Pit Design Scott Zimmer

110
General Comments on Open Pit Mine Planning With Emphasis on Pit Design Prepared for Freeport-McMoRan Copper and Gold, Inc. Cerro Verde Operations Arequipa, Peru Prepared by G. S. Zimmer GSZ, Inc. Tucson, Arizona November, 2007

Transcript of Pit Design Scott Zimmer

Page 1: Pit Design Scott Zimmer

General Comments on Open Pit Mine Planning

With Emphasis on Pit Design

Prepared for Freeport-McMoRan Copper and Gold, Inc.

Cerro Verde Operations Arequipa, Peru

Prepared by G. S. Zimmer

GSZ, Inc. Tucson, Arizona November, 2007

Page 2: Pit Design Scott Zimmer

1.0 Introduction In nearly 35 years of open pit mine planning I have encountered many diverse and unique problems, many of which I saved, as “memos to file”, and promptly forgot where I put them. In 2002-2003, during the prolonged industry slow down, I loosely compiled these memos and procedures I had developed into a document I called “Mine Planning 101”, alluding to an introductory course in mine planning fundamentals. The document was NOT intended to be a comprehensive “how to” for open pit mine planning. It is a compilation of various fundamental principles that I have seen overlooked, some estimating tools that may be useful, and descriptions of actual incidents. The intent was to have something I could travel with and use in my consulting work. On 31 October 2007 I was contacted, via email, by Sr. Jose Gonzales (Long Term Planning Superintendent for Cerro Verde) regarding conducting a training session for pushback design on site for the Cerro Verde team. Since I effectively speak no Spanish and pushback design is highly deposit-specific, I recommended the following approach as being cost-effective:

• I should adapt my “Mine Planning 101” compilation to deal specifically with pit design, add sufficient text to provide continuity, and send the resulting document to Cerro Verde via email.

• The CV staff would review the document, ask questions via email, take the time to apply appropriate concepts, and review the results.

• At the discretion of CV, I could then visit the site for detailed discussions. Note that the application of the techniques and procedures described herein is a function of the current age of the operation with respect to the mine life. At the feasibility stage or early in the mine life, ALL the concepts will apply. In a mature operation, or one approaching final pit limits, concepts such as balanced pushback size have little or no application and the paramount objective is efficient access. However, at all stages of mine life, the concepts of minimum mining rate calculation and the calculation of a stripped ore inventory are very useful tools.

2.0 Overview Of necessity, mine planning is an iterative process. Knowledge gained during the planning sequence requires backtracking to revise initial parameters, which have usually originated as “best-guess” estimates. Figure 2-1 is a general flowsheet for the development of a mine plan and Figure 2-2 is a flowsheet for the generation of mine capital and operating costs. While documenting the required sequences involved, neither flowsheet illustrates the possible or required iteration.

1

Page 3: Pit Design Scott Zimmer

Of the parameters used for economic pit limit assessment (referred to as “cone runs” herein for brevity), commodity price and processing recovery nearly always are the most significant by a wide margin. In many instances, third place is taken by pit slope angles, particularly with deep pits. It is both important and cost effective to have geotechnical input from day one of the economic pit limit evaluation. Slope angles used for initial cone runs are somewhat generic because we have little or no idea of the location, orientation, and depth of pit limits relative to the geology of the deposit. Much of today’s software has the capability (with some effort) to integrate the cone shell with the geological interpretation, which should be done and reviewed by the geotechnical personnel. Any revisions to slope angles should be immediately incorporated into additional cone runs. Once the initial geotechnical recommendations have been processed, the resulting cone shell should be used to rough out the final pit access routing and the number of ramp crossings in each slope sector will yield ramp-equivalent slope angles for an additional cone run. In some situations, the location of the access remaining on the final pit walls cannot be defined until the internal pushbacks have been designed. Geotechnical personnel should again review the resulting ramp-equivalent shell. A deep pit will probably be sensitive to an incremental haulage cost, as a function of depth, and this issue needs to be addressed early in the economic pit limit evaluation. Failure to do so at this time may result in the depth of the final pit being below economic limits and the lower benches of internal pushbacks not being viable at the commodity price that the pushback was based on. In some instances, a variable cutoff grade strategy is utilized, which raises the cutoff grade during the early years and stockpiles the lower grade material for processing at the end of mine life. In this situation, both a stockpile rehandling cost and the potential for reduction in metallurgical recovery (degradation with time) should be considered and included in the cutoff grade calculations. Failure to do so will result in material being stockpiled that should have been sent to waste in the first place. This probably will not have a significant effect on final pit limits, but it will have an effect on the allocation of contained material (reserve tabulations). Initial cone runs should be done without the application of a “minimum mining radius”. It is possible, in either a strata-bound or a structure-limited deposit for a minimum mining radius to force pit limits beyond the strata or structural limits (know your software!). A cone run with no mining radius constraint may result in deep “bulls-eyes” or “rat holes” which are probably uneconomic due to access consideration. If there is an obvious flat area that contains the bulls-eyes, limit a subsequent cone run to an artificial bottom slightly below the elevation of the flat area. If the upper pit limits do not change significantly, it is apparent that the material in the bulls-eyes does not influence them. The benches containing the

2

Page 4: Pit Design Scott Zimmer

bulls-eyes may then be examined using an appropriate mining radius, specified to approximate access. Occasionally there will be a zone of high-grade material at lower levels of a deposit and very detailed discussions will be held regarding cutting/capping assays/composites and variography. In this situation, a pragmatic approach is mandated. Economic runs (cones) should be generated with the zone reasonably interpreted and with the zone either eliminated from the grade model or limited to the average grade of the deposit. If a pit is generated with the zone in place but not with the zone eliminated/averaged, it is clear that the economic viability of the project is dependent on this high-grade material. Prudence dictates that more drilling is absolutely necessary before proceeding any further with feasibility studies. The design of pushbacks internal to the final pit is based on accessing the area of highest net value first and progressing sequentially into areas of progressively lower net value. A key constraint for pushback design is that they must have operating widths suited to efficient operation of the equipment selected, which is a function of the required mining rate. Subsequent optimization or fine-tuning of the ore-processing rate could result in a total material mining rate requiring equipment too large to work efficiently within the initial design width. For a given production rate and cutoff grade strategy, there is a size for the initial (preproduction) pushback that is unique to every deposit. Any reasonable design will be adequate for a range of production rates, but the range IS limited. In addition, the concept of “balanced” pushback designs needs to be addressed. The insertion of a large pushback in the sequence, in an attempt to match pushback limits with a commodity price shell or to access a specific ore target, will require substantial advance stripping and may spike the total material mining rate to a problematic level. After the completion of a set of pushback designs and the selection of an ore-processing rate, there is a very simple and rapid method of calculating the minimum total material mining rate, which may also calculate the number of benches required per year. If the number of benches per year is exorbitant, the pushbacks are too small for the required mining rate. If there is a spike in the total material mining rate that is inconsistent with equipment replacement life, the pushback responsible should be redesigned if possible. Note that pushback redesign is not always possible due. Once the ultimate pit limits are designed, the pit should be compared to the base cone both in terms of contained material and geometry. If both these criteria are met within acceptable limits, it is a reasonable assumption that the minable reserves are valid with respect to the economic and physical parameters specified. In addition, subsequent cone runs may then be utilized with confidence to evaluate reserve sensitivity and for sterilization analysis.

3

Page 5: Pit Design Scott Zimmer

Much of the current mining software attempts to simultaneously address all the possible variables in the development of a mine plan. It is important for the user to realize that this approach, rather than a sequential and iterative process, will automatically result in “dumbing down” the process and/or operating at the lowest common denominator, which may NOT be obvious. In other words, a parameter that drives the mine plan has a good chance of NOT being THE critical factor because it might be easily remedied. As an example, warnings/indications that pushback redesign might be helpful may be hidden in a mass of data. An initial mine production schedule should be developed with minimal mining rate smoothing by advance stripping. This schedule should be utilized as a basis for equipment selection and subsequent optimization. Advance stripping should be utilized to balance truck requirements as much as possible. It should be recognized that pushback redesign might be required to optimize equipment requirements. Note that a thorough evaluation of a set of pushback designs requires the development of a mine production schedule and the generation of composite drawings showing the pit operating geometry as a function of time. It is quite possible that individual pushbacks, containing efficient access, may be problematic when combined into a production schedule. A review of the operating geometry may offer insight into slope angles as a function of operating wall height that is not evident from the individual pushback designs. Equipment selection must consider both the mining rate and the operating geometry of the mine plan. Minimizing operating costs dictates the use of the largest possible equipment, but equipment size must be determined with common sense. One large stripping shovel might handle all the waste requirements on a total tonnage basis. However, if the tonnage is spread over two or three working faces in any given period, one big unit is obviously not appropriate. Operating geometry, rather than shovel capacity, may dictate the number of shovels required, particularly when relatively immobile tracked units are specified. Consequently, there is a trade off between under-utilization of larger units (low operating cost, high capital cost) and efficient utilization of smaller units (higher operating cost, less capital cost). Once a reasonable production schedule has been developed and equipment has been selected in terms of size, equipment requirements are calculated sequentially for each mining period. While unit productivities (tons per hour) will remain constant over the equipment life, both availability and hourly operating costs should be a function of equipment age. Optimization of truck requirements will almost certainly require adjustments to the mine production schedule. After equipment requirements are calculated, mine operating costs are developed on a functional basis (drilling, blasting, loading, hauling, etc.), preferably with M&R (maintenance and repair) costs varying as a function of equipment age. Once the

4

Page 6: Pit Design Scott Zimmer

mine operating costs have been calculated, they should be compared to those used in the cone runs. If the calculated costs to not fall within sensitivity limits, the reserves may be invalidated and another complete iteration may be required. On completion of the initial mine plan, a stripped ore inventory calculation should be developed. The inventory is a tabulation and plot of the volume of available (stripped) ore at the end of each mining period. When a pushback is stripped to an elevation where a continuous ore supply is available, all ore below that elevation is added to the inventory, which is drawn down until the continuous ore supply in the subsequent pushback is exposed. The ore inventory plot will yield a series of peaks and valleys. The peaks are irrelevant, but the valleys show the magnitude of the stripped ore cushion and the time periods in which the minimums occur. If there are problems (cushions too small or too large), the production schedule should be revised at this time. If either reviewing or working in an operation utilizing an equipment dispatching system, do NOT blindly assume that the reported equipment productivities are optimal (whatever that means). There is no guarantee that the dispatching system is being utilized properly and/or is functioning correctly. Productivity estimates should be made, compared to those being experienced in the operation, and significant disparities should be explained. If reviewing or working with an unfamiliar existing operation, the following question should be asked: “Tell me, using short sentences and small words, how an ‘operating hour’ is defined at this operation”. Similarly, the definitions for ‘availability’, ‘use of availability’, and ‘utilization’ should be defined. If not changed in mid-stream, these definitions do not impact the operation in question. However, problems can arise when making comparisons with other operations if terms are not defined. In general, there are four operating modes for open pit mine operations and mine planning. The first is a LUXURY MODE, which seldom happens anymore, but is characterized by:

• Wide pushbacks (widths are considerably in excess of the minimum required by the equipment in use).

• Dual access for most or all benches. • Wide, flat ramps. • Multiple ore faces available in more than two pushbacks concurrently. • Working slope angles at, or less than, the angle of repose. • New equipment • Excess equipment capacity (parked spares, etc.). • An exposed ore cushion of 12 months or more.

An EFFICIENT MODE is characterized by:

5

Page 7: Pit Design Scott Zimmer

• Reasonable pushback widths, approaching the minimum required by onsite

equipment. • Dual access where possible. • A mature equipment fleet with good availability and utilization. • A cross-trained labor force. • Production scheduled at equipment capacity. • Working slopes have been steepened by controlled blasting and

geotechnical studies/monitoring. • A minimum available (stripped) ore cushion of six months is maintained. • Optimal use is made of both the equipment dispatching system and GPS. • Double-side loading is utilized as a matter of priority. • Preventive maintenance has a high priority.

The third condition is CRISIS MODE, which is usually the result of a fall in commodity price, or problems with the ore body model, or both. It is difficult to identify the onset of crisis mode and it also can be very difficult for the engineers to question premises that have served admirably for many years. In crisis mode, ALL design/planning constraints and operating restrictions must be objectively reviewed with the objective of minimizing costs by assuming a higher level of risk and MANAGING THE RISK appropriately.

• Reduce pushback widths to an absolute minimum. • Reduce ramp widths to a minimum. • Use temporary ramps to eliminate semi-permanent (life-of-pushback) ramps

where possible. • Maximize ramp gradient. • Eliminate (or steepen) working slopes. • Where applicable, mine out any inter-phase ramps left in ore. • Look at possibility of in-pit waste dumping, even at the cost of eventual

double-handling. • Look at optimal use of Dispatch and GPS systems.

The alternative to NOT making the required improvements while in crisis mode is SHUTDOWN MODE, where stripping is halted and exposed ore is mined to depletion.

6

Page 8: Pit Design Scott Zimmer

(Including, but not limited to)

(Including, but not limited to)

Design

GeotechnicalReview

Stripped Ore Annual Pit Design of Annual WasteInventory Composites Ex-Pit Access Dump Designs

Geotechnical GeotechnicalReview Review

* Subject to confirmation of economic and physical parameter assumptions through comparison of the designed pit with the base cone andcomparison of subsequent detailed capital and operating cost calculations with the estimated costs used in the analysis.

BlockModel

Parameters for

Commodity

EconomicAnalysis

Smltng/RefiningProcessingCost/ton Ore

Mining Cost perTon of Material Costs

G&ACost/ton Ore

Ramp-Equivalent

Price(s)IR Pit Slopesby Sectors

SlopesSmltng/Refining

RecoveriesProcessingRecoveries

Incremental HaulCost for Depth

Ore DiscountingStrategy

EconomicAnalysis

Definition ofFinal Pit Limits

Identification ofExpansion

Internal Analysisfor Definition of

Assessment ofPit Limit

ExtractionSequence

PreliminaryUltimate Pit

SensitivityPotential

(with ramps)

Pushback

(with ramps)

SterilizationAnalysis

Confirmation *of Ultimate Pit

Design

Definition

Phased (minable)Reserves

ExtractionSequence

Completed *Mine Plan

Figure 2-1

Open Pit Mine Planning Flowsheet

Mine ProductionSchedule

Definition

Cutoff GradeStrategy

Mining Rate

© 1994, 2003 G.S. Zimmer

Page 9: Pit Design Scott Zimmer

Bid DocumentPreparation and

Solicitation ofBids for Mining

Equipment

ReplacementCost for eachMining Period

* Maint. Labor and Repair Parts costscalculated as a function of equipmentage for each mining period.

MaterialRate Availability Requirements Properties

Preproduction

Mining Power Cost/ Selectivity

Operating CostSummary by

Maint. Labor *Cost by Mining

Function for eachMining Period

Figure 2-2

Open Pit Capital and Operating Cost Flowsheet

Mine Capital &Replacement

Mining Functionfor each

Mining Period

Stripping Cost

Mine FacilitiesCapital Cost

MinableReserves

Mine EquipmentCapital &

Analysis

Confirmation of

Mining Period

Cost SummaryFinancial

Mining Period

Repair Parts *& ConsumablesCost by Mining

Function for each

Mine Admin.Cost for eachMining Period

Operating LaborCost by Mining

Function for each

SalariedLabor (rates,

burden, &requirements)

burden, &requirements)

OperatingLabor (rates,

burden, &requirements)

Operating Costper Shift

MaintenanceLabor (rates,

EquipmentRequirements

by Mining Period

Equipment

Utilization as aFunction of

Oprtg. Geometry

Equipment Life& Replacement

Scedules

by Mining Period

Availability andUse of Availabilityby Mining Period

Haul TruckProductivity

EquipmentOperating Shifts

Loading UnitProductivity

Drill & BlastProductivity

Haul ProfileMeasurements

Support Equip.Productivity

CompletedMine Plan

EquipmentSelection

© 1994, 2003 G.S. Zimmer

Page 10: Pit Design Scott Zimmer

7

3.0 Economic Pit Analysis – Required Mining Input Pit limits are most sensitive to commodity price and processing recovery and are not usually highly sensitive to mining costs. However, if a fixed mining cost is used to define limits for a deep pit, material contained in the lower benches may not be economic because of the cost of lifting it to the pit exit. In addition, pit slope angles can have a major impact on economic pit limits, particularly with deep pits. Mine-related parameters for the economic definition of pit limits consist of:

• Mining costs o Base mine operating cost o Incremental haulage cost o Stockpile rehandling cost o Mine equipment replacement cost

• Pit slope angles • Minimum mining radius • Impact of high-grade zones

3.1 Mining Costs In many instances, a constant mine operating cost is used for all benches and this might result in:

• The depth of the final pit being below the actual economic limits. • The lower benches of internal pushbacks, based on economic runs at lower

commodity prices, may not be viable at that price. Mining costs for economic pit evaluation should consist of two components:

• A fixed cost, consisting of non-haul costs plus a base haul cost. • An incremental haulage cost that varies by bench as a function of depth.

Open pit mine planning is, by nature, an iterative process and this cannot be emphasized too highly. With today’s computer hardware and software, the generation of economic pit runs (floating cone, lerchs-grossman, etc.) is fast and inexpensive. As an initial step, a first pass using fixed mining costs and fixed slopes is highly recommended. This will give an idea as to the scale of operations (ore and total material mining rates), the relationship of the pit to surface topography, and the orientation of pit walls with respect to geology. All things being equal, mining costs are a function of the mining rate and the haulage distance. Costs for larger operations are cheaper, due to economy of scale, and longer hauls are obviously more expensive than short ones. The easiest

Page 11: Pit Design Scott Zimmer

8

way to look at haulage costs is to use the equivalent distance method in which ramp distances are converted to equivalent flat haul (EFH) distances using the ratio of the flat haul truck speed to that of the various ramp truck speeds. A typical EFH calculation is shown in Table 3-1. The non-haulage component of the operating cost may be obtained either from operations of comparable size or from various published sources. Defining the base haulage cost can be an iterative exercise, particularly if in-pit crushing/conveying is to be utilized. For a first-pass effort, use the initial cone runs recommended above, look at the main pit exit elevation(s) and estimate an EFH distance. Note that there may be multiple base distances (ore, leach, waste, etc.), possibly from multiple pit exits in high relief topography situations. Use an appropriate cost per equivalent distance to calculate a base haul cost, which consists of haulage on the bench and the ex-pit distance to the destination, but NOT the incremental haul cost associated with the bench elevation. Incremental haulage costs will vary as a function of the bench height, ramp gradient, truck size, and hauling up or down. Waste may have to be hauled down to an external dump elevation and ore/leach/waste may have to be hauled down to an in-pit crusher elevation. Examples of incremental haul cost calculations for a 15-meter bench height, a ten percent ramp gradient, and a range of truck sizes are shown in Tables 3-2 (UP haul) and 3-3 (DOWN haul). Note that western US labor rates have been specified in these tables. In many instances, a variable cutoff grade strategy is utilized in the mine plan, which raises the cutoff grade during the early years and stockpiles the low grade material for processing at the end of mine life. In this situation, both a stockpile rehandling cost and the potential for reduction in metallurgical recovery (degradation with time) should be considered. Failure to do so will result in material being stockpiled that should have been sent to waste in the first place. Mine equipment replacement costs should be included in the economic pit analysis because equipment is “consumed” in the process of mining. Equipment replacement cost will usually range between $0.07 to $0.15 per tonne mined, with the low end being large-scale low-impact operations (coal) and the high end being small-scale operations with highly abrasive material. Using a nominal $0.12 per tonne is reasonable.

Page 12: Pit Design Scott Zimmer

Table 3-1

Haul Profile Conversion to Equivalent One-Way (Loaded) Flat Haul

Total one-way dist 2,000 metersVertical lift (loaded) 100 metersVertical fall (loaded) 30 metersRamp gradient 10 %Truck speeds Loaded Upramp 10.0 kph Flat 40.0 kph Downramp 26.0 kph Empty "Reasonable and prudent" for site conditions Upramp 23.0 kph Flat 62.0 kph Downramp 39.0 kph Accel/Decel 10.0 kph

Equivalent Dist Travel TimeLoaded EFH Acceleration 50 meters X 40.0 kph / 10.0 kph = 200 EqM 0.30 min. Flat haul dist 600 meters X 40.0 kph / 40.0 kph = 600 EqM 0.90 min. Upramp haul dist 1,000 meters X 40.0 kph / 10.0 kph = 4,000 EqM 6.00 min. Downramp haul dist 300 meters X 40.0 kph / 26.0 kph = 462 EqM 0.69 min. Deceleration 50 meters X 40.0 kph / 10.0 kph = 200 EqM 0.30 min.

5,462 EqM 8.19 min.Return EFH Acceleration 50 meters X 40.0 kph / 10.0 kph = 200 EqM 0.30 min. Flat haul dist 600 meters X 40.0 kph / 62.0 kph = 387 EqM 0.58 min. Upramp haul dist 300 meters X 40.0 kph / 23.0 kph = 522 EqM 0.78 min. Downramp haul dist 1,000 meters X 40.0 kph / 39.0 kph = 1,026 EqM 1.54 min. Deceleration 50 meters X 40.0 kph / 10.0 kph = 200 EqM 0.30 min.

2,334 EqM 3.50 min.

7,796 EqM 11.69 min./ 2

Equivalent one-way haul @ 40.0 kph = 3,898 EqM or 3.90 EqKm

Travel time check3.90 EqKm (one-way dist)

X 2= 7.80 EqKm (total dist)/ 40.0 kph (loaded flat haul speed)X 60 min. (per hour)= 11.69 min. (travel time)

Page 13: Pit Design Scott Zimmer

Table 3-2

INCREMENTAL HAULAGE COST ESTIMATE(One 15-meter bench - UP haul)

VerticalTotal Lift Fall Operating Labor Fixed Time Load Factor = 95 %

Haul distance (meters) = 150 15 0 Base rate = 20.00 $/hr Passes = 0Ramp gradient = 10 % Burden = 45.00 % Swing = 0 sec Efficiency = 50 min/hr

Total = 29.00 $/hr Spot = 0 secAccel Up Down Flat Decel Load = 0.00 min Diesel fuel = 2.500 $/gal

Loaded profile (meters) = 0 150 0 0 0 Maintenance Labor Queue = 0.00 min 0.660 $/literLoaded speeds (kph) = 10 10 26 40 10 Base rate = 22.00 $/hr Dump = 0.00 min

Return profile (meters) = 0 0 150 0 0 Burden = 45.00 % Total = 0.00 min Tire Life = 5,000 hoursReturn speeds (kph) = 10 23 39 62 10 Total = 31.90 $/hr

Parts Factor = 1.00Loaded Haul Distance = 0.38 equivalent kilometers

AGE ADJUSTMENTS TRUCK OPERATING COST PER MACHINE HOUR TRUCK PRODUCTIVITY AND COST PER TONNESize Life (hrs) M&R Maint. Repair Fuel Tires Oprtg. Cycle Time (min) Eff.Time Loads/ Tonnes $/ $/

Drive Model (tons) from to Factor Labor Parts gal/hr cost Lube $/tire cost Labor Total haul return fixed total (min/hr) Op.hr. /Op.hr. tonne ETKm

Mechanical Cat 777D 100 0 75,000 1.00 24.19 21.65 22.0 45.83 7.75 9,375 9.38 29.00 137.80 0.90 0.23 0.00 1.13 50 44.22 3,811 0.036 0.096tonnes = 90.7 0 5,000 0.30 7.26 6.50 22.0 45.83 7.75 9,375 9.38 29.00 105.71 0.90 0.23 0.00 1.13 50 44.22 3811 0.028 0.074

5,000 10,000 0.50 12.10 10.83 22.0 45.83 7.75 9,375 9.38 29.00 114.88 0.90 0.23 0.00 1.13 50 44.22 3811 0.030 0.08010,000 25,000 0.75 18.14 16.24 22.0 45.83 7.75 9,375 9.38 29.00 126.34 0.90 0.23 0.00 1.13 50 44.22 3811 0.033 0.08825,000 50,000 1.10 26.61 23.82 22.0 45.83 7.75 9,375 9.38 29.00 142.38 0.90 0.23 0.00 1.13 50 44.22 3811 0.037 0.09950,000 75,000 1.30 31.45 28.15 22.0 45.83 7.75 9,375 9.38 29.00 151.55 0.90 0.23 0.00 1.13 50 44.22 3811 0.040 0.106

Mechanical Cat 785C 155 0 75,000 1.00 29.77 32.78 28.0 58.33 11.11 13,750 13.75 29.00 174.74 0.90 0.23 0.00 1.13 50 44.22 5,907 0.030 0.078tonnes = 140.6 0 5,000 0.30 8.93 9.83 28.0 58.33 11.11 13,750 13.75 29.00 130.96 0.90 0.23 0.00 1.13 50 44.22 5907 0.022 0.059

5,000 10,000 0.50 14.89 16.39 28.0 58.33 11.11 13,750 13.75 29.00 143.47 0.90 0.23 0.00 1.13 50 44.22 5907 0.024 0.06410,000 25,000 0.75 22.33 24.58 28.0 58.33 11.11 13,750 13.75 29.00 159.10 0.90 0.23 0.00 1.13 50 44.22 5907 0.027 0.07125,000 50,000 1.10 32.75 36.05 28.0 58.33 11.11 13,750 13.75 29.00 180.99 0.90 0.23 0.00 1.13 50 44.22 5907 0.031 0.08150,000 75,000 1.30 38.71 42.61 28.0 58.33 11.11 13,750 13.75 29.00 193.50 0.90 0.23 0.00 1.13 50 44.22 5907 0.033 0.087

Mechanical Cat 789C 200 0 75,000 1.00 34.29 41.88 37.0 77.08 13.88 22,500 22.50 29.00 218.63 0.90 0.23 0.00 1.13 50 44.22 7,622 0.029 0.076tonnes = 181.4 0 5,000 0.30 10.29 12.56 37.0 77.08 13.88 22,500 22.50 29.00 165.32 0.90 0.23 0.00 1.13 50 44.22 7622 0.022 0.058

5,000 10,000 0.50 17.15 20.94 37.0 77.08 13.88 22,500 22.50 29.00 180.55 0.90 0.23 0.00 1.13 50 44.22 7622 0.024 0.06310,000 25,000 0.75 25.72 31.41 37.0 77.08 13.88 22,500 22.50 29.00 199.59 0.90 0.23 0.00 1.13 50 44.22 7622 0.026 0.06925,000 50,000 1.10 37.72 46.06 37.0 77.08 13.88 22,500 22.50 29.00 226.25 0.90 0.23 0.00 1.13 50 44.22 7622 0.030 0.07950,000 75,000 1.30 44.58 54.44 37.0 77.08 13.88 22,500 22.50 29.00 241.48 0.90 0.23 0.00 1.13 50 44.22 7622 0.032 0.084

Mechanical Cat 793D 240 0 75,000 1.00 38.28 49.97 46.0 95.83 16.33 25,500 25.50 29.00 254.91 0.90 0.23 0.00 1.13 50 44.22 9,146 0.028 0.074tonnes = 217.7 0 5,000 0.30 11.48 14.99 46.0 95.83 16.33 25,500 25.50 29.00 193.14 0.90 0.23 0.00 1.13 50 44.22 9146 0.021 0.056

5,000 10,000 0.50 19.14 24.98 46.0 95.83 16.33 25,500 25.50 29.00 210.79 0.90 0.23 0.00 1.13 50 44.22 9146 0.023 0.06110,000 25,000 0.75 28.71 37.48 46.0 95.83 16.33 25,500 25.50 29.00 232.85 0.90 0.23 0.00 1.13 50 44.22 9146 0.025 0.06825,000 50,000 1.10 42.11 54.96 46.0 95.83 16.33 25,500 25.50 29.00 263.74 0.90 0.23 0.00 1.13 50 44.22 9146 0.029 0.07750,000 75,000 1.30 49.76 64.96 46.0 95.83 16.33 25,500 25.50 29.00 281.39 0.90 0.23 0.00 1.13 50 44.22 9146 0.031 0.082

Mechanical Cat 797 380 0 75,000 1.00 52.37 47.61 66.0 137.50 24.93 35,000 35.00 29.00 326.40 0.90 0.23 0.00 1.13 50 44.22 14,481 0.023 0.060tonnes = 344.7 0 5,000 0.30 15.71 14.28 66.0 137.50 24.93 35,000 35.00 29.00 256.42 0.90 0.23 0.00 1.13 50 44.22 14481 0.018 0.047

5,000 10,000 0.50 26.18 23.80 66.0 137.50 24.93 35,000 35.00 29.00 276.41 0.90 0.23 0.00 1.13 50 44.22 14481 0.019 0.05110,000 25,000 0.75 39.28 35.71 66.0 137.50 24.93 35,000 35.00 29.00 301.41 0.90 0.23 0.00 1.13 50 44.22 14481 0.021 0.05525,000 50,000 1.10 57.61 52.37 66.0 137.50 24.93 35,000 35.00 29.00 336.40 0.90 0.23 0.00 1.13 50 44.22 14481 0.023 0.06250,000 75,000 1.30 68.08 61.89 66.0 137.50 24.93 35,000 35.00 29.00 356.40 0.90 0.23 0.00 1.13 50 44.22 14481 0.025 0.065

Page 14: Pit Design Scott Zimmer

Table 3-3

INCREMENTAL HAULAGE COST ESTIMATE(One 15-meter bench - DOWN haul)

VerticalTotal Lift Fall Operating Labor Fixed Time Load Factor = 95 %

Haul distance (meters) = 150 0 15 Base rate = 20.00 $/hr Passes = 0Ramp gradient = 10 % Burden = 45.00 % Swing = 0 sec Efficiency = 50 min/hr

Total = 29.00 $/hr Spot = 0 secAccel Up Down Flat Decel Load = 0.00 min Diesel fuel = 2.500 $/gal

Loaded profile (meters) = 0 0 150 0 0 Maintenance Labor Queue = 0.00 min 0.660 $/literLoaded speeds (kph) = 10 10 26 40 10 Base rate = 22.00 $/hr Dump = 0.00 min

Return profile (meters) = 0 150 0 0 0 Burden = 45.00 % Total = 0.00 min Tire Life = 5,000 hoursReturn speeds (kph) = 10 23 39 62 10 Total = 31.90 $/hr

Parts Factor = 1.00Loaded Haul Distance = 0.25 equivalent kilometers

AGE ADJUSTMENTS TRUCK OPERATING COST PER MACHINE HOUR TRUCK PRODUCTIVITY AND COST PER TONNESize Life (hrs) M&R Maint. Repair Fuel Tires Oprtg. Cycle Time (min) Eff.Time Loads/ Tonnes $/ $/

Drive Model (tons) from to Factor Labor Parts gal/hr cost Lube $/tire cost Labor Total haul return fixed total (min/hr) Op.hr. /Op.hr. tonne ETKm

Mechanical Cat 777D 100 0 75,000 1.00 24.19 21.65 22.0 45.83 7.75 9,375 9.38 29.00 137.80 0.35 0.39 0.00 0.74 50 67.80 5,843 0.024 0.096tonnes = 90.7 0 5,000 0.30 7.26 6.50 22.0 45.83 7.75 9,375 9.38 29.00 105.71 0.35 0.39 0.00 0.74 50 67.80 5843 0.018 0.074

