UvA-DARE (Digital Academic Repository) Obesity, ectopic ... · PDF fileopgeslagen vetten. ......

57
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) UvA-DARE (Digital Academic Repository) Obesity, ectopic lipids, and insulin resistance ter Horst, K.W. Link to publication Citation for published version (APA): ter Horst, K. W. (2017). Obesity, ectopic lipids, and insulin resistance: Tissue-specific defects in nutrient handling General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date: 26 May 2018

Transcript of UvA-DARE (Digital Academic Repository) Obesity, ectopic ... · PDF fileopgeslagen vetten. ......

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Obesity, ectopic lipids, and insulin resistance

ter Horst, K.W.

Link to publication

Citation for published version (APA):ter Horst, K. W. (2017). Obesity, ectopic lipids, and insulin resistance: Tissue-specific defects in nutrient handling

General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, statingyour reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Askthe Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,The Netherlands. You will be contacted as soon as possible.

Download date: 26 May 2018

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 181PDF page: 181PDF page: 181PDF page: 181

Nederlandse samenvatting

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 182PDF page: 182PDF page: 182PDF page: 182

182

SAMENVATTING

Dit proefschrift beschrijft studies naar 3 belangrijke thema’s binnen het metabole on-derzoeksveld. In DEEL 1 t/m 3 presenteren we onderzoeksresultaten naar achtereen-volgens de klinische aspecten van insulineresistentie, de rol van voedingsstoffen en de mechanismen op celniveau. In DEEL 4 plaatsen we de resultaten in een breder per-spectief. De klinische studies waren gericht op het identificeren van insulineresistentie in hoog-risicopatiënten en de bijdrage van insulineresistentie in specifieke organen aan het totale klinische beeld. In de studies naar voedingsstoffen en mechanismen hebben we dieper gezocht naar de moleculaire oorzaken van insulineresistentie in deze orga-nen. Deze onderzoeken zijn ook in mensen uitgevoerd en hadden als extra doel om te toetsen of eerdere bevindingen van laboratorium- en proefdieronderzoek daadwerke-lijk relevant zijn voor mensen. Op deze manier proberen we te achterhalen welke cellen, genen, eiwitten, voedingsstoffen en/of afvalstoffen leiden tot ziekte in mensen, zodat we gericht kunnen zoeken naar nieuwe behandelingen.

DEEL 1: De klinische beoordeling van insulineresistentie in verschillende organenInsulineresistentie ontstaat wanneer de werking van insuline in het lichaam afneemt. Insuline wordt gemaakt in de β cellen van de alvleesklier en heeft een belangrijke hor-monale functie in de suiker-, vet- en energiehuishouding. Het stimuleert de opname van glucose (druivensuiker) uit het bloed en de opslag van vetstoffen in de cellen. Te-gelijkertijd onderdrukt het de aanmaak van nieuw glucose en de afbraak van reeds opgeslagen vetten. Dit is nodig, zodat voedingsstoffen, bijvoorbeeld na een maaltijd, in de cellen worden gebruikt en niet in het bloed ophopen.

Insulineresistentie is de belangrijkste reden dat mensen met obesitas op den duur gezondheidsproblemen krijgen. Het kan onder andere leiden tot type 2 diabetes (ou-derdomssuikerziekte), bloedvetafwijkingen, leververvetting en hart- en vaatziekten. Het liefst zouden we mensen met insulineresistentie daarom in een vroeg stadium opspo-ren en behandelen, omdat de stofwisselingsstoornissen daarmee voorkomen of ver-beterd zouden kunnen worden. Helaas zijn er op dit moment geen simpele testen om insulineresistentie in de kliniek te diagnosticeren.

De hyperinsulinemische, euglycemische clamp-methode is een betrouwbare, maar in-gewikkelde techniek om de werking van insuline in mensen te meten. Deze methode werkt uitstekend in onderzoeksverband, maar is, mede gezien de hoge kosten en lange duur van een meting, niet geschikt voor in de kliniek. In Hoofdstuk 2 beschrijven we dat obese mensen met insulineresistentie ook kunnen worden herkend met behulp van een simpele bloedtest. Hiervoor hebben we de insulinegevoeligheid van een groot aantal gezonde vrijwilligers gemeten. Vervolgens hebben we gekeken hoe de insulinegevoe-ligheid van obese mensen zich verhoudt tot de normale variatie in een gezonde popu-latie. De overgrote meerderheid had een sterk verminderde insulinewerking, oftewel insulineresistentie. We laten zien dat de obese mensen met insulineresistentie kunnen worden herkend door de nuchtere insulinewaarde in het bloed te meten. Een uitslag

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 183PDF page: 183PDF page: 183PDF page: 183

183

11

Ned

erla

ndse

sam

enva

tting

>74 pmol/l duidt op insulineresistentie. Mogelijk kan de nuchtere insulinewaarde als marker worden gebruikt om mensen met insulineresistentie in de kliniek op te sporen.

Insulineresistentie kan ontstaan in verschillende organen, met verschillende gevolgen. Een verminderde insulinewerking in vetweefsel leidt tot een verhoging van de vetaf-braak, waardoor een teveel aan vrije vetzuren aan het bloed wordt afgegeven. Vetzuren veroorzaken insulineresistentie doordat zij het insulinesignaalsysteem in spierweefsel remmen. Bovendien kan een overschot aan vrije vetzuren bijdragen aan ectopisch vet (vetstapeling op plekken waar dat niet hoort) en dit is schadelijk voor de lever, spieren en andere organen. Zo lijkt insulineresistentie in vetweefsel een centrale rol te spelen bij het krijgen van metabole ziekte in de rest van het lichaam.

De snelheid van vetafbraak kan bij de mens betrouwbaar worden gemeten met be-hulp van stabiele isotopen, maar dit is kostbaar en arbeidsintensief. Insulineresistentie in vetweefsel wordt dan ook weinig bestudeerd. In Hoofdstuk 3 tonen we aan dat de werking van insuline in vetweefsel ook goed kan worden gekwantificeerd met behulp van simpelere meetmethoden, waarbij geen stabiele isotopen of insuline-infusies no-dig zijn. De simpelste van deze tools is gebaseerd op een enkele nuchtere bloedaf-name en voldoende betrouwbaarheid voor toepassing in de wetenschap en klinische praktijk. Simpele meetmethoden zijn essentieel voor grootschalige onderzoek naar de rol van vetweefsel in het ontstaan van metabole ziekte. Met ons validatieonderzoek zijn we daar een stap dichterbij.

Mensen die type 2 diabetes krijgen hebben vaak al jaren een verminderde insulinewer-king: insulineresistentie ontstaat veel eerder dan een verhoogde bloedsuikerspiegel. Ten tijde van de diagnose hebben patiënten met diabetes insulineresistentie in de le-ver, vetweefsel, spieren en andere organen. Al deze gebreken kunnen ervoor zorgen dat de bloedsuikerspiegel stijgt. Het is echter niet bekend hoeveel elk van de orgaan-specifieke gebreken bijdraagt aan het ontstaan van diabetes. Mensen met prediabe-tes hebben verhoogde glucosewaarden in het bloed, maar voldoen (nog) niet aan de criteria voor type 2 diabetes. Deze mensen hebben een hoog risico voor het krijgen van diabetes. Sommige prediabetici hebben hoge nuchtere glucosewaarden, terwijl anderen juist hoge glucosewaarden hebben na een maaltijd. In Hoofdstuk 4 onder-zochten we de bijdrage van insulineresistentie in de lever, vetweefsel en spieren aan het ontstaan van prediabetes in obese mensen. We maakten hiervoor gebruik van de hy-perinsulinemische, euglycemische clamp-methode in combinatie met stabiele isotoop-technieken. Onze resultaten laten zien dat mensen met hoge nuchtere glucosewaarden gekenmerkt zijn door sterk verminderde insulinewerking in de lever, maar niet in vet- of spierweefsel. Het effect van insuline om de glucoseproductie in de lever te remmen lijkt in deze mensen het belangrijkste probleem. In eerder onderzoek was al aangetoond dat mensen met hoge glucosewaarden na een maaltijd juist gekenmerkt zijn door insu-lineresistentie in de spier; in die mensen lijkt de glucose-opname het belangrijkste pro-bleem. Zo kunnen orgaanspecifieke effecten van insuline het klinische beeld bepalen. Op vergelijkbare wijze laten we in Hoofdstuk 5 zien dat mannen met morbide obesitas zich van vrouwen met hetzelfde gewicht onderscheiden door insulineresistentie in de

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 184PDF page: 184PDF page: 184PDF page: 184

184

lever, maar niet in vet- of spierweefsel. Mogelijk is dit een van de redenen waarom di-abetes wereldwijd meer voorkomt bij mannen. Bovendien is het, gezien de verschillen in de onderliggende gebreken, te verwachten dat mensen met verschillende vormen van (pre)diabetes baat hebben van verschillende behandelingen. Een beter begrip van deze processen kan ons helpen om meer doeltreffend naar nieuwe behandelingen te zoeken en bestaande patiënten meer doeltreffend te behandelen.

DEEL 2: De rol van voedingsstoffenVoedingsstoffen, zoals glucose, fructose (fruitsuiker), triglyceriden (neutrale vetstof be-staande uit glycerol en 3 vetzuren) en vrije vetzuren, worden constant afgebroken, aan het bloed afgegeven, tussen de organen vervoerd, uit het bloed opgenomen, opgesla-gen en verbrand. De grootte van deze voedingstoffenstromen, ook wel fluxen genaamd, bepaalt of er nettowinst of -verlies is voor een cel of een orgaan. Hierboven beschreven we al dat vetafbraak in vetweefsel kan bijdragen aan vetstapeling in de lever en spieren, omdat er een (netto) flux van vetweefsel richting andere organen kan ontstaan. Volgens een vergelijkbaar principe kan glucose, wanneer dit door insulineresistentie niet goed in de spieren wordt opgenomen, naar andere organen worden omgeleid. Dit stimuleert dan bijvoorbeeld de vetaanmaak in de lever. De manier waarop voedingsstoffen tussen de organen onderling en het bloed stromen lijkt in belangrijke mate bepalend voor het krijgen van metabole ziekte.

De afgelopen jaren is er veel ophef over de gemeende gezondheidsgevaren van fruc-tose. Mensen consumeren steeds meer toegevoegde fructose en fructoseconsumptie is epidemiologisch geassocieerd met overgewicht, insulineresistentie en leververvet-ting. Fructoseonderzoek is echter uitdagend en niet alle onderzoeksresultaten in men-sen wijzen in dezelfde richting. Fructose en glucose zijn allebei simpele koolhydraten met energiewaarden van 3.75 kcal/g, maar worden op totaal andere wijze door ons lichaam verwerkt. Na inname wordt glucose door vrijwel alle lichaamscellen opgeno-men en verbrand. Fructose wordt daarentegen voornamelijk door de lever opgenomen en verwerkt. Deze inherente verschillen in de fructose- en glucosestofwisseling kunnen ervoor zorgen dat fructoseconsumptie meer gezondheidsproblemen geeft dan de con-sumptie van andere suikers en/of koolhydraten. In Hoofdstuk 6 t/m 8 beschrijven we studies naar de gezondheidseffecten van acute en chronische fructose-inname. Om het effect van fructoseconsumptie op de insulinegevoeligheid te bepalen hebben we eerst op systematische wijze de wetenschappelijke literatuur geanalyseerd. Onze meta-ana-lyse van 46 gecontroleerde studies in opgeteld 1005 mensen met een gezond gewicht of overgewicht staat beschreven in Hoofdstuk 6. De gepoelde resultaten van al deze dieetstudies tonen aan dat fructoseconsumptie bijdraagt aan het ontwikkelen van insu-lineresistentie in de lever. In onze analyse gold dit zowel voor studies waarin fructose met eenzelfde hoeveelheid glucose werd vergeleken als voor studies waarin fructose aan een standaarddieet werd toegevoegd. Fructose draagt overigens niet bij aan in-sulineresistentie in de spieren. Deze bevindingen ondersteunen het idee dat fructose causaal verbonden is met het krijgen van metabole ziekte, met name insulineresistentie in de lever.

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 185PDF page: 185PDF page: 185PDF page: 185

185

11

Ned

erla

ndse

sam

enva

tting

In Hoofdstuk 7 gingen we op zoek naar de moleculaire en cellulaire oorzaken van de gezondheidsgevaren van fructose. De consumptie van veel fructose zou kunnen lei-den tot leververvetting en insulineresistentie, deels doordat fructose de vetaanmaak en glucoseproductie in de lever kan stimuleren. Zoals gezegd wordt ingenomen fructose voornamelijk door de lever verwerkt. In de levercellen kan het als grondstof dienen voor de aanmaak van vet en glucose. Onze hypothese was dat fructose de vetaanmaak meer stimuleert dan glucose en dat mensen met veel levervet gevoeliger zijn voor fruc-tose. Om deze hypothese te toetsen hebben we obese vrijwilligers zonder levervet en obese vrijwilligers met levervet onderzocht. Deze groepen waren gelijk in de mate van overgewicht en de meeste klinische parameters. Desondanks waren vrijwilligers met levervet gekenmerkt door beduidend meer insulineresistentie in de lever, vetweefsel en spieren, wat erop wijst dat ectopisch vet in de lever onderdeel is van een metabool probleem in het hele lichaam. Toediening van 75 g fructose aan de vrijwilligers zorgde voor een acute stijging van de triglyceriden in het bloed. Dat gebeurde niet na toe-diening van glucose. Vervolgens namen we biopten van de lever en vetweefsels na toediening van fructose of glucose. In de lever zorgde fructose, maar niet glucose, voor een stimulatie van genen die betrokken zijn bij de vetaanmaak en glucoseproductie. Opvallend was dat er geen grote verschillen waren tussen vrijwilligers met of zonder levervet in deze effecten van fructose. Mensen met veel levervet hadden daarentegen een verminderd effect van suikerinname op genen in vetweefsel, wat erop kan duiden dat de glucoseopname en -opslag in vetweefsel gestoord is in mensen met levervet. Deze resultaten duiden op cellulaire mechanismen waarmee fructoseconsumptie en stoornissen in vetweefsel kunnen leiden tot levervet en insulineresistentie.

Fibroblast groeifactor 21 is een nieuw hormoon met gemeende gunstige effecten op de suiker-, vet- en energiehuishouding. Eerder onderzoek in proefdieren suggereert dat dit hormoon nodig is voor de normale verwerking van fructose door de lever, maar het is onbekend hoe dit zit in mensen. In Hoofdstuk 8 onderzochten we het effect van fructose-inname op fibroblast groeifactor 21 in obese mensen. De concentratie in het bloed steeg direct na inname van fructose en was na 5 uur weer op het basale niveau. Voor zover wij weten is dit het enige hormoon dat reageert op fructose-inname. Dit suggereert dat het een regulerende functie heeft in de fructosestofwisseling, maar de precieze functie moet in volgend onderzoek worden uitgezocht.

Mensen met obesitas zijn vatbaar voor vitamine D-tekort. Er zijn ook aanwijzingen dat vi-tamine D een gunstig effect heeft op de werking van insuline, maar er is weinig bekend over de actieve vorm van vitamine D. Wij onderzochten of de voorloper en actieve vorm van vitamine D in verband stonden met insulinegevoeligheid in de lever, vetweefsel en spieren (Hoofdstuk 9). In onze groep van obese vrouwen was de mate van overgewicht inderdaad geassocieerd met laag vitamine D, maar dit gold alleen voor de voorloper en niet voor de actieve vorm. Bovendien laten we zien dat beide vormen van vitamine D niet gerelateerd zijn aan de werking van insuline. Het lijkt erop dat vitamine D geen belangrijke rol speelt in het krijgen van insulineresistentie. Echter, gezien de hoge pre-valentie van vitamine D-tekort in mensen met overgewicht, doen artsen er goed aan hier bedacht op te zijn.

