!:Q96@R;!

Page 3: 2013 10 17_delft_mvd_broeke

10/18/13

3

+T1PR$6/''$(,#-0'$BFDDI=FDCCG$+T1PR$6/''$(,#-0'$BFDDI=FDCCG$

L20#%$+!4(5!2#'%$+-!EFCC!

VA#'2)-$C3$-/(A,/.$:/,%/@%.%(5$),$,A-/4/5$6/''$.)''8$

<)7%!

.&%!+'%%#!)(!>2(TU#%$7!B4>4(&%!

3!

3F!

.&%!+'%%#!20#!21!B4>4(&%!Q96@R!%82&'!

Q96@R!/7%!+%$)%+!#22!+'2$#!#2!&2(&>05%!J'%#'%$!74++!&'4(T%!)+!20#+)5%!21!(2$74>!*4$)4B)>)#,!

VA#'2)-$F3$4"/($&/A'#'$("#$6/''$.)''8$

.(&$%4+%5!)&%!V2JW!

M%++!+(2J14>>W!

.(&$%4+%5!$0(2XW!

H2>)5!)&%!5)+&'4$T%!Y!!)&%!#')&Z(%++!S!)&%!*%>2&)#,!

H(2J14>>!

!)$/-'4#,$("#'#$WA#'2)-'S$4#$-##0$()$'#?/,/(#.5$WA/-2*5$6/''$%-?A($B'-)4*/..G$/-0$)A(?A($B%&#$X)4S$,A-)YG$

90(2X!

Page 4: 2013 10 17_delft_mvd_broeke

10/18/13

4

3%4+0$)(T!)&%!#')&Z(%++!21!O)(%!.+>4(5!T>4&)%$-!6(#4$&/&4!

Q&#$:#.)&%(5$*,)6$'/(#..%(#$

*#/(A,#$(,/&<%-7$

9)T(2#!4(5!2#'%$+-!EFCG!

>-)4$/&&A6A./2)-$6/?$@/'#0$)-$Q-(#,?)./2)-$)*$)@'#,:/2)-'$B<7$6=F$5,=CG$

6$#'%$(!4(5!2#'%$+-!EFF[!

T#7%)-/.$&.%6/(#$6)0#.$T1P9ZF$$$$$$$$$$!!

!M)T#%(B%$T!4(5!2#'%$+-!EFCG!

is forced using fields of temperature, specific humidity,

zonal and meridional wind components, and surface pres-sure from either GCM or re-analysis output. Relaxation of

RACMO2 prognostic variables towards external forcings is

restricted to the boundary relaxation zone (Fig. 1). Externalforcings are updated every six hours and linearly interpo-

lated in time to yield accurate values in between. Sea

surface temperatures and sea-ice extent are also prescribedfrom the forcing model. The version of RACMO2 used for

this study includes a snow model that calculates tempera-ture, density and meltwater processes (percolation, reten-

tion, refreezing and runoff) in the snow (Ettema et al.

2009), and an improved albedo scheme, where the snowalbedo depends on snow grain size (Kuipers Munneke

et al. 2011). For this study, contributions from drifting

snow processes have not been included, because themodule of Lenaerts and Van den Broeke (2012) was not yet

fully implemented when we started the simulations.

For contemporary climate studies of the AIS (1–30 years),RACMO2 has been run on grids with 27 and 5.5 km hori-

zontal resolution (Lenaerts et al. 2012a, b). However, for the

number of simulation years considered here (660 years intotal), a horizontal resolution of 55 km is considered a good

trade-off between computational expense and spatial detail;

doubling the grid resolution would multiply the computa-tional time by a factor 10. Moreover, the annual integrated

SMB of the AIS at 55 km resolution (Van de Berg et al.

2006) is similar to that at 27 km resolution (Lenaerts et al.2012a). For the scenario runs, the largest uncertainty there-

fore derives not from the model resolution but from the

chosen forcing model and scenario. Given this information,and the fact that a 27 km resolution run is ten times as

expensive as a 27 km run, we chose 55 km as final resolu-tion. The model topography, grid resolution and lateral

relaxation boundary of the domain are shown in Fig. 1.

For the period 1980–1999, a RACMO2 reference sim-ulation, forced by ERA-40 re-analysis data from the

European Centre for Medium-Range Weather Forecasts

(Uppala et al. 2005), was performed in order to check thereliability of the GCM-forced RACMO2 simulations. In

this paper, ERA-40 has been used as forcing instead of its

successor ERA-Interim (Dee and et al. 2011), since thelatter only covered the period 1989–2009 at the time the

RACMO2 simulations were started. Other RACMO2

simulations forced by re-analysis data (ERA-40 or ERA-Interim) yielded realistic SMB results over Antarctica

Fig. 1 Map of Antarcticashowing the model domain, theboundary relaxation zone(dotted area) and modeltopography in meters above sealevel