5,000 10,000 0.50 12.10 10.83 22.0 45.83 7.75 9,375 9.38 29.00 114.88 0.35 0.39 0.00 0.74 50 67.80 5843 0.020 0.08010,000 25,000 0.75 18.14 16.24 22.0 45.83 7.75 9,375 9.38 29.00 126.34 0.35 0.39 0.00 0.74 50 67.80 5843 0.022 0.08825,000 50,000 1.10 26.61 23.82 22.0 45.83 7.75 9,375 9.38 29.00 142.38 0.35 0.39 0.00 0.74 50 67.80 5843 0.024 0.09950,000 75,000 1.30 31.45 28.15 22.0 45.83 7.75 9,375 9.38 29.00 151.55 0.35 0.39 0.00 0.74 50 67.80 5843 0.026 0.106

Mechanical Cat 785C 155 0 75,000 1.00 29.77 32.78 28.0 58.33 11.11 13,750 13.75 29.00 174.74 0.35 0.39 0.00 0.74 50 67.80 9,057 0.019 0.078tonnes = 140.6 0 5,000 0.30 8.93 9.83 28.0 58.33 11.11 13,750 13.75 29.00 130.96 0.35 0.39 0.00 0.74 50 67.80 9057 0.014 0.059

5,000 10,000 0.50 14.89 16.39 28.0 58.33 11.11 13,750 13.75 29.00 143.47 0.35 0.39 0.00 0.74 50 67.80 9057 0.016 0.06410,000 25,000 0.75 22.33 24.58 28.0 58.33 11.11 13,750 13.75 29.00 159.10 0.35 0.39 0.00 0.74 50 67.80 9057 0.018 0.07125,000 50,000 1.10 32.75 36.05 28.0 58.33 11.11 13,750 13.75 29.00 180.99 0.35 0.39 0.00 0.74 50 67.80 9057 0.020 0.08150,000 75,000 1.30 38.71 42.61 28.0 58.33 11.11 13,750 13.75 29.00 193.50 0.35 0.39 0.00 0.74 50 67.80 9057 0.021 0.087

Mechanical Cat 789C 200 0 75,000 1.00 34.29 41.88 37.0 77.08 13.88 22,500 22.50 29.00 218.63 0.35 0.39 0.00 0.74 50 67.80 11,686 0.019 0.076tonnes = 181.4 0 5,000 0.30 10.29 12.56 37.0 77.08 13.88 22,500 22.50 29.00 165.32 0.35 0.39 0.00 0.74 50 67.80 11686 0.014 0.058

5,000 10,000 0.50 17.15 20.94 37.0 77.08 13.88 22,500 22.50 29.00 180.55 0.35 0.39 0.00 0.74 50 67.80 11686 0.015 0.06310,000 25,000 0.75 25.72 31.41 37.0 77.08 13.88 22,500 22.50 29.00 199.59 0.35 0.39 0.00 0.74 50 67.80 11686 0.017 0.06925,000 50,000 1.10 37.72 46.06 37.0 77.08 13.88 22,500 22.50 29.00 226.25 0.35 0.39 0.00 0.74 50 67.80 11686 0.019 0.07950,000 75,000 1.30 44.58 54.44 37.0 77.08 13.88 22,500 22.50 29.00 241.48 0.35 0.39 0.00 0.74 50 67.80 11686 0.021 0.084

Mechanical Cat 793D 240 0 75,000 1.00 38.28 49.97 46.0 95.83 16.33 25,500 25.50 29.00 254.91 0.35 0.39 0.00 0.74 50 67.80 14,024 0.018 0.074tonnes = 217.7 0 5,000 0.30 11.48 14.99 46.0 95.83 16.33 25,500 25.50 29.00 193.14 0.35 0.39 0.00 0.74 50 67.80 14024 0.014 0.056

5,000 10,000 0.50 19.14 24.98 46.0 95.83 16.33 25,500 25.50 29.00 210.79 0.35 0.39 0.00 0.74 50 67.80 14024 0.015 0.06110,000 25,000 0.75 28.71 37.48 46.0 95.83 16.33 25,500 25.50 29.00 232.85 0.35 0.39 0.00 0.74 50 67.80 14024 0.017 0.06825,000 50,000 1.10 42.11 54.96 46.0 95.83 16.33 25,500 25.50 29.00 263.74 0.35 0.39 0.00 0.74 50 67.80 14024 0.019 0.07750,000 75,000 1.30 49.76 64.96 46.0 95.83 16.33 25,500 25.50 29.00 281.39 0.35 0.39 0.00 0.74 50 67.80 14024 0.020 0.082

Mechanical Cat 797 380 0 75,000 1.00 52.37 47.61 66.0 137.50 24.93 35,000 35.00 29.00 326.40 0.35 0.39 0.00 0.74 50 67.80 22,204 0.015 0.060tonnes = 344.7 0 5,000 0.30 15.71 14.28 66.0 137.50 24.93 35,000 35.00 29.00 256.42 0.35 0.39 0.00 0.74 50 67.80 22204 0.012 0.047

5,000 10,000 0.50 26.18 23.80 66.0 137.50 24.93 35,000 35.00 29.00 276.41 0.35 0.39 0.00 0.74 50 67.80 22204 0.012 0.05110,000 25,000 0.75 39.28 35.71 66.0 137.50 24.93 35,000 35.00 29.00 301.41 0.35 0.39 0.00 0.74 50 67.80 22204 0.014 0.05525,000 50,000 1.10 57.61 52.37 66.0 137.50 24.93 35,000 35.00 29.00 336.40 0.35 0.39 0.00 0.74 50 67.80 22204 0.015 0.06250,000 75,000 1.30 68.08 61.89 66.0 137.50 24.93 35,000 35.00 29.00 356.40 0.35 0.39 0.00 0.74 50 67.80 22204 0.016 0.065

Page 15: Pit Design Scott Zimmer

9

3.2 Pit Slope Angles The impact of pit slopes on economic pit limits is obviously a function of depth. Shallow pits will be relatively insensitive to slope angle, while deep pits must endure a double hit, as any given slope acts through a greater vertical distance and higher walls will, of necessity, have flatter slopes. Ignoring the influence of variations in geology (slope sectors) and the number of ramp crossings in a wall can result in the designed pit bottom being uneconomical and the total material contained in the designed pit being considerably greater than that of the base cone. As noted above, it is recommended that a set of initial cones should be run at reasonable parameters, including a nominal fixed slope angle, say 40 degrees. Much of the current software has the capability to project the geological data (rock type) contained in the block model onto the resulting cone surface. As part of the iterative nature of mine planning, these plots of wall geology should be given to the rock mechanics experts for assessment and possibly revised slope angle recommendations. The final pit shell should be used to rough out a ramp system on the final pit wall. This is not a design exercise – all that is necessary is to define the number of ramp crossings that are required for the various pit walls at the proposed ramp gradient. Once the number of ramp crossings is known, the ramp-equivalent slope for any given sector may be calculated as follows:

• For a 300-meter depth, a recommended inter-ramp (IR) slope of 42 degrees, and three 40-meter wide ramp crossings:

• The horizontal component of the 300-meter high 42-degree slope is 333.2 meters.

• Adding three ramps @ 40 meters increases the horizontal component to 453.2 meters.

• The resulting ramp-equivalent slope angle is 33.5 degrees. The resulting ramp-equivalent slopes (also including the results of the initial geotechnical review) should be used in another pass at defining economic pit limits. If the resulting shell is significantly different than the previous run, the geotechnical review and ramp-equivalent slope calculation should be repeated. Such is the iterative nature of mine planning. Note that defining the location of ramps left on final pit walls may not be possible without first designing the internal pushbacks. The objective of the ramp-equivalent slope exercise is to have a designed ultimate pit that is a reasonably close match to the base cone, both in terms of content and geometry. Once this is realized, additional cone runs at the specified parameters

Page 16: Pit Design Scott Zimmer

10

may be used with confidence for reserve sensitivity analysis and sterilization analysis.

3.3 Minimum Mining Radius Most software for economic pit analysis has a provision to specify a “minimum mining radius” in the initial parameters. In theory, a minimum mining radius will minimize the effect of the software “diving” on isolated high-grade blocks in the model, which may result in areas where the impact of adding access would render the contained material uneconomic. However, the use of a minimum mining radius should be approached with caution and common sense, as there are drawbacks to its use. It is possible, in either a strata-bound or a structure-limited deposit for a minimum mining radius to force pit limits beyond the strata or structural limits (know your software!). Conversely, an economic (cone) run with no mining radius constraint may result in deep “bulls-eyes” or “rat holes” which that are uneconomic due to access considerations. Initial cone runs should be done without the application of a minimum mining radius. If bulls-eyes occur and there is an obvious flat area that contains them, limit a subsequent cone run to an artificial bottom slightly below the elevation of the flat area. If the upper pit limits do not change significantly, it is apparent that the material in the bulls-eyes does NOT influence them. The lower benches containing the bulls-eyes may then be examined using an appropriate mining radius, specified to approximate the impact of access.

3.4 High-Grade Zones Occasionally there will be a zone of high-grade material at lower levels of a deposit and very detailed studies will be carried out regarding cutting/capping assays/composites and variography. In this situation, a pragmatic approach is mandated. Economic runs (cones) should be generated with the zone reasonably interpreted and with the zone either eliminated from the grade model or limited to the average grade of the deposit. If a pit is generated with the zone in place but not with the zone eliminated/averaged, it is clear that the economic viability of the project is entirely dependent on this high-grade material. Prudence dictates that the purse strings on the exploration budget need to be loosened and more drilling is absolutely necessary before proceeding any further with feasibility studies. Similarly, there will also be situations in which it will be proposed to go after high-grade zones by underground methods in order to improve project cash flow by

Page 17: Pit Design Scott Zimmer

11

accessing high-grade earlier in the project life. In this case, it is prudent to modify the model to reflect the tonnage and grade remaining AFTER the underground excavation and to make a cone run on the revised model to ascertain if there is a viable open pit operation remaining.

Page 18: Pit Design Scott Zimmer

12

4.0 Pit Design

4.1 General In general, pit design should be based on:

• Developing an extraction sequence that mines the highest net value material first.

• Minimum pushback design widths should be “appropriate” for the selected

mining equipment. This is a very subjective requirement which is a function of local operating conditions, current practice on site, corporate philosophy, and industry standards.

• Pushbacks should be sized to yield a “reasonable” rate of advance as

dictated by the mining rate. Again, this is a somewhat subjective requirement.

o Most porphyry copper operations prefer not to exceed an advance rate of eight benches per year.

o Many gold operations have no qualms about advance rates in excess of 20 benches per year.

• Geotechnical input from day one. Slope angles should be increased

gradually over the mine life, reaching a maximum when final walls are reached. This allows for refinement of operating techniques and the geological interpretation. In many instances, IR slope angles are a function of wall height and the full height of an internal pushback design rarely exists. Consequently, proper assessment of internal or operating slope angles requires a review of the operating geometries generated by a production schedule.

• Pushback designs must include sufficient access to extract material

efficiently and to maintain the pit in good operating order. o Ramp widths must be appropriate for the largest trucks in the fleet. o Ramp gradient should be the maximum permitted by operating

conditions (available road base material, weather conditions). o The amount of access is a function of operating geometry, material

types/destinations, and the site-specific comfort level with temporary access.

The mechanics of pit design are explained, to varying degrees, in most of the software packages currently available. However, there are some basic fundamentals that either have either been overlooked or not explained in sufficient detail to avoid problems. These areas include:

Page 19: Pit Design Scott Zimmer

13

• Design of initial access (access to the top of the first pushback) is often overlooked or minimized in feasibility estimates.

• Pushback designs should be “balanced”. The design/insertion of an over-

sized pushback in the mining sequence can have a very serious negative effect on the mine plan/cash flow.

• Attempting to low-ball project capital requirements by minimizing

preproduction stripping can result in significant operational problems.

• A simple “minimum mining rate” calculation can identify potential problem areas in the pushback design sequence before the production scheduling effort is initiated.

• As noted previously, much of the current mining software attempts to

SIMULTANEOUSLY address all the possible variables in the development of a mine plan and this will automatically result in “dumbing down” to the lowest common denominator, which may not be obvious. In other words, a parameter that drives the mine plan has a good chance of NOT being THE critical factor because it might be easily remedied. As an example, warnings/indications that pushback redesign might be helpful may be hidden in a mass of data. An iterative approach, utilizing tools such as the minimum mining rate calculation and a “stripped ore inventory” calculation can identify areas where a redesign and/or re-sequencing of the pushbacks might be beneficial.

4.2 Access The mechanics of haul road design are covered in many references, with one of the best being the Bureau of Mines Information Circular 8758 (Design of Surface Mine Haulage Roads – A Manual, 1977). A good rule of thumb for road design width is 4-1/2 times the operating width of the largest truck used. This gives a running surface of 3-1/2 truck widths plus ½ truck width, each, for ditch and berm. Just about all trucks are designed to handle a ten percent gradient with a full load and ten percent is becoming the design standard unless there are conditions, such as road base material that becomes incurably slippery when wet and/or hazardous weather conditions, that dictate prudence. In many feasibility studies, the design of the initial access is not given appropriate consideration. Road pioneering is expensive (particularly in mountainous terrain) and the expenditure is right up front in the cash flow. Accordingly, the access should be designed where it will do the most good. This usually means that the bulk of the access should be within the ultimate pit limits and it should be designed to access pit exit points (crushers, leach pads, waste dumps, etc.) so that it may be used for haulage in addition to accessing the initial mining area.

Page 20: Pit Design Scott Zimmer

14

In many operations, waste material is scheduled to be hauled laterally “along the contours” to nearby dumps and the design of this access is left as an “operating problem”. In areas where the topography is at or steeper than the angle of repose, this “operating problem” entails substantial time, effort, and cost and should really be included in the pushback design. It should be noted that the practice of “end dumping”, which can result in high dumps at the angle of repose, is no longer appropriate for many operations. In many areas, regulations require final dump contours to be compatible with natural contours OR to be configured at slopes of 2:1 or flatter. This can result in the necessity of constructing the dumps from the bottom up, resulting in very significant haulage costs and a rethinking of conventional haulage access. In steep terrain, pioneering should be done ONCE. If Pushback 2 is behind Pushback 1, the initial mining should include sufficient Pushback 2 material to leave behind a platform of adequate size for the efficient deployment of equipment. This moves some waste forward in time, but markedly improves operating efficiency. The practice of utilizing muck ramps (drilling and shooting to full bench depth, but digging to ramp grade) can be an efficient operating practice. However, it should be remembered that this applies to inter-ramp (IR) slopes at, or flatter than, the angle of repose. Employing muck ramps at steeper slopes will result either in a narrowing of ramp width or not being able to get on the drill line for the bench below. It is always good practice for engineers to seek input from field supervisors. Many of these people have been moving rock for many years and have surprising insight in doing it efficiently. Occasionally an “aggressive” pre-feasibility or feasibility study will include the design of one-way ramps, with cut outs for passing at occasional intervals. If this is what it takes to make the project economically viable, ALL economic parameters need to be reviewed in detail. Chances are that the discount rate used in the financial analysis is too low to account for the level of risk assumed.

4.3 Basic Concepts of Phase (Pushback) Design I initially developed this in 1987, on an airplane using squared graph paper, to explain the concept to a group of investment bankers who were not familiar with mining. The description is as simple as I could make it at the time. Internal to final pit limits, mining phases (pushbacks, slices, increments, etc.) are designed under the following parameters:

Page 21: Pit Design Scott Zimmer

15

• Phases are necessary in order to minimize the time it takes to reach a continuous, sustainable ore supply to the processing facility. Refer to Figure 4-2 (if necessary) to view the impact of NO phases.

• It is imperative to recognize that, for a given ore production rate and

cutoff grade strategy, there is a size for the Phase 1 (preproduction) increment that is unique to that orebody. The smaller the deposit, the more critical the Phase 1 sizing becomes.

• Phases are designed (sequenced) to access areas of high net value

first, advancing sequentially into areas of progressively lower net value.

• The initial phase must expose sufficient ore to carry required

concurrent stripping at a reasonable rate.

• All phases must have operating widths suited to efficient operation of the mining equipment selected.

• All phases must contain designed access sufficient to remove the

contained material and return access, as necessary, to the top of subsequent phases.

Reserve tabulations for the designed phases are the basis for developing mine production schedules. It is obvious that phased reserves must be mined from top to bottom (ore at the bottom cannot be mined until the covering waste is removed). Mining the upper waste from the first phase (preproduction stripping) exposes a quantity of ore that must last until the waste covering the ore in the second phase is removed. Ore uncovered in the second phase must last until ore in the third phase is stripped. Similarly through all the phases to the end of mine life. For a given ore production rate, the waste mining necessary to maintain a continuous ore supply may be determined through trial-and-error methods. This is extremely time consuming and efficiency is better served by defining the required total material mining rates BEFORE initiating the scheduling effort. In order to provide a reference point for subsequent estimates, it is absolutely necessary to know the absolute minimum mining rate(s) required to yield a continuous ore supply to the processing facility. These rates are a function of pushback design and are independent of equipment. Operationally, the minimum mining rate(s) must be exceeded due to the necessity of rounding UP to whole equipment units AND the establishment of a prudent stripped ore inventory.

Page 22: Pit Design Scott Zimmer

16

With the recent advent of equipment optimization software, it is quite possible that, due to changing economic conditions, optimizing the use of an existing equipment fleet results in a total material mining rate that is considerably in excess of the minimum required to assure a continuous ore supply. Equipment requirements should be first estimated for the minimum mining rate and subsequently optimized. Moving material because the existing equipment fleet has the capacity to do so is not always economically sound. To calculate minimum total material mining rates, the first requirement is a tabulation of ore reserves for each phase in terms of ore and total material tonnages by bench from the top down. Individual phased reserve tabulations are reviewed to define the elevation (bench) at which a continuous ore supply is attained. This elevation is usually intuitively obvious, but it will vary by phase and by cutoff grade within each phase (higher cutoffs will lower the elevation at which continuous ore is attained). The selected elevation is used to separate each phase into “Stripping” and “Ore+Internal Waste” volumes and subtotals are calculated for each volume. Figure 4-1 is a schematic depicting phased reserves with development of total material mining rate requirements. As shown, the preproduction stripping for Phase 1 is 47 blocks of waste and 2 blocks of ore, which exposes 10 blocks of ore. The 2 blocks of ore mined during the preproduction period is stockpiled at the time of mining and fed later to the processing facilities at the inception of processing. In order to maintain a continuous ore supply, the 35 blocks of waste and the 3 blocks of ore contained in the Phase 2 stripping increment must be mined concurrently with the 10 blocks of ore exposed in Phase 1. As shown, the total of 15 ore blocks yield a depletion time (ore years) of 3.0 years if mined at the rate of 5 ore blocks per year. Mining the 50 blocks of total material in 3 years yields a minimum mining rate of 16.7 blocks per year. Mining at less than this 16.7 block/year rate will result in a shortfall of ore to the processing facility. The rate calculated by this procedure is by definition a MINIMUM total material mining rate and the rate used for scheduling may have to be higher. The procedure assumes that the ore distribution within each increment is constant and significant deviations within the increments may require rate changes. It is usually prudent to insert a cushion into the first configuration, with the size of the cushion a function of the scale of operations. For a 3-year depletion time, a 3 to 6-month cushion is appropriate. Adding a 6-month cushion means that the Phase 2 stripping is completed 6 months before the Phase 1 ore is depleted. Reducing the ore years by 6 months yields 2.5 years in which the 50 total material blocks must be mined, increasing the total material mining rate from 16.7 blocks/year to 20.0 blocks/year. Once this cushion is inserted, it remains for the duration of the life-of-mine schedule. Note that any smoothing of the mining rate by advance stripping automatically inserts an ore supply cushion, which is in addition to any cushion manually inserted.

Page 23: Pit Design Scott Zimmer

17

As shown in Figure 4-1, the basic total material mining rates are 3.0 years @ 16.7 blocks/year followed by 2.6 years @ 21.5 followed by 3.8 years @ 19.7 followed by 4.0 years @ 26.3 and ending with 2.6 years @ 5.4. These fluctuations in the total material mining rate may be smoothed by advance stripping of waste. The 3.0 years @ 16.7 followed by 2.6 years @ 21.5 may be smoothed to 5.6 years @ 18.9. Similarly, the 3.8 years @ 19.7 followed by 4.0 years @ 26.3 may be smoothed to 7.8 years @ 23.1. Note that the 2.6 years @ 21,5 followed by 3.8 years @ 19.7 CANNOT be smoothed as this would require deferral of waste. Figure 4-2 has been included to answer the question “Why are mining phases necessary?” In Figure 4-3, additional smoothing has been implemented, resulting in the first 13.4 years being mined at a constant total material rate of 21.3 blocks per year. The optimum degree of smoothing is a trade-off between moving waste (costs) forward in time and purchasing equipment to cover mining rate spikes that may be of shorter duration that the equipment life. Mine planning, of necessity, is an iterative process. Figures 4-4 and 4-5 deal with the concept of “balanced” phase designs. It is very easy to design phases that do not schedule comfortably, particularly when attempting to match phase limits with cone shells based on specific commodity prices. The phases shown in Figure 4-4 integrate well and the resulting mining rate calculation requires only minimal smoothing. The phases in Figure 4-5, contained within the same ultimate pit as in Figure 4-4, do not integrate well at all. Phase 1 is too small and does not expose sufficient ore to carry the Phase 2 stripping at a reasonable rate. The total material mining rate of 1.4 years @ 35.7 blocks/year CANNOT be smoothed and buying or leasing mining equipment for this short-term rate spike is probably not a viable option because a re-design should solve the problem. In addition, Phase 3 is too small with respect to Phases 2 and 4. While this disparity is readily dealt with by smoothing (advance stripping), Phase 3 should be widened at the expense of Phase 4.

Page 24: Pit Design Scott Zimmer

Figure 4-1

Total Material Mining Rate Derivation (1)

Surface Topography

PHASE 1PHASE 2

Strip = 47 Waste + 2 Ore PHASE 3Strip = 35 Waste PHASE 4+ 3 Ore Strip = 43 Waste PHASE 5

+ 2 Ore Strip = 56 WasteOre = 10 + 4 Ore Strip = 85 Waste

+ 3 OreOre = 11

Continuous ore supply elevation (2) Ore = 15

One block = Ore = Ore = 17 Waste = 1Ore = 13

Required ore production rate is 5 blocks per yearTotal Material Mining Rate

Smoothed by Advance StrippingTotal Mtrl. Total Mtrl.

Ore Years @ Mining Rate Ore Years @ Mining RateIncrement Ore Blocks 5 blocks/year Total Blocks Blocks/Year 5 blocks/year Total Blocks Blocks/Year

Phase 1 Strip (PP) 2 Stockpiled 49 As Reqd (3) 49 As Reqd (3)

From Stkpl 2 2Phase 1 Ore+IW 10 10Phase 2 Strip 3 38

15 3.0 50 16.75.6 106 18.9

Phase 2 Ore+IW 11 11Phase 3 Strip 2 45

13 2.6 56 21.5

Phase 3 Ore+IW 15 15Phase 4 Strip 4 60

19 3.8 75 19.77.8 180 23.1

Phase 4 Ore+IW 17 17Phase 5 Strip 3 88

20 4.0 105 26.3

Phase 5 Ore+IW 13 2.6 14 5.4 2.6 14 5.4

COMMENTS:

(1) Preliminary mining rate calculations are utilized to develop an initial mine production schedule for review and discussion. Rates calculated by this procedure areMINIMUM total material mining rates necessary to ensure ore continuity. Appropriate cushions may be added/assessed using the same procedure. A 6-monthcushion in the first configuration reduces the ore years from 3.0 to 2.5 and increases the mining rate from 16.7 to 20.0 blocks/year.

(2) The continuous ore elevation is defined by an examination of the phased reserve tabulations by descending bench. The elevation is used to subdivide eachphase into Stripping and Ore+Internal Waste volumes. Note that the elevation will vary by phase (as shown) and by cutoff grade within each phase (higher cutoffswill lower the elevation at which continuous ore is attained).

(3) As shown, the peak (smoothed) total material mining rate is approximately 20 blocks per year and the preproduction stripping rate should be in the same vicinity.Pioneering and initial access considerations could reduce the rate, while short haul distances could increase the rate. Acordingly, the preproduction strippingperiod will be in the VICINITY of 49 blocks / 20 blocks/year = 2.45 years.

(4) Once a production schedule is developed from the above calculated mining rates, waste tonnnage may be shifted as necessary to optimize haul truckrequirements.

© 1994, 2003 G.S. Zimmer

Page 25: Pit Design Scott Zimmer

Figure 4-2

Total Material Mining Rate Derivation (1)(No Mining Phases)

Surface Topography

Unphased stripping = 202 blocks

Available after stripping:Ore = 80 blocksWaste = 65 blocks

Continuous ore supply elevation (2)

One block = Ore =

Required ore production rate is 5 blocks per year

Total Mtrl.Ore Years @ Mining Rate

Increment Ore Blocks 5 blocks/year Total Blocks Blocks/Year

Stripping (PP) 0 202 As Reqd (3)

StrippedOre & Internal Waste 80 145

80 16.0 145 9.1

COMMENTS:

(1) Preliminary mining rate calculations are utilized to develop an initial mine production schedule for review and discussion.

(2) Elevation at which a continuous, sustainable ore supply is reached. Elevation subdivides deposit into an upper stripping section and a lower ore plusinternal waste section.

(3) Unless a contractor is utilized or sufficient equipment is purchased, the preproduction stripping period would be 202 blocks / 9.1 blocks/year = 22.2 years.Note that the 22.2 years of stripping is obviously WITHOUT revenue.

© 1994, 2003 G.S. Zimmer

Page 26: Pit Design Scott Zimmer

Figure 4-3

Total Material Mining Rate Derivation (5)(Maximum smoothing)

Surface Topography

PHASE 1PHASE 2

Strip = 47 Waste + 2 Ore PHASE 3Strip = 35 Waste PHASE 4+ 3 Ore Strip = 43 Waste PHASE 5

+ 2 Ore Strip = 56 WasteOre = 10 + 4 Ore Strip = 85 Waste

+ 3 OreOre = 11

Continuous ore supply elevation (6) Ore = 15

One block = Ore = Ore = 17 Waste = 1Ore = 13

Required ore production rate is 5 blocks per yearTotal Material Mining Rate

Smoothed by Advance StrippingTotal Mtrl. Total Mtrl.

Ore Years @ Mining Rate Ore Years @ Mining RateIncrement Ore Blocks 5 blocks/year Total Blocks Blocks/Year 5 blocks/year Total Blocks Blocks/Year

Phase 1 Strip (PP) 2 Stockpiled 49 As Reqd (7) 49 As Reqd (7)

From Stkpl 2 2Phase 1 Ore+IW 10 10Phase 2 Strip 3 38

15 3.0 50 16.7

Phase 2 Ore+IW 11 11Phase 3 Strip 2 45

13 2.6 56 21.513.4 286 21.3

Phase 3 Ore+IW 15 15Phase 4 Strip 4 60

19 3.8 75 19.7

Phase 4 Ore+IW 17 17Phase 5 Strip 3 88

20 4.0 105 26.3

Phase 5 Ore+IW 13 2.6 14 5.4 2.6 14 5.4

COMMENTS:

(5) Preliminary mining rate calculations are utilized to develop an initial mine production schedule for review and discussion. Rates calculated by this procedure areMINIMUM total material mining rates necessary to ensure ore continuity. Appropriate cushions may be added/assessed using the same procedure. A 6-monthcushion in the first configuration reduces the ore years from 3.0 to 2.5 and increases the mining rate from 16.7 to 20.0 blocks/year.

(6) The continuous ore elevation is defined by an examination of the phased reserve tabulations by descending bench. The elevation is used to subdivide eachphase into Stripping and Ore+Internal Waste volumes. Note that the elevation will vary by phase (as shown) and by cutoff grade within each phase (higher cutoffswill lower the elevation at which continuous ore is attained).

(7) As shown, the peak (smoothed) total material mining rate is approximately 20 blocks per year and the preproduction stripping rate should be in the same vicinity.Pioneering and initial access considerations could reduce the rate, while short haul distances could increase the rate. Acordingly, the preproduction strippingperiod will be in the VICINITY of 49 blocks / 20 blocks/year = 2.45 years.

(8) Once a production schedule is developed from the above calculated mining rates, waste tonnnage may be shifted as necessary to optimize haul truckrequirements.

© 1994, 2003 G.S. Zimmer

Page 27: Pit Design Scott Zimmer

Figure 4-4

Concept of "Balanced" Phase DesignsPhase Designs Balanced

Surface Topography

PHASE 1PHASE 2

Strip = 47 Waste + 2 Ore PHASE 3Strip = 39 Waste

+ 4 Ore Strip = 50 Waste PHASE 4+ 2 Ore

Ore = 10 Strip = 66 Waste+ 2 Ore

Ore = 12

Continuous ore supply elevation Ore = 20Waste = 1

One block = Ore = Ore =18

Required ore production rate is 5 blocks per yearTotal Material Mining Rate

Smoothed by Advance StrippingTotal Mtrl. Total Mtrl.

Ore Years @ Mining Rate Ore Years @ Mining RateIncrement Ore Blocks 5 blocks/year Total Blocks Blocks/Year 5 blocks/year Total Blocks Blocks/Year

Phase 1 Strip (PP) 2 Stockpiled 49 As Reqd 49 As Reqd

From Stkpl 2 2Phase 1 Ore+IW 10 10Phase 2 Strip 4 43

16 3.2 55 17.26.0 119 19.8

Phase 2 Ore+IW 12 12Phase 3 Strip 2 52

14 2.8 64 22.9

Phase 3 Ore+IW 20 20Phase 4 Strip 2 68

22 4.4 88 20.0

Phase 4 Ore+IW 18 3.6 19 5.3

72 14.0 275 19.6

© 1994, 2003 G.S. Zimmer

Page 28: Pit Design Scott Zimmer

Figure 4-5

Concept of "Balanced" Phase DesignsPhase Designs NOT Balanced

Surface Topography

PHASE 1PHASE 2

Strip = 33 Waste + 2 Ore PHASE 3Strip = 43 Waste

+ 2 Ore Strip = 48 Waste PHASE 4Ore = 3 + 3 Ore

Strip = 78 WasteOre = 18 + 4 Ore

Ore = 16Continuous ore supply elevation

Waste = 1One block = Ore = Ore = 22

Required ore production rate is 5 blocks per yearTotal Material Mining Rate

Smoothed by Advance StrippingTotal Mtrl. Total Mtrl.

Ore Years @ Mining Rate Ore Years @ Mining RateIncrement Ore Blocks 5 blocks/year Total Blocks Blocks/Year 5 blocks/year Total Blocks Blocks/Year

Phase 1 Strip (PP) 2 Stockpiled 35 As Reqd 35 As Reqd

From Stkpl 2 2Phase 1 Ore+IW 3 3Phase 2 Strip 2 45

7 1.4 50 35.7

Phase 2 Ore+IW 18 18Phase 3 Strip 3 51

21 4.2 69 16.48.2 167 20.4

Phase 3 Ore+IW 16 16Phase 4 Strip 4 82

20 4.0 98 24.5

Phase 4 Ore+IW 22 4.4 23 5.2

72 14.0 275 19.6

COMMENTS:

(1) Phase 1 (preproduction) is too small and does not expose sufficient ore to carry the Phase 2 stripping at a reasonable mining rate.