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 186PDF page: 186PDF page: 186PDF page: 186

186

DEEL 3: Moleculaire oorzakenEctopisch levervet lijkt een belangrijke oorzaak van insulineresistentie in de lever, maar de onderliggende mechanismen zijn nog niet duidelijk in mensen. De klinische studie in Hoofdstuk 10 was ontworpen om de relatie tussen verschillende vetstoffen en insu-lineresistentie in de lever te onderzoeken. We waren daarbij ook geïnteresseerd in de mogelijke oorzaken van dat verband op moleculair niveau. In een grote groep obese mensen was het hebben van leververvetting inderdaad geassocieerd met insulineresis-tentie in de lever, vetweefsel en spieren. De resultaten laten echter ook zien dat levervet niet strikt voldoende en niet strikt noodzakelijk was voor het krijgen van insulineresis-tentie. Dit betekent dat er andere factoren moeten zijn die een verband tussen lever-vet en insulineresistentie verklaren. Uit recent proefdieronderzoek blijkt dat stapeling van diacylglycerol (vetstof bestaande uit glycerol en 2 vetzuren) leidt tot activatie van eiwitkinase C. Dit enzym remt het insulinesignaalsysteem in de levercellen, waardoor insulineresistentie ontstaat. Onze resultaten komen hiermee overeen: mensen met in-sulineresistentie in de lever waren gekenmerkt door stapeling van diacylglycerol in de levercellen. Deze stapeling was sterk geassocieerd met de activatie van eiwitkinase C. Deze resultaten ondersteunen een mechanisme waarmee de stapeling van een kleine hoeveelheid specifieke vetstof in de lever, via activatie van eiwitkinase C, kan leiden tot insulineresistentie. Wij kijken nu uit naar de ontwikkeling van gerichte geneesmiddelen die de stapeling van diacylglycerol of activatie van eiwitkinase C tegengaan.

BELANGRIJKSTE CONCLUSIES VAN DIT PROEFSCHRIFT

1. Insulineresistentie is een dynamische wisselwerking tussen voedingsstoffen, regel-systemen en organen.

2. De klinische gevolgen van insulineresistentie zijn afhankelijk van het celtype waarin het defect bestaat.

3. Simpele testen, zoals een nuchtere bloedafname, kunnen worden gebruikt om in-sulineresistentie met voldoende betrouwbaarheid te herkennen in obese mensen.

4. De consumptie van veel fructose draagt bij aan de ontwikkeling van insulineresis-tentie in de lever.

5. Dit komt deels doordat fructose de vetaanmaak en suikerproductie in levercellen stimuleert.

6. Door stapeling van specifieke vetstoffen, zoals diacylglycerol, kan het insulinesig-naalsysteem in levercellen onderdrukt worden.

7. Nieuwe behandelingen voor insulineresistentie en type 2 diabetes kunnen zich het best richten op het verbeteren van de vetopslag in vetweefsel en het voorkomen van vetstapeling in organen als de lever en spieren.

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 187PDF page: 187PDF page: 187PDF page: 187

187

11

Ned

erla

ndse

sam

enva

tting

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 188PDF page: 188PDF page: 188PDF page: 188

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 189PDF page: 189PDF page: 189PDF page: 189

References

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 190PDF page: 190PDF page: 190PDF page: 190

190

[1] Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414: 782-7

[2] Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384: 766-81

[3] Malnick SD, Knobler H. The medical complications of obesity. QJM 2006; 99: 565-79

[4] Puhl RM, Heuer CA. Obesity stigma: important considerations for public health. Am J Public Health 2010; 100: 1019-28

[5] Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a sys-tematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2224-60

[6] Global BMI Mortality Collaboration. Body-mass index and all-cause mortality: individu-al-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 2016; 388: 776-86

[7] Yu E, Ley SH, Manson JE, et al. Weight history and all-cause and cause-specific mortality in three prospective cohort studies. Ann Intern Med 2017; 166: 613-20

[8] Council of the Obesity Society. Obesity as a disease: the Obesity Society Council resolution. Obesity 2008; 16: 1151

[9] Schaecher KL. The role of managed care organizations in obesity management. Am J Man-ag Care 2016; 22: s197-208

[10] Langeveld M, de Vries JH. [The mediocre results of dieting]. Ned Tijdschr Geneeskd 2013; 157: A6017

[11] Brownell KD, Greenwood MR, Stellar E, Shrager EE. The effects of repeated cycles of weight loss and regain in rats. Physiol Behav 1986; 38: 459-64

[12] Soleymani T, Daniel S, Garvey WT. Weight maintenance: challenges, tools and strategies for primary care physicians. Obes Rev 2016; 17: 81-93

[13] Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and me-ta-analysis. JAMA 2004; 292: 1724-37

[14] Abell TL, Minocha A. Gastrointestinal complications of bariatric surgery: diagnosis and ther-apy. Am J Med Sci 2006; 331: 214-8

[15] O’Brien PE, MacDonald L, Anderson M, Brennan L, Brown WA. Long-term outcomes after bariatric surgery: fifteen-year follow-up of adjustable gastric banding and a systematic re-view of the bariatric surgical literature. Ann Surg 2013; 257: 87-94

[16] Puzziferri N, Roshek TB 3rd, Mayo JG, Gallagher R, Belle SH, Livingston EH. Long-term fol-low-up after bariatric surgery: a systematic review. JAMA 2014; 312: 934-42

[17] Cremieux PY, Buchwald H, Shikora SA, Ghosh A, Yang HE, Buessing M. A study on the eco-nomic impact of bariatric surgery. Am J Manag Care 2008; 14: 589-96

[18] Verdam FJ, de Jonge C, Greve JW. [Practice guideline for the treatment of morbid obesity]. Ned Tijdschr Geneeskd 2012; 156: A4630

[19] Lustig RH, Schmidt LA, Brindis CD. Public health: the toxic truth about sugar. Nature 2012; 482: 27-9

[20] Leonard WR, Snodgrass JJ, Robertson ML. Evolutionary perspectives on fat ingestion and metabolism in humans. In: Montmayeur JP, le Coutre J (eds). Fat detection: taste, texture, and post ingestive effects. Boca Raton, FL: CRC Press/Taylor & Francis 2010.

[21] Samuel V,. Shulman GI. The pathogenesis of insulin resistance: integrating signaling path-ways and substrate flux. J Clin Invest 2016; 126: 12-22

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 191PDF page: 191PDF page: 191PDF page: 191

191

Refe

renc

es

11

[22] Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr Diabetes Rev 2013; 9: 25-53

[23] Pessin JE, Saltiel AR. Signaling pathways in insulin action: molecular targets of insulin resist-ance. J Clin Invest 2000; 106: 165-9

[24] Kido Y, Nakae J, Accili D. Clinical review 125: the insulin receptor and its cellular targets. J Clin Endocrinol Metab 2001; 86: 972-9

[25] Rask-Madsen C, Kahn CR. Tissue-specific insulin signaling, metabolic syndrome and cardio-vascular disease. Arterioscler Thromb Vasc Biol 2012; 32: 2052-9

[26] Stumvoll M, Meyer C, Mitrakou A, Nadkarni V, Gerich JE. Renal glucose production and utilization: new aspects in humans. Diabetologia 1997: 40: 149-57

[27] Cherrington AD. Banting Lecture 1997. Control of glucose uptake and release by the liver in vivo. Diabetes 1999; 48: 1198-214

[28] Ramnanan CJ, Edgerton DS, Rivera N, et al. Molecular characterization of insulin-mediated suppression of hepatic glucose production in vivo. Diabetes 2010; 59: 1302-11

[29] Dadson P, Landini L, Helmio M, et al. Effect of bariatric surgery on adipose tissue glucose metabolism in different depots in patients with or without type 2 diabetes. Diabetes Care 2016; 39: 292-9

[30] Kahn BB. Lilly Lecture 1995. Glucose transport: pivotal step in insulin action. Diabetes 1996; 45: 1644-54

[31] Dimitriadis G, Mitrou P, Lambadiari V, Maratou E, Raptis SA. Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract 2011; 93 Suppl 1: S52-9

[32] Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006; 444: 840-6

[33] Brown MS, Goldstein JL. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab 2008; 7: 95-6

[34] Hedrington MS, Davis SN. Sexual dimorphism in glucose and lipid metabolism during fast-ing, hypoglycemia, and exercise. Front Endocrinol 2015; 6: 61

[35] Defronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009; 32 Suppl 2: S157-63

[36] Boren J, Taskinen MR, Olofsson SO, Levin M. Ectopic lipid storage and insulin resistance: a harmful relationship. J Intern Med 2013; 274: 25-40

[37] Kim MS, Krawczyk SA, Doridot L, et al. ChREBP regulates fructose-induced glucose produc-tion independently of insulin signaling. J Clin Invest 2016; 126: 4372-86

[38] Defronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insu-lin secretion and resistance. Am J Physiol 1979; 237: E214-23

[39] Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endo-crinol Metab 2008; 294: E15-26

[40] Finegood DT, Bergman RN, Vranic M. Estimation of endogenous glucose production during hyperinsulinemic-euglycemic glucose clamps. Comparison of unlabeled and labeled exog-enous glucose infusates. Diabetes 1987; 36: 914-24

[41] Steele R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci 1959; 82: 420-30

[42] Wolfe RR, Chinkes DL. Isotope tracers in metabolic research: principles and practice of ki-netic analysis, 2nd ed. Hoboken, NJ: Wiley 2004

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 192PDF page: 192PDF page: 192PDF page: 192

192

[43] Abdul-Ghani MA, Tripathy D, Defronzo RA. Contributions of beta-cell dysfunction and in-sulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 2006; 29: 1130-9

[44] Samocha-Bonet D, Chisholm DJ, Tonks K, Campbell LV, Greenfield JR. Insulin-sensitive obe-sity in humans - a ‘favorable fat’ phenotype? Trends Endocrinol Metab 2012; 23: 116-24

[45] Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care 2004; 27: 1487-95

[46] Bergman RN, Prager R, Volund A, Olefsky JM. Equivalence of the insulin sensitivity index in man derived by the minimal model method and the euglycemic glucose clamp. J Clin Invest 1987; 79: 790-800

[47] Matsuda M, Defronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999; 22: 1462-70

[48] Harano Y, Hidaka H, Takatsuki K, et al. Glucose, insulin, and somatostatin infusion for the determination of insulin sensitivity in vivo. Metabolism 1978; 27: 1449-52

[49] Greenfield MS, Doberne L, Kraemer F, Tobey T, Reaven G. Assessment of insulin resistance with the insulin suppression test and the euglycemic clamp. Diabetes 1981; 30: 387-92

[50] Stern SE, Williams K, Ferrannini E, Defronzo RA, Bogardus C, Stern MP. Identification of in-dividuals with insulin resistance using routine clinical measurements. Diabetes 2005; 54: 333-9

[51] Tam CS, Xie W, Johnson WD, Cefalu WT, Redman LM, Ravussin E. Defining insulin resistance from hyperinsulinemic-euglycemic clamps. Diabetes Care 2012; 35: 1605-10

[52] Nathan DM, Davidson MB, Defronzo RA, et al. Impaired fasting glucose and impaired glu-cose tolerance: implications for care. Diabetes Care 2007; 30: 753-9

[53] Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005; 115: 1343-51

[54] Samuel VT, Shulman GI. Integrating mechanisms for insulin resistance: common threads and missing links. Cell 2012; 148: 852-71

[55] Shulman GI. Cellular mechanisms of insulin resistance. J Clin Invest 2000; 106: 171-6

[56] Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 2002; 32 Suppl 3: 14-23

[57] Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 2014; 59: 713-23

[58] Erion DM, Shulman GI. Diacylglycerol-mediated insulin resistance. Nat Med 2010; 16: 400-2

[59] Perry RJ, Samuel VT, Petersen KF, Shulman GI. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 2014; 510: 84-91

[60] Samuel VT, Liu ZX, Qu X, et al. Mechanism of hepatic insulin resistance in non-alcoholic fatty liver disease. J Biol Chem 2004; 279: 32345-53

[61] Roberts R, Hodson L, Dennis AL, et al. Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia 2009; 52: 882-90

[62] Slawik M, Vidal-Puig AJ. Adipose tissue expandability and the metabolic syndrome. Genes Nutr 2007; 2: 41-5

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 193PDF page: 193PDF page: 193PDF page: 193

193

Refe

renc

es

11

[63] Perseghin G, Scifo P, De Cobelli F, et al. Intramyocellular triglyceride content is a determi-nant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectros-copy assessment in offspring of type 2 diabetic parents. Diabetes 1999; 48: 1600-6

[64] Visser ME, Lammers NM, Nederveen AJ, et al. Hepatic steatosis does not cause insulin re-sistance in people with familial hypobetalipoproteinaemia. Diabetologia 2011; 54: 2113-21

[65] Yu C, Chen Y, Cline GW, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in mus-cle. J Biol Chem 2002; 277: 50230-6

[66] Szendroedi J, Yoshimura T, Phielix E, et al. Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci U S A 2014; 111: 9597-602

[67] Brands M, Hoeks J, Sauerwein HP, et al. Short-term increase of plasma free fatty acids does not interfere with intrinsic mitochondrial function in healthy young men. Metabolism 2011; 60: 1398-405

[68] Lambert JE, Ramos-Roman MA, Browning JD, Parks EJ. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 2014; 146: 726-35

[69] Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, et al. Fat accumulation in the liver is asso-ciated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 2002; 87: 3023-8

[70] Korenblat KM, Fabbrini E, Mohammed BS, Klein S. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenter-ology 2008; 134: 1369-75

[71] Deivanayagam S, Mohammed BS, Vitola BE, et al. Nonalcoholic fatty liver disease is associat-ed with hepatic and skeletal muscle insulin resistance in overweight adolescents. Am J Clin Nutr 2008; 88: 257-62

[72] Jornayvaz FR, Birkenfeld AL, Jurczak MJ, et al. Hepatic insulin resistance in mice with hepat-ic overexpression of diacylglycerol acyltransferase 2. Proc Natl Acad Sci U S A 2011; 108: 5748-52

[73] Samuel VT, Liu ZX, Wang A, et al. Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. J Clin Invest 2007; 117: 739-45

[74] Cantley JL, Yoshimura T, Camporez JP, et al. CGI-58 knockdown sequesters diacylglycerols in lipid droplets/ER-preventing diacylglycerol-mediated hepatic insulin resistance. Proc Natl Acad Sci U S A 2013; 110: 1869-74

[75] Perry RJ, Camporez JP, Kursawe R, et al. Hepatic acetyl CoA links adipose tissue inflamma-tion to hepatic insulin resistance and type 2 diabetes. Cell 2015; 160: 745-58

[76] Jensen MD, Haymond MW, Rizza RA, Cryer PE, Miles JM. Influence of body fat distribution on free fatty acid metabolism in obesity. J Clin Invest 1989; 83: 1168-73

[77] Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS. Regulation of lipolysis in adi-pocytes. Annu Rev Nutr 2007; 27: 79-101

[78] Weisberg SP, Mccann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is asso-ciated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796-808

[79] Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 2010; 72: 219-46

[80] Romeo GR, Lee J, Shoelson SE. Metabolic syndrome, insulin resistance, and roles of in-flammation--mechanisms and therapeutic targets. Arterioscler Thromb Vasc Biol 2012; 32: 1771-6

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 194PDF page: 194PDF page: 194PDF page: 194