Future SMB of Antarctica

123

Page 5: 2013 10 17_delft_mvd_broeke

10/18/13

5

9)0#..#0$?,#&%?%(/2)-$%-$1-(/,&2&/$$$$$9%0=(,)?)'?"#,%&$/(6)'?"#,%&$&%,&A./2)-$B,#0$&)A-()A,'G$$$>-)4*/..$%-(#-'%(5$B&).),'S$66$E$"=CG$$$$$$!!6()74/2(P!\I!*4(!M)8])T!$

>-)4$/&&A6A./2)-$6/?$@/'#0$)-$,#7%)-/.$&.%6/(#$6)0#.$B<7$6=F$5,=CG$

M%(4%$#+!4(5!2#'%$+-!EFCE!

>-)4$/&&A6A./2)-$6/?$@/'#0$)-$Q-(#,?)./2)-$)*$)@'#,:/2)-'$B<7$6=F$5,=CG$

6$#'%$(!4(5!2#'%$+-!EFF[!

9)0#.$#:/.A/2)-$A'%-7$'-)4$,/0/,$0/(/$

3%5>%,!4(5!2#'%$+-!EFCG!

Page 6: 2013 10 17_delft_mvd_broeke

10/18/13

6

9)0#.$#:/.A/2)-$A'%-7$VA%&<>&/($6#.($XA[$

<$0+%>!4(5!2#'%$+-!EFCG!

9)0#.$#:/.A/2)-$A'%-7$'A,*/&#$#.#:/2)-$&"/-7#'3$FDDO$'-)4*/..$#:#-($$

R-:%'/($,/0/,$/.26#(,5$

H'%8'%$5!4(5!2#'%$+-!EFCE!)+%'0*&!%''*+*&%(.#!

T#7%)-/.$&.%6/(#$6)0#.$

T#7%)-/.$&.%6/(#$6)0#.$ +T1PR$7,/:%6#(,5$

H'%8'%$5!4(5!2#'%$+-!EFCE!)+%'0*&!%''*+*&%(.#!

9)0#.$#:/.A/2)-$A'%-7$6/''$&"/-7#'3$FDDO$'-)4*/..$#:#-($$ TA-)Y$%-$+,##-./-0$

O'2#2P!9I!N$4)#'J4)#%!

Page 7: 2013 10 17_delft_mvd_broeke

10/18/13

7

Modelled  surface  mass  balance  (kg  m-­‐2  yr-­‐1)  

kg  m-­‐2  y-­‐1  

E^ema  and  others,  2009  

Q1  and  Q2:  Greenland  cumula2ve  mass  loss  1990-­‐2010  

The  future  of  the  Greenland  ice  sheet:  an  average  warming  scenario  (RCP4.5)  

6.4 Results

Figure 6.10: Annual SMB for RACMO2-fHadGEM2 (grey bars), with 11-year runningaverage SMB for RACMO2-fERA (blue), RACMO2-fHadGEM2 (black) and RACMO2-fHadGEM2, assuming the refreezing capacity remains constant at 38% throughout the21st century (red). 104 Gt is added to the RACMO2-fHadGEM2 SMB to correct for theSMB bias between the two simulations for the present day (1992-2011) (Table 6.1).

uid water production increases strongly (rain and melt, +722 Gt yr�1), yet refreezingonly modestly increases in comparison (+133 Gt yr�1). In the RACMO2-fHadGEM2simulation the refreezing capacity is reduced from 38% to 29% at the end of the 21stcentury (Fig. 6.12c, blue line). This represents a 24% decrease in refreezing capacityin less than a century’s time. The loss of refreezing capacity is concentrated in thelower accumulation area, and marks the transformation of accumulation zone, withnet annual surface mass gain, to ablation zone, where surface mass is lost on an an-nual basis. To demonstrate the impact of the reduction in refreezing capacity, weadded to Fig. 6.10 the hypothetical situation in which the refreezing capacity of theGrIS were to remain constant throughout the 21st century. In that scenario, the SMBwould remain positive for several decades longer.

The reason for this loss of refreezing capacity is twofold. Upon refreezing in thecold firn sections of the ice sheet, the massive release of latent heat causes averagefirn temperature to increase by 4-5 K towards the end of this century. Locally thisfirn warming is projected to be as large as 18 K (Fig. 6.13) at locations where re-freezing and thus latent heat release increase most significantly (Fig. 6.11e). More

101

Van  Angelen  and  others,  2013  

Conclusions

Recent mass loss from Antarctica driven by glacier acceleration Recent mass loss from Greenland driven by glacier acceleration but mostly by increased surface meltwater runoff Total mass loss of both ice sheets accounts for ~1/3 of current sea level rise, and this contribution is increasing We have a good understanding of surface mass balance of the ice sheets, which reasonable confidence in its predictions Challenge: modelling ice dynamics and ice-ocean-atmosphere interactions in a coupled system