(2) Phase 3 is also too small relative to Phases 2 and 4. While this is not a major problem (dealt with by advance stripping), Phase 3 should be widenedat the expense of Phase 4.

© 1994, 2003 G.S. Zimmer

Page 29: Pit Design Scott Zimmer

18

4.4 Impact of Overly Minimizing the Volume of Preproduction Stripping For a small high-grade gold deposit, modeled on a six-meter bench height, a major pit design/scheduling objective was to minimize the preproduction stripping tonnage. Mining phases were designed at an absolute minimum width for the equipment envisioned and the resulting phase geometry is summarized in the schematic Figure 4-6. Initial scheduling of the phased reserves yielded an attractive volume of preproduction stripping, but necessitated subsequent production rates requiring the mining of an average of 46 six-meter benches per year, or nearly one bench (dropcut) per week. The operating inefficiencies associated with dropcutting would seriously impact productivities and operating costs. The scenario is described in Table 4-1. The problem is obvious: The preproduction stripping does NOT expose an ore supply sufficient to carry the required concurrent stripping at a reasonable production rate (tonnes/year AND benches/year). A review of the schematic in Figure 4-6 indicates that Phases 1 & 2 and Phases 3 & 4 could be combined, which would expose more ore at the end of preproduction stripping (at the expense of the preproduction volume required) and would smooth subsequent mining rates. The advantages of combining Phases 1&2 and Phases 3 & 4 are described in Table 4-2. As shown, preproduction stripping increases from 7,916 ktonnes to 25,496 ktonnes, but the subsequent smoothed total material mining rate drops from 26,403 ktpy to 21,441 ktpy. More significantly, the bench-mining rate drops from 46/year to 23/year.

Page 30: Pit Design Scott Zimmer

Figure 4-6

Phase Design Schematic

TopographySurface

PHASE 1PHASE 2

PHASE 5 PHASE 3PHASE 4

= Waste

= Ore

Page 31: Pit Design Scott Zimmer

Years @ Years @ Dump Total3,240 Rate Rate Bench 3,240 Leach Material Bench

Phase Increment from to no. ktonnes g/t Au ktpy ktonnes g/t Au ktpy ktonnes ktpy /year ktpy ktpy ktpy /year

1 PP Strip 4398 4230 29 416 3.57 100 0.41 7,916

1 PP Stkpl 416 3.57 100 0.41 5161 Ore & IW 4224 4164 11 2,073 3.08 432 0.48 5,417 112 Strip 4398 4218 31 824 3.52 495 0.34 17,580 30

42 3,313 3.25 1.02 1,027 0.41 1,004 23,513 22,995 41

2 Ore & IW 4212 4140 13 2,171 3.27 588 0.44 4,828 153 Strip 4350 4170 31 671 2.93 830 0.40 17,438 35

44 2,842 3.19 0.88 1,418 0.42 1,617 22,266 25,384 50 3.65 1,268 26,403 46

3 Ore & IW 4164 4116 9 1,527 2.95 459 0.39 3,743 184 Strip 4368 4224 25 86 2.09 54 0.34 9,067 50

34 1,613 2.90 0.50 513 0.38 1,030 12,810 25,731 68

4 Ore & IW 4218 4110 19 3,081 2.72 960 0.47 8,778 155 Strip 4314 4158 27 966 3.02 707 0.41 28,916 22

46 4,047 2.79 1.25 1,667 0.44 1,335 37,694 30,178 37

5 Ore & IW 4152 3990 28 11,920 2.43 3.68 2,238 0.42 608 31,441 8,546 8 3.68 608 8,546 8

Table 4-1

Preliminary Minimum Mining Rate Calculations

Total MaterialSmoothed Mining RateUnsmoothed Mining Rate

Mill Ore Dump LeachBenches

Page 32: Pit Design Scott Zimmer

Years @ Years @ Dump Total3,240 Rate Rate Bench 3,240 Leach Material Bench

Phase Increment from to no. ktonnes g/t Au ktpy ktonnes g/t Au ktpy ktonnes ktpy /year ktpy ktpy ktpy /year

1+2 PP Strip 4398 4224 30 1,240 3.54 595 0.35 25,496

1+2 PP Stkpl 1,240 3.54 595 0.351+2 Ore & IW 4218 4140 14 4,244 3.18 1,020 0.46 10,245 73+4 Strip 4368 4188 31 757 2.83 884 0.40 26,505 16

45 6,241 3.21 1.93 2,499 0.41 1,297 36,750 19,079 23 3.65 1,268 21,441 23

3+4 Ore & IW 4182 4110 13 4,608 2.80 1,419 0.44 12,521 85 Strip 4314 4158 27 966 3.02 707 0.41 28,916 16

40 5,574 2.84 1.72 2,126 0.43 1,236 41,437 24,086 23

5 Ore & IW 4152 3990 28 11,920 2.43 3.68 2,238 0.42 608 31,441 8,546 8 3.68 608 8,546 8

Benches

(Assumes that Phases 1 & 2 and 3 & 4 can be combined)Preliminary Minimum Mining Rate Calculations

Table 4-2

Total MaterialSmoothed Mining RateUnsmoothed Mining Rate

Mill Ore Dump Leach

Page 33: Pit Design Scott Zimmer

19

4.5 Stripped Ore Inventory A valuable tool in the review and monitoring of mine plans is the concept of a stripped ore inventory, which is a summary of the readily available (stripped) ore at the end of each mining period. The tool may also be useful in identifying areas in which pushback redesign may prove beneficial. In a pushback mining sequence, stripping of an initial pushback exposes a continuous ore supply, which must be mined concurrently with the stripping portion of the next pushback in order to provide the processing facilities with a continuous ore supply. The combination of the ore plus internal waste portion of an initial pushback with the stripping portion of the succeeding pushback forms a mining increment in which the total contained material must be mined by the time the contained ore is exhausted. In other words, the increment’s contained ore divided by the ore’s processing rate yields the increment depletion time. The contained total material divided by the depletion time yields the mining rate for that increment. It is prudent to have a cushion in the mining rate so that the stripping of the succeeding pushback is completed before the depletion time for the contained ore. The cushion is insurance against such incidents as:

• Ore shortfall (problems with the model) • Unanticipated mining problems • Productivity issues • Slope stability issues • Labor problems • Recessions (short term decline in commodity process)

The magnitude of the cushion is both a function of the scale of operations and the mode of ore processing. A large operation, in which it may take 3-5 years to mine a pushback, will require a larger cushion than a much smaller operation. An ore milling operation will require a larger cushion than a leaching operation. For a large-scale porphyry copper milling operation, a cushion of six to 12-months is appropriate. A larger cushion is not necessarily a bad thing - it just needs to be recognized that all cushions have a cost in terms of advance stripping. At the onset of “crisis mode”, the minimum stripped ore inventory is one of the first criteria that should be reviewed. When a pushback is stripped to a continuous ore supply elevation, the ore below that elevation is added to the stripped ore inventory, which is drawn down until it is either depleted or supplemented by the stripped ore from the next pushback. A plot of the stripped ore inventory by mining period will yield a series of peaks and valleys. The peaks are of no consequence, but the valleys are of significant importance, as they show period in which problems might arise and also the magnitude of the minimum stripped ore cushion. It is usually more meaningful to

Page 34: Pit Design Scott Zimmer

20

express the stripped ore inventory in terms of time rather than tonnage (divide the ore tonnes by the processing rate). For simplicity, the example described below calculates and tracks the stripped ore inventory for “mill ore”, only. In actual practice, defining stripped inventories for a number of classifications that require either a continuous supply or delivery at a specified time may be warranted. These categories might include:

• Mill ores o Hard ore o Soft ore o Mineralogy o Co-product content o Differential recovery o Contaminants (clay, carbon, silica, lime, etc.)

• Leach ore(s) • Waste having properties desirable for construction (aggregate, top dressing,

tailings dam, etc.) As part of the development of mine production schedules, pushback reserve tabulations are subdivided into “stripping” and “ore plus internal waste” increments. The elevation (cutoff bench) at which the break is made is usually intuitively obvious as a function of relative ore tonnage and the relative waste-to-ore ratios. An example of the pushback reserve subdivision is shown in Table 4-3. Note that moving the cutoff bench elevation up or down a bench or two is not usually significant, but caution is advised. If the cutoff bench elevation is too high, the ore in the bottom of the preceding pushback may be depleted while the while the ore supply in the pushback just stripped is somewhat erratic. Conversely, if the cutoff bench elevation is too low, the mining configuration will probably become ‘ore bound’. In Table 4-4, the pushback reserves are combined into mining increments, as described above, and the minimum total material mining rates are calculated as a function of the specified ore-processing rate. Note that total material rates slightly in excess of those calculated are necessary to develop a production schedule as the rate calculation assumes that the waste-to-ore ratio within each pushback subdivision is uniform, which it obviously is not. Consequently, the “Adjusted Mining Rates” were used to generate an unsmoothed mine production schedule, which is summarized in Table 4-5 and detailed in Table 4-6. A smoothed schedule was generated to demonstrate the effect of rate smoothing on the exposed ore inventory. It is important to note that any smoothing of the total material mining rate in the mine plan by advance stripping will automatically increase the minimum stripped ore inventories. The smoothed production schedule is summarized in Table 4-7 and detailed in Table 4-8.

Page 35: Pit Design Scott Zimmer

21

Stripped ore inventories, calculated as described above for both production schedules, are shown by year in Table 4-9. The minimum inventories in each schedule are outlined. The shaded portions of the inventories in the smoothed schedule show where ore at the bottom of earlier pushbacks is carried in inventory beyond the time in which the stripped ore is available in the succeeding pushback. The stripped ore inventories are graphically shown in Figure 4-7. Note that the result of rate smoothing by advance stripping has an impact on equipment selection, specifically when cable shovels are used. The unsmoothed schedule, as shown in Table 4-7, essentially has two main working areas throughout the mine life. The smoothed schedule (Table 4-7) has three main working areas for most of the mine life. Even though the total material is the same in each plan, the smoothed schedule will require more shovels than the unsmoothed schedule as a function of operating geometry. The choices are to go with a smaller shovel size than in the unsmoothed schedule and pay for it in operating costs or under-utilize larger units with the penalty in capital cost. Rate smoothing and/or increasing the magnitude of the minimum stripped ore cushion has an additional adverse economic impact, which consists of moving stripping (mining costs) forward in time and also displacing high-grade ore with lower grade material (deferring product) in the early periods. This is demonstrated in Table 4-10, which roughly compares the unsmoothed and smoothed schedules. As a matter of procedure, it is recommended to use the unsmoothed schedule as a base for subsequent equipment optimization. Realizing that this schedule is a minimum and that tonnages need to be rounded UP to the nearest truck during optimization should result in the most cost-effective mine plan. Optimizing equipment from a smoothed schedule base will always add to minimum stripped ore inventories, be they excessive or not. As noted above, a six to 12-month minimum cushion would be appropriate for a large-scale porphyry copper milling operation. If operating slope angles are pushing the envelope, it is prudent to have the rock doctors run a probability analysis to quantify both the probability of failure AND the expected magnitude (tonnage) of the failures. It may be prudent to include the estimated time required to clean up the failed material in the stripped ore cushion. If the scheduled equipment productivities also push the envelope, it is prudent to review the stripped ore cushion. The use of a constant (life-of-equipment average) availability may result in a significant degradation of the stripped ore inventory later in the mine life due to a production shortfall. This situation is unusual due to the iterative nature of mine planning (a mine plan is not usually relevant for the length of time required for this to happen), but it is something to be aware of. It is obviously important for the mine planner and the individual responsible for the mine plan to know how tight or loose the mine plan is in terms of stripped ore

Page 36: Pit Design Scott Zimmer

22

inventory. Caution is advised with respect to sharing the stripped ore inventory outside this select group if there is no corporate policy in place. Human nature is such that an ambitious manager could make a name for himself by mandating that any stripped ore cushion be eliminated from the mine plan. This will almost certainly result in a reduced waste-to-ore ratio and a corresponding reduction in operating costs. When disaster strikes, it is probable that this manager has moved on to bigger and better things and three guesses who will be held responsible?

Page 37: Pit Design Scott Zimmer

Table 4-3

Pushback Reserves

Push- Mill Ore Waste W:O TotMtl Push- Mill Ore Waste W:O TotMtlback Bench ktons %TCu ktons Ratio ktons back Bench ktons %TCu ktons Ratio ktons

1 7400 0 0.000 0 0.00 0 2 7700 0 0.000 19 0.00 197350 0 0.000 118 0.00 118 7650 0 0.000 30 0.00 307300 0 0.000 264 0.00 264 7600 0 0.000 594 0.00 5947250 0 0.000 330 0.00 330 7550 0 0.000 1,192 0.00 1,1927200 0 0.000 672 0.00 672 7500 0 0.000 1,455 0.00 1,4557150 0 0.000 1,042 0.00 1,042 7450 33 0.446 1,657 50.21 1,6907100 0 0.000 613 0.00 613 7400 93 0.361 2,171 23.34 2,2647050 12 0.370 1,608 134.00 1,620 7350 83 0.364 2,890 34.82 2,9737000 131 0.396 3,952 30.17 4,083 7300 289 0.385 2,771 9.59 3,0606950 121 0.330 6,515 53.84 6,636 7250 591 0.436 2,455 4.15 3,0466900 21 0.392 7,821 372.43 7,842 7200 703 0.462 5,715 8.13 6,4186850 30 0.345 8,268 275.60 8,298 7150 875 0.555 8,282 9.47 9,1576800 4 1.222 8,274 ###### 8,278 7100 617 0.413 8,138 13.19 8,7556750 109 0.404 8,141 74.69 8,250 7050 338 0.486 6,773 20.04 7,1116700 566 1.387 7,804 13.79 8,370 7000 438 0.549 6,171 14.09 6,6096650 1,142 0.417 7,144 6.26 8,286 6950 1,379 0.571 5,402 3.92 6,7816600 2,047 0.513 6,491 3.17 8,538 Strip 5,439 0.497 55,715 10.24 61,154Strip 4,183 0.592 69,057 16.51 73,240

6900 2,784 0.524 5,449 1.96 8,2336550 3,267 0.562 5,665 1.73 8,932 6850 2,794 0.620 5,278 1.89 8,0726500 4,911 0.664 4,964 1.01 9,875 6800 3,256 0.628 4,482 1.38 7,7386450 5,854 0.613 3,880 0.66 9,734 6750 4,393 0.766 3,087 0.70 7,4806400 5,947 0.847 3,471 0.58 9,418 6700 4,803 0.703 3,400 0.71 8,2036350 5,448 0.720 2,787 0.51 8,235 6650 5,271 0.646 3,985 0.76 9,2566300 5,685 0.746 2,149 0.38 7,834 6600 5,634 0.660 4,479 0.79 10,1136250 5,760 0.915 1,827 0.32 7,587 6550 6,488 0.628 4,329 0.67 10,8176200 5,937 1.064 335 0.06 6,272 6500 7,357 0.563 3,148 0.43 10,5056150 6,000 0.854 0 0.00 6,000 6450 6,498 0.568 2,813 0.43 9,3116100 5,069 0.884 0 0.00 5,069 6400 6,961 0.612 1,931 0.28 8,892

Ore+IW 53,878 0.800 25,078 0.47 78,956 6350 5,476 0.697 1,436 0.26 6,9126300 4,206 0.601 938 0.22 5,144

Total 58,061 0.785 94,135 1.62 152,196 6250 3,396 0.615 119 0.04 3,5156200 1,958 0.525 223 0.11 2,181

Ore+IW 71,275 0.628 45,097 0.63 116,372

Total 76,714 0.618 100,812 1.31 177,526

Page 38: Pit Design Scott Zimmer

Table 4-3 (Continued)

Pushback Reserves

Push- Mill Ore Waste W:O TotMtl Push- Mill Ore Waste W:O TotMtlback Bench ktons %TCu ktons Ratio ktons back Bench ktons %TCu ktons Ratio ktons

3 7350 94 0.474 7 0.07 101 4 7350 0 0.000 216 0.00 2167300 372 0.446 325 0.87 697 7300 0 0.000 1,189 0.00 1,1897250 442 0.480 765 1.73 1,207 7250 0 0.000 2,080 0.00 2,0807200 378 0.466 1,404 3.71 1,782 7200 0 0.000 2,948 0.00 2,9487150 293 0.451 2,037 6.95 2,330 7150 0 0.000 3,129 0.00 3,1297100 34 0.829 2,996 88.12 3,030 7100 811 0.350 2,861 3.53 3,6727050 20 0.570 4,342 217.10 4,362 7050 777 0.479 3,134 4.03 3,9117000 294 0.498 4,666 15.87 4,960 7000 1,185 0.494 4,891 4.13 6,0766950 559 0.455 9,122 16.32 9,681 6950 1,702 0.599 5,750 3.38 7,4526900 748 0.426 10,284 13.75 11,032 6900 1,021 0.738 7,085 6.94 8,1066850 2,006 0.555 9,142 4.56 11,148 6850 977 0.513 6,823 6.98 7,8006800 2,553 0.658 8,622 3.38 11,175 6800 517 0.479 7,382 14.28 7,8996750 2,809 0.584 8,316 2.96 11,125 6750 1,285 0.402 7,434 5.78 8,719Strip 10,602 0.559 62,028 5.85 72,630 6700 1,712 0.443 7,264 4.24 8,976

6650 1,509 0.478 7,727 5.12 9,2366700 4,092 0.825 7,635 1.87 11,727 6600 1,520 0.413 8,086 5.32 9,6066650 4,635 0.726 7,187 1.55 11,822 6550 2,069 0.393 7,688 3.72 9,7576600 3,918 0.701 7,778 1.99 11,696 6500 1,749 0.415 8,005 4.58 9,7546550 5,487 0.593 6,481 1.18 11,968 6450 2,692 0.480 8,414 3.13 11,1066500 6,027 0.604 6,440 1.07 12,467 6400 3,310 0.543 8,248 2.49 11,5586450 6,155 0.577 4,909 0.80 11,064 Strip 22,836 0.482 110,354 4.83 133,1906400 6,228 0.593 3,867 0.62 10,0956350 5,991 0.632 3,063 0.51 9,054 6350 4,994 0.504 6,725 1.35 11,7196300 5,726 0.570 2,693 0.47 8,419 6300 5,003 0.561 5,791 1.16 10,7946250 5,487 0.558 1,922 0.35 7,409 6250 4,538 0.656 5,566 1.23 10,1046200 3,195 0.602 1,666 0.52 4,861 6200 5,889 0.657 3,694 0.63 9,5836150 3,805 0.562 1,054 0.28 4,859 6150 5,427 0.658 3,535 0.65 8,9626100 2,689 0.542 671 0.25 3,360 6100 4,591 0.614 3,214 0.70 7,8056050 1,602 0.547 264 0.16 1,866 6050 5,250 0.667 1,598 0.30 6,848

Ore+IW 65,037 0.617 55,630 0.86 120,667 6000 4,748 0.674 1,484 0.31 6,2325950 3,264 0.631 1,219 0.37 4,483

Total 75,639 0.609 117,658 1.56 193,297 5900 2,580 0.554 533 0.21 3,1135850 539 0.499 0 0.00 539

Ore+IW 46,823 0.620 33,360 0.71 80,183

Total 69,659 0.575 143,714 2.06 213,373

Page 39: Pit Design Scott Zimmer

Table 4-3 (Continued)

Pushback Reserves

Push- Mill Ore Waste W:O TotMtl Push- Mill Ore Waste W:O TotMtlback Bench ktons %TCu ktons Ratio ktons back Bench ktons %TCu ktons Ratio ktons

5 7350 4 0.511 508 127.00 512 6 7450 0 0.000 24 0.00 247300 0 0.000 690 0.00 690 7400 0 0.000 184 0.00 1847250 0 0.000 1,219 0.00 1,219 7350 0 0.000 463 0.00 4637200 0 0.000 1,474 0.00 1,474 7300 0 0.000 1,235 0.00 1,2357150 0 0.000 521 0.00 521 7250 0 0.000 2,737 0.00 2,7377100 0 0.000 1,188 0.00 1,188 7200 0 0.000 3,063 0.00 3,0637050 0 0.000 1,872 0.00 1,872 7150 0 0.000 2,712 0.00 2,7127000 8 0.416 2,394 299.25 2,402 7100 0 0.000 2,525 0.00 2,5256950 53 0.320 2,975 56.13 3,028 7050 11 0.335 2,648 240.73 2,6596900 40 0.447 3,063 76.58 3,103 7000 13 0.332 2,681 206.23 2,6946850 124 0.368 3,236 26.10 3,360 6950 436 0.399 2,192 5.03 2,6286800 145 0.378 3,793 26.16 3,938 6900 67 0.538 2,405 35.90 2,4726750 102 0.753 4,310 42.25 4,412 6850 177 0.482 2,046 11.56 2,2236700 0 0.000 5,177 0.00 5,177 6800 72 0.373 1,736 24.11 1,8086650 2 0.849 5,232 ###### 5,234 6750 293 0.519 1,463 4.99 1,7566600 2 0.481 5,457 ###### 5,459 6700 117 0.374 1,367 11.68 1,4846550 362 0.673 5,422 14.98 5,784 6650 22 0.544 833 37.86 8556500 1,116 0.493 5,007 4.49 6,123 6600 1,044 0.558 3,191 3.06 4,235Strip 1,958 0.518 53,538 27.34 55,496 6550 1,128 0.508 4,442 3.94 5,570

6500 1,041 0.617 5,434 5.22 6,4756450 2,095 0.537 5,076 2.42 7,171 6450 1,339 0.515 5,055 3.78 6,3946400 3,720 0.503 5,425 1.46 9,145 Strip 5,760 0.525 48,436 8.41 54,1966350 4,053 0.536 5,882 1.45 9,9356300 4,428 0.516 6,338 1.43 10,766 6400 2,625 0.502 3,883 1.48 6,5086250 3,985 0.500 7,881 1.98 11,866 6350 2,363 0.648 2,902 1.23 5,2656200 3,846 0.689 8,483 2.21 12,329 6300 2,738 0.713 2,093 0.76 4,8316150 3,512 0.963 9,013 2.57 12,525 6250 2,915 0.736 1,595 0.55 4,5106100 4,619 0.903 7,906 1.71 12,525 6200 3,517 0.622 759 0.22 4,2766050 7,504 0.850 6,797 0.91 14,301 6150 3,225 0.698 961 0.30 4,1866000 7,076 0.889 3,706 0.52 10,782 6100 2,852 0.710 991 0.35 3,8435950 5,703 0.839 2,659 0.47 8,362 6050 2,650 0.694 646 0.24 3,2965900 4,834 0.881 1,207 0.25 6,041 6000 2,930 0.732 355 0.12 3,285

Ore+IW 55,375 0.747 70,373 1.27 125,748 5950 2,918 0.721 225 0.08 3,1435900 2,665 0.648 65 0.02 2,730

Total 57,333 0.739 123,911 2.16 181,244 5850 4,341 0.701 759 0.17 5,1005800 2,192 0.575 1,019 0.46 3,2115750 403 0.698 190 0.47 593

Ore+IW 38,334 0.673 16,443 0.43 54,777

Total 44,094 0.654 64,879 1.47 108,973

Page 40: Pit Design Scott Zimmer

Table 4-4

Minimum Total Material Mining Rate Calculation

Ore processing rate = 50,000 stpd x 365.25 days/year = 18,263 ktpy

Unsmoothed Mining Rate Adjusted Mining Rate Smoothed Mining RateBenches Mill Feed Total Material Benches Mill Feed Total Material Benches Mill Feed Total Material Benches

Increment From To No. ktons %TCu Years ktons ktpy per Year ktons %TCu Years ktons ktpy per Year ktons %TCu Years ktons ktpy per Year

PB1 Strip 7400 6600 17 4,183 0.592 73,240 4,183 0.592 73,240 4,183 0.592 73,240

Stockpile 4,183 0.592 4,183PB1 Ore+IW 6550 6100 10 53,878 0.800 78,956

PB2 Strip 7700 6950 16 5,439 0.497 61,15426 63,500 0.760 3.48 144,293 41,498 7.5

145,377 0.681 7.96 333,295 41,869 6.8PB2 Ore+IW 6900 6200 15 71,275 0.628 116,372 Use 42,000

PB3 Strip 7350 6750 13 10,602 0.559 72,63028 81,877 0.619 4.48 189,002 42,157 6.2

PB3 Ore+IW 6700 6050 14 65,037 0.617 120,667 343,166 0.654 18.79 902,775 48,044 8.0PB4 Strip 7350 6400 20 22,836 0.482 133,190 Use 49,000

34 87,873 0.582 4.81 253,857 52,759 7.1

PB4 Ore+IW 6350 5850 11 46,823 0.620 80,183PB5 Strip 7350 6500 18 1,958 0.518 55,496 197,789 0.635 10.83 569,480 52,582 8.9

29 48,781 0.616 2.67 135,679 50,795 10.9 Use 53,000

PB5 Ore+IW 6450 5900 12 55,375 0.747 125,748PB6 Strip 7450 6450 21 5,760 0.525 54,196

33 61,135 0.726 3.35 179,944 53,754 9.9

PB6 Ore+IW 6400 5750 14 38,334 0.673 2.10 54,777 26,096 6.7 38,334 0.673 2.10 54,777 26,096 6.7 38,334 0.673 2.10 54,777 26,096 6.7

Total (post PP) 164 381,500 0.656 20.89 957,552 45,838 7.9 381,500 0.656 20.89 957,552 45,838 7.9 381,500 0.656 20.89 957,552 45,838 7.9

Page 41: Pit Design Scott Zimmer

Table 4-5

Unsmoothed Mine Production Schedule Summary

Push- Mill Feed Waste W:O TotMtl Push- Mill Feed Waste W:O TotMtlPeriod back ktons %TCu ktons Ratio ktons Period back ktons %TCu ktons Ratio ktons

PP 1 4,183 0.592 69,057 16.51 73,240 Year 11 3 14,749 0.604 8,050 0.55 22,7994 3,514 0.433 26,687 7.59 30,201

Year 1 Stkpl 4,183 0.592 0 0.00 4,183 18,263 0.571 34,737 1.90 53,0001 13,871 0.619 13,729 0.99 27,6002 209 0.376 10,008 47.89 10,217 Year 12 3 11,412 0.573 4,872 0.43 16,284

18,263 0.610 23,737 1.30 42,000 4 6,851 0.422 29,865 4.36 36,71618,263 0.516 34,737 1.90 53,000

Year 2 0 15,805 0.774 8,644 0.55 24,4492 2,458 0.480 15,093 6.14 17,551 Year 13 3 8,096 0.552 1,989 0.25 10,085

18,263 0.734 23,737 1.30 42,000 4 10,102 0.510 21,596 2.14 31,6985 65 0.344 11,152 171.57 11,217

Year 3 1 16,870 0.940 2,705 0.16 19,575 18,263 0.528 34,737 1.90 53,0002 1,393 0.473 21,032 15.10 22,425

18,263 0.904 23,737 1.30 42,000 Year 14 4 17,852 0.622 17,247 0.97 35,0995 411 0.475 17,490 42.55 17,901

Year 4 1 7,332 0.875 0 0.00 7,332 18,263 0.619 34,737 1.90 53,0002 10,931 0.601 23,737 2.17 34,668

18,263 0.711 23,737 1.30 42,000 Year 15 4 16,781 0.652 8,301 0.49 25,0825 1,482 0.537 26,436 17.84 27,918

Year 5 2 16,630 0.691 13,816 0.83 30,446 18,263 0.642 34,737 1.90 53,0003 1,633 0.472 9,921 6.08 11,554

18,263 0.672 23,737 1.30 42,000 Year 16 4 8,086 0.607 2,284 0.28 10,3705 10,166 0.524 15,270 1.50 25,436

Year 6 2 17,410 0.603 10,018 0.58 27,428 6 11 0.335 17,183 ###### 17,1943 853 0.470 13,719 16.08 14,572 18,263 0.560 34,737 1.90 53,000

18,263 0.597 23,737 1.30 42,000Year 17 5 16,022 0.665 18,415 1.15 34,437

Year 7 2 17,515 0.621 5,669 0.32 23,184 6 2,241 0.498 16,322 7.28 18,5633 748 0.426 18,068 24.16 18,816 18,263 0.644 34,737 1.90 53,000

18,263 0.613 23,737 1.30 42,000Year 18 5 14,755 0.873 19,806 1.34 34,561

Year 8 2 10,168 0.597 1,439 0.14 11,607 6 3,508 0.543 14,931 4.26 18,4393 8,095 0.622 29,298 3.62 37,393 18,263 0.810 34,737 1.90 53,000

18,263 0.608 30,737 1.68 49,000Year 19 5 14,435 0.867 15,342 1.06 29,777

Year 9 3 17,405 0.698 20,103 1.16 37,508 6 3,828 0.548 7,395 1.93 11,2234 858 0.357 14,634 17.06 15,492 18,263 0.800 22,737 1.24 41,000

18,263 0.682 34,737 1.90 53,000Year 20 6 18,263 0.690 6,241 0.34 24,504

Year 10 3 12,648 0.590 11,638 0.92 24,2864 5,615 0.572 23,099 4.11 28,714 Year 21 6 16,243 0.684 2,807 0.17 19,050

18,263 0.585 34,737 1.90 53,000Total 385,686 0.655 645,108 1.67 1,030,794

Page 42: Pit Design Scott Zimmer

Table 4-6

Unsmoothed Mine Production Schedule

Push- Mill Feed Waste W:O TotMtlPeriod back Bench ktons %TCu ktons Ratio ktons

PP 1 7400 0 0.000 0 0.00 07350 0 0.000 118 0.00 1187300 0 0.000 264 0.00 2647250 0 0.000 330 0.00 3307200 0 0.000 672 0.00 6727150 0 0.000 1,042 0.00 1,0427100 0 0.000 613 0.00 6137050 12 0.370 1,608 134.00 1,6207000 131 0.396 3,952 30.17 4,0836950 121 0.330 6,515 53.84 6,6366900 21 0.392 7,821 372.43 7,8426850 30 0.345 8,268 275.60 8,2986800 4 1.222 8,274 ###### 8,2786750 109 0.404 8,141 74.69 8,2506700 566 1.387 7,804 13.79 8,3706650 1,142 0.417 7,144 6.26 8,2866600 2,047 0.513 6,491 3.17 8,538

4,183 0.592 69,057 16.51 73,240

Year 1 Stkpl 4,183 0.592 0 0.00 4,183

1 6550 3,267 0.562 5,665 1.73 8,9326500 4,911 0.664 4,964 1.01 9,8756450 5,693 0.613 3,100 0.54 8,793

13,871 0.619 13,729 0.99 27,600

2 7700 0 0.000 19 0.00 197650 0 0.000 30 0.00 307600 0 0.000 594 0.00 5947550 0 0.000 1,192 0.00 1,1927500 0 0.000 1,455 0.00 1,4557450 33 0.446 1,657 50.21 1,6907400 93 0.361 2,171 23.34 2,2647350 83 0.364 2,890 34.82 2,973