194

[81] Scherer T, O’Hare J, Diggs-Andrews K, et al. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab 2011; 13: 183-94

[82] Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Haring HU. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev 2016; 96: 1169-209

[83] Kouidhi S, Berrhouma R, Rouissi K, et al. Human subcutaneous adipose tissue Glut 4 mRNA expression in obesity and type 2 diabetes. Acta Diabetol 2013; 50: 227-32

[84] Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 2005; 436: 356-62

[85] Herman MA, Peroni OD, Villoria J, et al. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 2012; 484: 333-8

[86] Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. Deficiency of carbohydrate response ele-ment-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci U S A 2004; 101: 7281-6

[87] Iizuka K, Horikawa Y. ChREBP: a glucose-activated transcription factor involved in the devel-opment of metabolic syndrome. Endocr J 2008; 55: 617-24

[88] Yore MM, Syed I, Moraes-Vieira PM, et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 2014; 159: 318-32

[89] Kursawe R, Caprio S, Giannini C, et al. Decreased transcription of ChREBP-α/β isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: associations with insulin resistance and hyperglycemia. Diabetes 2013; 62: 837-44

[90] Turer AT, Scherer PE. Adiponectin: mechanistic insights and clinical implications. Diabetolo-gia 2012; 55: 2319-26

[91] Polyzos SA, Toulis KA, Goulis DG, Zavos C, Kountouras J. Serum total adiponectin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Metabolism 2011; 60: 313-26

[92] Lee CH, Hung YJ. Possible new therapeutic approach for obesity-related diseases: Role of adiponectin receptor agonists. J Diabetes Investig 2015; 6: 264-6

[93] Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004; 89: 2548-56

[94] Nieuwdorp M, Gilijamse PW, Pai N, Kaplan LM. Role of the microbiome in energy regulation and metabolism. Gastroenterology 2014; 146: 1525-33

[95] Parlevliet ET, de Leeuw-van Weenen JE, Romijn JA, Pijl H. GLP-1 treatment reduces endog-enous insulin resistance via activation of central GLP-1 receptors in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2010; 299: E318-24

[96] Hummasti S, Hotamisligil GS. Endoplasmic reticulum stress and inflammation in obesity and diabetes. Circ Res 2010; 107: 579-91

[97] Corcoran MP, Lamon-Fava S, Fielding RA. Skeletal muscle lipid deposition and insulin resist-ance: effect of dietary fatty acids and exercise. Am J Clin Nutr 2007; 85: 662-77

[98] Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF. Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr 2010; 8: 29-

[99] Swinburn BA, Caterson I, Seidell JC, James WP. Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutr 2004; 7: 123-46

[100] Weickert MO. Nutritional modulation of insulin resistance. Scientifica 2012; 2012: 424780

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 195PDF page: 195PDF page: 195PDF page: 195

195

Refe

renc

es

11

[101] Kastorini CM, Milionis HJ, Esposito K, Giugliano D, Goudevenos JA, Panagiotakos DB. The effect of Mediterranean diet on metabolic syndrome and its components: a meta-analysis of 50 studies and 534,906 individuals. J Am Coll Cardiol 2011; 57: 1299-313

[102] Riserus U, Willett WC, Hu FB. Dietary fats and prevention of type 2 diabetes. Prog Lipid Res 2009; 48: 44-51

[103] de Munter JS, Hu FB, Spiegelman D, Franz M, van Dam RM. Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med 2007; 4: e261

[104] Bray GA. Soft drink consumption and obesity: it is all about fructose. Curr Opin Lipidol 2010; 21: 51-7

[105] Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 2004; 79: 537-43

[106] Tappy L, Le KA. Health effects of fructose and fructose-containing caloric sweeteners: where do we stand 10 years after the initial whistle blowings? Curr Diab Rep 2015; 15: 627

[107] Wu T, Giovannucci E, Pischon T, et al. Fructose, glycemic load, and quantity and quality of carbohydrate in relation to plasma C-peptide concentrations in US women. Am J Clin Nutr 2004; 80: 1043-9

[108] Bremer AA, Stanhope KL, Graham JL, et al. Fructose-fed rhesus monkeys: a nonhuman pri-mate model of insulin resistance, metabolic syndrome, and type 2 diabetes. Clin Transl Sci 2011; 4: 243-52

[109] Martinez FJ, Rizza RA, Romero JC. High-fructose feeding elicits insulin resistance, hyperinsu-linism, and hypertension in normal mongrel dogs. Hypertension 1994; 23: 456-63

[110] Tran LT, Yuen VG, Mcneill JH. The fructose-fed rat: a review on the mechanisms of fruc-tose-induced insulin resistance and hypertension. Mol Cell Biochem 2009; 332: 145-59

[111] Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K. Fructose: a highly lipogenic nutrient im-plicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 2010; 299: E685-94

[112] Tappy L, Mittendorfer B. Fructose toxicity: is the science ready for public health actions? Curr Opin Clin Nutr Metab Care 2012; 15: 357-61

[113] Jeyakumar SM, Vijaya Kumar P, Giridharan NV, Vajreswari A. Vitamin A improves insulin sensitivity by increasing insulin receptor phosphorylation through protein tyrosine phos-phatase 1B regulation at early age in obese rats of WNIN/Ob strain. Diabetes Obes Metab 2011; 13: 955-8

[114] Baltaci D, Kutlucan A, Turker Y, et al. Association of vitamin B12 with obesity, overweight, insulin resistance and metabolic syndrome, and body fat composition: primary care-based study. Med Glas 2013; 10: 203-10

[115] Khodaeian M, Tabatabaei-Malazy O, Qorbani M, Farzadfar F, Amini P, Larijani B. Effect of vitamins C and E on insulin resistance in diabetes: a meta-analysis study. Eur J Clin Invest 2015; 45: 1161-74

[116] Agebratt C, Strom E, Romu T, et al. A randomized study of the effects of additional fruit and nuts consumption on hepatic fat content, cardiovascular risk factors and basal metabolic rate. PLoS One 2016; 11: e0147149

[117] Johnston CS, Kim CM, Buller AJ. Vinegar improves insulin sensitivity to a high-carbohydrate meal in subjects with insulin resistance or type 2 diabetes. Diabetes Care 2004; 27: 281-2

[118] Lecoultre V, Carrel G, Egli L, et al. Coffee consumption attenuates short-term fructose-in-duced liver insulin resistance in healthy men. Am J Clin Nutr 2014; 99: 268-75

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 196PDF page: 196PDF page: 196PDF page: 196

196

[119] Pikilidou MI, Lasaridis AN, Sarafidis PA, et al. Insulin sensitivity increase after calcium supple-mentation and change in intraplatelet calcium and sodium-hydrogen exchange in hyper-tensive patients with type 2 diabetes. Diabet Med 2009; 26: 211-9

[120] Couturier K, Batandier C, Awada M, et al. Cinnamon improves insulin sensitivity and alters the body composition in an animal model of the metabolic syndrome. Arch Biochem Bio-phys 2010; 501: 158-61

[121] Dong H, Wang N, Zhao L, Lu F. Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta-analysis. Evid Based Complement Alternat Med 2012; 2012: 591654

[122] Shanks N, Greek R, Greek J. Are animal models predictive for humans? Philos Ethics Human-it Med 2009; 4: 2

[123] Bracken MB. Why animal studies are often poor predictors of human reactions to exposure. J R Soc Med 2009; 102: 120-2

[124] Vella A, Jensen MD, Nair KS. Eulogy for the metabolic clinical investigator? Diabetes 2016; 65: 2821-3

[125] Accili D. Lilly Lecture 2003. The struggle for mastery in insulin action: from triumvirate to republic. Diabetes 2004; 53: 1633-42

[126] Gast KB, Tjeerdema N, Stijnen T, Smit JW, Dekkers OM. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis. PLoS One 2012; 7: e52036

[127] Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabe-tes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393-403

[128] Langeveld M, Ghauharali KJ, Sauerwein HP, et al. Type I Gaucher disease, a glycosphingo-lipid storage disorder, is associated with insulin resistance. J Clin Endocrinol Metab 2008; 93: 845-51

[129] Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 2012; 143: 913-6.e7

[130] De Weijer BA, Aarts E, Janssen IM, et al. Hepatic and peripheral insulin sensitivity do not improve 2 weeks after bariatric surgery. Obesity 2013; 21: 1143-7

[131] Koopman KE, Caan MW, Nederveen AJ, et al. Hypercaloric diets with increased meal fre-quency, but not meal size, increase intrahepatic triglycerides: a randomized controlled trial. Hepatology 2014; 60: 545-53

[132] van Raalte DH, Brands M, van der Zijl NJ, et al. Low-dose glucocorticoid treatment affects multiple aspects of intermediary metabolism in healthy humans: a randomised controlled trial. Diabetologia 2011; 54: 2103-12

[133] Brands M, Sauerwein HP, Ackermans MT, Kersten S, Serlie MJ. Omega-3 long-chain fatty acids strongly induce angiopoietin-like 4 in humans. J Lipid Res 2013; 54: 615-21

[134] Vrieze A, Out C, Fuentes S, et al. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J Hepatol 2014; 60: 824-31

[135] van der Valk F, Hassing C, Visser M, et al. The effect of a diiodothyronine mimetic on insu-lin sensitivity in male cardiometabolic patients: a double-blind randomized controlled trial. PLoS One 2014; 9: e86890

[136] Ackermans MT, Pereira Arias AM, Bisschop PH, Endert E, Sauerwein HP, Romijn JA. The quantification of gluconeogenesis in healthy men by (2)H2O and [2-(13)C]glycerol yields different results: rates of gluconeogenesis in healthy men measured with (2)H2O are higher than those measured with [2-(13)C]glycerol. J Clin Endocrinol Metab 2001; 86: 2220-6

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 197PDF page: 197PDF page: 197PDF page: 197

197

Refe

renc

es

11

[137] Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28: 412-9

[138] Katz A, Nambi SS, Mather K, et al. Quantitative insulin sensitivity check index: a simple, accu-rate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 2000; 85: 2402-10

[139] Solberg HE. The theory of reference values Part 5. Statistical treatment of collected refer-ence values. Determination of reference limits. J Clin Chem Clin Biochem 1983; 21: 749-60

[140] Clinical and Laboratory Standards Institute (CLSI). Defining, establishing, and verifying ref-erence intervals in the clinical laboratory: approved guideline, 3rd ed. Wayne, PA: Clinical and Laboratory Standards Institute 2008

[141] Karakelides H, Irving BA, Short KR, O’Brien P, Nair KS. Age, obesity, and sex effects on insulin sensitivity and skeletal muscle mitochondrial function. Diabetes 2010; 59: 89-97

[142] Vistisen D, Colagiuri S, Borch-Johnsen K. Bimodal distribution of glucose is not universally useful for diagnosing diabetes. Diabetes Care 2009; 32: 397-403

[143] Reaven GM. Banting Lecture 1988. Role of insulin resistance in human disease. Diabetes 1988; 37: 1595-607

[144] Amati F, Dube JJ, Coen PM, Stefanovic-Racic M, Toledo FG, Goodpaster BH. Physical inac-tivity and obesity underlie the insulin resistance of aging. Diabetes Care 2009; 32: 1547-9

[145] American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014; 37 Suppl 1: S81-90

[146] Goff DC Jr, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart As-sociation Task Force on Practice Guidelines. J Am Coll Cardiol 2014; 63: 2935-59

[147] Ferrannini E, Natali A, Bell P, Cavallo-Perin P, Lalic N, Mingrone G. Insulin resistance and hypersecretion in obesity. European Group for the Study of Insulin Resistance (EGIR). J Clin Invest 1997; 100: 1166-73

[148] Stefan N, Kantartzis K, Machann J, et al. Identification and characterization of metabolically benign obesity in humans. Arch Intern Med 2008; 168: 1609-16

[149] Ozturk ZA, Kadayifci A. Insulin sensitizers for the treatment of non-alcoholic fatty liver dis-ease. World J Hepatol 2014; 6: 199-206

[150] Smith-Marsh D. Pharmacological strategies for preventing type 2 diabetes in patients with impaired glucose tolerance. Drugs Today 2013; 49: 499-507

[151] Paquot N, Scheen AJ, Dirlewanger M, Lefebvre PJ, Tappy L. Hepatic insulin resistance in obese non-diabetic subjects and in type 2 diabetic patients. Obes Res 2002; 10: 129-34

[152] Sherwin RS, Kramer KJ, Tobin JD, et al. A model of the kinetics of insulin in man. J Clin Invest 1974; 53: 1481-92

[153] Doberne L, Greenfield MS, Schulz B, Reaven GM. Enhanced glucose utilization during pro-longed glucose clamp studies. Diabetes 1981; 30: 829-35

[154] Miller WG, Thienpont LM, Van Uytfanghe K, et al. Toward standardization of insulin immuno-assays. Clin Chem 2009; 55: 1011-8

[155] Staten MA, Stern MP, Miller WG, Steffes MW, Campbell SE. Insulin assay standardization: leading to measures of insulin sensitivity and secretion for practical clinical care. Diabetes Care 2010; 33: 205-6

[156] Cahill GF Jr. Starvation in man. N Engl J Med 1970; 282: 668-75

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 198PDF page: 198PDF page: 198PDF page: 198

198

[157] Sakharova AA, Horowitz JF, Surya S, et al. Role of growth hormone in regulating lipolysis, proteolysis, and hepatic glucose production during fasting. J Clin Endocrinol Metab 2008; 93: 2755-9

[158] Lafontan M, Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 2009; 48: 275-97

[159] Vatner DF, Majumdar SK, Kumashiro N, et al. Insulin-independent regulation of hepatic tri-glyceride synthesis by fatty acids. Proc Natl Acad Sci U S A 2015; 112: 1143-8

[160] Bachmann OP, Dahl DB, Brechtel K, et al. Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes 2001; 50: 2579-84

[161] Zhang L, Keung W, Samokhvalov V, Wang W, Lopaschuk GD. Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle. Bio-chim Biophys Acta 2010; 1801: 1-22

[162] Magkos F, Mittendorfer B. Stable isotope-labeled tracers for the investigation of fatty acid and triglyceride metabolism in humans in vivo. Clin Lipidol 2009; 4: 215-30

[163] Klein S, Wolfe RR. The use of isotopic tracers in studying lipid metabolism in human sub-jects. Baillieres Clin Endocrinol Metab 1987; 1: 797-816

[164] Reshef L, Olswang Y, Cassuto H, et al. Glyceroneogenesis and the triglyceride/fatty acid cycle. J Biol Chem 2003; 278: 30413-6

[165] Nurjhan N, Kennedy F, Consoli A, Martin C, Miles J, Gerich J. Quantification of the glycolytic origin of plasma glycerol: implications for the use of the rate of appearance of plasma glyc-erol as an index of lipolysis in vivo. Metabolism 1988; 37: 386-9

[166] Pyle L, Bergman BC, Nadeau KJ, Cree-Green M. Modeling changes in glucose and glycerol rates of appearance when true basal rates of appearance cannot be readily determined. Am J Physiol Endocrinol Metab 2016; 310: E323-31

[167] Beylot M, Martin C, Beaufrere B, Riou JP, Mornex R. Determination of steady state and non-steady-state glycerol kinetics in humans using deuterium-labeled tracer. J Lipid Res 1987; 28: 414-22

[168] Landau BR. Glycerol production and utilization measured using stable isotopes. Proc Nutr Soc 1999; 58: 973-8

[169] Gutch M, Kumar S, Razi SM, Gupta KK, Gupta A. Assessment of insulin sensitivity/resistance. Indian J Endocrinol Metab 2015; 19: 160-4