209 0.376 10,008 47.89 10,217

18,263 0.610 23,737 1.30 42,000

Year 2 1 6450 161 0.613 780 4.84 9416400 5,947 0.847 3,471 0.58 9,4186350 5,448 0.720 2,787 0.51 8,2356300 4,249 0.746 1,606 0.38 5,855

15,805 0.774 8,644 0.55 24,449

2 7300 289 0.385 2,771 9.59 3,0607250 591 0.436 2,455 4.15 3,0467200 703 0.462 5,715 8.13 6,4187150 875 0.555 4,152 4.75 5,027

2,458 0.480 15,093 6.14 17,551

18,263 0.734 23,737 1.30 42,000

Page 43: Pit Design Scott Zimmer

Table 4-6 (Continued)

Unsmoothed Mine Production Schedule

Push- Mill Feed Waste W:O TotMtlPeriod back Bench ktons %TCu ktons Ratio ktons

Year 3 1 6300 1,436 0.746 543 0.38 1,9796250 5,760 0.915 1,827 0.32 7,5876200 5,937 1.064 335 0.06 6,2726150 3,737 0.854 0 0.00 3,737

16,870 0.940 2,705 0.16 19,575

2 7150 0 0.000 4,130 0.00 4,1307100 617 0.413 8,138 13.19 8,7557050 338 0.486 6,773 20.04 7,1117000 438 0.549 1,991 4.55 2,429

1,393 0.473 21,032 15.10 22,425

18,263 0.904 23,737 1.30 42,000

Year 4 1 6150 2,263 0.854 0 0.00 2,2636100 5,069 0.884 0 0.00 5,069

7,332 0.875 0 0.00 7,332

2 7000 0 0.000 4,180 0.00 4,1806950 1,379 0.571 5,402 3.92 6,7816900 2,784 0.524 5,449 1.96 8,2336850 2,794 0.620 5,278 1.89 8,0726800 3,256 0.628 3,428 1.05 6,6846750 718 0.766 0 0.00 718

10,931 0.601 23,737 2.17 34,668

18,263 0.711 23,737 1.30 42,000

Year 5 2 6800 0 0.000 1,054 0.00 1,0546750 3,675 0.766 3,087 0.84 6,7626700 4,803 0.703 3,400 0.71 8,2036650 5,271 0.646 3,985 0.76 9,2566600 2,881 0.660 2,290 0.79 5,171

16,630 0.691 13,816 0.83 30,446

3 7350 94 0.474 7 0.07 1017300 372 0.446 325 0.87 6977250 442 0.480 765 1.73 1,2077200 378 0.466 1,404 3.71 1,7827150 293 0.451 2,037 6.95 2,3307100 34 0.829 2,996 88.12 3,0307050 20 0.570 2,387 119.35 2,407

1,633 0.472 9,921 6.08 11,554

18,263 0.672 23,737 1.30 42,000

Year 6 2 6600 2,753 0.660 2,189 0.80 4,9426550 6,488 0.628 4,329 0.67 10,8176500 7,357 0.563 3,148 0.43 10,5056450 812 0.568 352 0.43 1,164

17,410 0.603 10,018 0.58 27,428

3 7050 0 0.000 1,955 0.00 1,9557000 294 0.498 4,666 15.87 4,9606950 559 0.455 7,098 12.70 7,657

853 0.470 13,719 16.08 14,572

18,263 0.597 23,737 1.30 42,000

Page 44: Pit Design Scott Zimmer

Table 4-6 (Continued)

Unsmoothed Mine Production Schedule

Push- Mill Feed Waste W:O TotMtlPeriod back Bench ktons %TCu ktons Ratio ktons

Year 7 2 6450 5,686 0.568 2,461 0.43 8,1476400 6,961 0.612 1,931 0.28 8,8926350 4,868 0.697 1,277 0.26 6,145

17,515 0.621 5,669 0.32 23,184

3 6950 0 0.000 2,024 0.00 2,0246900 748 0.426 10,284 13.75 11,0326850 0 0.000 5,760 0.00 5,760

748 0.426 18,068 24.16 18,816

18,263 0.613 23,737 1.30 42,000

Year 8 2 6350 608 0.697 159 0.26 7676300 4,206 0.601 938 0.22 5,1446250 3,396 0.615 119 0.04 3,5156200 1,958 0.525 223 0.11 2,181

10,168 0.597 1,439 0.14 11,607

3 6850 2,006 0.555 3,382 1.69 5,3886800 2,553 0.658 8,622 3.38 11,1756750 2,809 0.584 8,316 2.96 11,1256700 727 0.825 7,635 10.50 8,3626650 0 0.825 1,343 0.00 1,343

8,095 0.622 29,298 3.62 37,393

18,263 0.608 30,737 1.68 49,000

Year 9 3 6700 3,365 0.825 0 0.00 3,3656650 4,635 0.726 5,844 1.26 10,4796600 3,918 0.701 7,778 1.99 11,6966550 5,487 0.593 6,481 1.18 11,968

17,405 0.698 20,103 1.16 37,508

4 7350 0 0.000 216 0.00 2167300 0 0.000 1,189 0.00 1,1897250 0 0.000 2,080 0.00 2,0807200 0 0.000 2,948 0.00 2,9487150 0 0.000 3,129 0.00 3,1297100 811 0.350 2,861 3.53 3,6727050 47 0.479 2,211 47.04 2,258

858 0.357 14,634 17.06 15,492

18,263 0.682 34,737 1.90 53,000

Year 10 3 6500 6,027 0.604 6,440 1.07 12,4676450 6,155 0.577 4,909 0.80 11,0646400 466 0.593 289 0.62 755

12,648 0.590 11,638 0.92 24,286

4 7050 730 0.479 923 1.26 1,6537000 1,185 0.494 4,891 4.13 6,0766950 1,702 0.599 5,750 3.38 7,4526900 1,021 0.738 7,085 6.94 8,1066850 977 0.513 4,450 4.55 5,427

5,615 0.572 23,099 4.11 28,714

18,263 0.585 34,737 1.90 53,000

Page 45: Pit Design Scott Zimmer

Table 4-6 (Continued)

Unsmoothed Mine Production Schedule

Push- Mill Feed Waste W:O TotMtlPeriod back Bench ktons %TCu ktons Ratio ktons

Year 11 3 6400 5,762 0.593 3,578 0.62 9,3406350 5,991 0.632 3,063 0.51 9,0546300 2,996 0.570 1,409 0.47 4,405

14,749 0.604 8,050 0.55 22,799

4 6850 0 0.000 2,373 0.00 2,3736800 517 0.479 7,382 14.28 7,8996750 1,285 0.402 7,434 5.79 8,7196700 1,712 0.443 7,264 4.24 8,9766650 0 0.000 2,234 0.00 2,234

3,514 0.433 26,687 7.59 30,201

18,263 0.571 34,737 1.90 53,000

Year 12 3 6300 2,730 0.570 1,284 0.47 4,0146250 5,487 0.558 1,922 0.35 7,4096200 3,195 0.602 1,666 0.52 4,861

11,412 0.573 4,872 0.43 16,284

4 6650 1,509 0.478 5,493 3.64 7,0026600 1,520 0.413 8,086 5.32 9,6066550 2,069 0.393 7,688 3.72 9,7576500 1,749 0.415 8,005 4.58 9,7546450 4 0.480 593 148.25 597

6,851 0.422 29,865 4.36 36,716

18,263 0.516 34,737 1.90 53,000

Year 13 3 6150 3,805 0.562 1,054 0.28 4,8596100 2,689 0.542 671 0.25 3,3606050 1,602 0.547 264 0.16 1,866

8,096 0.552 1,989 0.25 10,085

4 6450 2,688 0.480 7,821 2.91 10,5096400 3,310 0.543 8,248 2.49 11,5586350 4,104 0.504 5,527 1.35 9,631

10,102 0.510 21,596 2.14 31,698

5 7350 4 0.511 508 127.00 5127300 0 0.000 690 0.00 6907250 0 0.000 1,219 0.00 1,2197200 0 0.000 1,474 0.00 1,4747150 0 0.000 521 0.00 5217100 0 0.000 1,188 0.00 1,1887050 0 0.000 1,872 0.00 1,8727000 8 0.416 2,394 299.25 2,4026950 53 0.320 1,286 24.26 1,339

65 0.344 11,152 171.57 11,217

18,263 0.528 34,737 1.90 53,000

Page 46: Pit Design Scott Zimmer

Table 4-6 (Continued)

Unsmoothed Mine Production Schedule

Push- Mill Feed Waste W:O TotMtlPeriod back Bench ktons %TCu ktons Ratio ktons

Year 14 4 6350 890 0.504 1,198 1.35 2,0886300 5,003 0.561 5,791 1.16 10,7946250 4,538 0.656 5,566 1.23 10,1046200 5,889 0.657 3,694 0.63 9,5836150 1,532 0.658 998 0.65 2,530

17,852 0.622 17,247 0.97 35,099

5 6950 0 0.000 1,689 0.00 1,6896900 40 0.447 3,063 76.58 3,1036850 124 0.368 3,236 26.10 3,3606800 145 0.378 3,793 26.16 3,9386750 102 0.753 4,310 42.25 4,4126700 0 0.000 1,399 0.00 1,399

411 0.475 17,490 42.55 17,901

18,263 0.619 34,737 1.90 53,000

Year 15 4 6150 3,895 0.658 2,537 0.65 6,4326100 4,591 0.614 3,214 0.70 7,8056050 5,250 0.667 1,598 0.30 6,8486000 3,045 0.674 952 0.31 3,997

16,781 0.652 8,301 0.49 25,082

5 6700 0 0.000 3,778 0.00 3,7786650 2 0.849 5,232 ###### 5,2346600 2 0.481 5,457 ###### 5,4596550 362 0.673 5,422 14.98 5,7846500 1,116 0.493 5,007 4.49 6,1236450 0 0.000 1,540 0.00 1,540

1,482 0.537 26,436 17.84 27,918

18,263 0.642 34,737 1.90 53,000

Year 16 4 6000 1,703 0.674 532 0.31 2,2355950 3,264 0.631 1,219 0.37 4,4835900 2,580 0.554 533 0.21 3,1135850 539 0.499 0 0.00 539

8,086 0.607 2,284 0.28 10,370

5 6450 2,095 0.537 3,536 1.69 5,6316400 3,720 0.503 5,425 1.46 9,1456350 4,053 0.536 5,882 1.45 9,9356300 298 0.516 427 1.43 725

10,166 0.524 15,270 1.50 25,436

6 7450 0 0.000 24 0.00 247400 0 0.000 184 0.00 1847350 0 0.000 463 0.00 4637300 0 0.000 1,235 0.00 1,2357250 0 0.000 2,737 0.00 2,7377200 0 0.000 3,063 0.00 3,0637150 0 0.000 2,712 0.00 2,7127100 0 0.000 2,525 0.00 2,5257050 11 0.335 2,648 240.73 2,6597000 0 0.000 1,592 0.00 1,592

11 0.335 17,183 ###### 17,194

18,263 0.560 34,737 1.90 53,000

Page 47: Pit Design Scott Zimmer

Table 4-6 (Continued)

Unsmoothed Mine Production Schedule

Push- Mill Feed Waste W:O TotMtlPeriod back Bench ktons %TCu ktons Ratio ktons

Year 17 5 6300 4,130 0.516 5,911 1.43 10,0416250 3,985 0.500 7,881 1.98 11,8666200 3,846 0.689 4,623 1.20 8,4696150 3,512 0.963 0 0.00 3,5126100 549 0.903 0 0.00 549

16,022 0.665 18,415 1.15 34,437

6 7000 13 0.332 1,089 83.77 1,1026950 436 0.399 2,192 5.03 2,6286900 67 0.538 2,405 35.90 2,4726850 177 0.482 2,046 11.56 2,2236800 72 0.373 1,736 24.11 1,8086750 293 0.519 1,463 4.99 1,7566700 117 0.374 1,367 11.68 1,4846650 22 0.544 833 37.86 8556600 1,044 0.558 3,191 3.06 4,235

2,241 0.498 16,322 7.28 18,563

18,263 0.644 34,737 1.90 53,000

Year 18 5 6200 0 0.000 3,860 0.00 3,8606150 0 0.000 9,013 0.00 9,0136100 4,070 0.903 6,933 1.70 11,0036050 7,504 0.850 0 0.00 7,5046000 3,181 0.889 0 0.00 3,181

14,755 0.873 19,806 1.34 34,561

6 6550 1,128 0.508 4,442 3.94 5,5706500 1,041 0.617 5,434 5.22 6,4756450 1,339 0.515 5,055 3.78 6,394

3,508 0.543 14,931 4.26 18,439

18,263 0.810 34,737 1.90 53,000

Year 19 5 6100 0 0.000 973 0.00 9736050 0 0.000 6,797 0.00 6,7976000 3,895 0.889 3,706 0.95 7,6015950 5,703 0.839 2,659 0.47 8,3625900 4,837 0.881 1,207 0.25 6,044

14,435 0.867 15,342 1.06 29,777

6 6400 2,625 0.502 3,883 1.48 6,5086350 1,203 0.648 2,902 2.41 4,1056300 0 0.000 610 0.00 610

3,828 0.548 7,395 1.93 11,223

18,263 0.800 22,737 1.24 41,000

Year 20 6 6350 1,160 0.648 0 0.00 1,1606300 2,738 0.713 1,483 0.54 4,2216250 2,915 0.736 1,595 0.55 4,5106200 3,517 0.622 759 0.22 4,2766150 3,225 0.698 961 0.30 4,1866100 2,852 0.710 991 0.35 3,8436050 1,856 0.694 452 0.24 2,308

18,263 0.690 6,241 0.34 24,504

Year 21 6 6050 794 0.694 194 0.24 9886000 2,930 0.732 355 0.12 3,2855950 2,918 0.721 225 0.08 3,1435900 2,665 0.648 65 0.02 2,7305850 4,341 0.701 759 0.17 5,1005800 2,192 0.575 1,019 0.46 3,2115750 403 0.698 190 0.47 593

16,243 0.684 2,807 0.17 19,050

Page 48: Pit Design Scott Zimmer

Table 4-7

Smoothed Mine Production Schedule Summary

Push- Mill Feed Waste W:O TotMtl Push- Mill Feed Waste W:O TotMtlPeriod back ktons %TCu ktons Ratio ktons Period back ktons %TCu ktons Ratio ktons

PP 1 4,183 0.592 69,057 16.51 73,240 Year 11 3 13,447 0.589 10,307 0.77 23,7544 4,816 0.420 20,430 4.24 25,246

Year 1 Stkpl 4,183 0.592 0 0.00 4,183 18,263 0.544 30,737 1.68 49,0001 12,991 0.619 13,819 1.06 26,8102 1,089 0.411 16,918 15.54 18,007 Year 12 3 13,232 0.591 5,128 0.39 18,360

18,263 0.601 30,737 1.68 49,000 4 4,926 0.522 9,705 1.97 14,6315 105 0.383 15,904 151.47 16,009

Year 2 1 16,068 0.766 8,321 0.52 24,389 18,263 0.571 30,737 1.68 49,0002 2,195 0.485 22,416 10.21 24,611

18,263 0.732 30,737 1.68 49,000 Year 13 3 9,908 0.574 3,739 0.38 13,6474 7,984 0.525 6,518 0.82 14,502

Year 3 1 14,475 0.949 2,938 0.20 17,413 5 371 0.478 20,480 55.20 20,8512 2,155 0.553 16,381 7.60 18,536 18,263 0.551 30,737 1.68 49,0003 1,633 0.472 11,418 6.99 13,051

18,263 0.860 30,737 1.68 49,000 Year 14 3 4,291 0.544 935 0.22 5,2264 12,904 0.642 14,314 1.11 27,218

Year 4 1 10,344 0.869 0 0.00 10,344 5 1,068 0.555 15,488 14.50 16,5562 7,066 0.584 12,775 1.81 19,841 18,263 0.614 30,737 1.68 49,0003 853 0.470 17,962 21.06 18,815

18,263 0.740 30,737 1.68 49,000 Year 15 4 12,034 0.643 4,736 0.39 16,7705 6,229 0.514 12,167 1.95 18,396

Year 5 2 15,509 0.696 12,357 0.80 27,866 6 0 0.000 13,834 0.00 13,8343 2,754 0.520 18,380 6.67 21,134 18,263 0.599 30,737 1.68 49,000

18,263 0.669 30,737 1.68 49,000Year 16 4 10,782 0.659 3,546 0.33 14,328

Year 6 2 12,901 0.643 12,505 0.97 25,406 5 6,412 0.529 12,911 2.01 19,3233 5,362 0.619 18,232 3.40 23,594 6 1,069 0.451 14,280 13.36 15,349

18,263 0.636 30,737 1.68 49,000 18,263 0.601 30,737 1.68 49,000

Year 7 2 11,079 0.565 1,634 0.15 12,713 Year 17 4 3,119 0.544 533 0.17 3,6523 5,596 0.798 9,967 1.78 15,563 5 11,792 0.639 14,937 1.27 26,7294 1,588 0.413 19,136 12.05 20,724 6 3,352 0.553 15,267 4.55 18,619

18,263 0.623 30,737 1.68 49,000 18,263 0.607 30,737 1.68 49,000

Year 8 2 9,684 0.600 3,110 0.32 12,794 Year 18 5 11,936 0.886 18,897 1.58 30,8333 4,671 0.718 7,912 1.69 12,583 6 6,327 0.559 11,840 1.87 18,1674 3,908 0.603 19,715 5.04 23,623 18,263 0.773 30,737 1.68 49,000

18,263 0.631 30,737 1.68 49,000Year 19 5 5,868 0.877 8,329 1.42 14,197

Year 9 2 9,682 0.655 2,374 0.25 12,056 6 12,395 0.689 5,408 0.44 17,8033 5,275 0.642 6,188 1.17 11,463 18,263 0.749 13,737 0.75 32,000

4 3,306 0.453 22,175 6.71 25,481 Year 20 5 8,718 0.856 3,591 0.41 12,30918,263 0.615 30,737 1.68 49,000 6 9,545 0.714 2,182 0.23 11,727

18,263 0.782 5,773 0.32 24,036Year 10 2 5,354 0.582 342 0.06 5,696

Year 21 5 4,834 0.881 1,207 0.25 6,0413 8,617 0.601 7,490 0.87 16,107 6 11,406 0.667 2,068 0.18 13,4744 4,292 0.444 22,905 5.34 27,197 16,240 0.731 3,275 0.20 19,515

18,263 0.558 30,737 1.68 49,000Total 385,683 0.655 645,108 1.67 1,030,791

Page 49: Pit Design Scott Zimmer

Table 4-8

Smoothed Mine Production Schedule

Push- Mill Feed Waste W:O TotMtlPeriod back Bench ktons %TCu ktons Ratio ktons

PP 1 7400 0 0.000 0 0.00 07350 0 0.000 118 0.00 1187300 0 0.000 264 0.00 2647250 0 0.000 330 0.00 3307200 0 0.000 672 0.00 6727150 0 0.000 1,042 0.00 1,0427100 0 0.000 613 0.00 6137050 12 0.370 1,608 134.00 1,6207000 131 0.396 3,952 30.17 4,0836950 121 0.330 6,515 53.84 6,6366900 21 0.392 7,821 372.43 7,8426850 30 0.345 8,268 275.60 8,2986800 4 1.222 8,274 ###### 8,2786750 109 0.404 8,141 74.69 8,2506700 566 1.387 7,804 13.79 8,3706650 1,142 0.417 7,144 6.26 8,2866600 2,047 0.513 6,491 3.17 8,538

4,183 0.592 69,057 16.51 73,240

Year 1 Stkpl 4,183 0.592 0 0.00 4,183

1 6550 3,267 0.562 5,665 1.73 8,9326500 4,911 0.664 4,964 1.01 9,8756450 4,813 0.613 3,190 0.66 8,003

12,991 0.619 13,819 1.06 26,810

2 7700 0 0.000 19 0.00 197650 0 0.000 30 0.00 307600 0 0.000 594 0.00 5947550 0 0.000 1,192 0.00 1,1927500 0 0.000 1,455 0.00 1,4557450 33 0.446 1,657 50.21 1,6907400 93 0.361 2,171 23.34 2,2647350 83 0.364 2,890 34.82 2,9737300 289 0.385 2,771 9.59 3,0607250 591 0.436 2,455 4.15 3,0467200 0 0.000 1,684 0.00 1,684

1,089 0.411 16,918 15.54 18,007

18,263 0.601 30,737 1.68 49,000

Year 2 1 6450 1,041 0.613 690 0.66 1,7316400 5,947 0.847 3,471 0.58 9,4186350 5,448 0.720 2,787 0.51 8,2356300 3,632 0.746 1,373 0.38 5,005

16,068 0.766 8,321 0.52 24,389

2 7200 703 0.462 4,031 5.73 4,7347150 875 0.555 8,282 9.47 9,1577100 617 0.413 8,138 13.19 8,7557050 0 0.000 1,965 0.00 1,965

2,195 0.485 22,416 10.21 24,611

18,263 0.732 30,737 1.68 49,000

Page 50: Pit Design Scott Zimmer

Table 4-8 (Continued)

Smoothed Mine Production Schedule

Push- Mill Feed Waste W:O TotMtlPeriod back Bench ktons %TCu ktons Ratio ktons

Year 3 1 6300 2,053 0.746 776 0.38 2,8296250 5,760 0.915 1,827 0.32 7,5876200 5,937 1.064 335 0.06 6,2726150 725 0.854 0 0.00 725

14,475 0.949 2,938 0.20 17,413

2 7050 338 0.486 4,808 14.22 5,1467000 438 0.549 6,171 14.09 6,6096950 1,379 0.571 5,402 3.92 6,781

2,155 0.553 16,381 7.60 18,536

3 7350 94 0.474 7 0.07 1017300 372 0.446 325 0.87 6977250 442 0.480 765 1.73 1,2077200 378 0.466 1,404 3.71 1,7827150 293 0.451 2,037 6.95 2,3307100 34 0.829 2,996 88.12 3,0307050 20 0.570 3,884 194.20 3,904

1,633 0.472 11,418 6.99 13,051

18,263 0.860 30,737 1.68 49,000

Year 4 1 6150 5,275 0.854 0 0.00 5,2756100 5,069 0.884 0 0.00 5,069

10,344 0.869 0 0.00 10,344

2 6900 2,784 0.524 5,449 1.96 8,2336850 2,794 0.620 5,278 1.89 8,0726800 1,488 0.628 2,048 1.38 3,536

7,066 0.584 12,775 1.81 19,841

3 7050 0 0.000 458 0.00 4587000 294 0.498 4,666 15.87 4,9606950 559 0.455 9,122 16.32 9,6816900 0 0.000 3,716 0.00 3,716

853 0.470 17,962 21.06 18,815

18,263 0.740 30,737 1.68 49,000

Year 5 2 6800 1,768 0.628 2,434 1.38 4,2026750 4,393 0.766 3,087 0.70 7,4806700 4,803 0.703 3,400 0.71 8,2036650 4,545 0.646 3,436 0.76 7,981

15,509 0.696 12,357 0.80 27,866

3 6900 748 0.426 6,568 8.78 7,3166850 2,006 0.555 9,142 4.56 11,1486800 0 0.000 2,670 0.00 2,670

2,754 0.520 18,380 6.67 21,134

18,263 0.669 30,737 1.68 49,000

Page 51: Pit Design Scott Zimmer

Table 4-8 (Continued)

Smoothed Mine Production Schedule

Push- Mill Feed Waste W:O TotMtlPeriod back Bench ktons %TCu ktons Ratio ktons

Year 6 2 6650 726 0.646 549 0.76 1,2756600 5,634 0.660 4,479 0.79 10,1136550 6,488 0.628 4,329 0.67 10,8176500 53 0.563 3,148 59.40 3,201

12,901 0.643 12,505 0.97 25,406

3 6800 2,553 0.658 5,952 2.33 8,5056750 2,809 0.584 8,316 2.96 11,1256700 0 0.000 3,964 0.00 3,964

5,362 0.619 18,232 3.40 23,594

18,263 0.636 30,737 1.68 49,000

Year 7 2 6500 7,304 0.563 0 0.00 7,3046450 3,775 0.568 1,634 0.43 5,409

11,079 0.565 1,634 0.15 12,713

3 6700 4,092 0.825 3,671 0.90 7,7636650 1,504 0.726 6,296 4.19 7,800

5,596 0.798 9,967 1.78 15,563

4 7350 0 0.000 216 0.00 2167300 0 0.000 1,189 0.00 1,1897250 0 0.000 2,080 0.00 2,0807200 0 0.000 2,948 0.00 2,9487150 0 0.000 3,129 0.00 3,1297100 811 0.350 2,861 3.53 3,6727050 777 0.479 3,134 4.03 3,9117000 0 0.000 3,579 0.00 3,579

1,588 0.413 19,136 12.05 20,724

18,263 0.623 30,737 1.68 49,000

Year 8 2 6450 2,723 0.568 1,179 0.43 3,9026400 6,961 0.612 1,931 0.28 8,892

9,684 0.600 3,110 0.32 12,794

3 6650 3,131 0.726 891 0.28 4,0226600 1,540 0.701 7,021 4.56 8,561

4,671 0.718 7,912 1.69 12,583

4 7000 1,185 0.494 1,312 1.11 2,4976950 1,702 0.599 5,750 3.38 7,4526900 1,021 0.738 7,085 6.94 8,1066850 0 0.000 5,568 0.00 5,568

3,908 0.603 19,715 5.04 23,623

18,263 0.631 30,737 1.68 49,000

Year 9 2 6350 5,476 0.697 1,436 0.26 6,9126300 4,206 0.601 938 0.22 5,144

9,682 0.655 2,374 0.25 12,056

3 6600 2,378 0.701 757 0.32 3,1356550 2,897 0.593 5,431 1.87 8,328

5,275 0.642 6,188 1.17 11,463

4 6850 977 0.513 1,255 1.28 2,2326800 517 0.479 7,382 14.28 7,8996750 1,285 0.402 7,434 5.79 8,7196700 527 0.443 6,104 11.58 6,631

3,306 0.453 22,175 6.71 25,481

18,263 0.615 30,737 1.68 49,000

Page 52: Pit Design Scott Zimmer

Table 4-8 (Continued)

Smoothed Mine Production Schedule

Push- Mill Feed Waste W:O TotMtlPeriod back Bench ktons %TCu ktons Ratio ktons

Year 10 2 6250 3,396 0.615 119 0.04 3,5156200 1,958 0.525 223 0.11 2,181

5,354 0.582 342 0.06 5,696

3 6550 2,590 0.593 1,050 0.41 3,6406500 6,027 0.604 6,440 1.07 12,467

8,617 0.601 7,490 0.87 16,107

4 6700 1,185 0.443 1,160 0.98 2,3456650 1,509 0.478 7,727 5.12 9,2366600 1,520 0.413 8,086 5.32 9,6066550 78 0.393 5,932 76.05 6,010

4,292 0.444 22,905 5.34 27,197

18,263 0.558 30,737 1.68 49,000

Year 11 3 6450 6,155 0.577 4,909 0.80 11,0646400 6,228 0.593 3,867 0.62 10,0956350 1,064 0.632 1,531 1.44 2,595

13,447 0.589 10,307 0.77 23,754

4 6550 1,991 0.393 1,756 0.88 3,7476500 1,749 0.415 8,005 4.58 9,7546450 1,076 0.480 7,692 7.15 8,7686400 0 0.000 2,977 0.00 2,977

4,816 0.420 20,430 4.24 25,246

18,263 0.544 30,737 1.68 49,000

Year 12 3 6350 4,927 0.632 1,532 0.31 6,4596300 5,726 0.570 2,693 0.47 8,4196250 2,579 0.558 903 0.35 3,482

13,232 0.591 5,128 0.39 18,360

4 6450 1,616 0.480 722 0.45 2,3386400 3,310 0.543 5,271 1.59 8,5816350 0 0.000 3,712 0.00 3,712

4,926 0.522 9,705 1.97 14,631

5 7350 4 0.511 508 127.00 5127300 0 0.000 690 0.00 6907250 0 0.000 1,219 0.00 1,2197200 0 0.000 1,474 0.00 1,4747150 0 0.000 521 0.00 5217100 0 0.000 1,188 0.00 1,1887050 0 0.000 1,872 0.00 1,8727000 8 0.416 2,394 299.25 2,4026950 53 0.320 2,975 56.13 3,0286900 40 0.447 3,063 76.58 3,103

105 0.383 15,904 151.47 16,009

18,263 0.571 30,737 1.68 49,000

Year 13 3 6250 2,908 0.558 1,019 0.35 3,9276200 3,195 0.602 1,666 0.52 4,8616150 3,805 0.562 1,054 0.28 4,859

9,908 0.574 3,739 0.38 13,647

4 6350 4,994 0.504 3,013 0.60 8,0076300 2,990 0.561 3,505 1.17 6,495

7,984 0.525 6,518 0.82 14,502

5 6850 124 0.368 3,236 26.10 3,3606800 145 0.378 3,793 26.16 3,9386750 102 0.753 4,310 42.25 4,4126700 0 0.000 5,177 0.00 5,1776650 0 0.000 3,964 0.00 3,964

371 0.478 20,480 55.20 20,851

18,263 0.551 30,737 1.68 49,000

Page 53: Pit Design Scott Zimmer

Table 4-8 (Continued)

Smoothed Mine Production Schedule

Push- Mill Feed Waste W:O TotMtlPeriod back Bench ktons %TCu ktons Ratio ktons

Year 14 3 6100 2,689 0.542 671 0.25 3,3606050 1,602 0.547 264 0.16 1,866

4,291 0.544 935 0.22 5,226

4 6300 2,013 0.561 2,286 1.14 4,2996250 4,538 0.656 5,566 1.23 10,1046200 5,889 0.657 3,694 0.63 9,5836150 464 0.658 2,768 5.97 3,232

12,904 0.642 14,314 1.11 27,218

5 6650 2 0.849 1,268 634.00 1,2706600 2 0.481 5,457 ###### 5,4596550 362 0.673 5,422 14.98 5,7846500 702 0.493 3,341 4.76 4,043

1,068 0.555 15,488 14.50 16,556

18,263 0.614 30,737 1.68 49,000

Year 15 4 6150 4,963 0.658 767 0.15 5,7306100 4,591 0.614 3,214 0.70 7,8056050 2,480 0.667 755 0.30 3,235

12,034 0.643 4,736 0.39 16,770

5 6500 414 0.493 1,666 4.02 2,0806450 2,095 0.537 5,076 2.42 7,1716400 3,720 0.503 5,425 1.46 9,145

6,229 0.514 12,167 1.95 18,396

6 7450 0 0.000 24 0.00 247400 0 0.000 184 0.00 1847350 0 0.000 463 0.00 4637300 0 0.000 1,235 0.00 1,2357250 0 0.000 2,737 0.00 2,7377200 0 0.000 3,063 0.00 3,0637150 0 0.000 2,712 0.00 2,7127100 0 0.000 2,525 0.00 2,5257050 0 0.000 891 0.00 891

0 0.000 13,834 0.00 13,834

18,263 0.599 30,737 1.68 49,000

Year 16 4 6050 2,770 0.667 843 0.30 3,6136000 4,748 0.674 1,484 0.31 6,2325950 3,264 0.631 1,219 0.37 4,483