[170] Singh B, Saxena A. Surrogate markers of insulin resistance: a review. World J Diabetes 2010; 1: 36-47

[171] Abdul-Ghani MA, Molina-Carrion M, Jani R, Jenkinson C, Defronzo RA. Adipocytes in sub-jects with impaired fasting glucose and impaired glucose tolerance are resistant to the an-ti-lipolytic effect of insulin. Acta Diabetol 2008; 45: 147-50

[172] Gastaldelli A, Harrison SA, Belfort-Aguilar R, et al. Importance of changes in adipose tissue insulin resistance to histological response during thiazolidinedione treatment of patients with nonalcoholic steatohepatitis. Hepatology 2009; 50: 1087-93

[173] Fabbrini E, Magkos F, Conte C, et al. Validation of a novel index to assess insulin resistance of adipose tissue lipolytic activity in obese subjects. J Lipid Res 2012; 53: 321-4

[174] van Pelt RE, Gozansky WS, Kohrt WM. A novel index of whole body antilipolytic insulin ac-tion. Obesity 2013; 21: E162-5

[175] Sondergaard E, Jensen MD. Quantification of adipose tissue insulin sensitivity. J Investig Med 2016; 64: 989-91

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 199PDF page: 199PDF page: 199PDF page: 199

199

Refe

renc

es

11

[176] ter Horst KW, Gilijamse PW, Ackermans MT, et al. Impaired insulin action in the liver, but not in adipose tissue or muscle, is a distinct metabolic feature of impaired fasting glucose in obese humans. Metabolism 2016; 65: 757-63

[177] Teusink B, Voshol PJ, Dahlmans VE, et al. Contribution of fatty acids released from lipolysis of plasma triglycerides to total plasma fatty acid flux and tissue-specific fatty acid uptake. Diabetes 2003; 52: 614-20

[178] Lomonaco R, Ortiz-Lopez C, Orsak B, et al. Effect of adipose tissue insulin resistance on met-abolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology 2012; 55: 1389-97

[179] Bonadonna RC, Groop LC, Zych K, Shank M, Defronzo RA. Dose-dependent effect of insulin on plasma free fatty acid turnover and oxidation in humans. Am J Physiol 1990; 259: E736-50

[180] Groop LC, Bonadonna RC, Delprato S, et al. Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest 1989; 84: 205-13

[181] Perseghin G, Caumo A, Caloni M, Testolin G, Luzi L. Incorporation of the fasting plasma FFA concentration into QUICKI improves its association with insulin sensitivity in nonobese indi-viduals. J Clin Endocrinol Metab 2001; 86: 4776-81

[182] Rabasa-Lhoret R, Bastard JP, Jan V, et al. Modified quantitative insulin sensitivity check in-dex is better correlated to hyperinsulinemic glucose clamp than other fasting-based index of insulin sensitivity in different insulin-resistant states. J Clin Endocrinol Metab 2003; 88: 4917-23

[183] Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res 1999; 8: 135-60

[184] ter Horst KW, Gilijamse PW, Koopman KE, et al. Insulin resistance in obesity can be reliably identified from fasting plasma insulin. Int J Obes 2015; 39: 1703–9

[185] American Diabetes Association. Standards of medical care in diabetes—2015. Diabetes Care 2015; 38 (Suppl 1): S1-S93

[186] Widjaja A, Morris RJ, Levy JC, Frayn KN, Manley SE, Turner RC. Within and between-subject variation in commonly measured anthropometric and biochemical variables. Clin Chem 1999; 45: 561-6

[187] Magkos F, Patterson BW, Mittendorfer B. Reproducibility of stable isotope-labeled tracer measures of VLDL-triglyceride and VLDL-apolipoprotein B-100 kinetics. J Lipid Res 2007; 48: 1204-11

[188] Thomsen C, Storm H, Christiansen C, Rasmussen OW, Larsen MK, Hermansen K. The day-to-day variation in insulin sensitivity in non-insulin-dependent diabetes mellitus patients as-sessed by the hyperinsulinemic-euglycemic clamp method. Metabolism 1997; 46: 374-6

[189] Moura FA, Carvalho LS, Cintra RM, et al. Validation of surrogate indexes of insulin sensitivity in acute phase of myocardial infarction based on euglycemic-hyperinsulinemic clamp. Am J Physiol Endocrinol Metab 2014; 306: E399-403

[190] Aloulou I, Brun JF, Mercier J. Evaluation of insulin sensitivity and glucose effectiveness dur-ing a standardized breakfast test: comparison with the minimal model analysis of an intra-venous glucose tolerance test. Metabolism 2006; 55: 676-90

[191] Defronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the miss-ing links. The Claude Bernard Lecture 2009. Diabetologia 2010; 53: 1270-87

[192] International Diabetes Federation. IDF diabetes atlas, 7nd ed. Brussels, Belgium: Internation-al Diabetes Federation 2015

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 200PDF page: 200PDF page: 200PDF page: 200

200

[193] Hruby A, Hu FB. The epidemiology of obesity: a big picture. Pharmacoeconomics 2015; 33: 673-89

[194] Morigny P, Houssier M, Mouisel E, Langin D. Adipocyte lipolysis and insulin resistance. Bio-chimie 2016; 125: 259-66

[195] Vangipurapu J, Stancakova A, Pihlajamaki J, et al. Association of indices of liver and adi-pocyte insulin resistance with 19 confirmed susceptibility loci for type 2 diabetes in 6,733 non-diabetic Finnish men. Diabetologia 2011; 54: 563-71

[196] Hershkop K, Besor O, Santoro N, Pierpont B, Caprio S, Weiss R. Adipose insulin resistance in obese adolescents across the spectrum of glucose tolerance. J Clin Endocrinol Metab 2016; 101: 2423-31

[197] Santosa S, Jensen M. The sexual dimorphism of lipid kinetics in humans. Front Endocrinol 2015; 6: 103

[198] Tabak AG, Herder C, Rathmann W, Brunner EJ, Kivimaki M. Prediabetes: a high-risk state for diabetes development. Lancet 2012; 379: 2279-90

[199] Ford ES, Zhao G, Li C. Pre-diabetes and the risk for cardiovascular disease: a systematic review of the evidence. J Am Coll Cardiol 2010; 55: 1310-7

[200] Rizza RA. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: impli-cations for therapy. Diabetes 2010; 59: 2697-707

[201] Bock G, Chittilapilly E, Basu R, et al. Contribution of hepatic and extrahepatic insulin resist-ance to the pathogenesis of impaired fasting glucose: role of increased rates of gluconeo-genesis. Diabetes 2007; 56: 1703-11

[202] Bock G, Dalla Man C, Campioni M, et al. Pathogenesis of pre-diabetes: mechanisms of fast-ing and postprandial hyperglycemia in people with impaired fasting glucose and/or im-paired glucose tolerance. Diabetes 2006; 55: 3536-49

[203] Abdul-Ghani MA, Jenkinson CP, Richardson DK, Tripathy D, Defronzo RA. Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance: re-sults from the Veterans Administration Genetic Epidemiology Study. Diabetes 2006; 55: 1430-5

[204] Faerch K, Vaag A, Holst JJ, Glumer C, Pedersen O, Borch-Johnsen K. Impaired fasting gly-caemia vs impaired glucose tolerance: similar impairment of pancreatic alpha and beta cell function but differential roles of incretin hormones and insulin action. Diabetologia 2008; 51: 853-61

[205] Weyer C, Bogardus C, Pratley RE. Metabolic characteristics of individuals with impaired fast-ing glucose and/or impaired glucose tolerance. Diabetes 1999; 48: 2197-203

[206] Kim SH, Reaven GM. Isolated impaired fasting glucose and peripheral insulin sensitivity: not a simple relationship. Diabetes Care 2008; 31: 347-52

[207] Meyer C, Pimenta W, Woerle HJ, et al. Different mechanisms for impaired fasting glucose and impaired postprandial glucose tolerance in humans. Diabetes Care 2006; 29: 1909-14

[208] Mittendorfer B, Magkos F, Fabbrini E, Mohammed BS, Klein S. Relationship between body fat mass and free fatty acid kinetics in men and women. Obesity 2009; 17: 1872-7

[209] Aronoff SL, Berkowitz K, Shreiner B, Want L. Glucose metabolism and regulation: beyond insulin and glucagon. Diabetes Spectr 2004; 17: 183-90

[210] Thorens B. Brain glucose sensing and neural regulation of insulin and glucagon secretion. Diabetes Obes Metab 2011; 13 Suppl 1: 82-8

[211] Tonelli J, Kishore P, Lee DE, Hawkins M. The regulation of glucose effectiveness: how glu-cose modulates its own production. Curr Opin Clin Nutr Metab Care 2005; 8: 450-6

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 201PDF page: 201PDF page: 201PDF page: 201

201

Refe

renc

es

11

[212] Guerrero-Romero F, Rodriguez-Moran M, Perez-Fuentes R, et al. Prediabetes and its rela-tionship with obesity in Mexican adults: the Mexican Diabetes Prevention (MexDiab) Study. Metab Syndr Relat Disord 2008; 6: 15-23

[213] Chen CM, Yeh MC. The prevalence and determinants of impaired fasting glucose in the population of Taiwan. BMC Public Health 2013; 13: 1123

[214] Lilly M, Godwin M. Treating prediabetes with metformin: Systematic review and meta-anal-ysis. Can Fam Physician 2009; 55: 363-9

[215] Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci 2012; 122: 253-70

[216] Sullivan PW, Morrato EH, Ghushchyan V, Wyatt HR, Hill JO. Obesity, inactivity, and the preva-lence of diabetes and diabetes-related cardiovascular comorbidities in the US, 2000-2002. Diabetes Care 2005; 28: 1599-603

[217] Varlamov O, Bethea CL, Roberts CT Jr. Sex-specific differences in lipid and glucose metab-olism. Front Endocrinol 2014; 5: 241

[218] Peterson LR, Soto PF, Herrero P, et al. Impact of gender on the myocardial metabolic re-sponse to obesity. JACC Cardiovasc Imaging 2008; 1: 424-33

[219] Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol 2015; 402: 113-9

[220] Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27: 1047-53

[221] Goff DC Jr, Bertoni AG, Kramer H, et al. Dyslipidemia prevalence, treatment, and control in the Multi-Ethnic Study of Atherosclerosis (MESA): gender, ethnicity, and coronary artery calcium. Circulation 2006; 113: 647-56

[222] Institute of Medicine (US) Board on Population Health and Public Health Practice. Sex-spe-cific reporting of scientific research: a workshop summary. Washington, DC: National Acad-emies Press (US) 2012

[223] Lundsgaard AM, Kiens B. Gender differences in skeletal muscle substrate metabolism - mo-lecular mechanisms and insulin sensitivity. Front Endocrinol 2014; 5: 195

[224] Hoeg L, Roepstorff C, Thiele M, Richter EA, Wojtaszewski JF, Kiens B. Higher intramuscular triacylglycerol in women does not impair insulin sensitivity and proximal insulin signaling. J Appl Physiol 2009; 107: 824-31

[225] Vistisen B, Hellgren LI, Vadset T, et al. Effect of gender on lipid-induced insulin resistance in obese subjects. Eur J Endocrinol 2008; 158: 61-8

[226] Borissova AM, Tankova T, Kirilov G, Koev D. Gender-dependent effect of ageing on periph-eral insulin action. Int J Clin Pract 2005; 59: 422-6

[227] Sumner AE, Kushner H, Sherif KD, Tulenko TN, Falkner B, Marsh JB. Sex differences in Afri-can-Americans regarding sensitivity to insulin’s glucoregulatory and antilipolytic actions. Diabetes Care 1999; 22: 71-7

[228] Hoeg LD, Sjoberg KA, Jeppesen J, et al. Lipid-induced insulin resistance affects women less than men and is not accompanied by inflammation or impaired proximal insulin signaling. Diabetes 2011; 60: 64-73

[229] Paula FJ, Pimenta WP, Saad MJ, Paccola GM, Piccinato CE, Foss MC. Sex-related differences in peripheral glucose metabolism in normal subjects. Diabete Metab 1990; 16: 234-9

[230] Soeters MR, Sauerwein HP, Groener JE, et al. Gender-related differences in the metabolic response to fasting. J Clin Endocrinol Metab 2007; 92: 3646-52

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 202PDF page: 202PDF page: 202PDF page: 202

202

[231] Koska J, Stefan N, Permana PA, et al. Increased fat accumulation in liver may link insulin resistance with subcutaneous abdominal adipocyte enlargement, visceral adiposity, and hypoadiponectinemia in obese individuals. Am J Clin Nutr 2008; 87: 295-302

[232] Shen M, Kumar SP, Shi H. Estradiol regulates insulin signaling and inflammation in adipose tissue. Horm Mol Biol Clin Investig 2014; 17: 99-107

[233] Polotsky HN, Polotsky AJ. Metabolic implications of menopause. Semin Reprod Med 2010; 28: 426-34

[234] van Pelt RE, Gozansky WS, Schwartz RS, Kohrt WM. Intravenous estrogens increase insu-lin clearance and action in postmenopausal women. Am J Physiol Endocrinol Metab 2003; 285: E311-7

[235] Host C, Gormsen LC, Hougaard DM, Christiansen JS, Pedersen SB, Gravholt CH. Acute and short-term chronic testosterone fluctuation effects on glucose homeostasis, insulin sensitiv-ity, and adiponectin: a randomized, double-blind, placebo-controlled, crossover study. J Clin Endocrinol Metab 2014; 99: E1088-96

[236] Zhu L, Brown WC, Cai Q, et al. Estrogen treatment after ovariectomy protects against fatty liver and may improve pathway-selective insulin resistance. Diabetes 2013; 62: 424-34

[237] Zhu L, Martinez MN, Emfinger CH, Palmisano BT, Stafford JM. Estrogen signaling prevents diet-induced hepatic insulin resistance in male mice with obesity. Am J Physiol Endocrinol Metab 2014; 306: E1188-E97

[238] Jelenik T, Roden M. How estrogens prevent from lipid-induced insulin resistance. Endocri-nology 2013; 154: 989-92

[239] Alonso-Magdalena P, Ropero AB, Garcia-Arevalo M, et al. Antidiabetic actions of an estro-gen receptor beta selective agonist. Diabetes 2013; 62: 2015-25

[240] Matsuda M, Defronzo RA, Glass L, et al. Glucagon dose-response curve for hepatic glucose production and glucose disposal in type 2 diabetic patients and normal individuals. Metab-olism 2002; 51: 1111-9

[241] Mittelman SD, Bergman RN. Inhibition of lipolysis causes suppression of endogenous glu-cose production independent of changes in insulin. Am J Physiol Endocrinol Metab 2000; 279: E630-7

[242] Mittendorfer B. Origins of metabolic complications in obesity: adipose tissue and free fatty acid trafficking. Curr Opin Clin Nutr Metab Care 2011; 14: 535-41

[243] Jeffcoate W. Growth hormone therapy and its relationship to insulin resistance, glucose in-tolerance and diabetes mellitus: a review of recent evidence. Drug Saf 2002; 25: 199-212

[244] Hoeg LD, Sjoberg KA, Lundsgaard AM, et al. Adiponectin concentration is associated with muscle insulin sensitivity, AMPK phosphorylation, and ceramide content in skeletal muscles of men but not women. J Appl Physiol 2013; 114: 592-601

[245] Combs TP, Berg AH, Obici S, Scherer PE, Rossetti L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J Clin Invest 2001; 108: 1875-81

[246] Virtanen KA, Lonnroth P, Parkkola R, et al. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab 2002; 87: 3902-10

[247] Marin P, Rebuffe-Scrive M, Smith U, Bjorntorp P. Glucose uptake in human adipose tissue. Metabolism 1987; 36: 1154-60

[248] Defronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991; 14: 173-94

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 203PDF page: 203PDF page: 203PDF page: 203

203

Refe

renc

es

11

[249] Johnson RJ, Segal MS, Sautin Y, et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardio-vascular disease. Am J Clin Nutr 2007; 86: 899-906

[250] Marriott BP, Cole N, Lee E. National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J Nutr 2009; 139: 1228s-35s

[251] Vos MB, Kimmons JE, Gillespie C, Welsh J, Blanck HM. Dietary fructose consumption among US children and adults: the Third National Health and Nutrition Examination Survey. Med-scape J Med 2008; 10: 160

[252] Kelishadi R, Mansourian M, Heidari-Beni M. Association of fructose consumption and com-ponents of metabolic syndrome in human studies: a systematic review and meta-analysis. Nutrition 2014; 30: 503-10

[253] Cozma AI, Sievenpiper JL, De Souza RJ, et al. Effect of fructose on glycemic control in diabe-tes: a systematic review and meta-analysis of controlled feeding trials. Diabetes Care 2012; 35: 1611-20

[254] World Health Organization. Guideline: sugars intake for adults and children. Geneva, Swit-zerland: World Health Organization 2015

[255] US Departments of Health and Human Services (DHHS) and Agriculture (USDA). 2015–2020 dietary guidelines for Americans, 8th ed. Washington, DC: DHHS and USDA 2015. Available from: http://health.gov/dietaryguidelines/2015/guidelines/

[256] Higgins JPT, Green S (eds). Cochrane handbook for systematic reviews of interventions, v5.1.0. London, UK: The Cochrane Collaboration 2011. Available from: www.cochrane-hand-book.org/

[257] Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009; 151: 264-9

[258] Hattersley JG, Mohlig M, Roden M, et al. Quantifying the improvement of surrogate indices of hepatic insulin resistance using complex measurement techniques. PLoS One 2012; 7: e39029

[259] Choukem SP, Gautier JF. How to measure hepatic insulin resistance? Diabetes Metab 2008; 34: 664-73

[260] Sievenpiper JL, Carleton AJ, Chatha S, et al. Heterogeneous effects of fructose on blood lipids in individuals with type 2 diabetes: systematic review and meta-analysis of experi-mental trials in humans. Diabetes Care 2009; 32: 1930-7

[261] Robinson KA, Dickersin K. Development of a highly sensitive search strategy for the retrieval of reports of controlled trials using PubMed. Int J Epidemiol 2002; 31: 150-3

[262] Wong SS, Wilczynski NL, Haynes RB. Developing optimal search strategies for detecting clinically sound treatment studies in EMBASE. J Med Libr Assoc 2006; 94: 41-7

[263] Volund A. Conversion of insulin units to SI units. Am J Clin Nutr 1993; 58: 714-5

[264] Elbourne DR, Altman DG, Higgins JP, Curtin F, Worthington HV, Vail A. Meta-analyses involv-ing cross-over trials: methodological issues. Int J Epidemiol 2002; 31: 140-9

[265] Heyland DK, Novak F, Drover JW, Jain M, Su X, Suchner U. Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA 2001; 286: 944-53

[266] Sievenpiper JL, de Souza RJ, Mirrahimi A, et al. Effect of fructose on body weight in con-trolled feeding trials: a systematic review and meta-analysis. Ann Intern Med 2012; 156: 291-304

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 204PDF page: 204PDF page: 204PDF page: 204

204

[267] Wang DD, Sievenpiper JL, de Souza RJ, et al. The effects of fructose intake on serum uric acid vary among controlled dietary trials. J Nutr 2012; 142: 916-23

[268] Ha V, Sievenpiper JL, de Souza RJ, et al. Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials. Hypertension 2012; 59: 787-95

[269] Chiavaroli L, de Souza RJ, Ha V, et al. Effect of fructose on established lipid targets: a sys-tematic review and meta-analysis of controlled feeding trials. J Am Heart Assoc 2015; 4: e001700

[270] Wang DD, Sievenpiper JL, de Souza RJ, et al. Effect of fructose on postprandial triglycerides: a systematic review and meta-analysis of controlled feeding trials. Atherosclerosis 2014; 232: 125-33

[271] Chiu S, Sievenpiper JL, de Souza RJ, et al. Effect of fructose on markers of non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr 2014; 68: 416-23

[272] Chung M, Ma J, Patel K, Berger S, Lau J, Lichtenstein AH. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis. Am J Clin Nutr 2014; 100: 833-49

[273] The Cochrane Collaboration. Review Manager (RevMan) [Computer Program], v5.3. Copen-hagen, Denmark: The Nordic Cochrane Centre 2014

[274] Sterne JAC, Egger M. Regression methods to detect publication and other bias in me-ta-analysis. In: Rothstein HR, Sutton AJ, Borenstein M (eds). Publication bias in meta-analy-sis: prevention, assessment and adjustments. West Sussex, UK: John Wiley & Sons 2005

[275] Peto R, Awasthi S, Read S, Clark S, Bundy D. Vitamin A supplementation in Indian children - authors’ reply. Lancet 2013; 382: 594-6

[276] Aeberli I, Gerber PA, Hochuli M, et al. Low to moderate sugar-sweetened beverage con-sumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: a randomized controlled trial. Am J Clin Nutr 2011; 94: 479-85

[277] Aeberli I, Hochuli M, Gerber PA, et al. Moderate amounts of fructose consumption impair insulin sensitivity in healthy young men: a randomized controlled trial. Diabetes Care 2013; 36: 150-6

[278] Bantle JP, Raatz SK, Thomas W, Georgopoulos A. Effects of dietary fructose on plasma lipids in healthy subjects. Am J Clin Nutr 2000; 72: 1128-34

[279] Beck-Nielsen H, Pedersen O, Lindskov HO. Impaired cellular insulin binding and insulin sen-sitivity induced by high-fructose feeding in normal subjects. Am J Clin Nutr 1980; 33: 273-8

[280] Bossetti BM, Kocher LM, Moranz JF, Falko JM. The effects of physiologic amounts of simple sugars on lipoprotein, glucose, and insulin levels in normal subjects. Diabetes Care 1984; 7: 309-12

[281] Hallfrisch J, Ellwood KC, Michaelis OET, Reiser S, O’Dorisio TM, Prather ES. Effects of dietary fructose on plasma glucose and hormone responses in normal and hyperinsulinemic men. J Nutr 1983; 113: 1819-26

[282] Huttunen JK, Makinen KK, Scheinin A. Turku sugar studies XI. Effects of sucrose, fructose and xylitol diets on glucose, lipid and urate metabolism. Acta Odontol Scand 1976; 34: 345-51

[283] Koh ET, Ard NF, Mendoza F. Effects of fructose feeding on blood parameters and blood pressure in impaired glucose-tolerant subjects. J Am Diet Assoc 1988; 88: 932-8

[284] Ngo Sock ET, Le KA, Ith M, Kreis R, Boesch C, Tappy L. Effects of a short-term overfeeding with fructose or glucose in healthy young males. Br J Nutr 2010; 103: 939-43

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 205PDF page: 205PDF page: 205PDF page: 205

205

Refe

renc

es

11

[285] Reiser S, Powell AS, Scholfield DJ, Panda P, Fields M, Canary JJ. Day-long glucose, insulin, and fructose responses of hyperinsulinemic and nonhyperinsulinemic men adapted to di-ets containing either fructose or high-amylose cornstarch. Am J Clin Nutr 1989; 50: 1008-14

[286] Schwarz JM, Noworolski SM, Wen MJ, et al. Effect of a high-fructose weight-maintaining diet on lipogenesis and liver fat. J Clin Endocrinol Metab 2015; 100: 2434-42

[287] Silbernagel G, Machann J, Unmuth S, et al. Effects of 4-week very-high-fructose/glucose diets on insulin sensitivity, visceral fat and intrahepatic lipids: an exploratory trial. Br J Nutr 2011; 106: 79-86

[288] Stanhope KL, Bremer AA, Medici V, et al. Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women. J Clin Endocrinol Metab 2011; 96: E1596-605

[289] Johnston RD, Stephenson MC, Crossland H, et al. No difference between high-fructose and high-glucose diets on liver triacylglycerol or biochemistry in healthy overweight men. Gas-troenterology 2013; 145: 1016-25 e2

[290] Lowndes J, Sinnett SS, Rippe JM. No effect of added sugar consumed at median American intake level on glucose tolerance or insulin resistance. Nutrients 2015; 7: 8830-45

[291] Madero M, Arriaga JC, Jalal D, et al. The effect of two energy-restricted diets, a low-fructose diet versus a moderate natural fructose diet, on weight loss and metabolic syndrome pa-rameters: a randomized controlled trial. Metabolism 2011; 60: 1551-9

[292] Mark AB, Poulsen MW, Andersen S, et al. Consumption of a diet low in advanced glycation end products for 4 weeks improves insulin sensitivity in overweight women. Diabetes Care 2014: 37; 88-95

[293] Rizkalla SW, Baigts F, Fumeron F, et al. Comparative effects of several simple carbohydrates on erythrocyte insulin receptors in obese subjects. Pharmacol Biochem Behav 1986; 25: 681-8

[294] Stanhope KL, Schwarz JM, Keim NL, et al. Consuming fructose-sweetened, not glu-cose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. J Clin Invest 2009; 119: 1322-34

[295] Swarbrick MM, Stanhope KL, Elliott SS, et al. Consumption of fructose-sweetened beverag-es for 10 weeks increases postprandial triacylglycerol and apolipoprotein-B concentrations in overweight and obese women. Br J Nutr 2008; 100: 947-52

[296] Johnson LK, Holven KB, Nordstrand N, Mellembakken JR, Tanbo T, Hjelmesaeth J. Fructose content of low calorie diets: effect on cardiometabolic risk factors in obese women with pol-ycystic ovarian syndrome: a randomized controlled trial. Endocr Connect 2015; 4: 144-54

[297] Turner JL, Bierman EL, Brunzell JD, Chait A. Effect of dietary fructose on triglyceride trans-port and glucoregulatory hormones in hypertriglyceridemic men. Am J Clin Nutr 1979; 32: 1043-50

[298] Couchepin C, Le KA, Bortolotti M, et al. Markedly blunted metabolic effects of fructose in healthy young female subjects compared with male subjects. Diabetes Care 2008; 31: 1254-6

[299] Faeh D, Minehira K, Schwarz JM, Periasamy R, Park S, Tappy L. Effect of fructose overfeeding and fish oil administration on hepatic de novo lipogenesis and insulin sensitivity in healthy men. Diabetes 2005; 54: 1907-13

[300] Le KA, Faeh D, Stettler R, et al. A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans. Am J Clin Nutr 2006; 84: 1374-9

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 206PDF page: 206PDF page: 206PDF page: 206

206

[301] Le KA, Ith M, Kreis R, et al. Fructose overconsumption causes dyslipidemia and ectopic lipid deposition in healthy subjects with and without a family history of type 2 diabetes. Am J Clin Nutr 2009; 89: 1760-5

[302] Sobrecases H, Le KA, Bortolotti M, et al. Effects of short-term overfeeding with fructose, fat and fructose plus fat on plasma and hepatic lipids in healthy men. Diabetes Metab 2010; 36: 244-6

[303] Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 2010; 90: 23-46

[304] Mayes PA. Intermediary metabolism of fructose. Am J Clin Nutr 1993; 58 Suppl 5: 754S-65S

[305] Tran C, Jacot-Descombes D, Lecoultre V, et al. Sex differences in lipid and glucose kinetics after ingestion of an acute oral fructose load. Br J Nutr 2010; 104: 1139-47

[306] Postic C, Girard J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insu-lin resistance: lessons from genetically engineered mice. J Clin Invest 2008; 118: 829-38

[307] Thorburn AW, Crapo PA, Griver K, Wallace P, Henry RR. Long-term effects of dietary fruc-tose on carbohydrate metabolism in non-insulin-dependent diabetes mellitus. Metabolism 1990; 39: 58-63

[308] Crapo PA, Kolterman OG, Henry RR. Metabolic consequence of two-week fructose feeding in diabetic subjects. Diabetes Care 1986; 9: 111-9

[309] Grigoresco C, Rizkalla SW, Halfon P, et al. Lack of detectable deleterious effects on metabol-ic control of daily fructose ingestion for 2 mo in NIDDM patients. Diabetes Care 1988; 11: 546-50

[310] Koivisto VA, Yki-Jarvinen H. Fructose and insulin sensitivity in patients with type 2 diabetes. J Intern Med 1993; 233: 145-53

[311] Malerbi DA, Paiva ES, Duarte AL, Wajchenberg BL. Metabolic effects of dietary sucrose and fructose in type II diabetic subjects. Diabetes Care 1996; 19: 1249-56

[312] Grundy SM. Metabolic complications of obesity. Endocrine 2000; 13: 155-65

[313] Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiol Behav 2008; 94: 206-18

[314] rer Horst KW, Schene MR, Holman R, Romijn JA, Serlie MJ. Effect of fructose consumption on insulin sensitivity in nondiabetic subjects: a systematic review and meta-analysis of diet-in-tervention trials. Am J Clin Nutr 2016; 104: 1562-76

[315] Herman MA, Samuel VT. The sweet path to metabolic demise: fructose and lipid synthesis. Trends Endocrinol Metab 2016; 27: 719-30

[316] Sun SZ, Empie MW. Fructose metabolism in humans - what isotopic tracer studies tell us. Nutr Metab 2012; 9: 89

[317] Iizuka K, Miller B, Uyeda K. Deficiency of carbohydrate-activated transcription factor ChRE-BP prevents obesity and improves plasma glucose control in leptin-deficient (ob/ob) mice. Am J Physiol Endocrinol Metab 2006; 291: E358-64

[318] Eissing L, Scherer T, Tödter K, et al. De novo lipogenesis in human fat and liver is linked to ChREBP-β and metabolic health. Nature Commun 2013; 4: 1528

[319] Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose home-ostasis. Nature 2006; 444: 847-53

[320] Huo Y, Guo X, Li H, et al. Targeted overexpression of inducible 6-phosphofructo-2-kinase in adipose tissue increases fat deposition but protects against diet-induced insulin resistance and inflammatory responses. J Biol Chem 2012; 287: 21492-500

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 207PDF page: 207PDF page: 207PDF page: 207

207

Refe

renc

es

11

[321] Lee SS, Park SH. Radiologic evaluation of nonalcoholic fatty liver disease. World J Gastroen-terol 2014; 20: 7392-402

[322] Szczepaniak LS, Nurenberg P, Leonard D, et al. Magnetic resonance spectroscopy to meas-ure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 2005; 288: E462-8

[323] Dulai PS, Sirlin CB, Loomba R. MRI and MRE for non-invasive quantitative assessment of he-patic steatosis and fibrosis in NAFLD and NASH: clinical trials to clinical practice. J Hepatol 2016; 65: 1006-16

[324] Stefan D, Cesare FD, Andrasescu A, et al. Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas Sci Technol 2009; 20: 1-9

[325] ter Horst KW, van Galen KA, Gilijamse PW, et al. Methods for quantifying adipose tissue insulin resistance in overweight/obese humans. Int J Obes 2017; doi: 10.1038/ijo.2017.110

[326] Kleiner DE, Brunt EM, van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005; 41: 1313-21

[327] Brunt EM, Kleiner DE, Wilson LA, Belt P, Neuschwander-Tetri BA. Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinico-pathologic meanings. Hepatology 2011; 53: 810-20