10,782 0.659 3,546 0.33 14,328

5 6350 4,053 0.536 5,882 1.45 9,9356300 2,359 0.516 6,338 2.69 8,6976250 0 0.000 691 0.00 691

6,412 0.529 12,911 2.01 19,323

6 7050 11 0.335 1,757 159.73 1,7687000 13 0.332 2,681 206.23 2,6946950 436 0.399 2,192 5.03 2,6286900 67 0.538 2,405 35.90 2,4726850 177 0.482 2,046 11.56 2,2236800 72 0.373 1,736 24.11 1,8086750 293 0.519 1,463 4.99 1,756

1,069 0.451 14,280 13.36 15,349

18,263 0.601 30,737 1.68 49,000

Page 54: Pit Design Scott Zimmer

Table 4-8 (Continued)

Smoothed Mine Production Schedule

Push- Mill Feed Waste W:O TotMtlPeriod back Bench ktons %TCu ktons Ratio ktons

Year 17 4 5900 2,580 0.554 533 0.21 3,1135850 539 0.499 0 0.00 539

3,119 0.544 533 0.17 3,652

5 6300 2,069 0.516 0 0.00 2,0696250 3,985 0.500 7,190 1.80 11,1756200 3,846 0.689 7,747 2.01 11,5936150 1,892 0.963 0 0.00 1,892

11,792 0.639 14,937 1.27 26,729

6 6700 117 0.374 1,367 11.68 1,4846650 22 0.544 833 37.86 8556600 1,044 0.558 3,191 3.06 4,2356550 1,128 0.508 4,442 3.94 5,5706500 1,041 0.617 5,434 5.22 6,475

3,352 0.553 15,267 4.55 18,619

18,263 0.607 30,737 1.68 49,000

Year 18 5 6200 0 0.000 736 0.00 7366150 1,620 0.963 9,013 5.56 10,6336100 4,619 0.903 7,906 1.71 12,5256050 5,697 0.850 1,242 0.22 6,939

11,936 0.886 18,897 1.58 30,833

6 6450 1,339 0.515 5,055 3.78 6,3946400 2,625 0.502 3,883 1.48 6,5086350 2,363 0.648 2,902 1.23 5,265

6,327 0.559 11,840 1.87 18,167

18,263 0.773 30,737 1.68 49,000

Year 19 5 6050 1,807 0.850 5,555 3.07 7,3626000 4,061 0.889 2,774 0.68 6,835

5,868 0.877 8,329 1.42 14,197

6 6300 2,738 0.713 2,093 0.76 4,8316250 2,915 0.736 1,595 0.55 4,5106200 3,517 0.622 759 0.22 4,2766150 3,225 0.698 961 0.30 4,186

12,395 0.689 5,408 0.44 17,803

18,263 0.749 13,737 0.75 32,000

Year 20 5 6000 3,015 0.889 932 0.31 3,9475950 5,703 0.839 2,659 0.47 8,362

8,718 0.856 3,591 0.41 12,309

6 6100 2,852 0.710 991 0.35 3,8436050 2,650 0.694 646 0.24 3,2966000 2,930 0.732 355 0.12 3,2855950 1,113 0.721 190 0.17 1,303

9,545 0.714 2,182 0.23 11,727

18,263 0.782 5,773 0.32 24,036

Year 21 5 5900 4,834 0.881 1,207 0.25 6,041

6 5950 1,805 0.721 35 0.02 1,8405900 2,665 0.648 65 0.02 2,7305850 4,341 0.701 759 0.17 5,1005800 2,192 0.575 1,019 0.46 3,2115750 403 0.698 190 0.47 593

11,406 0.667 2,068 0.18 13,474

16,240 0.731 3,275 0.20 19,515

Page 55: Pit Design Scott Zimmer

Table 4-9

Stripped Ore Inventory

Unsmoothed Schedule Smoothed ScheduleSrtipped Ore Inventory Srtipped Ore Inventory

End of Push- Months @ End of Push- Months @Period back ktons 18,263 ktpy Period back ktons 18,263 ktpy

PP 1 53,878 35.4 PP 1 53,878 35.4

Year 1 1 40,007 26.3 Year 1 1 40,887 26.9

Year 2 1 24,202 15.9 Year 2 1 24,819 16.3

Year 3 1 8,711 5.7 1 10,3442 71,275

Year 4 2 63,356 41.6 Year 3 81,619 53.6

Year 5 2 46,694 30.7 Year 4 2 64,209 42.2

Year 6 2 30,437 20.0 Year 5 2 48,700 32.0

Year 7 2 17,536 11.5 Year 6 2 35,799Year 6 3 65,037

Year 8 2 8,000 Year 6 100,836 66.3Year 8 3 56,310Year 8 64,310 42.3 Year 7 2 24,720

Year 7 3 59,441Year 9 3 50,522 33.2 Year 7 84,161 55.3

Year 10 3 36,059 23.7 Year 8 2 15,036Year 8 3 54,770

Year 11 3 21,017 13.8 Year 8 69,806 45.9

Year 12 3 8,092 5.3 Year 9 2 5,354Year 9 3 49,495

Year 13 4 42,666 28.0 Year 9 54,849 36.0

Year 14 4 24,867 16.3 Year 10 3 40,878 26.9

Year 15 4 6,970 4.6 Year 11 3 27,431 18.0

Year16 5 45,198 29.7 Year 12 3 14,199Year 12 4 46,823

Year 17 5 27,711 18.2 Year 12 61,022 40.1

Year 18 5 12,055 7.9 Year 13 3 4,291Year 13 4 38,839

Year 19 6 34,506 22.7 Year 13 43,130 28.3

Year 20 6 16,243 10.7 Year 14 4 25,935Year 14 5 55,375

Year 21 6 0 0.0 Year 14 81,310 53.4

Year 15 4 13,901Year 15 5 49,146Year 15 63,047 41.4

Year16 4 3,119Year16 5 42,734Year16 45,853 30.1

Year 17 5 30,942 20.3

Year 18 5 19,006Year 18 6 33,346Year 18 52,352 34.4

Year 19 5 13,138Year 19 6 20,951Year 19 34,089 22.4

Year 20 5 4,420Year 20 6 11,406Year 20 15,826 10.4

Year 21 6 0 0.0

Page 56: Pit Design Scott Zimmer

Figure 4-7Stripped Ore Inventory

0

6

12

18

24

30

36

42

48

54

60

66

72

PP

Yea

r 1

Yea

r 2

Yea

r 3

Yea

r 4

Yea

r 5

Yea

r 6

Yea

r 7

Yea

r 8

Yea

r 9

Yea

r 10

Yea

r 11

Yea

r 12

Yea

r 13

Yea

r 14

Yea

r 15

Yea

r16

Yea

r 17

Yea

r 18

Yea

r 19

Yea

r 20

Yea

r 21

End of Period

Mon

ths

Unsmoothed Schedule Smoothed Schedule

Page 57: Pit Design Scott Zimmer

Table 4-10

Comparison of Unsmoothed and Smoothed Mine Production Schedules

Copper price = 0.75 $/lbCopper recovery = 90 %

Mining Cost = 0.75 $/tonDifference

Unsmoothed Schedule Smoothed Schedule (Unsmoothed - Smoothed)Mill Feed Contained Cu TotMtl Mill Feed Contained Cu TotMtl Contained Cu TotMtl

Period ktons %TCu (lbs x 1000) ktons ktons %TCu (lbs x 1000) ktons (lbs x 1000) ktons $x1000

PP 4,183 0.592 49,502 73,240 4,183 0.592 49,502 73,240 0 0 0Year 1 18,263 0.610 222,808 42,000 18,263 0.601 219,398 49,000 3,410 -7,000 7,552Year 2 18,263 0.734 268,149 42,000 18,263 0.732 267,450 49,000 699 -7,000 5,722Year 3 18,263 0.904 330,191 42,000 18,263 0.860 314,014 49,000 16,177 -7,000 16,170Year 4 18,263 0.711 259,737 42,000 18,263 0.740 270,243 49,000 -10,506 -7,000 -1,842Year 5 18,263 0.672 245,372 42,000 18,263 0.669 244,398 49,000 974 -7,000 5,907Year 6 18,263 0.597 217,908 42,000 18,263 0.636 232,241 49,000 -14,333 -7,000 -4,425Year 7 18,263 0.613 224,028 42,000 18,263 0.623 227,604 49,000 -3,575 -7,000 2,837Year 8 18,263 0.608 222,030 49,000 18,263 0.631 230,357 49,000 -8,326 0 -5,620Year 9 18,263 0.682 248,956 53,000 18,263 0.615 224,567 49,000 24,389 4,000 13,463Year 10 18,263 0.585 213,547 53,000 18,263 0.558 203,947 49,000 9,600 4,000 3,480Year 11 18,263 0.544 198,837 53,000 18,263 0.544 198,837 49,000 0 4,000 -3,000Year 12 18,263 0.516 188,623 53,000 18,263 0.571 208,600 49,000 -19,976 4,000 -16,484Year 13 18,263 0.528 193,009 53,000 18,263 0.551 201,122 49,000 -8,112 4,000 -8,476Year 14 18,263 0.619 226,089 53,000 18,263 0.614 224,134 49,000 1,954 4,000 -1,681Year 15 18,263 0.642 234,647 53,000 18,263 0.599 218,779 49,000 15,867 4,000 7,711Year 16 18,263 0.560 204,634 53,000 18,263 0.601 219,585 49,000 -14,950 4,000 -13,091Year 17 18,263 0.644 235,362 53,000 18,263 0.607 221,677 49,000 13,685 4,000 6,237Year 18 18,263 0.810 295,729 53,000 18,263 0.773 282,241 49,000 13,488 4,000 6,104Year 19 18,263 0.800 292,123 41,000 18,263 0.749 273,649 32,000 18,475 9,000 5,720Year 20 18,263 0.690 252,018 24,504 18,263 0.782 285,528 24,036 -33,510 468 -22,970Year 21 16,243 0.684 222,227 19,050 16,240 0.731 237,436 19,515 -15,210 -465 -9,918

385,686 0.654 5,045,528 1,030,794 385,683 0.655 5,055,309 1,030,791 -9,780 3 -6,604

NPV @ 20% (AFTER preproduction) = 18,776NPV @ 15% (AFTER preproduction) = 19,165NPV @ 10% (AFTER preproduction) = 17,848

Page 58: Pit Design Scott Zimmer

23

4.6 Impact of Pushback Redesign (Example) Below is a description of a difficult mining situation with recommendations for improvement. The recommendations are based on adhering to mine planning fundamentals and the necessity to assume a higher degree of managed risk when faced with adverse conditions. The operation’s current long-range (12-year) mine plan is based on a sequence of six pushbacks plus one small satellite deposit. The pushbacks have been designed at a 40-degree inter-ramp working slope in all areas. Haulage access has been included in the design of each pushback, with ramps designed at a 50-meter width at an eight per cent gradient. Minable reserves for the remaining seven pushbacks are summarized in Table 4-11. Because operations were curtailed several years earlier, Pushback 1 has not yet been stripped to the elevation where a continuous supply of primary sulfide mill ore is available and stripping of Pushback 2 has just been initiated. Due to this under-stripped situation, mill feed cannot be scaled up to the design capacity of 28 million tonnes per year (80,000 tonnes per day x 350 days/year) until Year 3 without exceeding the capacity of the mine equipment fleet, which is optimistically targeted at 350,000 tonnes per day. In the current production schedule, primary sulfide mill feed is supplemented by Crush Leach (chalcocite) material in Year 1, Year 2, Year 3, and Year 4. By the end of Year 4, Pushback 2 will have been stripped to a continuous supply of primary sulfide mill feed. The current long-range mine production schedule is summarized in Table 4-12. Using the pushback reserves in Table 4-11, a quick check of the required total material mining rates was implemented. As shown in the reserve tabulations, each pushback has been subdivided into an upper stripping portion and a lower portion, consisting of a continuous ore supply with associated internal waste. The ore and internal waste portion of a stripped pushback must be mined concurrently with the stripping portion of the subsequent pushback in order to ensure a continuous supply of mill feed. The sequence repeats itself until the final pushback is stripped. The sequence and mining rate calculation procedure is summarized in Table 4-13. In the first mining configuration, the stripped ore and internal waste in the Satellite Pit and in Pushback 1 support the Pushback 2 stripping. As shown, if the available primary sulfide ore is mined at the 28 million tonne per year mill capacity rate, the required minimum total material mining rate is about 250 million tonnes per year, or 684,000 tonnes per day, which is obviously not a viable mining rate with the equipment at hand. The second mining configuration is a revision of the first and uses crush leach material to supplement primary sulfide mill feed as per the current mine plan. The addition of the crush leach as mill feed allows the mill to reach the design capacity

Page 59: Pit Design Scott Zimmer

24

of 28 million tonnes per year at the beginning of Year 3 and the inclusion of the high grade leach as mill feed ceases after Year 4, when there is an adequate supply of primary sulfide available. As shown, the minimum required total material mining rate is 314,000 tonnes per day. A mining rate in excess of the calculated minimum is desirable to build up a cushion of stripped ore (a six to twelve month cushion is common for a large milling operation). The third mining configuration extracts Pushback 2 ore and internal waste concurrently with Pushback 3 stripping and the required minimum total material mining rate is 300,000 tonnes per day. In the next two configurations, minimum total material mining rates are 248,000 tonnes per day for 3.28 years, followed by 429,000 tonnes per day for 2.77 years. In this case, advance stripping may be utilized to smooth the total material mining rate to 331,000 tonnes per day for 6.05 years. In the final configuration in the mine plan, the required minimum rate is 308,000 tonnes per day for 7.46 years. These calculations confirm that the 350,000 tonne per day total material mining rate used in the current mine plan is sufficiently in excess of the minimum required to establish an adequate stripped ore cushion. However, due to lack of spare parts, equipment availabilities are steadily declining and it is highly unlikely that the targeted mining rate can be sustained. If the mining rate cannot be maintained at 325,000 tonnes per day or better, a major redesign of the pushbacks will be required. For the current situation, the area with the greatest potential for improvement would be a reduction in the pushback design widths, with particular reference to Pushbacks 2 and 5. Pushback 2 has a nominal 300-meter width, which was deliberately done to access an area of higher grade at depth. It would appear to be more advantageous to bring the mill up to full primary sulfide capacity two years earlier than the current plan, albeit with slightly lower grade material. Assuming a 30-meter swing radius for a 4100 shovel and adding a full 9-meter truck width, yields a 78-meter working width for double-side loading. Working two shovels concurrently or a single shovel plus dropcut development requires 156 meters and a 150 to 200 meter design width is reasonable. In order to examine the potential from reducing the width of Pushback 2, Table 4-14 has been developed to calculate required minimum mining rates. The basic assumption is that Pushback 2 has been reduced to a 200-meter width or 2/3 of the current design. The outside 1/3 is added to Pushback 3 and 2/3 of that total is a new Pushback 3. The remaining 1/3 is added to Pushback 5 (Pushback 4 is positioned to the West and is not changed) and 2/3 of that total is the revised Pushback 5. The leftover 1/3 is added to Pushback 6 and 2/3 of that total is the new Pushback 6. In the first configuration shown in Table 4-14, if the primary sulfide plus crush leach tonnages identical to the current plan for Year 1, Year 2, Year 3 and Year 4 are

Page 60: Pit Design Scott Zimmer

25

employed, the required mining rate is 253,000 tonnes per day, as compared to the 314,000 calculated as a minimum for the current plan and the 350,000 tonnes per day currently scheduled. An alternative, shown in the second configuration, is to bring the mill up to capacity with primary sulfide ore two years earlier (in Year 3 rather than Year 5), employing a mining rate of 340,000 tonnes per day, which is essentially the same rate employed in the current plan. However, since the current equipment fleet cannot produce at the 350,000 tonne per day rate, the reduced total material mining rate alternative is the only viable approach. The magnitude of the reduced total material mining rate, relative to the current plan, is shown in Figure 4-8. The reduced rate alternative allows four years to rehabilitate/replace the current mining fleet, which is necessary to attain the required 350,000 tonnes per day. Current ramps are designed at a 50-meter width and an eight percent gradient. The 50-meter width is essentially adequate for a three-lane (two loaded, one return) system. An efficient design width is 4.5 times the operating width of the largest trucks in the fleet. The required running surface for two meeting (passing) trucks is 3.5 truck widths (½ truck inside, 1 truck, ½ truck between units, 1 truck, ½ truck outside). Adding ½ truck width each for ditch and berm, brings the total to 4.5 truck widths. With an 8 to 9-meter truck operating width, design width for ramps should be 35-40 meters. Ramp gradients of 10 percent are now the standard for the industry, unless adverse footing or weather conditions dictate otherwise. The operation currently employs a 40-degree working slope in all areas. Considerable savings could be realized if this slope could be increased to 45 degrees. Over the vertical depths of the remaining increments, which range from 400 to 550 meters, the impact of the five-degree steepening is 30,000 to 60,000 tonnes per meter of wall length. It is possible to pick the bench where a continuous ore supply is attained and then design both up and down from that backline at the steeper angle. The results should be about the same total tonnage, but the continuous ore tonnage will increase and the stripping volume will decrease. Many times a ramp system is developed on an increment backwall from one pit exit point to another and then is effectively abandoned for the short term (to be mined out and replaced by the subsequent increment). If this ramp is left in ore, mining out the ramp as soon as it is no longer required will recover ore that normally would not be mined for several years. A five-bench 50-meter wide ramp at eight percent contains about 4.5 million tonnes and the 50-meter width is easily mined with the present equipment. In summary, it is evident that a combination of reduced pushback widths, steepened inter-ramp slope angles, reduced ramp widths, and increased ramp gradients could yield significant dividends without unduly affecting productivity or safety.

Page 61: Pit Design Scott Zimmer

Table 4-11

Pushback Reserves

Satellite Pit Pushback 1

Primary Crush ROM Primary Crush ROMSulfide Leach Leach Waste W:O Total Sulfide Leach Leach Waste W:O Total

Bench ktonnes ktonnes ktonnes ktonnes Ratio ktonnes Bench ktonnes ktonnes ktonnes ktonnes Ratio ktonnes

3695 1,473 0.00 1,473 3845 121 0.00 1213680 168 0.00 168 3830 272 0.00 2723665 24 48 1,000 876 0.82 1,948 3815 7 13 1,061 53.05 1,0813650 73 605 2,146 2,313 0.82 5,137 3800 392 1,131 3,234 2.12 4,7573635 344 1,099 1,072 1,792 0.71 4,307 3785 268 2,489 3,399 4,385 0.71 10,5413620 553 686 1,295 1,564 0.62 4,098 3770 73 2,432 2,857 5,566 1.04 10,9283605 645 784 1,076 2,103 0.84 4,608 3755 143 3,046 3,693 5,716 0.83 12,5983590 922 675 1,101 1,873 0.69 4,571 3740 259 2,852 5,497 5,663 0.66 14,271

3725 515 2,936 4,756 4,301 0.52 12,508Total 2,561 3,897 7,690 12,162 0.86 26,310 3710 1,363 3,012 1,905 3,222 0.51 9,502

3695 1,564 2,680 1,869 3,296 0.54 9,4093680 1,213 2,663 1,804 2,591 0.46 8,2713665 1,770 1,900 2,044 2,355 0.41 8,0693650 2,978 882 1,443 1,700 0.32 7,0033635 3,698 748 765 1,536 0.29 6,7473620 3,418 432 932 547 0.11 5,3293605 3,652 585 1,012 84 0.02 5,3333590 3,951 262 651 0 0.00 4,8643575 3,990 244 486 252 0.05 4,9723560 4,060 27 18 104 0.03 4,2093545 3,578 0 0 30 0.01 3,6083530 3,779 0 0 0 0.00 3,7793515 2,711 0 0 0 0.00 2,7113500 1,725 0 0 0 0.00 1,725

Total 44,708 27,589 34,275 46,036 0.43 152,608

Page 62: Pit Design Scott Zimmer

Table 4-11 (Continued)

Pushback Reserves

Pushback 2 Pushback 3

Primary Crush ROM Primary Crush ROMSulfide Leach Leach Waste W:O Total Sulfide Leach Leach Waste W:O Total

Bench ktonnes ktonnes ktonnes ktonnes Ratio ktonnes Bench ktonnes ktonnes ktonnes ktonnes Ratio ktonnes

3965 1,046 0.00 1,046 3950 520 0.00 5203950 3,115 0.00 3,115 3935 0 1,000 0.00 1,0003935 24 4,713 196.38 4,737 3920 24 3,258 135.75 3,2823920 16 99 3,524 30.64 3,639 3905 0 31 4,183 134.94 4,2143905 0 360 3,487 9.69 3,847 3890 0 240 5,051 21.05 5,2913890 0 171 4,291 25.09 4,462 3875 0 437 6,344 14.52 6,7813875 0 104 3,867 37.18 3,971 3860 24 686 11,485 16.18 12,1953860 49 352 1,339 14,534 8.35 16,274 3845 0 0 1,020 8,631 8.46 9,6513845 0 1,316 2,228 17,127 4.83 20,671 3830 10 417 1,232 6,502 3.92 8,1613830 171 1,822 2,828 19,108 3.96 23,929 3815 0 571 1,791 6,664 2.82 9,0263815 317 2,663 4,729 18,234 2.37 25,943 3800 0 880 2,942 6,302 1.65 10,1243800 293 3,544 5,781 17,434 1.81 27,052 3785 3 835 5,781 6,389 0.97 13,0083785 265 4,557 8,318 13,415 1.02 26,555 3770 49 1,506 7,527 6,731 0.74 15,8133770 195 6,016 8,966 10,786 0.71 25,963 3755 137 1,777 7,115 9,150 1.01 18,1793755 219 6,130 9,020 11,325 0.74 26,694 3740 49 2,789 6,432 10,385 1.12 19,6553740 365 6,015 9,210 10,205 0.65 25,795 3725 81 2,782 6,965 10,682 1.09 20,5103725 1,886 8,370 7,736 7,945 0.44 25,937 3710 280 2,639 4,837 12,830 1.65 20,5863710 2,946 8,958 5,056 10,527 0.62 27,487 3695 292 2,371 4,049 13,864 2.07 20,5763695 2,143 7,691 5,547 8,810 0.57 24,191 3680 393 2,110 3,287 14,488 2.50 20,2783680 2,473 7,642 5,162 7,231 0.47 22,508 3665 1,110 2,001 1,888 13,251 2.65 18,250

11,322 65,116 76,654 190,724 1.25 343,816 3650 3,354 925 1,115 12,120 2.25 17,5145,758 21,651 57,375 169,830 2.00 254,614

3665 4,608 4,394 5,263 6,524 0.46 20,7893650 7,035 1,611 3,366 7,260 0.60 19,272 3635 5,386 889 566 9,675 1.41 16,5163635 7,991 2,193 1,842 6,240 0.52 18,266 3620 4,812 291 779 9,702 1.65 15,5843620 8,605 900 2,560 5,336 0.44 17,401 3605 5,388 441 574 8,053 1.26 14,4563605 8,624 1,437 2,497 4,054 0.32 16,612 3590 5,682 406 719 7,210 1.06 14,0173590 8,897 1,360 2,352 2,733 0.22 15,342 3575 7,533 29 55 6,342 0.83 13,9593575 9,303 783 1,657 1,924 0.16 13,667 3560 8,893 0 26 4,834 0.54 13,7533560 9,688 0 125 1,652 0.17 11,465 3545 10,011 0 0 3,062 0.31 13,0733545 8,679 0 0 914 0.11 9,593 3530 9,030 0 0 3,032 0.34 12,0623530 7,656 0 0 612 0.08 8,268 3515 8,524 0 0 3,059 0.36 11,5833515 6,678 0 0 135 0.02 6,813 3500 8,129 0 0 2,552 0.31 10,6813500 5,816 0 0 24 0.00 5,840 3485 7,485 0 0 2,004 0.27 9,4893485 5,743 0 0 198 0.03 5,941 3470 6,562 0 0 2,123 0.32 8,6853470 4,396 0 0 0 0.00 4,396 87,435 2,056 2,719 61,648 0.67 153,858

103,719 12,678 19,662 37,606 0.28 173,665Total 93,193 23,707 60,094 231,478 1.31 408,472

Total 115,041 77,794 96,316 228,330 0.79 517,481

Page 63: Pit Design Scott Zimmer

Table 4-11 (Continued)

Pushback Reserves

Pushback 4 Pushback 5

Primary Crush ROM Primary Crush ROMSulfide Leach Leach Waste W:O Total Sulfide Leach Leach Waste W:O Total

Bench ktonnes ktonnes ktonnes ktonnes Ratio ktonnes Bench ktonnes ktonnes ktonnes ktonnes Ratio ktonnes

3875 65 0.00 65 3950 957 0.00 9573860 0 0.00 0 3935 1,790 0.00 1,7903845 3,248 0.00 3,248 3920 3,660 0.00 3,6603830 5 4,388 877.60 4,393 3905 4,773 0.00 4,7733815 109 4,511 41.39 4,620 3890 248 5,613 22.63 5,8613800 275 5,358 19.48 5,633 3875 146 270 6,562 15.77 6,9783785 309 5,673 18.36 5,982 3860 268 363 7,273 11.53 7,9043770 49 729 5,467 7.03 6,245 3845 0 1,776 8,410 4.74 10,1863755 318 806 5,990 5.33 7,114 3830 112 1,463 2,540 9,100 2.21 13,2153740 449 1,487 5,794 2.99 7,730 3815 195 2,717 4,863 6,890 0.89 14,6653725 24 635 3,786 4,968 1.12 9,413 3800 268 4,910 4,847 5,788 0.58 15,8133710 0 1,251 3,982 4,573 0.87 9,806 3785 317 5,553 6,083 5,265 0.44 17,2183695 156 869 2,913 5,613 1.43 9,551 3770 122 6,076 6,191 5,998 0.48 18,3873680 0 632 2,863 5,830 1.67 9,325 3755 156 5,730 7,609 6,685 0.50 20,1803665 0 29 1,642 7,454 4.46 9,125 3740 132 6,726 7,127 8,443 0.60 22,4283650 77 575 541 7,936 6.65 9,129 3725 208 5,524 9,368 9,954 0.66 25,0543635 102 964 695 5,572 3.16 7,333 3710 137 4,170 10,049 12,835 0.89 27,1913620 301 480 1,321 4,606 2.19 6,708 3695 83 3,543 8,830 17,401 1.40 29,8573605 356 0 765 5,163 4.61 6,284 3680 49 2,976 7,328 18,709 1.81 29,0623590 409 41 1,017 4,570 3.12 6,037 3665 531 3,266 7,236 18,866 1.71 29,8993575 401 70 813 3,994 3.11 5,278 3650 1,110 2,761 5,825 20,228 2.09 29,9243560 912 0 190 3,917 3.55 5,019 3635 1,344 2,991 5,054 20,797 2.22 30,1863545 1,631 0 0 3,278 2.01 4,909 3620 1,187 2,522 6,123 19,991 2.03 29,823

4,369 6,362 24,248 107,968 3.09 142,947 3605 2,996 2,876 5,573 17,997 1.57 29,4428,947 64,218 107,303 243,985 1.35 424,453

3530 2,530 0 0 2,669 1.05 5,1993515 3,472 0 0 1,490 0.43 4,962 3590 4,444 2,330 5,126 16,315 1.37 28,2153500 3,410 0 0 1,461 0.43 4,871 3575 8,680 2,278 3,048 16,792 1.20 30,7983485 3,541 0 0 1,258 0.36 4,799 3560 13,036 1,104 810 13,757 0.92 28,7073470 1,003 0 0 2,371 2.36 3,374 3545 15,133 152 622 10,703 0.67 26,6103455 11,254 0 0 3,027 0.27 14,281 3530 16,192 29 551 7,784 0.46 24,5563440 10,082 0 0 2,197 0.22 12,279 3515 15,416 0 609 6,499 0.41 22,5243425 8,941 0 0 1,532 0.17 10,473 3500 13,938 0 73 6,572 0.47 20,5833410 7,652 0 0 1,083 0.14 8,735 3485 14,043 0 0 4,142 0.29 18,1853395 6,358 0 0 819 0.13 7,177 3470 14,593 0 0 2,800 0.19 17,3933380 5,168 0 0 673 0.13 5,841 3455 13,084 0 0 1,324 0.10 14,4083365 3,692 0 0 848 0.23 4,540 3440 10,617 0 24 1,490 0.14 12,1313350 1,459 0 0 1,480 1.01 2,939 3425 9,619 0 0 90 0.01 9,709

68,562 0 0 20,908 0.30 89,470 3410 8,294 0 0 1 0.00 8,2953395 6,727 0 0 214 0.03 6,941

Total 72,931 6,362 24,248 128,876 1.24 232,417 3380 5,713 0 0 178 0.03 5,8913365 3,679 377 0 662 0.16 4,7183350 3,504 0 0 796 0.23 4,3003335 2,530 0 0 2,901 1.15 5,4313320 1,728 0 0 2,058 1.19 3,786

180,970 6,270 10,863 95,078 0.48 293,181

Total 189,917 70,488 118,166 339,063 0.90 717,634

Page 64: Pit Design Scott Zimmer

Table 4-11 (Continued)

Pushback Reserves

Pushback 6

Primary Crush ROMSulfide Leach Leach Waste W:O Total

Bench ktonnes ktonnes ktonnes ktonnes Ratio ktonnes

3980 1,783 0.00 1,7833965 1,393 0.00 1,3933950 2,271 0.00 2,2713935 3,064 0.00 3,0643920 2,320 0.00 2,3203905 2,533 0.00 2,5333890 3,469 0.00 3,4693875 5,493 0.00 5,4933860 7,519 0.00 7,5193845 8,939 0.00 8,9393830 40 10,844 271.10 10,8843815 573 12,252 21.38 12,8253800 378 1,062 14,118 9.80 15,5583785 1,057 1,697 15,063 5.47 17,8173770 24 3,039 2,084 16,424 3.19 21,5713755 780 3,126 4,217 16,813 2.07 24,9363740 697 3,256 5,026 17,968 2.00 26,9473725 1,342 3,303 5,252 18,485 1.87 28,3823710 2,129 3,155 5,942 19,885 1.77 31,1113695 2,798 3,354 8,371 21,316 1.47 35,8393680 3,415 4,655 9,899 20,930 1.16 38,8993665 2,462 5,185 9,211 24,481 1.45 41,3393650 1,681 3,885 8,361 27,665 1.99 41,5923635 1,517 4,782 6,782 27,971 2.14 41,0523620 2,994 5,143 7,574 24,678 1.57 40,3893605 3,207 3,825 8,063 24,006 1.59 39,1013590 4,836 3,395 5,844 23,595 1.68 37,670

27,882 51,538 89,998 375,278 2.22 544,696

3575 5,973 2,299 6,649 21,284 1.43 36,2053560 7,846 2,991 3,378 20,613 1.45 34,8283545 10,940 1,328 2,441 18,703 1.27 33,4123530 11,552 1,360 2,287 16,889 1.11 32,0883515 12,018 1,095 2,131 15,445 1.01 30,6893500 11,844 1,160 1,468 14,853 1.03 29,3253485 11,312 811 748 14,652 1.14 27,5233470 10,535 1,109 512 14,196 1.17 26,3523455 9,158 598 129 14,404 1.46 24,2893440 9,205 31 133 13,131 1.40 22,5003425 10,087 24 24 10,522 1.04 20,6573410 10,656 0 0 7,538 0.71 18,1943395 10,468 0 0 5,046 0.48 15,5143380 4,913 1,544 829 5,329 0.73 12,6153365 1,639 1,126 978 6,710 1.79 10,4533350 131 0 0 7,114 54.31 7,2453335 52 0 0 5,424 104.31 5,4763320 327 0 0 3,879 11.86 4,206