[328] Sanyal AJ, Brunt EM, Kleiner DE, et al. Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology 2011; 54: 344-53

[329] Ruijter JM, Lorenz P, Tuomi JM, Hecker M, van den Hoff MJ. Fluorescent-increase kinetics of different fluorescent reporters used for qPCR depend on monitoring chemistry, targeted sequence, type of DNA input and PCR efficiency. Mikrochim Acta 2014; 181: 1689-96

[330] Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol 1983; 55: 628-34

[331] Ferrannini E. The theoretical bases of indirect calorimetry: a review. Metabolism 1988; 37: 287-301

[332] Kotronen A, Vehkavaara S, Seppala-Lindroos A, Bergholm R, Yki-Jarvinen H. Effect of liver fat on insulin clearance. Am J Physiol Endocrinol Metab 2007; 293: E1709-15

[333] Matsuzaka T, Shimano H, Yahagi N, et al. Insulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice. Diabe-tes 2004; 53: 560-9

[334] Vos MB, Lavine JE. Dietary fructose in nonalcoholic fatty liver disease. Hepatology 2013; 57: 2525-31

[335] Ma J, Fox C, Speliotes E, et al. Sugar-sweetened beverage, diet soda, and fatty liver disease in the Framingham Heart Study cohorts. J Hepatol 2015; 63: 462-9

[336] Trinh KY, O’Doherty RM, Anderson P, Lange AJ, Newgard CB. Perturbation of fuel homeo-stasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats. J Biol Chem 1998; 273: 31615-20

[337] Chan SM, Sun RQ, Zeng XY, et al. Activation of PPARalpha ameliorates hepatic insulin re-sistance and steatosis in high fructose-fed mice despite increased endoplasmic reticulum stress. Diabetes 2013; 62: 2095-105

[338] Jurczak MJ, Lee AH, Jornayvaz FR, et al. Dissociation of inositol-requiring enzyme (IRE1al-pha)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in condi-tional X-box-binding protein-1 (XBP1) knock-out mice. J Biol Chem 2012; 287: 2558-67

[339] Kopf T, Schaefer HL, Troetzmueller M, et al. Influence of fenofibrate treatment on triacylglyc-erides, diacylglycerides and fatty acids in fructose fed rats. PLoS One 2014; 9: e106849

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 208PDF page: 208PDF page: 208PDF page: 208

208

[340] Nagai Y, Yonemitsu S, Erion DM, et al. The role of peroxisome proliferator-activated receptor gamma coactivator-1 beta in the pathogenesis of fructose-induced insulin resistance. Cell Metab 2009; 9: 252-64

[341] Shepherd PR, Kahn BB. Glucose transporters and insulin action--implications for insulin re-sistance and diabetes mellitus. New Engl J Med 1999; 341: 248-57

[342] Kim W, Kyung Lee E. Post-transcriptional regulation in metabolic diseases. RNA Biol 2012; 9: 772-80

[343] Hanover LM, White JS. Manufacturing, composition, and applications of fructose. Am J Clin Nutr 1993; 58 Suppl 5: 724S-32S

[344] Malik VS, Popkin BM, Bray GA, Després JP, Hu FB. Sugar sweetened beverages, obesity, type 2 diabetes and cardiovascular disease risk. Circulation 2010; 121: 1356-64

[345] Fisher FM, Kim M, Doridot L, et al. A critical role for ChREBP-mediated FGF21 secretion in hepatic fructose metabolism. Mol Metab 2017; 6: 14-21

[346] Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest 2005; 115: 1627-35

[347] Xu J, Lloyd DJ, Hale C, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 2009; 58: 250-9

[348] Kharitonenkov A, Wroblewski VJ, Koester A, et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 2007; 148: 774-81

[349] Potthoff MJ, Inagaki T, Satapati S, et al. FGF21 induces PGC-1alpha and regulates carbohy-drate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci U S A 2009; 106: 10853-8

[350] Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabo-lism in ketotic states. Cell Metab 2007; 5: 426-37

[351] Dushay JR, Toschi E, Mitten EK, Fisher FM, Herman MA, Maratos-Flier E. Fructose ingestion acutely stimulates circulating FGF21 levels in humans. Mol Metab 2014; 4: 51-7

[352] Zhang X, Yeung DC, Karpisek M, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 2008; 57: 1246-53

[353] Dushay J, Chui PC, Gopalakrishnan GS, et al. Increased fibroblast growth factor 21 in obesi-ty and nonalcoholic fatty liver disease. Gastroenterology 2010; 139: 456-63

[354] Fisher FM, Chui PC, Antonellis PJ, et al. Obesity is a fibroblast growth factor 21 (FGF21)-re-sistant state. Diabetes 2010; 59: 2781-9

[355] Sjostrom L, Narbro K, Sjostrom CD, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 2007; 357: 741-52

[356] Markan KR, Naber MC, Ameka MK, et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes 2014; 63: 4057-63

[357] Rubino F. Bariatric surgery: effects on glucose homeostasis. Curr Opin Clin Nutr Metab Care 2006; 9: 497-507

[358] Gibson PR, Newnham E, Barrett JS, Shepherd SJ, Muir JG. Review article: fructose malab-sorption and the bigger picture. Aliment Pharmacol Ther 2007; 25: 349-63

[359] Fisher FM, Maratos-Flier E. Understanding the physiology of FGF21. Annu Rev Physiol 2016; 78: 223-41

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 209PDF page: 209PDF page: 209PDF page: 209

209

Refe

renc

es

11

[360] Surowska A, de Giorgi S, Theytaz F, et al. Effects of Roux-en-Y gastric bypass surgery on postprandial fructose metabolism. Obesity 2016; 24: 589-96

[361] Abdul-Ghani MA, Defronzo RA. Pathogenesis of insulin resistance in skeletal muscle. J Bi-omed Biotechnol 2010; 2010: 476279

[362] Jacobsen SH, Bojsen-Moller KN, Dirksen C, et al. Effects of gastric bypass surgery on glu-cose absorption and metabolism during a mixed meal in glucose-tolerant individuals. Dia-betologia 2013; 56: 2250-4

[363] Andrade HF, Pedrosa W, Diniz Mde F, Passos VM. Adverse effects during the oral glucose tolerance test in post-bariatric surgery patients. Arch Endocrinol Metab 2016; 60: 307-13

[364] Kong MF, Chapman I, Goble E, et al. Effects of oral fructose and glucose on plasma GLP-1 and appetite in normal subjects. Peptides 1999; 20: 545-51

[365] Yu H, Xia F, Lam KS, et al. Circadian rhythm of circulating fibroblast growth factor 21 is relat-ed to diurnal changes in fatty acids in humans. Clin Chem 2011; 57: 691-700

[366] Park JG, Xu X, Cho S, et al. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis. Sci Rep 2016; 6: 27938

[367] Hotta Y, Nakamura H, Konishi M, et al. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endo-crinology 2009; 150: 4625-33

[368] Zhao C, Liu Y, Xiao J, et al. FGF21 mediates alcohol-induced adipose tissue lipolysis by acti-vation of systemic release of catecholamine in mice. J Lipid Res 2015; 56: 1481-91

[369] Tappy L, Randin JP, Felber JP. Comparison of thermogenic effect of fructose and glucose in normal humans. Am J Physiol Endocrinol Metab 1986; 250: 13-6

[370] Davidson NO, Hausman AM, Ifkovits CA, et al. Human intestinal glucose transporter expres-sion and localization of GLUT5. Am J Physiol 1992; 262: C795-800

[371] Bojsen-Moller KN, Dirksen C, Jorgensen NB, et al. Increased hepatic insulin clearance after Roux-en-Y gastric bypass. J Clin Endocrinol Metab 2013; 98: E1066-71

[372] Lai Y-H, Fang T-C. The pleiotropic effect of vitamin D. ISRN Nephrology 2013; 2013: 6

[373] Alvarez JA, Ashraf A. Role of vitamin D in insulin secretion and insulin sensitivity for glucose homeostasis. Int J Endocrinol 2010; 2010: 351385

[374] Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 2000; 72: 690-3

[375] Drincic AT, Armas LA, Van Diest EE, Heaney RP. Volumetric dilution, rather than sequestra-tion best explains the low vitamin D status of obesity. Obesity 2012; 20: 1444-8

[376] Muscogiuri G, Sorice GP, Prioletta A, et al. 25-Hydroxyvitamin D concentration correlates with insulin-sensitivity and BMI in obesity. Obesity 2010; 18: 1906-10

[377] Vimaleswaran KS, Berry DJ, Lu C, et al. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med 2013; 10: e1001383

[378] Ford ES, Ajani UA, McGuire LC, Liu S. Concentrations of serum vitamin D and the metabolic syndrome among US adults. Diabetes Care 2005; 28: 1228-30

[379] Scragg R, Sowers M, Bell C. Serum 25-hydroxyvitamin D, diabetes, and ethnicity in the Third National Health and Nutrition Examination Survey. Diabetes Care 2004; 27: 2813-8

[380] Pittas AG, Lau J, Hu FB, Dawson-Hughes B. The role of vitamin D and calcium in type 2 dia-betes. A systematic review and meta-analysis. J Clin Endocrinol Metab 2007; 92: 2017-29

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 210PDF page: 210PDF page: 210PDF page: 210

210

[381] Maestro B, Molero S, Bajo S, Davila N, Calle C. Transcriptional activation of the human insulin receptor gene by 1,25-dihydroxyvitamin D(3). Cell Biochem Funct 2002; 20: 227-32

[382] Haussler MR, Whitfield GK, Haussler CA, et al. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 1998; 13: 325-49

[383] Bea JW, Jurutka PW, Hibler EA, et al. Concentrations of the vitamin D metabolite 1,25(OH)2D and odds of metabolic syndrome and its components. Metabolism 2015; 64: 447-59

[384] Manco M, Calvani M, Nanni G, et al. Low 25-hydroxyvitamin D does not affect insulin sensi-tivity in obesity after bariatric surgery. Obes Res 2005; 13: 1692-700

[385] Bril F, Maximos M, Portillo-Sanchez P, et al. Relationship of vitamin D with insulin resistance and disease severity in non-alcoholic steatohepatitis. J Hepatol 2015; 62: 405-11

[386] Dirks NF, Martens F, Vanderschueren D, et al. Determination of human reference values for serum total 1,25-dihydroxyvitamin D using an extensively validated 2D ID-UPLC-MS/MS method. J Steroid Biochem Mol Biol 2016; 164: 127-33

[387] Heijboer AC, Blankenstein MA, Kema IP, Buijs MM. Accuracy of 6 routine 25-hydroxyvitamin D assays: influence of vitamin D binding protein concentration. Clin Chem 2012; 58: 543-8

[388] Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) eval-uation uses the computer program. Diabetes Care 1998; 21: 2191-2

[389] Hey H, Stokholm KH, Lund B, Lund B, Sorensen OH. Vitamin D deficiency in obese patients and changes in circulating vitamin D metabolites following jejunoileal bypass. Int J Obes 1982; 6: 473-9

[390] Liel Y, Ulmer E, Shary J, Hollis BW, Bell NH. Low circulating vitamin D in obesity. Calcif Tissue Int 1988; 43: 199-201

[391] Brock K, Huang WY, Fraser DR, et al. Low vitamin D status is associated with physical inactiv-ity, obesity and low vitamin D intake in a large US sample of healthy middle-aged men and women. J Steroid Biochem Mol Biol 2010; 121: 462-6

[392] Kull M, Kallikorm R, Lember M. Body mass index determines sunbathing habits: implications on vitamin D levels. Intern Med J 2009; 39: 256-8

[393] Lind L, Hanni A, Lithell H, Hvarfner A, Sorensen OH, Ljunghall S. Vitamin D is related to blood pressure and other cardiovascular risk factors in middle-aged men. Am J Hypertens 1995; 8: 894-901

[394] Pittas AG, Harris SS, Stark PC, Dawson-Hughes B. The effects of calcium and vitamin D sup-plementation on blood glucose and markers of inflammation in nondiabetic adults. Diabe-tes Care 2007; 30: 980-6

[395] Krul-Poel YH, Westra S, ten Boekel E, et al. Effect of vitamin D supplementation on glycemic control in patients with type 2 diabetes (SUNNY trial): a randomized placebo-controlled trial. Diabetes Care 2015; 38: 1420-6

[396] Grimnes G, Figenschau Y, Almas B, Jorde R. Vitamin D, insulin secretion, sensitivity, and lipids: results from a case-control study and a randomized controlled trial using hyperglyce-mic clamp technique. Diabetes 2011; 60: 2748-57

[397] Fliser D, Stefanski A, Franek E, Fode P, Gudarzi A, Ritz E. No effect of calcitriol on insulin-me-diated glucose uptake in healthy subjects. Eur J Clin Invest 1997; 27: 629-33

[398] Mak RH. Intravenous 1,25 dihydroxycholecalciferol corrects glucose intolerance in hemodi-alysis patients. Kidney Int 1992; 41: 1049-54

[399] Bland R, Markovic D, Hills CE, et al. Expression of 25-hydroxyvitamin D3-1alpha-hydroxylase in pancreatic islets. J Steroid Biochem Mol Biol 2004; 89-90: 121-5

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 211PDF page: 211PDF page: 211PDF page: 211

211

Refe

renc

es

11

[400] Kesby JP, Cui X, O’loan J, Mcgrath JJ, Burne TH, Eyles DW. Developmental vitamin D defi-ciency alters dopamine-mediated behaviors and dopamine transporter function in adult female rats. Psychopharmacology 2010; 208: 159-68

[401] Prufer K, Veenstra TD, Jirikowski GF, Kumar R. Distribution of 1,25-dihydroxyvitamin D3 re-ceptor immunoreactivity in the rat brain and spinal cord. J Chem Neuroanat 1999; 16: 135-45

[402] Jiang P, Zhang LH, Cai HL, et al. Neurochemical effects of chronic administration of calcitriol in rats. Nutrients 2014; 6: 6048-59

[403] Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 2005; 29: 21-30

[404] Balabanova S, Richter HP, Antoniadis G, et al. 25-Hydroxyvitamin D, 24,25-dihydroxyvitamin D and 1,25-dihydroxyvitamin D in human cerebrospinal fluid. Klin Wochenschr 1984; 62: 1086-90

[405] Wong RJ, Cheung R, Ahmed A. Nonalcoholic steatohepatitis is the most rapidly growing in-dication for liver transplantation in patients with hepatocellular carcinoma in the US. Hepa-tology 2014; 59: 2188-95

[406] Farese RV Jr, Zechner R, Newgard CB, Walther TC. The problem of establishing relationships between hepatic steatosis and hepatic insulin resistance. Cell Metab 2012; 15: 570-3

[407] Bugianesi E, Gastaldelli A, Vanni E, et al. Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: sites and mechanisms. Diabetologia 2005; 48: 634-42

[408] Gastaldelli A, Cusi K, Pettiti M, et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology 2007; 133: 496-506

[409] Kotronen A, Juurinen L, Tiikkainen M, Vehkavaara S, Yki-Jarvinen H. Increased liver fat, im-paired insulin clearance, and hepatic and adipose tissue insulin resistance in type 2 diabe-tes. Gastroenterology 2008; 135: 122-30

[410] Petersen KF, Dufour S, Befroy D, Lehrke M, Hendler RE, Shulman GI. Reversal of nonalcoholic hepatic steatosis, hepatic insulin resistance, and hyperglycemia by moderate weight reduc-tion in patients with type 2 diabetes. Diabetes 2005; 54: 603-8

[411] Petersen KF, Oral EA, Dufour S, et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J Clin Invest 2002; 109: 1345-50

[412] Sanyal AJ, Campbell-Sargent C, Mirshahi F, et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 2001; 120: 1183-92

[413] Xia JY, Holland WL, Kusminski CM, et al. Targeted induction of ceramide degradation leads to improved systemic metabolism and reduced hepatic steatosis. Cell Metab 2015; 22: 266-78

[414] Petersen MC, Madiraju AK, Gassaway BM, et al. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. J Clin Invest 2016; 126: 4361-71

[415] Chavez JA, Summers SA. A ceramide-centric view of insulin resistance. Cell Metab 2012; 15: 585-94

[416] Holland WL, Miller RA, Wang ZV, et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat Med 2011; 17: 55-63

[417] Luukkonen PK, Zhou Y, Sadevirta S, et al. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. J Hepatol 2016; 64: 1167-75

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 212PDF page: 212PDF page: 212PDF page: 212

212

[418] Kumashiro N, Erion DM, Zhang D, et al. Cellular mechanism of insulin resistance in nonalco-holic fatty liver disease. Proc Natl Acad Sci U S A 2011; 108: 16381-5

[419] Magkos F, Su X, Bradley D, et al. Intrahepatic diacylglycerol content is associated with hepat-ic insulin resistance in obese subjects. Gastroenterology 2012; 142: 1444-6.e2

[420] Amaro A, Fabbrini E, Kars M, et al. Dissociation between intrahepatic triglyceride content and insulin resistance in familial hypobetalipoproteinemia. Gastroenterology 2010; 139: 149-53

[421] Benhamed F, Denechaud PD, Lemoine M, et al. The lipogenic transcription factor ChREBP dissociates hepatic steatosis from insulin resistance in mice and humans. J Clin Invest 2012; 122: 2176-94

[422] Brown JM, Betters JL, Lord C, et al. CGI-58 knockdown in mice causes hepatic steatosis but prevents diet-induced obesity and glucose intolerance. J Lipid Res 2010; 51: 3306-15

[423] Buettner R, Ottinger I, Scholmerich J, Bollheimer LC. Preserved direct hepatic insulin action in rats with diet-induced hepatic steatosis. Am J Physiol Endocrinol Metab 2004; 286: E828-33

[424] Monetti M, Levin MC, Watt MJ, et al. Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab 2007; 6: 69-78

[425] Semple RK, Sleigh A, Murgatroyd PR, et al. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. J Clin Invest 2009; 119: 315-22

[426] Nagle CA, Klett EL, Coleman RA. Hepatic triacylglycerol accumulation and insulin resist-ance. J Lipid Res 2009; 50 Suppl: S74-9

[427] Schmitz-Peiffer C, Biden TJ. Protein kinase C function in muscle, liver, and beta-cells and its therapeutic implications for type 2 diabetes. Diabetes 2008; 57: 1774-83

[428] Finck BN, Hall AM. Does diacylglycerol accumulation in fatty liver disease cause hepatic insulin resistance? Biomed Res Int 2015; 2015: 104132

[429] Perry RJ, Kim T, Zhang XM, et al. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab 2013; 18: 740-8

[430] Cohen JC, Horton JD, Hobbs HH. Human fatty liver disease: old questions and new insights. Science 2011; 332: 1519-23

[431] Petersen KF, Dufour S, Savage DB, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A 2007; 104: 12587-94

[432] Rabol R, Petersen KF, Dufour S, Flannery C, Shulman GI. Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individ-uals. Proc Natl Acad Sci U S A 2011; 108: 13705-9

[433] Weyer C, Bogardus C, Mott DM, Pratley RE. The natural history of insulin secretory dysfunc-tion and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1999; 104: 787-94

[434] Fisher FM, Kim M, Doridot L, et al. A critical role for ChREBP-mediated FGF21 secretion in hepatic fructose metabolism. Mol Metab 2017; 6: 14-21

[435] Becker KL. Principles and practice of endocrinology and metabolism. Philadelphia, PA: Lip-pincott Williams & Wilkins 2011

[436] Obici S, Rossetti L. Minireview: nutrient sensing and the regulation of insulin action and energy balance. Endocrinology 2003; 144: 5172-8

[437] Zheng H, Lenard NR, Shin AC, Berthoud HR. Appetite control and energy balance regulation in the modern world: reward-driven brain overrides repletion signals. Int J Obes 2009; 33 Suppl 2: S8-13

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 213PDF page: 213PDF page: 213PDF page: 213

213

Refe

renc

es

11

[438] Schwartz GJ, Zeltser LM. Functional organization of neuronal and humoral signals regulat-ing feeding behavior. Annu Rev Nutr 2013; 33: 1-21

[439] Coll AP, Yeo GS. The hypothalamus and metabolism: integrating signals to control energy and glucose homeostasis. Curr Opin Pharmacol 2013; 13: 970-6

[440] de Araujo IE. Circuit organization of sugar reinforcement. Physiol Behav 2016; 164: 473-7

[441] Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron 2002; 36: 199-211

[442] Wang GJ, Volkow ND, Logan J, et al. Brain dopamine and obesity. Lancet 2001; 357: 354-7

[443] Kashyap SR, Louis ES, Kirwan JP. Weight loss as a cure for type 2 diabetes? fact or fantasy. Expert Rev Endocrinol Metab 2011; 6: 557-61

[444] Reaven GM. Why syndrome X? From Harold Himsworth to the insulin resistance syndrome. Cell Metab 2005; 1: 9-14

[445] Assy N. Nutritional recommendations for patients with non-alcoholic fatty liver diseases. World J Gastroenterol 2011; 17: 3375-6

[446] Daly ME, Vale C, Walker M, Alberti KG, Mathers JC. Dietary carbohydrates and insulin sensi-tivity: a review of the evidence and clinical implications. Am J Clin Nutr 1997; 66: 1072-85

[447] Hernandez TL, Anderson MA, Chartier-Logan C, Friedman JE, Barbour LA. Strategies in the nutritional management of gestational diabetes. Clin Obstet Gynecol 2013; 56: 803-15

[448] Isharwal S, Misra A, Wasir JS, Nigam P. Diet & insulin resistance: a review & Asian Indian perspective. Indian J Med Res 2009; 129: 485-99

[449] Sanders TA. Nutrition and metabolism. Curr Opin Lipidol 2007; 18: 595-6

[450] Vos MB, McClain CJ. Nutrition and nonalcoholic fatty liver disease in children. Curr Gastro-enterol Rep 2008; 10: 308-15

[451] Yki-Jarvinen H. Nutritional modulation of nonalcoholic fatty liver disease and insulin resist-ance: human data. Curr Opin Clin Nutr Metab Care 2010; 13: 709-14

[452] Ferris HA, Kahn CR. Unraveling the paradox of selective insulin resistance in the liver: the brain-liver connection. Diabetes 2016; 65: 1481-3

[453] Brands M, van Raalte DH, Joao Ferraz M, et al. No difference in glycosphingolipid metab-olism and mitochondrial function in glucocorticoid-induced insulin resistance in healthy men. J Clin Endocrinol Metab 2013; 98: 1219-25

[454] Serlie MJ, Meijer AJ, Groener JE, et al. Short-term manipulation of plasma free fatty acids does not change skeletal muscle concentrations of ceramide and glucosylceramide in lean and overweight subjects. J Clin Endocrinol Metab 2007; 92: 1524-9

[455] Ota T. Obesity-induced inflammation and insulin resistance. Front Endocrinol 2014; 5: 204

[456] Carey M, Kehlenbrink S, Hawkins M. Evidence for central regulation of glucose metabolism. J Biol Chem 2013; 288: 34981-8

[457] Herrera BM, Keildson S, Lindgren CM. Genetics and epigenetics of obesity. Maturitas 2011; 69: 41-9

[458] Zhang C, Klett EL, Coleman RA. Lipid signals and insulin resistance. Clin Lipidol 2013; 8: 659-67

[459] Sinha RA, Farah BL, Singh BK, et al. Caffeine stimulates hepatic lipid metabolism by the au-tophagy-lysosomal pathway in mice. Hepatology 2014; 59: 1366-80

[460] Munteanu MA, Nagy GA, Mircea PA. Current management of NAFLD. Clujul Med 2016; 89: 19-23

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 214PDF page: 214PDF page: 214PDF page: 214

214

[461] Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcohol-ic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroen-terology. Gastroenterology 2012; 142: 1592-609

[462] Gaich G, Chien JY, Fu H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 2013; 18: 333-40

[463] Marcovina S, Bowsher RR, Miller WG, et al. Standardization of insulin immunoassays: report of the American Diabetes Association Workgroup. Clin Chem 2007; 53: 711-6

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 215PDF page: 215PDF page: 215PDF page: 215

215

Refe

renc

es

11

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 216PDF page: 216PDF page: 216PDF page: 216

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 217PDF page: 217PDF page: 217PDF page: 217

Abbreviations

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 218PDF page: 218PDF page: 218PDF page: 218

218

1,25(OH)2D 1,25-dihydroxycholecalciferol (calcitriol)

25(OH)D 25-hydroxycholecalciferol (calcidiol)

ACACA acetyl-CoA carboxylase 1

ACLY ATP citrate lyase

ADA American Diabetes Association

Adipo-IR Adipose tissue Insulin Resistance index

ALDOB aldolase B

ALT alanine aminotransferase

ANCOVA analysis of covariance

ANOVA analysis of variance

ApoB apolipoprotein B100

aROC area under ROC curve

AST aspartate aminotransferase

ATIRI Adipose Tissue Insulin Resistance Index

AUC area under the curve

BMI body mass index

ChREBP carbohydrate response element-binding protein

CI confidence interval

CRP C-reactive protein

DAG diacylglycerol

DALY disability-adjusted life-year

DNA deoxyribonucleic acid

DNL de novo lipogenesis

EASD European Association for the Study of Diabetes

EGP endogenous glucose production

FA fatty acid

FAHFA branched fatty acid ester of hydroxy fatty acid

FASN fatty acid synthase

FFA free fatty acid

FFM fat-free mass

FGF21 fibroblast growth factor 21

FOXO1 forkhead box protein O1

G6PC glucose-6-phosphatase

GLP1 glucagon-like peptide 1

GLUT glucose transporter

HDL high-density lipoprotein1H-MRS proton magnetic resonance spectroscopy

HOMA2-%B computer-based homoeostasis model assessment of beta cell function

HOMA-IR homeostasis model assessment of insulin resistance

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 219PDF page: 219PDF page: 219PDF page: 219

219

Abbr

evia

tions

11

IFCC International Federation of Clinical Chemistry and Laboratory Medicine

IFG impaired fasting glucose

IGT impaired glucose tolerance

IHTG intrahepatic triglyceride

INSR insulin receptor

IQR interquartile range

IRS insulin receptor substrate

KHK ketohexokinase

LC-MS/MS liquid chromatography–tandem mass spectrometry

LDL low-density lipoprotein cholesterol

LoA limits of agreement

LPL lipoprotein lipase

MD mean difference

MQS Heyland methodological quality score

NAFLD non-alcoholic fatty liver disease

NASH non-alcoholic steatohepatitis

NFG normal fasting glucose

OffT2D offspring of parents with type 2 diabetes

OGTT oral glucose tolerance test

PEPCK phosphoenolpyruvate carboxykinase

PKC protein kinase C

PKLR pyruvate kinase

q-RT-PCR quantitative real-time polymerase chain reaction

QUICKI quantitative insulin sensitivity check index

Ra rate of appearance

Rd rate of disappearance

REE resting energy expenditure

RNA ribonucleic acid

ROC receiver-operator characteristic

SAT subcutaneous adipose tissue

SD standard deviation

SE(M) standard error (of the mean)

SMD standardized mean difference

SREBP sterol regulatory element binding protein

VAT visceral adipose tissue

VCO2 carbon dioxide production rate

VLDL very low-density lipoprotein

VO2 oxygen consumption rate

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 220PDF page: 220PDF page: 220PDF page: 220

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 221PDF page: 221PDF page: 221PDF page: 221

Contributing authors’ affiliations

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 222PDF page: 222PDF page: 222PDF page: 222

222

Mariette T. Ackermans Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, Amsterdam, The Netherlands

Myrte Brands Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands

Ahmet Demirkiran Department of Surgery, Red Cross Hospital, Beverwijk, The Netherlands

Ralph J. DiLeone Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA

Susanne E. la Fleur Department of Clinical Chemistry, Laboratory of Endocrinology, Academic Medical Center, Amsterdam, The NetherlandsDepartment of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The NetherlandsMetabolism and Reward Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands

Katy A. van Galen Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands

Pim W. Gilijamse Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands

Pieter F. de Groot Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands

Annick V. Hartstra Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands

Annemieke C. Heijboer Department of Clinical Chemistry, Endocrine Laboratory, VU University Medical Center, Amsterdam, The Netherlands

Mark A. Herman Division of Endocrinology, Metabolism and Nutrition, Duke University School of Medicine, Durham, NC, USA

Rebecca Holman Department of Medical Informatics, Academic Medical Center, Amsterdam, The Netherlands

Murat Kilicarslan Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands

Karin E. Koopman Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands

Ruud S. Kootte Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands

Eleftheria Maratos-Flier Division of Endocrinology and Metabolism, Beth Isreal Deaconess Medical Center, Boston, MA, USA

Aart J. Nederveen Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands

Max Nieuwdorp Department of Internal Medicine, VU University Medical Center, Amsterdam, The NetherlandsDepartment of Vascular Medicine, Academic Medical Center, Amsterdam, The NetherlandsInstitute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 223PDF page: 223PDF page: 223PDF page: 223

223

Cont

ribut

ing

auth

ors’

affil

iatio

ns

11

Kitt F. Petersen Department of Medicine, Yale University School of Medicine, New Haven, CT, USA

Johannes A. Romijn Department of Medicine, Academic Medical Center, Amsterdam, The Netherlands

Varman T. Samuel Department of Medicine, Yale University School of Medicine, New Haven, CT, USA

Merle R. Schene Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands

Mireille J. Serlie Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands

Gerald I. Shulman Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USAHoward Hughes Medical Institute, Yale University, New Haven, CT, USADepartment of Medicine, Yale University School of Medicine, New Haven, CT, USA

Maarten R. Soeters Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands

Richard Trinko Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA

Fleur M. van der Valk Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands

Daniel F. Vatner Department of Medicine, Yale University School of Medicine, New Haven, CT, USA

Joanne Verheij Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands

Ruth I. Versteeg Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands

Bart A. van Wagensveld Department of Surgery, OLVG, Amsterdam, The Netherlands

Barbara A. de Weijer Department of Endocrinology and Metabolism, Academic Medical Center, Amsterdam, The Netherlands

Dongyan Zhang Howard Hughes Medical Institute, Yale University, New Haven, CT, USA

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 224PDF page: 224PDF page: 224PDF page: 224

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 225PDF page: 225PDF page: 225PDF page: 225

Portfolio

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 226PDF page: 226PDF page: 226PDF page: 226

226

JOURNAL ARTICLES IN THIS THESIS

2017 ter Horst KW, Gilijamse PW, Versteeg RI, Ackermans MT, Nederveen AJ, la Fleur SE, Romijn JA, Nieuwdorp M, Zhang D, Samuel VT, Vatner DF, Petersen KF, Shul-man GI, Serlie MJ. Hepatic diacylglycerol-associated protein kinase Cε transloca-tion links hepatic steatosis to hepatic insulin resistance in humans. Cell Rep 2017; 19: 1997-2004

2017 ter Horst KW*, van Galen KA*, Gilijamse PW, Hartstra AV, de Groot PF, van der Valk FM, Ackermans MT, Nieuwdorp M, Romijn JA, Serlie MJ. Methods for quan-tifying adipose tissue insulin resistance in overweight/obese humans. Int J Obes 2017; doi: 10.1038/ijo.2017.110 *contributed equally