138,656 15,476 21,707 215,732 1.23 391,571

Total 166,538 67,014 111,705 591,010 1.71 936,267

Page 65: Pit Design Scott Zimmer

Table 4-12

Current Long Range Mine Production Schedule Summary

Mill Feed (ktonnes) Crush ROM Total MaterialPrimary Crush Total Leach Leach Waste W:O ktonnes per

Year Pushback Sulfide Leach Feed ktonnes ktonnes ktonnes Ratio Year Day

Year 1 Satellite Pit 158 674 832 0 3,166 4,863 1.22 8,8611 6,495 12,575 19,070 0 14,487 18,105 0.54 51,6622 185 3,297 3,482 0 6,732 56,097 5.49 66,311

6,838 16,546 23,384 0 24,385 79,065 1.66 126,834 347

Year 2 Satellite Pit 1,015 1,982 2,997 0 2,646 3,706 0.66 9,3491 10,093 2,063 12,156 0 3,140 5,592 0.37 20,8882 892 10,648 11,540 0 18,566 50,193 1.67 80,2993 0 24 24 0 458 16,731 34.71 17,213

12,000 14,717 26,717 0 24,810 76,222 1.48 127,749 350

Year 3 Satellite Pit 466 949 1,415 292 1,878 3,593 1.00 7,1781 10,736 834 11,570 257 2,149 2,779 0.20 16,7552 797 14,133 14,930 4,355 27,775 41,645 0.88 88,7053 0 85 85 27 2,216 7,602 3.27 9,930

11,999 16,001 28,000 4,931 34,018 55,619 0.83 122,568 336

Year 4 Satellite Pit 922 0 922 0 0 0 0.00 9221 3,777 11 3,788 9 13 181 0.05 3,9912 7,277 14,336 21,613 11,595 18,949 28,143 0.54 80,3003 25 1,654 1,679 1,337 13,363 26,159 1.60 42,538

12,001 16,001 28,002 12,941 32,325 54,483 0.74 127,751 350

Year 5 1 12,933 0 12,933 8 5 205 0.02 13,1512 14,836 0 14,836 12,997 13,398 20,932 0.51 62,1633 234 0 234 6,067 20,125 26,012 0.98 52,438

28,003 0 28,003 19,072 33,528 47,149 0.58 127,752 350

Year 6 2 27,090 0 27,090 4,692 7,426 15,723 0.40 54,9313 911 0 911 8,867 17,172 45,871 1.70 72,821

28,001 0 28,001 13,559 32,895 61,594 0.83 127,752 350

Year 7 2 26,766 0 26,766 1,701 3,370 6,336 0.20 38,1733 1,235 0 1,235 2,850 3,147 20,243 2.80 27,4754 0 0 0 49 1,616 28,518 17.13 30,1835 0 0 0 414 881 30,628 23.65 31,923

28,001 0 28,001 5,014 9,014 85,725 2.04 127,754 350

Year 8 2 27,367 0 27,367 0 0 782 0.03 28,1494 180 0 180 4,154 16,458 32,148 1.55 52,9405 453 0 453 6,848 11,814 27,547 1.44 46,662

28,000 0 28,000 11,002 28,272 60,477 0.90 127,751 350

Year 9 2 9,830 0 9,830 0 0 188 0.02 10,0183 17,538 0 17,538 2,247 2,662 35,030 1.56 57,4774 70 0 70 551 2,134 14,674 5.33 17,4295 561 0 561 13,870 14,486 13,904 0.48 42,821

27,999 0 27,999 16,668 19,282 63,796 1.00 127,745 350

Year 10 3 27,456 0 27,456 551 949 21,687 0.75 50,6435 544 0 544 19,429 27,595 29,539 0.62 77,107

28,000 0 28,000 19,980 28,544 51,226 0.67 127,750 350

Year 11 3 26,624 0 26,624 0 0 8,888 0.33 35,5124 1,174 0 1,174 1,536 3,847 20,630 3.15 27,1875 203 0 203 8,051 19,788 37,011 1.32 65,053

28,001 0 28,001 9,587 23,635 66,529 1.09 127,752 350

Year 12 3 19,173 0 19,173 0 0 5,735 0.30 24,9084 6,773 0 6,773 70 1,003 14,415 1.84 22,2615 2,056 0 2,056 8,094 17,473 52,677 1.91 80,300

28,002 0 28,002 8,164 18,476 72,827 1.33 127,469 349

Page 66: Pit Design Scott Zimmer

Table 4-13

Minimum Mining Rate Calculations(mill feed @ 28,000 ktpy unless otherwise indicated)

PrimaryBenches Sulfide Crush Leach ROM Leach Total Material Smoothed Total Material

Configuration From To No. ktonnes Years ktonnes ktpy ktpd ktonnes ktpy ktpd ktonnes ktpy ktpd Bench/yr ktonnes ktpy ktpd Bench/yr

Satellite Pit - ore & Internal waste 3695 3590 8 2,561 3,897 7,690 26,310Pushback 1 - ore & internal waste 3845 3500 24 44,708 27,589 34,275 152,608Pushback 2 - stripping 3965 3680 20 11,322 65,116 76,654 343,816

52 58,591 2.09 96,602 46,165 126 118,619 56,687 155 522,734 249,809 684 24.9

Satellite Pit - ore & Internal waste 3695 3590 8 2,561 3,897 7,690 26,310Pushback 1 - ore & internal waste 3845 3500 24 44,708 27,589 34,275 152,608Pushback 2 - stripping 3965 3680 20 11,322 65,116 76,654 343,816

52 58,591 4.56 96,602 21,173 58 118,619 25,998 71 522,734 114,569 314 11.4 522,734 114,569 314 11.4-6,838 Year 1 mining (includes 16,546 ktonnes Crush Leach as mill feed)

-12,000 Year 2 mining (includes 14,717 ktonnes Crush Leach as mill feed)-11,999 Year 3 mining (includes 16,001 ktonnes Crush Leach as mill feed)-12,001 Year 4 mining (includes 16,001 ktonnes Crush Leach as mill feed)15,753 / 28,000 ktpy = 0.56 years+Yr. 1+Yr. 2+Yr. 3+Yr. 4 = 4.56 years

Pushback 2 - ore & Internal waste 3665 3470 14 103,719 12,678 19,662 173,665Pushback 3 - stripping 3950 3650 21 5,758 21,651 57,375 254,614

35 109,477 3.91 34,329 8,780 24 77,037 19,703 54 428,279 109,537 300 9.0 428,279 109,537 300 9.0

Pushback 3 - ore & Internal waste 3635 3470 12 87,435 2,056 2,719 153,858Pushback 4 - stripping 3875 3545 23 4,369 6,362 24,248 142,947

35 91,804 3.28 8,418 2,567 7 26,967 8,225 23 296,805 90,525 248 10.7730,198 120,756 331 11.9

Pushback 4 - ore & Internal waste 3530 3350 13 68,562 0 0 8,940Pushback 5 - stripping 3950 3605 24 8,947 64,218 107,303 424,453

37 77,509 2.77 64,218 23,199 64 107,303 38,763 106 433,393 156,563 429 13.4

Pushback 5 - ore & Internal waste 3590 3320 19 180,970 6,270 10,863 293,181Pushback 6 - stripping 3980 3590 27 27,882 51,538 89,998 544,696

46 208,852 7.46 57,808 7,750 21 100,861 13,522 37 837,877 112,331 308 6.2 837,877 112,331 308 6.2

205 546,233 21.98 261,375 11,892 33 430,787 19,600 54 2,519,088 114,617 314 9.3 2,519,088 114,617 314 9.3

Page 67: Pit Design Scott Zimmer

Table 4-14

Alternative Minimum Mining Rate Calculations

Assumptions:

1) The current Pushback 2 is reduced by 1/3 (analogous to reducing width from 300 m to 200 m).2) The deferred 1/3 of Pushback 2 is added to Pushback 3.3) 1/3 of the combined (deferred Pushback 2 plus the original Pushback 3) is deferred to Pushback 54) Pushback 4 is unchanged.5) 1/3 of the combined (deferred Pushback 3 plus the original Pushback 5) is deferred to Pushback 6

From 2 From 3 From 5Orig PB 2R to 3 Orig PB 3 PB 3R to 5 Orig PB 5 PB 5R to 6 Orig PB 6 PB 6RPB 2 @ 2/3 (2D) PB 3 + 2D @ 2/3 (3D) PB 5 + 3D @ 2/3 (5D) PB 6 + 5D @ 2/3

Strip Ore 11,322 7,548 3,774 5,758 9,532 6,355 3,177 8,947 12,124 8,083 4,041 27,882 31,923 21,282 TotMtl 343,816 229,211 114,605 254,614 369,219 246,146 123,073 424,453 547,526 365,017 182,509 544,696 727,205 484,803Ore & IW Ore 103,719 69,146 34,573 87,435 122,008 81,339 40,669 180,970 221,639 147,760 73,880 138,656 212,536 141,691 TotMtl 173,665 115,777 57,888 153,858 211,746 141,164 70,582 293,181 363,763 242,509 121,254 391,571 512,825 341,884

Unsmoothed Minimum Total Material Mining Rate Smoothed Minimum Total Material Mining RatePrimary Total Required Minimum Primary Total Required MinimumSulfide Material TotMtl Mining Rate Sulfide Material TotMtl Mining Rate

Configuration ktonnes Years ktonnes ktpy ktpd ktonnes Years ktonnes ktpy ktpd

Satellite Pit - ore & IW 2,561 26,310PB 1 - ore & IW 44,708 152,608PB 2R - stripping 7,548 229,211

54,817 4.43 408,129 92,174 253 54,817 4.43 408,129 92,174 253Year 1 = (6,838) (mill feed supplemented with 16,546 ktonnes Crush Leach)Year 2 = (12,000) (mill feed supplemented with 14,717 ktonnes Crush Leach)Year 3 = (11,999) (mill feed supplemented with 16,001 ktonnes Crush Leach)Year 4 = (12,001) (mill feed supplemented with 16,001 ktonnes Crush Leach)

11,979 /28,000 = 0.43 year

Satellite Pit - ore & IW 2,561 26,310PB 1 - ore & IW 44,708 152,608PB 2R - stripping 7,548 229,211

54,817 3.28 408,129 124,242 340 54,817 3.28 408,129 124,242 340Year 1 = (6,838) (mill feed supplemented with 16,546 ktonnes Crush Leach)Year 2 = (12,000) (mill feed supplemented with 14,717 ktonnes Crush Leach)Year 3 = (28,000) (no Crush Leach required)

7,979 /28,000 = 0.28 year

PB 2R - ore & IW 69,146 115,777PB 3R - stripping 6,355 246,146

75,501 2.70 361,923 134,221 368 75,501 2.70 361,923 134,221 368

PB 3R - ore & IW 81,339 141,164PB 4 - stripping 4,369 142,947

85,708 3.06 284,111 92,816 254162,353 5.80 738,598 127,381 349

PB 4 - ore & IW 68,562 89,470PB 5R - stripping 8,083 365,017

76,645 2.74 454,487 166,033 455

PB 5R - ore & IW 147,760 242,509PB 6R - stripping 21,282 484,803

169,042 6.04 727,312 120,471 330 169,042 6.04 727,312 120,471 330

461,713 17.82 2,235,962 125,496 344 461,713 17.82 2,235,962 125,496 344

Page 68: Pit Design Scott Zimmer

Figure 4-8Production Rate Comparison

0

25

50

75

100

125

150

175

200

225

250

275

300

325

350

375

400Y

ear 1

Yea

r 2

Yea

r 3

Yea

r 4

Yea

r 5

Yea

r 6

Yea

r 7

Yea

r 8

Yea

r 9

Yea

r 10

Yea

r 11

Yea

r 12

Year

kton

nes

per D

ay

Mill Feed (Primary Sulfide)TotMtl Current Mine PlanTotMtl Revised PB Design

Page 69: Pit Design Scott Zimmer

26

4.7 Stripped Ore Inventory Example In the process of conducting a due diligence review it was noted that the waste mining rate in the mine plan summary varied radically from year to year, as shown in Table 4-15. A preliminary review of the detailed production schedule (Table 4-16) indicated that ore at the bottom of some of the pushbacks was being deferred until substantially later in the mine life, which required accelerated striping in the earlier years. Initial discussions were unsuccessful in demonstrating this point, so the following exercise was developed to show that lower total material mining rates in the earlier years were both feasible and prudent. The pushback reserves (Table 4-17) were subdivided into an upper stripping portion (Strip) and a lower continuous ore plus internal waste portion (Ore+IW). The elevation selected for each pushback is intuitively obvious and, for this scenario, it is in the immediate vicinity of a drop below a 1:1 waste to ore ratio. Once mining exposes the top bench of the Ore+IW increment, a continuous ore supply is attained. Using the subdivided pushback reserves in Table 4-17 and the production schedule in Table 4-16, an exposed ore inventory was generated on an annual basis and is shown in Table 4-18. Once the first continuous ore bench for a pushback is reached in the production schedule, the exposed ore is added to the inventory, with scheduled tonnages subtracted in subsequent years. The resulting annual inventory showed that the minimum exposed ore inventories appeared to be excessive (14.1 months in 2004, 17.3 months in 2009, 21 months in 2014, and 46.1 months in 2019). While minimum stripped ore inventories in excess of one year are not necessarily a bad thing, all cushions have a cost in terms of stripping. For this scale of operations, a minimum inventory of 6-12 months would be prudent. The excessive inventories are the result of:

• Pushback 5 ore carried in inventory for nine years after a continuous Pushback 6 ore supply is attained.

• Pushback 6 ore carried in inventory for 14 years after a continuous Pushback 7 ore supply is attained..

• Pushback 7 ore carried in inventory for ten years after a continuous Pushback 8 ore supply is attained..

• Pushback 8 ore carried in inventory for six years after a continuous Pushback 9 ore supply is attained..

To quantify the potential for reduced stripping, total material mining rates were calculated in Table 4-19 for each mining configuration (increment). The calculation shows both the minimum mining rates (no ore cushion) and smoothed mining rates, which were derived by advance stripping. These total material mining rates were used to generate two additional production schedules (unsmoothed and smoothed total material mining rates). For a feasibility study, the smoothed rates would

Page 70: Pit Design Scott Zimmer

27

normally be utilized. In a production scenario, it is prudent to use the minimum rates (unsmoothed) to develop a basis for equipment requirements. Smoothing of truck requirements may then be accomplished by advance stripping without inadvertently reducing stripping below the minimum required for a continuous ore supply. Tables 4-20 and 4-21 are annual summaries of the unsmoothed and smoothed schedules, which should be compared to Table 4-15. The detailed schedules are contained in the Tables 4-22 and 4-23. Exposed ore inventories for the unsmoothed and smoothed schedules are shown in Tables 4-24 and 4-25, respectively. The minimum inventories for the unsmoothed schedule are 4.3 months in 2005, 4.5 months in 2010, 6.0 months in 2015, and 3.3 months in 2022. The minimum inventories for the smoothed schedule are 15.4 months in 2004, 19.2 months in 2009, 12.6 months in 2015, and 44.5 months in 2019. As demonstrated in Table 4-25, smoothing by advance stripping automatically increases the minimum exposed ore inventories. The three schedules are compared in terms of total annual material movement in Table 4-26. Assuming a constant mining cost of $0.70 per ton, the present value of the apparent savings utilizing the unsmoothed schedule is in the vicinity of $20 million. The smoothed schedule yields a savings present value of around $9 million. Exposed ore inventories for the three plans are compared graphically in Figure 4-9. Annual summaries of the three production schedules by pushbacks mined are shown in Tables 4-27, 4-28, and 4-29. In the original schedule (Table 4-27), there are ten years in which three or more pushbacks are mined. In the smoothed schedule, there are 6 years in which three pushbacks are mined. In both these schedules, the system becomes essentially “ore bound”, and the next pushback must be started to maintain the specified mining rate. This becomes a significant logistical problem for an equipment fleet consisting of tracked drills and cable shovels. Only two main working areas are mined concurrently throughout the unsmoothed schedule. This exercise demonstrates the value of defining the minimum total material mining rate required to deliver a specified ore tonnage. If the resulting schedule is then used as a basis for equipment optimization, there is a reasonable assurance that the result will be an efficient and cost-effective mine plan with a reasonable contingency.

Page 71: Pit Design Scott Zimmer

Table 4-15

Original Mine PlanAnnual SummaryOre Waste W:O TotMtl

Year ktonnes %TCu ktonnes Ratio ktonnes

2001 26,009 0.516 27,173 1.04 53,1822002 31,707 0.499 41,602 1.31 73,3092003 33,729 0.518 40,423 1.20 74,1522004 33,819 0.526 30,820 0.91 64,6392005 33,724 0.516 41,985 1.24 75,7092006 33,727 0.456 57,461 1.70 91,1882007 33,728 0.411 46,055 1.37 79,7832008 33,818 0.401 35,430 1.05 69,2482009 33,727 0.437 30,337 0.90 64,0642010 33,724 0.455 40,948 1.21 74,6722011 33,726 0.428 66,232 1.96 99,9582012 33,816 0.470 51,617 1.53 85,4332013 33,725 0.485 40,927 1.21 74,6522014 33,726 0.488 40,503 1.20 74,2292015 33,726 0.465 46,626 1.38 80,3522016 33,817 0.421 33,118 0.98 66,9352017 33,726 0.396 31,982 0.95 65,7082018 33,726 0.366 31,705 0.94 65,4312019 33,725 0.339 25,733 0.76 59,4582020 33,820 0.415 7,835 0.23 41,6552021 33,726 0.403 2,213 0.07 35,9392022 33,726 0.397 2,177 0.06 35,9032023 33,726 0.457 2,498 0.07 36,2242024 33,818 0.461 2,614 0.08 36,4322025 33,725 0.487 1,152 0.03 34,8772026 33,727 0.463 2,221 0.07 35,9482027 27,108 0.468 1,198 0.04 28,306

894,801 0.449 782,585 0.87 1,677,386

"Anomalous" waste mining ratesthat prompted a review of the miningschedule.

Page 72: Pit Design Scott Zimmer

Table 4-16

Original Mine Plan

Push- Ore Waste W:O TotMtlYear back Bench ktonnes %TCu ktonnes Ratio ktonnes

2001 4 2295 152 0.505 0 0.00 1524 2280 4,562 0.508 0 0.00 4,5624 2265 6,308 0.525 78 0.01 6,3864 2250 6,790 0.519 13 0.00 6,8034 2235 6,489 0.513 0 0.00 6,4894 2220 1,063 0.519 0 0.00 1,063

25,364 0.517 91 0.00 25,455

5 2520 0 0.000 358 0.00 3585 2505 2 0.506 7,526 ###### 7,5285 2490 177 0.491 10,877 61.45 11,0545 2475 466 0.506 8,321 17.86 8,787

645 0.502 27,082 41.99 27,727

2001 Total 26,009 0.516 27,173 1.04 53,182

2002 4 2220 7,741 0.521 0 0.00 7,7414 2205 6,617 0.518 40 0.01 6,657

14,358 0.520 40 0.00 14,398

5 2475 0 0.000 730 0.00 7305 2460 1,060 0.515 9,753 9.20 10,8135 2445 1,670 0.413 9,071 5.43 10,7415 2430 2,658 0.445 6,993 2.63 9,6515 2415 3,049 0.470 6,166 2.02 9,2155 2400 3,768 0.481 5,074 1.35 8,8425 2385 4,063 0.524 3,421 0.84 7,4845 2370 1,081 0.528 354 0.33 1,435

17,349 0.482 41,562 2.40 58,911

2002 Total 31,707 0.499 41,602 1.31 73,309

2003 5 2385 0 0.000 1,000 0.00 1,0005 2370 3,369 0.528 3,470 1.03 6,8395 2355 4,941 0.530 2,847 0.58 7,7885 2340 5,314 0.528 2,275 0.43 7,5895 2325 6,757 0.516 725 0.11 7,4825 2310 7,300 0.509 170 0.02 7,4705 2295 6,046 0.508 0 0.00 6,046

33,727 0.518 10,487 0.31 44,214

6 2670 0 0.000 11 0.00 116 2655 0 0.000 180 0.00 1806 2640 0 0.000 784 0.00 7846 2625 0 0.000 925 0.00 9256 2610 0 0.000 1,178 0.00 1,1786 2595 0 0.000 1,652 0.00 1,6526 2580 0 0.000 2,649 0.00 2,6496 2565 0 0.000 3,098 0.00 3,0986 2550 0 0.000 3,316 0.00 3,3166 2535 2 0.453 4,721 ###### 4,7236 2520 0 0.000 5,129 0.00 5,1296 2505 0 0.000 5,613 0.00 5,6136 2490 0 0.000 680 0.00 680

2 0.453 29,936 ###### 29,938

2003 Total 33,729 0.518 40,423 1.20 74,152

Page 73: Pit Design Scott Zimmer

Table 4-16 (Continued)

Original Mine Plan

Push- Ore Waste W:O TotMtlYear back Bench ktonnes %TCu ktonnes Ratio ktonnes

2004 5 2295 1,834 0.508 0 0.00 1,8345 2280 7,506 0.518 0 0.00 7,5065 2265 6,914 0.529 0 0.00 6,9145 2250 6,338 0.544 93 0.01 6,4315 2235 6,010 0.531 41 0.01 6,0515 2220 3,650 0.539 40 0.01 3,690

32,252 0.529 174 0.01 32,426

6 2490 0 0.000 4,991 0.00 4,9916 2475 0 0.000 6,030 0.00 6,0306 2460 36 0.438 6,717 186.58 6,7536 2445 35 0.381 8,085 231.00 8,1206 2430 1,496 0.459 4,823 3.22 6,319

1,567 0.457 30,646 19.56 32,213

2004 Total 33,819 0.526 30,820 0.91 64,639

2005 5 2220 7,161 0.539 40 0.01 7,2015 2205 4,911 0.540 0 0.00 4,9115 2190 9,772 0.526 4 0.00 9,776

21,844 0.533 44 0.00 21,888

6 2430 0 0.000 6,218 0.00 6,2186 2415 2,440 0.488 10,033 4.11 12,4736 2400 3,683 0.476 8,851 2.40 12,5346 2385 4,786 0.490 7,838 1.64 12,6246 2370 971 0.466 0 0.00 971

11,880 0.483 32,940 2.77 44,820

7 2730 0 0.000 35 0.00 357 2715 0 0.000 240 0.00 2407 2700 0 0.000 1,166 0.00 1,1667 2685 0 0.000 1,565 0.00 1,5657 2670 0 0.000 2,938 0.00 2,9387 2655 0 0.000 3,057 0.00 3,057

0 0.000 9,001 0.00 9,001

2005 Total 33,724 0.516 41,985 1.24 75,709

2006 6 2370 5,342 0.466 3,742 0.70 9,0846 2355 6,557 0.475 3,647 0.56 10,2046 2340 7,675 0.458 4,176 0.54 11,8516 2325 8,230 0.450 4,127 0.50 12,3576 2310 5,923 0.430 3,388 0.57 9,311

33,727 0.456 19,080 0.57 52,807

7 2655 0 0.000 280 0.00 2807 2640 0 0.000 3,411 0.00 3,4117 2625 0 0.000 3,955 0.00 3,9557 2610 0 0.000 5,085 0.00 5,0857 2595 0 0.000 5,319 0.00 5,3197 2580 0 0.000 6,273 0.00 6,2737 2565 0 0.000 7,121 0.00 7,1217 2550 0 0.000 6,937 0.00 6,937

0 0.000 38,381 0.00 38,381

2006 Total 33,727 0.456 57,461 1.70 91,188

Page 74: Pit Design Scott Zimmer

Table 4-16 (Continued)

Original Mine Plan

Push- Ore Waste W:O TotMtlYear back Bench ktonnes %TCu ktonnes Ratio ktonnes

2007 6 2310 3,378 0.430 0 0.00 3,3786 2295 10,008 0.419 2,244 0.22 12,2526 2280 9,729 0.409 2,161 0.22 11,8906 2265 10,391 0.400 1,814 0.17 12,2056 2250 123 0.390 0 0.00 123

33,629 0.411 6,219 0.18 39,848

7 2550 0 0.000 1,460 0.00 1,4607 2535 0 0.000 8,487 0.00 8,4877 2520 0 0.000 9,349 0.00 9,3497 2505 75 0.325 9,544 127.25 9,6197 2490 24 0.500 9,772 407.17 9,7967 2475 0 0.000 1,224 0.00 1,224

99 0.367 39,836 402.38 39,935

2007 Total 33,728 0.411 46,055 1.37 79,783

2008 6 2250 10,931 0.390 1,376 0.13 12,3076 2235 11,241 0.401 1,227 0.11 12,4686 2220 10,549 0.415 857 0.08 11,4066 2205 655 0.436 0 0.00 655

33,376 0.403 3,460 0.10 36,836

7 2475 0 0.000 8,450 0.00 8,4507 2460 6 0.150 9,477 ###### 9,4837 2445 102 0.259 9,202 90.22 9,3047 2430 334 0.324 4,841 14.49 5,175

442 0.306 31,970 72.33 32,412

2008 Total 33,818 0.401 35,430 1.05 69,248

2009 5 2175 3,375 0.533 0 0.00 3,375

6 2205 9,777 0.436 628 0.06 10,4056 2190 9,660 0.431 464 0.05 10,1246 2175 8,297 0.439 515 0.06 8,812

27,734 0.435 1,607 0.06 29,341

7 2430 0 0.000 3,886 0.00 3,8867 2415 412 0.335 8,421 20.44 8,8337 2400 944 0.335 7,743 8.20 8,6877 2385 1,262 0.343 7,215 5.72 8,4777 2370 0 0.000 1,465 0.00 1,465

2,618 0.339 28,730 10.97 31,348

2009 Total 33,727 0.437 30,337 0.90 64,064

Page 75: Pit Design Scott Zimmer

Table 4-16 (Continued)

Original Mine Plan

Push- Ore Waste W:O TotMtlYear back Bench ktonnes %TCu ktonnes Ratio ktonnes

2010 5 2175 4,735 0.533 0 0.00 4,7355 2160 4,895 0.513 0 0.00 4,895

9,630 0.522 0 0.00 9,630

6 2160 8,134 0.456 232 0.03 8,366

7 2370 2,118 0.379 7,878 3.72 9,9967 2355 3,200 0.408 8,255 2.58 11,4557 2340 4,564 0.414 6,954 1.52 11,5187 2325 6,078 0.428 5,430 0.89 11,508

15,960 0.413 28,517 1.79 44,477

8 2730 0 0.000 1,459 0.00 1,4598 2715 0 0.000 6,861 0.00 6,8618 2700 0 0.000 3,879 0.00 3,879

0 0.000 12,199 0.00 12,199

2010 Total 33,724 0.455 40,948 1.21 74,672

2011 5 2160 941 0.513 0 0.00 941

7 2310 8,603 0.408 2,425 0.28 11,0287 2295 10,048 0.419 1,322 0.13 11,3707 2280 10,650 0.438 712 0.07 11,3627 2265 3,484 0.458 0 0.00 3,484

32,785 0.426 4,459 0.14 37,244

8 2400 0 0.000 4,419 0.00 4,4198 2385 0 0.000 6,313 0.00 6,3138 2370 0 0.000 9,136 0.00 9,1368 2355 0 0.000 10,382 0.00 10,3828 2340 0 0.000 12,017 0.00 12,0178 2325 0 0.000 12,489 0.00 12,4898 2310 0 0.000 7,017 0.00 7,017

0 0.000 61,773 0.00 61,773

2011 Total 33,726 0.428 66,232 1.96 99,958

2012 7 2265 7,382 0.458 366 0.05 7,7487 2250 10,879 0.459 14 0.00 10,8937 2235 10,427 0.483 12 0.00 10,4397 2220 5,013 0.490 0 0.00 5,013

33,701 0.470 392 0.01 34,093

8 2610 20 0.413 5,660 283.00 5,6808 2595 53 0.300 12,880 243.02 12,9338 2580 2 0.300 12,983 ###### 12,9858 2565 40 0.250 13,347 333.68 13,3878 2550 0 0.000 6,355 0.00 6,355

115 0.302 51,225 445.43 51,340

2012 Total 33,816 0.470 51,617 1.53 85,433

Page 76: Pit Design Scott Zimmer

Table 4-16 (Continued)

Original Mine Plan

Push- Ore Waste W:O TotMtlYear back Bench ktonnes %TCu ktonnes Ratio ktonnes

2013 7 2220 5,529 0.490 89 0.02 5,6187 2205 9,721 0.474 170 0.02 9,8917 2190 9,285 0.486 181 0.02 9,4667 2175 7,306 0.474 156 0.02 7,462

31,841 0.480 596 0.02 32,437

8 2550 229 0.296 6,867 29.99 7,0968 2535 163 0.304 13,579 83.31 13,7428 2520 408 0.466 13,363 32.75 13,7718 2505 1,084 0.688 6,522 6.02 7,606

1,884 0.559 40,331 21.41 42,215

2013 Total 33,725 0.485 40,927 1.21 74,652

2014 6 2145 6,248 0.488 102 0.02 6,350

7 2175 1,734 0.474 0 0.00 1,7347 2160 8,874 0.468 33 0.00 8,9077 2145 8,494 0.465 0 0.00 8,494

19,102 0.467 33 0.00 19,135

8 2505 0 0.000 6,449 0.00 6,4498 2490 2,189 0.526 11,668 5.33 13,8578 2475 2,939 0.579 11,141 3.79 14,0808 2460 3,248 0.508 9,008 2.77 12,2568 2445 0 0.000 2,102 0.00 2,102

8,376 0.537 40,368 4.82 48,744

2014 Total 33,726 0.488 40,503 1.20 74,229

2015 5 2145 3,776 0.536 0 0.00 3,776

6 2145 1,432 0.481 0 0.00 1,4326 2130 8,820 0.494 72 0.01 8,892

10,252 0.492 72 0.01 10,324

7 2130 5,214 0.486 16 0.00 5,230

8 2445 5,213 0.438 4,941 0.95 10,1548 2430 6,756 0.415 5,441 0.81 12,1978 2415 2,515 0.401 2,895 1.15 5,410

14,484 0.421 13,277 0.92 27,761

9 2730 0 0.000 69 0.00 699 2715 0 0.000 1,150 0.00 1,1509 2700 0 0.000 1,461 0.00 1,4619 2685 0 0.000 1,462 0.00 1,4629 2670 0 0.000 1,596 0.00 1,5969 2655 0 0.000 1,663 0.00 1,6639 2640 0 0.000 1,738 0.00 1,7389 2625 0 0.000 1,898 0.00 1,8989 2610 0 0.000 2,030 0.00 2,0309 2595 0 0.000 2,200 0.00 2,2009 2580 0 0.000 2,495 0.00 2,4959 2565 0 0.000 4,552 0.00 4,5529 2550 0 0.000 4,755 0.00 4,7559 2535 0 0.000 5,156 0.00 5,1569 2520 0 0.000 1,036 0.00 1,036