2016 ter Horst KW, Schene MR, Holman R, Romijn JA, Serlie MJ. Effect of fructose con-sumption on insulin sensitivity in nondiabetic subjects: a systematic review and meta-analysis of diet-intervention trials. Am J Clin Nutr 2016; 104: 1562-76

2016 ter Horst KW*, Versteeg RI*, Gilijamse PW, Ackermans MT, Heijboer AC, Romijn JA, la Fleur SE, Trinko R, DiLeone RJ, Serlie MJ. The vitamin D metabolites 25(OH)D and 1,25(OH)2D are not related to either glucose metabolism or insulin action in obese women. Diabetes Metab 2016; 42: 416-23 *contributed equally

2016 ter Horst KW, Gilijamse PW, Ackermans MT, Soeters MR, Nieuwdorp M, Romijn JA, Serlie MJ. Impaired insulin action in the liver, but not in adipose tissue or mus-cle, is a distinct metabolic feature of impaired fasting glucose in obese humans. Metabolism 2016; 65: 757-63

2015 ter Horst KW, Gilijamse PW, de Weijer BA, Kilicarslan M, Ackermans MT, Ned-erveen AJ, Nieuwdorp M, Romijn JA, Serlie MJ. Sexual dimorphism in hepatic, adipose tissue, and peripheral tissue insulin sensitivity in obese humans. Front Endocrinol 2015; 6: 182

2015 ter Horst KW, Gilijamse PW, Koopman KE, de Weijer BA, Brands M, Kootte RS, Romijn JA, Ackermans MT, Nieuwdorp M, Soeters MR, Serlie MJ. Insulin resist-ance in obesity can be reliably identified from fasting plasma insulin. Int J Obes 2015; 39: 1703-9

OTHER JOURNAL ARTICLES

2016 Serlie MJ, ter Horst KW, Brown AW. Addendum: Hypercaloric diets with high meal frequency, but not increased meal size, increase intrahepatic triglycerides: a randomized controlled trial. Hepatology 2016; 64: 1814-6

2010 ter Horst KW. Stem cells and cell therapy: popular belief? Cardiology 2010; 117: 199

2010 ter Horst KW. Stem cell therapy for myocardial infarction: are we missing time? Cardiology 2010; 117: 1-10

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 227PDF page: 227PDF page: 227PDF page: 227

227

Portf

olio

11

BOOK CHAPTER

2012 ter Horst KW. Bone marrow-derived stem cell therapy for myocardial infarction. In: Hayat MA (ed). Stem cells and cancer stem cells. Dordrecht, The Netherlands: Springer 2012; 1: 163-71

CONFERENCE PRESENTATIONS

2017 ter Horst KW, Gilijamse PW, Versteeg RI, Ackermans MT, Nederveen AJ, la Fleur SE, Romijn JA, Nieuwdorp M, Groen AK, Zhang D, Samuel VT, Vatner DF, Peters-en KF, Shulman GI, Serlie MJ. Hepatic diacylglycerol-associated protein kinase Cε translocation links hepatic steatosis to hepatic insulin resistance in humans. Noordwijkerhout, The Netherlands: Dutch Endocrine Meeting 2017

2017 van Galen KA, ter Horst KW, Gilijamse PW, Hartstra AV, de Groot PF, van der Valk FM, Ackermans MT, Nieuwdorp M, Romijn JA, Serlie MJ. Methods for quantifying adipose tissue insulin resistance in humans. Noordwijkerhout, The Netherlands: Dutch Endocrine Meeting 2017

2016 ter Horst KW, Gilijamse PW, Versteeg RI, Ackermans MT, Nederveen AJ, la Fleur SE, Romijn JA, Nieuwdorp M, Groen AK, Zhang D, Samuel VT, Vatner DF, Peters-en KF, Shulman GI, Serlie MJ. Hepatic diacylglycerol-associated protein kinase Cε translocation links hepatic steatosis to hepatic insulin resistance in humans. Oosterbeek, The Netherlands: ADDRM 2016 Best Abstract Award

2016 van Galen KA, ter Horst KW, Gilijamse PW, Hartstra AV, de Groot PF, van der Valk FM, Ackermans MT, Nieuwdorp M, Romijn JA, Serlie MJ. Methods for quantifying adipose tissue insulin resistance in humans. Oosterbeek, The Netherlands: AD-DRM 2016 Best Abstract Award

2016 ter Horst KW, Gilijamse PW, Versteeg RI, de Weijer BA, van der Valk FM, Acker-mans MT, Nederveen AJ, la Fleur SE, Romijn JA, Nieuwdorp M, Serlie MJ. The relationship between hepatic steatosis and insulin resistance in obese humans follows a threshold model. New Orleans, LA, USA: ADA Scientific Sessions 2016

2016 ter Horst KW*, Gilijamse PW*, Ackermans MT, Romijn JA, Nieuwdorp M, Mara-tos-Flier E, Herman MA, Serlie MJ. The FGF21 response to fructose predicts met-abolic health in obese humans. New Orleans, LA, USA: ADA Scientific Sessions 2016 *contributed equally

2016 Gilijamse PW*, ter Horst KW*, Ackermans MT, Romijn JA, Nieuwdorp M, Serlie MJ. Higher postprandial GLP1 responses are associated with improved insulin action in liver and muscle but not in adipose tissue in morbidly obese nondiabet-ic subjects. New Orleans, LA, USA: ADA Scientific Sessions 2016 *contributed equally

2015 ter Horst KW, Gilijamse PW, de Weijer BA, van der Valk FM, Ackermans MT, Ned-erveen AJ, Romijn JA, Nieuwdorp M, Serlie MJ. Liver fat content and hepatic in-sulin resistance are not directly related in obese humans. Boston, MA, USA: ADA Scientific Sessions 2015

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 228PDF page: 228PDF page: 228PDF page: 228

228

2015 ter Horst KW, Gilijamse PW, de Weijer BA, Ackermans MT, Nieuwdorp M, Soeters MR, Romijn JA, Serlie MJ. Reduced hepatic insulin sensitivity is a distinct feature of obese humans with impaired fasting glucose. Boston, MA, USA: ADA Scientific Sessions 2015

2015 ter Horst KW, Gilijamse PW, Ackermans MT, Nieuwdorp M, Soeters MR, Romijn JA, Serlie MJ. Reduced hepatic insulin sensitivity is a distinct feature of obese humans with impaired fasting glucose. Lunteren, The Netherlands: ACM Meeting 2015

2014 ter Horst KW, Gilijamse PW, Koopman KE, de Weijer BA, Brands M, Ackermans MT, Romijn JA, Nieuwdorp M, Soeters MR, Serlie MJ. Identifying insulin-sensitive and resistant obesity in humans. Oosterbeek, The Netherlands: ADDRM 2014

2011 de Boon WMI, ter Horst KW. Quality of anaesthesiology-related information on the Internet: a systematic review. Amsterdam, The Netherlands: Euroanaesthesia 2011

2010 ter Horst KW, de Boon WMI, Boerma EC, Balestra GM. Doctors’ alertness during night: nocturnal attentional performance (NAP) pilot study. Barcelona, Spain: ES-ICM Annual Congress 2010

COURSES

2017 Patents and Intellectual Property Rights 0.1 ECTS

2016 Advanced qPCR 0.7 ECTS

2015 Advanced Topics in Biostatistics 2.1 ECTS

2015 Searching for a systematic review 0.1 ECTS

2014 Expert Management of Medical Literature 0.1 ECTS

2014 Observational Epidemiology 0.9 ECTS

2014 Practical Biostatistics 1.1 ECTS

2014 Integrated Analysis of Tumor Genomics Data with R2 0.3 ECTS

2014 Improving Accuracy of qPCR Results 0.2 ECTS

2014 Clinical Data Management 0.2 ECTS

2014 AMC World of Science 0.7 ECTS

2014 Basiscursus Regelgeving en Organisatie voor Klinisch onderzoekers (BROK) 0.9 ECTS

LECTURES

2016 Novel mechanisms of human insulin resistance. Amsterdam, The Netherlands: Mastercourse Endocrinology 2016

2015 Mechanisms of insulin resistance. Amsterdam, The Netherlands: Mastercourse Endocrinology 2015

2014 Diabetes: diagnosis and management. Amsterdam, The Netherlands: Just-in-time learning 2014

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 229PDF page: 229PDF page: 229PDF page: 229

229

Portf

olio

11

SUPERVISING

2016 van Galen KA. Central regulation of appetite and feeding behavior in obesity. PhD candidate in Medicine

2015 van Galen KA. Adipose tissue insulin resistance in obese subjects. Master’s thesis in Medicine

2015 Summer research program for high school students2014 Schene MR. The effect of fructose on insulin sensitivity. Bachelor’s thesis in Med-

icine

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 230PDF page: 230PDF page: 230PDF page: 230

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 231PDF page: 231PDF page: 231PDF page: 231

DankwoordAcknowledgements

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 232PDF page: 232PDF page: 232PDF page: 232

232

Dit proefschrift had niet tot stand kunnen komen zonder de onvoorwaardelijke steun en hulp van talloze mensen. Ik ben jullie eeuwig dankbaar en wil deze laatste woorden graag tot jullie richten.

Proefpersonen, dank voor jullie inzet en interesse tijdens de lange en intensieve onder-zoeksdagen. De vooruitgang van medisch-wetenschappelijk onderzoek is enkel en alleen mogelijk door de onbaatzuchtige deelname van proefpersonen; jullie hebben deze studies mogelijk gemaakt.

Dr. M.J.M. Serlie, Mireille, jouw aanstekelijke enthousiasme en briljante wetenschap-pelijke inzicht hebben mij gestimuleerd dit pad in te slaan. Niemand weet haar promov-endi beter te prikkelen dan jij. Door jou heb ik het beste uit mezelf kunnen halen en ik had me geen betere plek kunnen voorstellen. Dank voor de mogelijkheden, vrijheden en uitdagingen die je me hebt gegeven. Ik verheug me op de plannen die we nog hebben.

Prof. dr. J.A. Romijn, Hans, ik dank je voor alle steun en advies die je me de afgelopen jaren hebt gegeven. Je enorme kennis, efficiëntie en helderheid zijn bewonderenswaar-dig. Ik ben blij, vereerd en trots om dit proefschrift onder jouw supervisie af te ronden.

Prof. dr. M. Nieuwdorp, Max, dank voor je advies, feedback en sturing. Jouw betrokken-heid lijkt elk project vruchtbaar te maken en jouw indrukwekkende persoonlijkheid en loopbaan zijn een inspiratie voor me.

Hooggeleerde leden van de promotiecommissie, prof. dr. E. Fliers, prof. dr. J.H. de Vries, prof. dr. U.H.W. Beuers, prof. dr. E.E. Blaak en prof. dr. S.E. la Fleur, dank voor jullie deskundige beoordeling van dit proefschrift. Ik kijk uit naar een uitdagende ge-dachtenwisseling. Prof. dr. G.I. Shulman, your expert assessment of this work means a lot to me. Thank you for taking part in this.

Collega’s in het AMC en elders, dank voor jullie enorme bijdrage aan het opzetten, uit-voeren en afronden van deze studies. Pim, jij hebt me geleerd te clampen en niemand heeft meer bijgedragen aan deze studies dan jij. Dank voor de goede samenwerking en de vriendschap die we hebben opgebouwd. Susanne, de translationele samenwerking met jouw groep is fantastisch. Je enthousiasme in de wetenschap, scherpe blik en prak-tisch inzicht zijn een inspiratie. Dank voor alles wat je me hebt geleerd over metabo-lisme, de rol van het brein en onderzoek in het algemeen. Mariette, An, Yvonne, Unga, Geesje, Hans en collega’s, jullie uitmuntende laboratoriumexpertise is het fundament waarop metabool onderzoek in de regio Amsterdam is gebouwd. Ik prijs me gelukkig met jullie te kunnen samenwerken. Bert, Maarten, Peter, Ruth, Sam, Annick, Hannah, Dirk Jan, Murat, Myrtille, Merel, Anne, Maarten, Martine, Charlotte, Eelkje, Yvonne, Tessel, Simon, Katy, Emma en alle onderzoekers van de Endocrinologie en Vasculaire, ik heb ervan genoten van jullie te leren en/of samen met jullie door dit traject te wor-stelen. Jullie gezelligheid maakt het AMC een geweldige werkplek. Birgit en Martine,

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 233PDF page: 233PDF page: 233PDF page: 233

233

Dan

kwoo

rd

11

ik kon altijd op jullie support rekenen (en heb dat ook veelvuldig gedaan). Ik ben jullie zeer dankbaar.

Chirurgen in de deelnemende centra, Bart van Wagensveld, Ahmet Demirkiran, Huib Cense en collega’s, dank voor jullie interesse en inzet om aan deze studies mee te werken. Ik ben me ervan bewust dat de studiehandelingen niet altijd makkelijk in jullie normale werkzaamheden in te passen waren en stel jullie enthousiaste deelname des te meer op prijs.

International collaborators, Gerald Shulman, Ralph DiLeone, Rich Trinko, Barbara Kahn, Mark Herman, Terry Maratos-Flier and other lab members, thank you for the exciting collaborations. These projects have taught me that working together across nations and areas of expertise may lift any scientific endeavor to the next level.

Mijn paranimfen, dank dat jullie hierin, letterlijk en figuurlijk, naast me staan. Lieve Doris, misschien wel mijn grootste fan, ik ben trots op jou en jouw waardering betekent alles voor me. Bote, we hebben inmiddels bewezen dat deze vriendschap wel wat afstand aankan, maar ik vind het fantastisch dat je hier bij wil zijn. Thanks for all the good times.

Lieve ouders, Emil en Ivon, jullie hebben me geleerd om met een vleugje humor en een nieuwsgierige, open blik naar de wereld te kijken. Van ver of dichtbij, in goede of slechte tijden, jullie zijn er altijd voor me. Dank voor jullie eeuwige en onvoorwaarde- lijke steun.

Emma, your love, support, happiness, and crazy spontaneity make my day, every day. Mar sin, beidh mé i ngrá leat go deo. Thank you for being you.

Kasper ter Horst

511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorst511975-L-bw-terHorstProcessed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017Processed on: 27-7-2017 PDF page: 234PDF page: 234PDF page: 234PDF page: 234

234

511975-L-os-terHrst511975-L-os-terHrst511975-L-os-terHrst511975-L-os-terHrst Processed on: 26-7-2017Processed on: 26-7-2017Processed on: 26-7-2017Processed on: 26-7-2017

511975-L-os-terHrst511975-L-os-terHrst511975-L-os-terHrst511975-L-os-terHrst Processed on: 26-7-2017Processed on: 26-7-2017Processed on: 26-7-2017Processed on: 26-7-2017

Kasper ter Horst

OBESITY, ECTOPIC LIPIDS,AND INSULIN RESISTANCETissue-specific defects in nutrient handling

OBESITY, ECTO

PIC LIPIDS, A

ND

INSU

LIN RESISTA

NCE

Kasper ter H

orst

UITNODIGING

voor het bijwonen van de openbare verdediging van het proefschrift

OBESITY, ECTOPIC LIPIDS,AND INSULIN RESISTANCE

door Kasper ter Horst

opwoensdag 20 septemberom 10:00 uurin de Agnietenkapel van de Universiteit van Amsterdam

Oudezijds Voorburgwal 331 1012EZ Amsterdam

Aansluitend is er een receptie.

Paranimfen

Doris ter [email protected]

Bote Bruinsma [email protected]