0 0.000 33,261 0.00 33,261

2015 Total 33,726 0.465 46,626 1.38 80,352

Page 77: Pit Design Scott Zimmer

Table 4-16 (Continued)

Original Mine Plan

Push- Ore Waste W:O TotMtlYear back Bench ktonnes %TCu ktonnes Ratio ktonnes

2016 7 2175 3,024 0.486 0 0.00 3,024

8 2415 5,401 0.401 1,128 0.21 6,5298 2400 8,686 0.403 3,023 0.35 11,7098 2385 8,626 0.423 2,788 0.32 11,4148 2370 7,951 0.430 1,788 0.22 9,739

30,664 0.415 8,727 0.28 39,391

9 2520 0 0.000 4,800 0.00 4,8009 2505 49 0.325 6,589 134.47 6,6389 2490 40 0.263 6,845 171.13 6,8859 2475 40 0.263 6,157 153.93 6,197

129 0.286 24,391 189.08 24,520

2016 Total 33,817 0.421 33,118 0.98 66,935

2017 8 2370 1,428 0.430 0 0.00 1,4288 2355 9,930 0.421 1,084 0.11 11,0148 2340 10,252 0.394 677 0.07 10,9298 2325 10,171 0.388 375 0.04 10,5468 2310 952 0.380 504 0.53 1,456

32,733 0.401 2,640 0.08 35,373

9 2475 0 0.000 892 0.00 8929 2460 210 0.168 7,088 33.75 7,2989 2445 310 0.200 7,187 23.18 7,4979 2430 473 0.230 7,188 15.20 7,6619 2415 0 0.000 6,987 0.00 6,987

993 0.207 29,342 29.55 30,335

2017 Total 33,726 0.396 31,982 0.95 65,708

2018 8 2310 8,982 0.380 0 0.00 8,9828 2295 9,574 0.370 592 0.06 10,1668 2280 9,351 0.369 523 0.06 9,8748 2265 223 0.365 0 0.00 223

28,130 0.373 1,115 0.04 29,245

9 2415 385 0.295 503 1.31 8889 2400 618 0.333 7,466 12.08 8,0849 2385 849 0.360 7,410 8.73 8,2599 2370 1,561 0.306 6,877 4.41 8,4389 2355 2,183 0.345 6,447 2.95 8,6309 2340 0 0.000 1,887 0.00 1,887

5,596 0.332 30,590 5.47 36,186

2018 Total 33,726 0.366 31,705 0.94 65,431

2019 8 2265 8,653 0.365 642 0.07 9,2958 2250 6,809 0.365 775 0.11 7,584

15,462 0.365 1,417 0.09 16,879

9 2340 2,911 0.296 4,005 1.38 6,9169 2325 3,272 0.304 5,645 1.73 8,9179 2310 3,646 0.314 5,459 1.50 9,1059 2295 3,883 0.322 4,997 1.29 8,8809 2280 4,551 0.337 4,210 0.93 8,761

18,263 0.317 24,316 1.33 42,579

2019 Total 33,725 0.339 25,733 0.76 59,458

Page 78: Pit Design Scott Zimmer

Table 4-16 (Continued)

Original Mine Plan

Push- Ore Waste W:O TotMtlYear back Bench ktonnes %TCu ktonnes Ratio ktonnes

2020 8 2235 1,611 0.365 0 0.00 1,6118 2220 8,085 0.350 780 0.10 8,865

9,696 0.352 780 0.08 10,476

9 2265 5,178 0.444 3,426 0.66 8,6049 2250 6,336 0.441 2,106 0.33 8,4429 2235 7,288 0.436 995 0.14 8,2839 2220 5,322 0.440 528 0.10 5,850

24,124 0.440 7,055 0.29 31,179

2020 Total 33,820 0.415 7,835 0.23 41,655

2021 8 2220 7,366 0.339 1,068 0.14 8,4348 2205 7,299 0.331 783 0.11 8,0828 2190 1,371 0.331 0 0.00 1,371

16,036 0.335 1,851 0.12 17,887

9 2220 2,326 0.440 0 0.00 2,3269 2205 7,612 0.464 362 0.05 7,9749 2190 7,752 0.475 0 0.00 7,752

17,690 0.466 362 0.02 18,052

2021 Total 33,726 0.403 2,213 0.07 35,939

2022 8 2190 5,734 0.331 857 0.15 6,5918 2175 7,174 0.323 510 0.07 7,6848 2160 6,040 0.319 622 0.10 6,662

18,948 0.324 1,989 0.10 20,937

9 2175 7,425 0.491 141 0.02 7,5669 2160 7,353 0.491 47 0.01 7,400

14,778 0.491 188 0.01 14,966

2022 Total 33,726 0.397 2,177 0.06 35,903

2023 8 2160 742 0.319 0 0.00 7428 2145 6,138 0.319 848 0.14 6,9868 2130 5,054 0.335 1,650 0.33 6,7048 2115 298 0.345 0 0.00 298

12,232 0.326 2,498 0.20 14,730

9 2145 7,293 0.515 0 0.00 7,2939 2130 7,110 0.515 0 0.00 7,1109 2115 7,091 0.564 0 0.00 7,091

21,494 0.531 0 0.00 21,494

2023 Total 33,726 0.457 2,498 0.07 36,224

2024 6 2115 6,302 0.479 54 0.01 6,356

7 2115 7,961 0.466 41 0.01 8,0027 2100 3,191 0.470 0 0.00 3,191

11,152 0.467 41 0.00 11,193

8 2115 4,159 0.345 1,331 0.32 5,4908 2100 5,170 0.374 1,181 0.23 6,351

9,329 0.361 2,512 0.27 11,841

9 2100 7,035 0.569 7 0.00 7,042

2024 Total 33,818 0.461 2,614 0.08 36,432

Page 79: Pit Design Scott Zimmer

Table 4-16 (Continued)

Original Mine Plan

Push- Ore Waste W:O TotMtlYear back Bench ktonnes %TCu ktonnes Ratio ktonnes

2025 6 2100 3,197 0.458 31 0.01 3,228

7 2100 4,019 0.470 160 0.04 4,1797 2085 7,949 0.453 238 0.03 8,187

11,968 0.458 398 0.03 12,366

8 2085 4,963 0.369 642 0.13 5,605

9 2085 6,968 0.569 38 0.01 7,0069 2070 6,629 0.554 43 0.01 6,672

13,597 0.561 81 0.01 13,678

2025 Total 33,725 0.487 1,152 0.03 34,877

2026 7 2070 4,143 0.405 114 0.03 4,257

8 2070 5,668 0.429 947 0.17 6,6158 2055 6,922 0.398 553 0.08 7,4758 2040 3,835 0.394 345 0.09 4,180

16,425 0.407 1,845 0.11 18,270

9 2070 186 0.554 0 0.00 1869 2055 6,743 0.554 87 0.01 6,8309 2040 6,230 0.545 175 0.03 6,405

13,159 0.550 262 0.02 13,421

2026 Total 33,727 0.463 2,221 0.07 35,948

2027 8 2040 1,387 0.394 0 0.00 1,3878 2025 3,648 0.378 330 0.09 3,978

5,035 0.382 330 0.07 5,365

9 2025 5,763 0.533 205 0.04 5,9689 2010 7,550 0.483 350 0.05 7,9009 1995 5,580 0.468 233 0.04 5,8139 1980 3,180 0.455 80 0.03 3,260

22,073 0.488 868 0.04 22,941

2027 Total 27,108 0.468 1,198 0.04 28,306

Page 80: Pit Design Scott Zimmer

Table 4-17

Pushback Reserves

Push Mill Feed Waste W:O TotMtl Push Mill Feed Waste W:O TotMtlBack Bench ktonnes %TCu ktonnes Ratio ktonnes Back Bench ktonnes %TCu ktonnes Ratio ktonnes

4 2295 152 0.505 0 0.00 152 5 2520 0 0.000 358 0.00 3582280 4,562 0.508 0 0.00 4,562 2505 1 0.511 7,257 ###### 7,2582265 6,308 0.525 77 0.01 6,385 2490 177 0.491 10,877 61.45 11,0542250 6,790 0.519 14 0.00 6,804 2475 466 0.506 9,051 19.42 9,5172235 6,490 0.513 0 0.00 6,490 2460 1,060 0.515 9,753 9.20 10,8132220 8,804 0.521 0 0.00 8,804 2445 1,670 0.413 9,071 5.43 10,7412205 6,617 0.518 40 0.01 6,657 2430 2,658 0.445 6,993 2.63 9,651

2415 3,049 0.470 6,167 2.02 9,216Total 39,723 0.518 131 0.00 39,854 2400 3,768 0.481 5,074 1.35 8,842

2385 4,063 0.524 4,421 1.09 8,484Strip 16,912 0.480 69,022 4.08 85,934

2370 4,450 0.528 3,824 0.86 8,2742355 4,941 0.530 2,847 0.58 7,7882340 5,314 0.528 2,275 0.43 7,5892325 6,757 0.516 726 0.11 7,4832310 7,300 0.509 170 0.02 7,4702295 7,880 0.508 0 0.00 7,8802280 7,506 0.518 0 0.00 7,5062265 6,914 0.529 0 0.00 6,9142250 6,338 0.544 93 0.01 6,4312235 6,010 0.656 41 0.01 6,0512220 10,812 0.539 80 0.01 10,8922205 4,911 0.540 0 0.00 4,9112190 9,772 0.526 3 0.00 9,7752175 8,111 0.533 0 0.00 8,1112160 5,836 0.513 0 0.00 5,8362145 3,776 0.536 0 0.00 3,776

Ore+IW 106,628 0.533 10,059 0.09 116,687

Total 123,540 0.526 79,081 0.64 202,621

Page 81: Pit Design Scott Zimmer

Table 4-17 (Continued)

Pushback Reserves

Push Mill Feed Waste W:O TotMtl Push Mill Feed Waste W:O TotMtlBack Bench ktonnes %TCu ktonnes Ratio ktonnes Back Bench ktonnes %TCu ktonnes Ratio ktonnes

6 2670 0 0.000 11 0.00 11 7 2730 0 0.000 35 0.00 352655 0 0.000 180 0.00 180 2715 0 0.000 240 0.00 2402640 0 0.000 784 0.00 784 2700 0 0.000 1,166 0.00 1,1662625 0 0.000 925 0.00 925 2685 0 0.000 1,565 0.00 1,5652610 0 0.000 1,178 0.00 1,178 2670 0 0.000 2,938 0.00 2,9382595 0 0.000 1,652 0.00 1,652 2655 0 0.000 3,337 0.00 3,3372580 0 0.000 2,649 0.00 2,649 2640 0 0.000 3,411 0.00 3,4112565 0 0.000 3,098 0.00 3,098 2625 0 0.000 3,955 0.00 3,9552550 0 0.000 3,316 0.00 3,316 2610 0 0.000 5,085 0.00 5,0852535 2 0.453 4,721 ###### 4,723 2595 0 0.000 5,319 0.00 5,3192520 0 0.000 5,129 0.00 5,129 2580 0 0.000 6,273 0.00 6,2732505 0 0.000 5,612 0.00 5,612 2565 0 0.000 7,121 0.00 7,1212490 0 0.000 5,671 0.00 5,671 2550 0 0.000 8,397 0.00 8,3972475 0 0.000 6,030 0.00 6,030 2535 0 0.000 8,487 0.00 8,4872460 36 0.438 6,716 186.56 6,752 2520 0 0.000 9,349 0.00 9,3492445 35 0.381 8,086 231.03 8,121 2505 75 0.325 9,544 127.25 9,6192430 1,496 0.459 11,040 7.38 12,536 2490 24 0.500 9,771 407.13 9,7952415 2,440 0.488 10,033 4.11 12,473 2475 0 0.000 9,674 0.00 9,6742400 3,683 0.476 8,851 2.40 12,534 2460 6 0.150 9,476 ###### 9,4822385 4,786 0.490 7,837 1.64 12,623 2445 102 0.259 9,202 90.22 9,304Strip 12,478 0.481 93,519 7.49 105,997 2430 334 0.324 8,727 26.13 9,061

2415 412 0.335 8,421 20.44 8,8332370 6,313 0.466 3,742 0.59 10,055 2400 944 0.335 7,744 8.20 8,6882355 6,557 0.475 3,647 0.56 10,204 2385 1,262 0.343 7,215 5.72 8,4772340 7,675 0.458 4,176 0.54 11,851 2370 2,118 0.379 9,343 4.41 11,4612325 8,230 0.450 4,127 0.50 12,357 2355 3,200 0.408 8,255 2.58 11,4552310 9,301 0.430 3,388 0.36 12,689 2340 4,564 0.414 6,954 1.52 11,5182295 10,008 0.419 2,245 0.22 12,253 Strip 13,041 0.387 171,004 13.11 184,0452280 9,729 0.409 2,161 0.22 11,8902265 10,390 0.400 1,815 0.17 12,205 2325 6,078 0.428 5,430 0.89 11,5082250 11,054 0.390 1,376 0.12 12,430 2310 8,603 0.408 2,426 0.28 11,0292235 11,241 0.401 1,228 0.11 12,469 2295 10,048 0.419 1,322 0.13 11,3702220 10,549 0.415 857 0.08 11,406 2280 10,650 0.438 712 0.07 11,3622205 10,432 0.436 627 0.06 11,059 2265 10,866 0.458 366 0.03 11,2322190 9,660 0.431 465 0.05 10,125 2250 10,879 0.459 14 0.00 10,8932175 8,297 0.439 515 0.06 8,812 2235 10,427 0.483 12 0.00 10,4392160 8,134 0.456 231 0.03 8,365 2220 10,542 0.490 88 0.01 10,6302145 7,680 0.481 102 0.01 7,782 2205 9,721 0.474 170 0.02 9,8912130 8,820 0.494 72 0.01 8,892 2190 9,285 0.486 181 0.02 9,4662115 6,302 0.479 53 0.01 6,355 2175 9,040 0.474 156 0.02 9,1962100 3,197 0.458 30 0.01 3,227 2160 8,874 0.468 33 0.00 8,907

Ore+IW 163,569 0.436 30,857 0.19 194,426 2145 8,494 0.465 0 0.00 8,4942130 8,238 0.486 16 0.00 8,254

Total 176,047 0.440 124,376 0.71 300,423 2115 7,961 0.466 42 0.01 8,0032100 7,210 0.470 160 0.02 7,3702085 7,949 0.453 238 0.03 8,1872070 4,143 0.405 114 0.03 4,257

Ore+IW 159,008 0.459 11,480 0.07 170,488

Total 172,049 0.454 182,484 1.06 354,533

Page 82: Pit Design Scott Zimmer

Table 4-17 (Continued)

Pushback Reserves

Push Mill Feed Waste W:O TotMtl Push Mill Feed Waste W:O TotMtlBack Bench ktonnes %TCu ktonnes Ratio ktonnes Back Bench ktonnes %TCu ktonnes Ratio ktonnes

8 2730 0 0.000 1,459 0.00 1,459 9 2730 0 0.000 69 0.00 692715 0 0.000 6,861 0.00 6,861 2715 0 0.000 1,150 0.00 1,1502700 0 0.000 8,298 0.00 8,298 2700 0 0.000 1,461 0.00 1,4612685 0 0.000 6,313 0.00 6,313 2685 0 0.000 1,462 0.00 1,4622670 0 0.000 9,136 0.00 9,136 2670 0 0.000 1,596 0.00 1,5962655 0 0.000 10,382 0.00 10,382 2655 0 0.000 1,663 0.00 1,6632640 0 0.000 12,017 0.00 12,017 2640 0 0.000 1,738 0.00 1,7382625 0 0.000 12,489 0.00 12,489 2625 0 0.000 1,898 0.00 1,8982610 20 0.413 12,677 633.85 12,697 2610 0 0.000 2,030 0.00 2,0302595 53 0.300 12,880 243.02 12,933 2595 0 0.000 2,200 0.00 2,2002580 2 0.300 12,983 ###### 12,985 2580 0 0.000 2,494 0.00 2,4942565 40 0.250 13,347 333.68 13,387 2565 0 0.000 4,552 0.00 4,5522550 229 0.296 13,222 57.74 13,451 2550 0 0.000 4,754 0.00 4,7542535 163 0.304 13,579 83.31 13,742 2535 0 0.000 5,156 0.00 5,1562520 408 0.466 13,363 32.75 13,771 2520 0 0.000 5,837 0.00 5,8372505 1,084 0.688 12,971 11.97 14,055 2505 49 0.325 6,589 134.47 6,6382490 2,189 0.526 11,669 5.33 13,858 2490 40 0.263 6,845 171.13 6,8852475 2,939 0.579 11,141 3.79 14,080 2475 40 0.263 7,048 176.20 7,0882460 3,248 0.508 9,008 2.77 12,256 2460 210 0.168 7,088 33.75 7,2982445 5,213 0.438 7,043 1.35 12,256 2445 310 0.200 7,187 23.18 7,4972430 6,756 0.415 5,441 0.81 12,197 2430 473 0.230 7,188 15.20 7,661Strip 22,344 0.478 216,279 9.68 238,623 2415 385 0.295 7,490 19.45 7,875

2400 618 0.333 7,466 12.08 8,0842415 7,916 0.401 4,022 0.51 11,938 2385 849 0.360 7,410 8.73 8,2592400 8,686 0.403 3,022 0.35 11,708 2370 1,561 0.306 6,876 4.40 8,4372385 8,626 0.423 2,784 0.32 11,410 2355 2,183 0.345 6,447 2.95 8,6302370 9,379 0.430 1,788 0.19 11,167 2340 2,911 0.370 5,892 2.02 8,8032355 9,930 0.421 1,084 0.11 11,014 2325 3,272 0.380 5,644 1.72 8,9162340 10,252 0.394 677 0.07 10,929 2310 3,646 0.393 5,458 1.50 9,1042325 10,171 0.388 374 0.04 10,545 2295 3,883 0.403 4,997 1.29 8,8802310 9,934 0.380 504 0.05 10,438 2280 4,551 0.421 4,210 0.93 8,7612295 9,574 0.370 592 0.06 10,166 Strip 24,981 0.373 141,895 5.68 166,8762280 9,351 0.369 523 0.06 9,8742265 8,876 0.365 642 0.07 9,518 2265 5,178 0.444 3,426 0.66 8,6042250 8,420 0.365 775 0.09 9,195 2250 6,336 0.441 2,106 0.33 8,4422235 8,085 0.350 780 0.10 8,865 2235 7,288 0.436 995 0.14 8,2832220 7,366 0.339 1,068 0.14 8,434 2220 7,648 0.440 528 0.07 8,1762205 7,299 0.331 783 0.11 8,082 2205 7,612 0.464 362 0.05 7,9742190 7,105 0.331 857 0.12 7,962 2190 7,752 0.475 0 0.00 7,7522175 7,174 0.323 510 0.07 7,684 2175 7,425 0.491 141 0.02 7,5662160 6,782 0.319 622 0.09 7,404 2160 7,353 0.491 47 0.01 7,4002145 6,138 0.319 847 0.14 6,985 2145 7,293 0.515 0 0.00 7,2932130 5,054 0.335 1,650 0.33 6,704 2130 7,110 0.515 0 0.00 7,1102115 4,457 0.345 1,331 0.30 5,788 2115 7,091 0.564 0 0.00 7,0912100 5,170 0.374 1,181 0.23 6,351 2100 7,035 0.569 8 0.00 7,0432085 4,963 0.369 642 0.13 5,605 2085 6,968 0.569 38 0.01 7,0062070 5,668 0.429 947 0.17 6,615 2070 6,815 0.554 43 0.01 6,8582055 6,922 0.398 553 0.08 7,475 2055 6,743 0.554 87 0.01 6,8302040 5,222 0.394 345 0.07 5,567 2040 6,230 0.545 175 0.03 6,4052025 3,648 0.378 330 0.09 3,978 2025 5,763 0.533 206 0.04 5,969

Ore+IW 202,168 0.375 29,233 0.14 231,401 2010 7,550 0.483 349 0.05 7,8991995 5,580 0.468 233 0.04 5,813

Total 224,512 0.385 245,512 1.09 470,024 1980 3,180 0.455 80 0.03 3,260Ore+IW 133,950 0.501 8,824 0.07 142,774

Total 158,931 0.481 150,719 0.95 309,650

Page 83: Pit Design Scott Zimmer

Table 4-18

Exposed Ore InventoryOriginal Mine Plan

Exposed Months Exposed MonthsPush- Ore @ 33,726 Push- Ore @ 33,726

Year back ktonnes ktpy Year back ktonnes ktpy

2001 4 14,358 5.1 2018 5 26 9,501

2002 5 105,545 37.6 7 27,2618 108,125

2003 5 71,819 25.6 144,889 51.6

2004 5 39,568 14.1 2019 5 26 9,501

2005 5 17,724 7 27,2616 162,598 8 92,663

180,322 64.2 129,427 46.1

2006 5 17,724 2020 5 26 128,872 6 9,501

146,596 52.2 7 27,2618 82,967

2007 5 17,724 9 109,8266 95,245 229,557 81.7

112,969 40.22021 5 2

2008 5 17,724 6 9,5016 61,869 7 27,261

79,593 28.3 8 66,9319 92,136

2009 5 14,349 195,831 69.76 34,135

48,484 17.3 2022 5 26 9,501

2010 5 4,719 7 27,2616 26,001 8 47,9837 152,931 9 77,358

183,651 65.3 162,105 57.7

2011 5 3,778 2023 5 26 26,001 6 9,2517 120,146 7 27,261

149,925 53.3 8 35,7519 55,864

2012 5 3,778 128,129 45.66 26,0017 86,443 2024 5 2

116,222 41.4 6 3,1997 16,109

2013 5 3,778 8 26,4226 26,001 9 48,8297 54,601 94,561 33.6

84,380 30.02025 5 2

2014 5 3,778 6 26 19,753 7 4,1417 35,499 8 21,459

59,030 21.0 9 35,23260,836 21.6

2015 5 26 9,501 2026 5 27 30,285 6 28 199,652 7 -188

239,440 85.2 8 5,0349 22,073

2016 5 2 26,923 9.66 9,5017 27,261 2027 5 28 168,988 6 2

205,752 73.2 7 -1888 -1

2017 5 2 9 06 9,501 -185 -0.17 27,2618 136,255 Ore at bottom of pushback carried forward

173,019 61.6 AFTER succeeding pushback is stripped

Page 84: Pit Design Scott Zimmer

Table 4-19

Calculation of Total Material Mining Rate(s)

Unsmoothed SmoothedTotMtl Benches TotMtl Benches

Benches (incl.) Ore Ore TotMtl Rate per Ore TotMtl Rate perIncrement from to no. ktonnes Years * ktonnes ktpy Year Years * ktonnes ktpy Year

PB 4 (o&iw) 7500 7200 7 39,723 38,853PB 5 (strip) 8250 7800 10 16,912 86,203

17 56,635 1.80 125,056 69,463 9.4 1.80 125,056 69,463 9.4

PB 5 (o&iw) 7750 7000 16 106,626 116,685PB 6 (strip) 8750 7800 20 12,478 106,000

36 119,104 3.53 222,685 63,056 10.2

PB 6 (o&iw) 7750 6850 19 163,569 194,424PB 7 (strip) 8950 7650 27 13,041 184,043

46 176,610 5.24 378,467 72,273 8.8 14.15 1,010,261 71,420 8.7

PB 7 (o&iw) 7600 6750 18 159,009 170,487PB 8 (strip) 8950 7850 23 22,344 238,622

41 181,353 5.38 409,109 76,082 7.6

PB 8 (o&iw) 7900 6600 27 202,167 231,403PB 9 (strip) 8950 7450 31 24,981 166,900

58 227,148 6.74 398,303 59,138 8.6 6.74 398,303 59,138 8.6

PB 9 (o&iw) 7400 6450 20 133,950 3.97 142,753 35,942 5.0 3.97 142,753 35,942 5.0

* Ore Mining Rates:31,458 ktpy for first increment (2001 & 2002)33,726 ktpy for balance

Page 85: Pit Design Scott Zimmer

Table 4-20

Revised (Unsmoothed)Production Schedule

Annual Summary

Mill Ore Waste W:O TotMtlYear ktonnes %TCu ktonnes Ratio ktonnes

2001 26,009 0.516 27,634 1.06 53,6432002 31,707 0.499 41,593 1.31 73,3002003 33,726 0.518 29,274 0.87 63,0002004 33,726 0.530 29,274 0.87 63,0002005 33,726 0.517 29,274 0.87 63,0002006 33,726 0.491 31,274 0.93 65,0002007 33,726 0.433 38,274 1.13 72,0002008 33,726 0.399 38,274 1.13 72,0002009 33,726 0.422 38,274 1.13 72,0002010 33,726 0.458 38,274 1.13 72,0002011 33,726 0.432 40,274 1.19 74,0002012 33,726 0.431 42,274 1.25 76,0002013 33,726 0.474 42,274 1.25 76,0002014 33,726 0.476 42,274 1.25 76,0002015 33,726 0.478 42,274 1.25 76,0002016 33,726 0.465 42,274 1.25 76,0002017 33,726 0.413 26,274 0.78 60,0002018 33,726 0.405 26,274 0.78 60,0002019 33,726 0.372 26,274 0.78 60,0002020 33,726 0.349 26,274 0.78 60,0002021 33,726 0.328 26,274 0.78 60,0002022 33,726 0.370 26,274 0.78 60,0002023 33,726 0.403 25,977 0.77 59,7032024 33,726 0.450 4,214 0.12 37,9402025 33,726 0.503 188 0.01 33,9142026 33,726 0.561 194 0.01 33,9202027 27,620 0.499 1,025 0.04 28,645

894,760 0.451 782,305 0.87 1,677,065

Page 86: Pit Design Scott Zimmer

Table 4-21

Revised (Smoothed)Production Schedule

Annual Summary

Mill Ore Waste W:O TotMtlYear ktonnes %TCu ktonnes Ratio ktonnes

2001 26,009 0.516 27,634 1.06 53,6432002 31,707 0.499 41,593 1.31 73,3002003 33,726 0.518 38,274 1.13 72,0002004 33,726 0.526 38,274 1.13 72,0002005 33,726 0.518 38,274 1.13 72,0002006 33,726 0.497 38,274 1.13 72,0002007 33,726 0.433 38,274 1.13 72,0002008 33,726 0.399 38,274 1.13 72,0002009 33,726 0.419 38,274 1.13 72,0002010 33,726 0.432 38,274 1.13 72,0002011 33,726 0.445 38,274 1.13 72,0002012 33,726 0.448 38,274 1.13 72,0002013 33,726 0.474 38,274 1.13 72,0002014 33,726 0.475 38,274 1.13 72,0002015 33,726 0.482 38,274 1.13 72,0002016 33,726 0.461 38,274 1.13 72,0002017 33,726 0.413 38,274 1.13 72,0002018 33,726 0.404 38,274 1.13 72,0002019 33,726 0.368 38,274 1.13 72,0002020 33,726 0.359 26,274 0.78 60,0002021 33,726 0.348 16,274 0.48 50,0002022 33,726 0.363 11,274 0.33 45,0002023 33,726 0.404 5,216 0.15 38,9422024 33,726 0.428 1,973 0.06 35,6992025 33,726 0.503 188 0.01 33,9142026 33,726 0.562 187 0.01 33,9132027 27,629 0.499 1,032 0.05 28,661

894,769 0.451 782,303 0.87 1,677,072

Page 87: Pit Design Scott Zimmer

Table 4-22

Revised Production Schedule (Unsmoothed)

Push- Mill Ore Waste W:O TotMtlYear back Bench ktonnes %TCu ktonnes Ratio ktonnes

2001 4 2295 152 0.505 0 0.00 1522280 4,562 0.508 0 0.00 4,5622265 6,308 0.525 77 0.01 6,3852250 6,790 0.519 14 0.00 6,8042235 6,490 0.513 0 0.00 6,4902220 1,063 0.521 0 0.00 1,063

25,365 0.517 91 0.00 25,456

5 2520 0 0.000 358 0.00 3582505 1 0.511 7,257 ##### 7,2582490 177 0.491 10,877 61.45 11,0542475 466 0.506 9,051 19.42 9,517

644 0.502 27,543 42.77 28,187

2001 Total 26,009 0.516 27,634 1.06 53,643

2002 4 2220 7,741 0.521 0 0.00 7,7412205 6,617 0.518 40 0.01 6,657

14,358 0.520 40 0.00 14,398

5 2460 1,060 0.515 9,753 9.20 10,8132445 1,670 0.413 9,071 5.43 10,7412430 2,658 0.445 6,993 2.63 9,6512415 3,049 0.470 6,167 2.02 9,2162400 3,768 0.481 5,074 1.35 8,8422385 4,063 0.524 4,421 1.09 8,4842370 1,081 0.528 74 0.07 1,155

17,349 0.482 41,553 2.40 58,902

2002 Total 31,707 0.499 41,593 1.31 73,300

2003 5 2370 3,369 0.528 3,750 1.11 7,1192355 4,941 0.530 2,847 0.58 7,7882340 5,314 0.528 2,275 0.43 7,5892325 6,757 0.516 726 0.11 7,4832310 7,300 0.509 170 0.02 7,4702295 6,043 0.508 0 0.00 6,043

33,724 0.518 9,768 0.29 43,492

6 2670 0 0.000 11 0.00 112655 0 0.000 180 0.00 1802640 0 0.000 784 0.00 7842625 0 0.000 925 0.00 9252610 0 0.000 1,178 0.00 1,1782595 0 0.000 1,652 0.00 1,6522580 0 0.000 2,649 0.00 2,6492565 0 0.000 3,098 0.00 3,0982550 0 0.000 3,316 0.00 3,3162535 2 0.453 4,721 ##### 4,7232520 0 0.000 992 0.00 992

2 0.453 19,506 ##### 19,508

2003 Total 33,726 0.518 29,274 0.87 63,000

Page 88: Pit Design Scott Zimmer

Table 4-22 (Continued)

Revised Production Schedule (Unsmoothed)

Push- Mill Ore Waste W:O TotMtlYear back Bench ktonnes %TCu ktonnes Ratio ktonnes

2004 5 2295 1,837 0.508 0 0.00 1,8372280 7,506 0.518 0 0.00 7,5062265 6,914 0.529 0 0.00 6,9142250 6,338 0.544 93 0.01 6,4312235 6,010 0.531 41 0.01 6,0512220 5,085 0.539 80 0.02 5,165

33,690 0.530 214 0.01 33,904

6 2520 0 0.000 4,137 0.00 4,1372505 0 0.000 5,612 0.00 5,6122490 0 0.000 5,671 0.00 5,6712475 0 0.000 6,030 0.00 6,0302460 36 0.438 6,716 ##### 6,7522445 0 0.000 894 0.00 894

36 0.438 29,060 ##### 29,096

2004 Total 33,726 0.530 29,274 0.87 63,000

2005 5 2220 5,727 0.539 0 0.00 5,7272205 4,911 0.540 0 0.00 4,9112190 9,772 0.526 4 0.00 9,7762175 5,662 0.533 0 0.00 5,662

26,072 0.533 4 0.00 26,076

6 2445 35 0.381 7,192 ##### 7,2272430 1,496 0.459 11,040 7.38 12,5362415 2,440 0.450 10,033 4.11 12,4732400 3,683 0.476 1,005 0.27 4,688

7,654 0.464 29,270 3.82 36,924

2005 Total 33,726 0.517 29,274 0.87 63,000

2006 5 2175 2,449 0.533 0 0.00 2,4492160 5,836 0.513 0 0.00 5,8362145 3,776 0.536 0 0.00 3,776

12,061 0.524 0 0.00 12,061

6 2400 0 0.000 7,846 0.00 7,8462385 4,786 0.490 7,837 1.64 12,6232370 6,313 0.466 3,742 0.59 10,0552355 6,557 0.475 3,647 0.56 10,2042340 4,009 0.458 2,181 0.54 6,190

21,665 0.473 25,253 1.17 46,918

7 2730 0 0.000 35 0.00 352715 0 0.000 240 0.00 2402700 0 0.000 1,166 0.00 1,1662685 0 0.000 1,565 0.00 1,5652670 0 0.000 2,938 0.00 2,9382655 0 0.000 77 0.00 77

0 0.000 6,021 0.00 6,021

2006 Total 33,726 0.491 31,274 0.93 65,000

Page 89: Pit Design Scott Zimmer

Table 4-22 (Continued)

Revised Production Schedule (Unsmoothed)

Push- Mill Ore Waste W:O TotMtlYear back Bench ktonnes %TCu ktonnes Ratio ktonnes

2007 6 2340 3,666 0.458 1,995 0.54 5,6612325 8,230 0.450 4,127 0.50 12,3572310 9,301 0.430 3,388 0.36 12,6892295 10,008 0.419 2,245 0.22 12,2532280 2,521 0.409 560 0.22 3,081

33,726 0.433 12,315 0.37 46,041

7 2655 0 0.000 3,260 0.00 3,2602640 0 0.000 3,411 0.00 3,4112625 0 0.000 3,955 0.00 3,9552610 0 0.000 5,085 0.00 5,0852595 0 0.000 5,319 0.00 5,3192580 0 0.000 4,929 0.00 4,929

0 0.000 25,959 0.00 25,959

2007 Total 33,726 0.433 38,274 1.13 72,000

2008 6 2280 7,208 0.409 1,601 0.22 8,8092265 10,390 0.400 1,815 0.17 12,2052250 11,054 0.390 1,376 0.12 12,4302235 5,074 0.401 554 0.11 5,628

33,726 0.399 5,346 0.16 39,072

7 2580 0 0.000 1,344 0.00 1,3442565 0 0.000 7,121 0.00 7,1212550 0 0.000 8,397 0.00 8,3972535 0 0.000 8,487 0.00 8,4872520 0 0.000 7,579 0.00 7,579

0 0.000 32,928 0.00 32,928

2008 Total 33,726 0.399 38,274 1.13 72,000

2009 6 2235 6,167 0.401 674 0.11 6,8412220 10,549 0.415 857 0.08 11,4062205 10,432 0.436 628 0.06 11,0602190 6,479 0.431 312 0.05 6,791

33,627 0.422 2,471 0.07 36,098

7 2520 0 0.000 1,770 0.00 1,7702505 75 0.325 9,544 ##### 9,6192490 24 0.500 9,771 ##### 9,7952475 0 0.000 9,674 0.00 9,6742460 0 0.000 5,044 0.00 5,044

99 0.367 35,803 ##### 35,902

2009 Total 33,726 0.422 38,274 1.13 72,000

2010 6 2190 3,181 0.431 153 0.05 3,3342175 8,297 0.439 515 0.06 8,8122160 8,134 0.456 231 0.03 8,3652145 7,680 0.481 102 0.01 7,7822130 5,580 0.494 46 0.01 5,626

32,872 0.462 1,047 0.03 33,919

7 2460 6 0.150 4,432 ##### 4,4382445 102 0.259 9,202 90.22 9,3042430 334 0.324 8,727 26.13 9,0612415 412 0.335 8,421 20.44 8,8332400 0 0.000 6,445 0.00 6,445

854 0.320 37,227 43.59 38,081

2010 Total 33,726 0.458 38,274 1.13 72,000

Page 90: Pit Design Scott Zimmer

Table 4-22 (Continued)

Revised Production Schedule (Unsmoothed)

Push- Mill Ore Waste W:O TotMtlYear back Bench ktonnes %TCu ktonnes Ratio ktonnes

2011 6 2130 3,240 0.494 26 0.01 3,2662115 6,302 0.479 53 0.01 6,3552100 3,197 0.458 30 0.01 3,227

12,739 0.477 109 0.01 12,848

7 2400 944 0.335 1,299 1.38 2,2432385 1,262 0.343 7,215 5.72 8,4772370 2,118 0.379 9,343 4.41 11,4612355 3,200 0.408 8,255 2.58 11,4552340 4,564 0.414 6,954 1.52 11,5182325 6,078 0.428 5,430 0.89 11,5082310 2,821 0.408 1,669 0.59 4,490

20,987 0.405 40,165 1.91 61,152

2011 Total 33,726 0.432 40,274 1.19 74,000

2012 7 2310 5,782 0.408 757 0.13 6,5392295 10,048 0.419 1,322 0.13 11,3702280 10,650 0.438 712 0.07 11,3622265 7,246 0.458 244 0.03 7,490

33,726 0.431 3,035 0.09 36,761

8 2730 0 0.000 1,459 0.00 1,4592715 0 0.000 6,861 0.00 6,8612700 0 0.000 8,298 0.00 8,2982685 0 0.000 6,313 0.00 6,3132670 0 0.000 9,136 0.00 9,1362655 0 0.000 7,172 0.00 7,172

0 0.000 39,239 0.00 39,239

2012 Total 33,726 0.431 42,274 1.25 76,000

2013 7 2265 3,620 0.458 122 0.03 3,7422250 10,879 0.459 14 0.00 10,8932235 10,427 0.483 12 0.00 10,4392220 8,780 0.490 73 0.01 8,853

33,706 0.474 221 0.01 33,927

8 2655 0 0.000 3,210 0.00 3,2102640 0 0.000 12,017 0.00 12,0172625 0 0.000 12,489 0.00 12,4892610 20 0.413 12,677 ##### 12,6972595 0 0.000 1,660 0.00 1,660

20 0.413 42,053 ##### 42,073

2013 Total 33,726 0.474 42,274 1.25 76,000

2014 7 2220 1,762 0.490 15 0.01 1,7772205 9,721 0.474 170 0.02 9,8912190 9,285 0.486 181 0.02 9,4662175 9,040 0.474 156 0.02 9,1962160 3,594 0.468 13 0.00 3,607

33,402 0.477 535 0.02 33,937

8 2595 53 0.300 11,220 ##### 11,2732580 2 0.300 12,983 ##### 12,9852565 40 0.250 13,347 ##### 13,3872550 229 0.296 4,189 18.29 4,418

324 0.291 41,739 ##### 42,063

2014 Total 33,726 0.476 42,274 1.25 76,000

Page 91: Pit Design Scott Zimmer

Table 4-22 (Continued)

Revised Production Schedule (Unsmoothed)

Push- Mill Ore Waste W:O TotMtlYear back Bench ktonnes %TCu ktonnes Ratio ktonnes

2015 7 2160 5,280 0.468 20 0.00 5,3002145 8,494 0.465 0 0.00 8,4942130 8,238 0.486 16 0.00 8,2542115 7,961 0.466 42 0.01 8,0032100 2,098 0.470 47 0.02 2,145

32,071 0.472 125 0.00 32,196

8 2550 0 0.000 9,033 0.00 9,0332535 163 0.304 13,579 83.31 13,7422520 408 0.466 13,363 32.75 13,7712505 1,084 0.688 6,174 5.70 7,258

1,655 0.595 42,149 25.47 43,804

2015 Total 33,726 0.478 42,274 1.25 76,000

2016 7 2100 5,112 0.470 113 0.02 5,2252085 7,949 0.453 238 0.03 8,1872070 4,143 0.405 114 0.03 4,257

17,204 0.446 465 0.03 17,669

8 2505 0 0.000 6,797 0.00 6,7972490 2,189 0.526 11,669 5.33 13,8582475 2,939 0.579 11,141 3.79 14,0802460 3,248 0.508 9,008 2.77 12,2562445 5,213 0.438 3,194 0.61 8,4072430 2,933 0.415 0 0.00 2,933

16,522 0.484 41,809 2.53 58,331

2016 Total 33,726 0.465 42,274 1.25 76,000

2017 8 2445 0 0.000 3,849 0.00 3,8492430 3,823 0.415 5,441 1.42 9,2642415 7,916 0.401 4,022 0.51 11,9382400 8,686 0.403 3,022 0.35 11,7082385 8,626 0.423 2,784 0.32 11,4102370 4,675 0.430 891 0.19 5,566

Total 33,726 0.413 20,009 0.59 53,735

9 2730 0 0.000 69 0.00 692715 0 0.000 1,150 0.00 1,1502700 0 0.000 1,461 0.00 1,4612685 0 0.000 1,462 0.00 1,4622670 0 0.000 1,596 0.00 1,5962655 0 0.000 527 0.00 527

0 0.000 6,265 0.00 6,265

2017 Total 33,726 0.413 26,274 0.78 60,000

Page 92: Pit Design Scott Zimmer

Table 4-22 (Continued)

Revised Production Schedule (Unsmoothed)

Push- Mill Ore Waste W:O TotMtlYear back Bench ktonnes %TCu ktonnes Ratio ktonnes

2018 8 2370 4,704 0.430 897 0.19 5,6012355 9,930 0.421 1,084 0.11 11,0142340 10,252 0.394 677 0.07 10,9292325 8,840 0.388 325 0.04 9,165

33,726 0.405 2,983 0.09 36,709

9 2655 0 0.000 1,136 0.00 1,1362640 0 0.000 1,738 0.00 1,7382625 0 0.000 1,898 0.00 1,8982610 0 0.000 2,030 0.00 2,0302595 0 0.000 2,200 0.00 2,2002580 0 0.000 2,494 0.00 2,4942565 0 0.000 4,552 0.00 4,5522550 0 0.000 4,754 0.00 4,7542535 0 0.000 2,489 0.00 2,489

0 0.000 23,291 0.00 23,291

2018 Total 33,726 0.405 26,274 0.78 60,000

2019 8 2325 1,331 0.388 49 0.04 1,3802310 9,934 0.380 504 0.05 10,4382295 9,574 0.370 592 0.06 10,1662280 9,351 0.369 523 0.06 9,8742265 3,407 0.365 246 0.07 3,653

33,597 0.373 1,914 0.06 35,511

9 2535 0 0.000 2,667 0.00 2,6672520 0 0.000 5,837 0.00 5,8372505 49 0.325 6,589 ##### 6,6382490 40 0.263 6,845 ##### 6,8852475 40 0.263 2,422 60.55 2,462

129 0.286 24,360 ##### 24,489

2019 Total 33,726 0.372 26,274 0.78 60,000

2020 8 2265 5,469 0.365 396 0.07 5,8652250 8,420 0.365 775 0.09 9,1952235 8,085 0.350 780 0.10 8,8652220 7,366 0.339 1,068 0.14 8,4342205 3,866 0.331 415 0.11 4,281

33,206 0.352 3,434 0.10 36,640

9 2475 0 0.000 4,626 0.00 4,6262460 210 0.168 7,088 33.75 7,2982445 310 0.200 7,187 23.18 7,4972430 0 0.000 3,939 0.00 3,939

520 0.187 22,840 43.92 23,360

2020 Total 33,726 0.349 26,274 0.78 60,000

2021 8 2205 3,433 0.331 368 0.11 3,8012190 7,105 0.331 857 0.12 7,9622175 7,174 0.323 510 0.07 7,6842160 6,782 0.319 622 0.09 7,4042145 6,138 0.319 847 0.14 6,9852130 769 0.515 251 0.33 1,020

31,401 0.329 3,455 0.11 34,856

9 2430 473 0.230 3,249 6.87 3,7222415 385 0.295 7,490 19.45 7,8752400 618 0.333 7,466 12.08 8,0842385 849 0.360 4,614 5.43 5,463

2,325 0.315 22,819 9.81 25,144

2021 Total 33,726 0.328 26,274 0.78 60,000

Page 93: Pit Design Scott Zimmer

Table 4-22 (Continued)

Revised Production Schedule (Unsmoothed)

Push- Mill Ore Waste W:O TotMtlYear back Bench ktonnes %TCu ktonnes Ratio ktonnes

2022 8 2130 4,285 0.335 1,399 0.33 5,6842115 4,457 0.345 1,331 0.30 5,7882100 5,170 0.374 1,181 0.23 6,3512085 4,963 0.369 642 0.13 5,6052070 5,668 0.429 947 0.17 6,6152055 2,528 0.398 202 0.08 2,730

27,071 0.376 5,702 0.21 32,773

9 2385 0 0.000 2,796 0.00 2,7962370 1,561 0.306 6,876 4.40 8,4372355 2,183 0.345 6,447 2.95 8,6302340 2,911 0.370 4,453 1.53 7,364

6,655 0.347 20,572 3.09 27,227

2022 Total 33,726 0.370 26,274 0.78 60,000

2023 8 2055 4,394 0.398 351 0.08 4,7452040 5,222 0.394 345 0.07 5,5672025 3,648 0.378 330 0.09 3,978

13,264 0.391 1,026 0.08 14,290

9 2340 0 0.000 1,439 0.00 1,4392325 3,272 0.380 5,644 1.72 8,9162310 3,646 0.393 5,458 1.50 9,1042295 3,883 0.403 4,997 1.29 8,8802280 4,551 0.421 4,210 0.93 8,7612265 5,110 0.444 3,203 0.63 8,313

20,462 0.412 24,951 1.22 45,413

2023 Total 33,726 0.403 25,977 0.77 59,703

2024 9 2265 68 0.444 223 3.28 2912250 6,336 0.441 2,106 0.33 8,4422235 7,288 0.436 995 0.14 8,2832220 7,648 0.440 528 0.07 8,1762205 7,612 0.464 362 0.05 7,9742190 4,774 0.475 0 0.00 4,774

33,726 0.450 4,214 0.12 37,940

2025 9 2190 2,978 0.475 0 0.00 2,9782175 7,425 0.491 141 0.02 7,5662160 7,353 0.491 47 0.01 7,4002145 7,293 0.515 0 0.00 7,2932130 7,110 0.515 0 0.00 7,1102115 1,567 0.564 0 0.00 1,567

33,726 0.503 188 0.01 33,914

2026 9 2115 5,524 0.564 0 0.00 5,5242100 7,035 0.569 8 0.00 7,0432085 6,968 0.569 38 0.01 7,0062070 6,815 0.554 43 0.01 6,8582055 6,743 0.554 87 0.01 6,8302040 641 0.545 18 0.03 659

33,726 0.561 194 0.01 33,920

2027 9 2040 5,589 0.545 157 0.03 5,7462025 5,763 0.533 206 0.04 5,9692010 7,550 0.483 349 0.05 7,8991995 5,580 0.468 233 0.04 5,8131980 3,180 0.455 80 0.03 3,260

27,662 0.499 1,025 0.04 28,687

Page 94: Pit Design Scott Zimmer

Table 4-23

Smoothed Mine Production Schedule

Mill Ore Waste W:O TotMtlYear Phase Bench ktonnes TCu ktonnes Ratio ktonnes

2001 4 2295 152 0.505 0 0.00 1522280 4,562 0.508 0 0.00 4,5622265 6,308 0.525 77 0.01 6,3852250 6,790 0.519 14 0.00 6,8042235 6,490 0.513 0 0.00 6,4902220 1,063 0.521 0 0.00 1,063

25,365 0.517 91 0.00 25,456

5 2520 0 0.000 358 0.00 3582505 1 0.511 7,257 ##### 7,2582490 177 0.491 10,877 61.45 11,0542475 466 0.506 9,051 19.42 9,517

644 0.502 27,543 42.77 28,187

26,009 0.516 27,634 1.06 53,643

2002 4 2220 7,741 0.521 0 0.00 7,7412205 6,617 0.518 40 0.01 6,657

14,358 0.520 40 0.00 14,398

5 2460 1,060 0.515 9,753 9.20 10,8132445 1,670 0.413 9,071 5.43 10,7412430 2,658 0.445 6,993 2.63 9,6512415 3,049 0.470 6,167 2.02 9,2162400 3,768 0.481 5,074 1.35 8,8422385 4,063 0.524 4,421 1.09 8,4842370 1,081 0.528 74 0.07 1,155

17,349 0.482 41,553 2.40 58,902

31,707 0.499 41,593 1.31 73,300

2003 5 2370 3,369 0.528 3,750 1.11 7,1192355 4,941 0.530 2,847 0.58 7,7882340 5,314 0.528 2,275 0.43 7,5892325 6,757 0.516 726 0.11 7,4832310 7,300 0.509 170 0.02 7,4702295 6,043 0.508 0 0.00 6,043

33,724 0.518 9,768 0.29 43,492

6 2670 0 0.000 11 0.00 112655 0 0.000 180 0.00 1802640 0 0.000 784 0.00 7842625 0 0.000 925 0.00 9252610 0 0.000 1,178 0.00 1,1782595 0 0.000 1,652 0.00 1,6522580 0 0.000 2,649 0.00 2,6492565 0 0.000 3,098 0.00 3,0982550 0 0.000 3,316 0.00 3,3162535 2 0.453 4,721 ##### 4,7232520 0 0.000 5,129 0.00 5,1292505 0 0.000 4,863 0.00 4,863

2 0.453 28,506 ##### 28,508

33,726 0.518 38,274 1.13 72,000

Page 95: Pit Design Scott Zimmer

Table 4-23 (Continued)

Smoothed Mine Production Schedule

Mill Ore Waste W:O TotMtlYear Phase Bench ktonnes TCu ktonnes Ratio ktonnes

2004 5 2295 1,837 0.508 0 0.00 1,8372280 7,506 0.518 0 0.00 7,5062265 6,914 0.529 0 0.00 6,9142250 6,338 0.544 93 0.01 6,4312235 6,010 0.531 41 0.01 6,0512220 3,554 0.539 26 0.01 3,580

32,159 0.529 160 0.00 32,319

6 2505 0 0.000 749 0.00 7492490 0 0.000 5,671 0.00 5,6712475 0 0.000 6,030 0.00 6,0302460 36 0.438 6,716 ##### 6,7522445 35 0.381 8,086 ##### 8,1212430 1,496 0.459 10,862 7.26 12,358

1,567 0.457 38,114 24.32 39,681

33,726 0.526 38,274 1.13 72,000

2005 5 2220 7,258 0.539 54 0.01 7,3122205 4,911 0.540 0 0.00 4,9112190 9,772 0.526 3 0.00 9,7752175 876 0.533 0 0.00 876

22,817 0.533 57 0.00 22,874

6 2430 0 0.000 178 0.00 1782415 2,440 0.488 10,033 4.11 12,4732400 3,683 0.476 8,851 2.40 12,5342385 4,786 0.490 7,837 1.64 12,623

10,909 0.485 26,899 2.47 37,808

7 2730 0 0.000 35 0.00 352715 0 0.000 240 0.00 2402700 0 0.000 1,166 0.00 1,1662685 0 0.000 1,565 0.00 1,5652670 0 0.000 2,938 0.00 2,9382655 0 0.000 3,337 0.00 3,3372640 0 0.000 2,037 0.00 2,037

0 0.000 11,318 0.00 11,318

33,726 0.518 38,274 1.13 72,000

2006 5 2175 7,235 0.533 0 0.00 7,2352160 5,836 0.513 0 0.00 5,8362145 3,776 0.536 0 0.00 3,776

16,847 0.527 0 0.00 16,847

6 2370 6,313 0.466 3,742 0.59 10,0552355 6,557 0.475 3,647 0.56 10,2042340 4,009 0.458 2,181 0.54 6,190

16,879 0.468 9,570 0.57 26,449

7 2640 0 0.000 1,374 0.00 1,3742625 0 0.000 3,955 0.00 3,9552610 0 0.000 5,085 0.00 5,0852595 0 0.000 5,319 0.00 5,3192580 0 0.000 6,273 0.00 6,2732565 0 0.000 6,698 0.00 6,698

0 0.000 28,704 0.00 28,704

33,726 0.497 38,274 1.13 72,000

Page 96: Pit Design Scott Zimmer

Table 4-23 (Continued)

Smoothed Mine Production Schedule

Mill Ore Waste W:O TotMtlYear Phase Bench ktonnes TCu ktonnes Ratio ktonnes

2007 6 2340 3,666 0.458 1,995 0.54 5,6612325 8,230 0.450 4,127 0.50 12,3572310 9,301 0.430 3,388 0.36 12,6892295 10,008 0.419 2,245 0.22 12,2532280 2,521 0.409 560 0.22 3,081

33,726 0.433 12,315 0.37 46,041

7 2565 0 0.000 423 0.00 4232550 0 0.000 8,397 0.00 8,3972535 0 0.000 8,487 0.00 8,4872520 0 0.000 8,652 0.00 8,652

0 0.000 25,959 0.00 25,959

33,726 0.433 38,274 1.13 72,000

2008 6 2280 7,208 0.409 1,601 0.22 8,8092265 10,390 0.400 1,815 0.17 12,2052250 11,054 0.390 1,376 0.12 12,4302235 4,969 0.401 543 0.11 5,512

33,621 0.399 5,335 0.16 38,956

7 2520 0 0.000 697 0.00 6972505 75 0.325 9,544 ##### 9,6192490 24 0.500 9,771 ##### 9,7952475 0 0.000 9,674 0.00 9,6742460 6 0.150 3,253 ##### 3,259

105 0.355 32,939 ##### 33,044

33,726 0.399 38,274 1.13 72,000

2009 6 2235 6,272 0.401 685 0.11 6,9572220 10,549 0.415 857 0.08 11,4062205 10,432 0.436 627 0.06 11,0592190 5,625 0.431 271 0.05 5,896

32,878 0.422 2,440 0.07 35,318

7 2460 0 0.000 6,223 0.00 6,2232445 102 0.259 9,202 90.22 9,3042430 334 0.324 8,727 26.13 9,0612415 412 0.335 8,421 20.44 8,8332400 0 0.000 3,261 0.00 3,261

848 0.322 35,834 42.26 36,682

33,726 0.419 38,274 1.13 72,000

2010 6 2190 4,035 0.431 194 0.05 4,2292175 8,297 0.439 515 0.06 8,8122160 8,134 0.456 231 0.03 8,3652145 3,582 0.481 48 0.01 3,630

24,048 0.450 988 0.04 25,036

7 2400 944 0.335 4,483 4.75 5,4272385 1,262 0.343 7,215 5.72 8,4772370 2,118 0.379 9,343 4.41 11,4612355 3,200 0.408 8,255 2.58 11,4552340 2,154 0.414 3,282 1.52 5,436

9,678 0.387 32,578 3.37 42,256

8 2730 0 0.000 1,459 0.00 1,4592715 0 0.000 3,249 0.00 3,249

0 0.000 4,708 0.00 4,708

33,726 0.432 38,274 1.13 72,000

Page 97: Pit Design Scott Zimmer

Table 4-23 (Continued)

Smoothed Mine Production Schedule

Mill Ore Waste W:O TotMtlYear Phase Bench ktonnes TCu ktonnes Ratio ktonnes

2011 6 2145 4,098 0.481 54 0.01 4,1522130 8,820 0.494 72 0.01 8,8922115 0 0.000 0 0.00 02100 0 0.000 0 0.00 0

12,918 0.490 126 0.01 13,044

7 2340 2,410 0.414 3,672 1.52 6,0822325 6,078 0.428 5,430 0.89 11,5082310 8,603 0.408 2,426 0.28 11,0292295 3,717 0.419 489 0.13 4,206

20,808 0.417 12,017 0.58 32,825

8 2715 0 0.000 3,612 0.00 3,6122700 0 0.000 8,298 0.00 8,2982685 0 0.000 6,313 0.00 6,3132670 0 0.000 7,908 0.00 7,908

0 0.000 26,131 0.00 26,131

33,726 0.445 38,274 1.13 72,000

2012 6 2115 6,302 0.479 53 0.01 6,3552100 3,197 0.458 30 0.01 3,227

9,499 0.472 83 0.01 9,582

7 2295 6,331 0.419 833 0.13 7,1642280 10,650 0.438 712 0.07 11,3622265 7,246 0.458 244 0.03 7,490

24,227 0.439 1,789 0.07 26,016

8 2670 0 0.000 1,228 0.00 1,2282655 0 0.000 10,382 0.00 10,3822640 0 0.000 12,017 0.00 12,0172625 0 0.000 12,489 0.00 12,4892610 0 0.000 286 0.00 286

0 0.000 36,402 0.00 36,402

33,726 0.448 38,274 1.13 72,000

2013 7 2265 3,620 0.458 122 0.03 3,7422250 10,879 0.459 14 0.00 10,8932235 10,427 0.483 12 0.00 10,4392220 8,725 0.490 88 0.01 8,813

33,651 0.474 236 0.01 33,887

8 2610 20 0.413 12,391 ##### 12,4112595 53 0.300 12,880 ##### 12,9332580 2 0.300 12,767 ##### 12,769

75 0.330 38,038 ##### 38,113

33,726 0.474 38,274 1.13 72,000

2014 7 2220 1,817 0.490 0 0.00 1,8172205 9,721 0.474 170 0.02 9,8912190 9,285 0.486 181 0.02 9,4662175 9,040 0.474 156 0.02 9,1962160 3,431 0.468 33 0.01 3,464

33,294 0.478 540 0.02 33,834

8 2580 0 0.000 216 0.00 2162565 40 0.250 13,347 ##### 13,3872550 229 0.296 13,222 57.74 13,4512535 163 0.304 10,949 67.17 11,112

432 0.295 37,734 87.35 38,166

33,726 0.475 38,274 1.13 72,000

Page 98: Pit Design Scott Zimmer

Table 4-23 (Continued)

Smoothed Mine Production Schedule

Mill Ore Waste W:O TotMtlYear Phase Bench ktonnes TCu ktonnes Ratio ktonnes

2015 7 2160 5,443 0.468 0 0.00 5,4432145 8,494 0.465 0 0.00 8,4942130 8,238 0.486 16 0.00 8,2542115 7,870 0.466 42 0.01 7,912

30,045 0.472 58 0.00 30,103

8 2535 0 0.000 2,630 0.00 2,6302520 408 0.466 13,363 32.75 13,7712505 1,084 0.688 12,971 11.97 14,0552490 2,189 0.526 9,252 4.23 11,441

3,681 0.567 38,216 10.38 41,897

33,726 0.482 38,274 1.13 72,000

2016 7 2115 91 0.466 0 0.00 912100 7,210 0.470 160 0.02 7,3702085 7,949 0.453 238 0.03 8,1872070 4,143 0.405 114 0.03 4,257

19,393 0.449 512 0.03 19,905

8 2490 0 0.000 2,417 0.00 2,4172475 2,939 0.579 11,141 3.79 14,0802460 3,248 0.508 9,008 2.77 12,2562445 5,213 0.438 7,043 1.35 12,2562430 2,933 0.415 2,361 0.80 5,294

14,333 0.478 31,970 2.23 46,303

9 2730 0 0.000 69 0.00 692715 0 0.000 1,150 0.00 1,1502700 0 0.000 1,461 0.00 1,4612685 0 0.000 1,462 0.00 1,4622670 0 0.000 1,596 0.00 1,5962655 0 0.000 54 0.00 54

0 0.000 5,792 0.00 5,792

33,726 0.461 38,274 1.13 72,000

2017 8 2430 3,823 0.415 3,080 0.81 6,9032415 7,916 0.401 4,022 0.51 11,9382400 8,686 0.403 3,022 0.35 11,7082385 8,626 0.423 2,784 0.32 11,4102370 4,675 0.430 891 0.19 5,566

33,726 0.413 13,799 0.41 47,525

9 2655 0 0.000 1,609 0.00 1,6092640 0 0.000 1,738 0.00 1,7382625 0 0.000 1,898 0.00 1,8982610 0 0.000 2,030 0.00 2,0302595 0 0.000 2,200 0.00 2,2002580 0 0.000 2,494 0.00 2,4942565 0 0.000 4,552 0.00 4,5522550 0 0.000 4,754 0.00 4,7542535 0 0.000 3,200 0.00 3,200

0 0.000 24,475 0.00 24,475

33,726 0.413 38,274 1.13 72,000

2018 8 2370 4,704 0.430 897 0.19 5,6012355 9,930 0.421 1,084 0.11 11,0142340 10,252 0.394 677 0.07 10,9292325 8,501 0.388 253 0.03 8,754

33,387 0.406 2,911 0.09 36,298

9 2535 0 0.000 1,956 0.00 1,9562520 0 0.000 5,837 0.00 5,8372505 49 0.325 6,589 ##### 6,6382490 40 0.263 6,845 ##### 6,8852475 40 0.263 7,048 ##### 7,0882460 210 0.168 7,088 33.75 7,298

339 0.213 35,363 ##### 35,702

33,726 0.404 38,274 1.13 72,000

Page 99: Pit Design Scott Zimmer

Table 4-23 (Continued)

Smoothed Mine Production Schedule

Mill Ore Waste W:O TotMtlYear Phase Bench ktonnes TCu ktonnes Ratio ktonnes

2019 8 2325 1,670 0.388 121 0.07 1,7912310 9,934 0.380 504 0.05 10,4382295 9,574 0.370 592 0.06 10,1662280 9,351 0.369 523 0.06 9,8742265 562 0.365 41 0.07 603

31,091 0.374 1,781 0.06 32,872

9 2445 310 0.200 7,187 23.18 7,4972430 473 0.230 7,188 15.20 7,6612415 385 0.295 7,490 19.45 7,8752400 618 0.333 7,466 12.08 8,0842385 849 0.360 7,162 8.44 8,011

2,635 0.302 36,493 13.85 39,128

33,726 0.368 38,274 1.13 72,000

2020 8 2265 8,314 0.365 601 0.07 8,9152250 8,420 0.365 775 0.09 9,1952235 8,085 0.350 780 0.10 8,865

24,819 0.360 2,156 0.09 26,975

9 2385 0 0.000 248 0.00 2482370 1,561 0.306 6,876 4.40 8,4372355 2,183 0.345 6,447 2.95 8,6302340 2,911 0.370 5,892 2.02 8,8032325 2,252 0.380 4,655 2.07 6,907

8,907 0.355 24,118 2.71 33,025

33,726 0.359 26,274 0.78 60,000

2021 8 2220 7,366 0.339 1,068 0.14 8,4342205 7,299 0.331 783 0.11 8,0822190 7,105 0.331 857 0.12 7,9622175 3,407 0.323 242 0.07 3,649

25,177 0.332 2,950 0.12 28,127

9 2325 1,020 0.380 989 0.97 2,0092310 3,646 0.393 5,458 1.50 9,1042295 3,883 0.403 4,997 1.29 8,8802280 0 0.000 1,880 0.00 1,880

8,549 0.396 13,324 1.56 21,873

33,726 0.348 16,274 0.48 50,000

2022 8 2175 3,767 0.323 268 0.07 4,0352160 6,782 0.319 622 0.09 7,4042145 6,138 0.319 847 0.14 6,9852130 5,054 0.335 1,650 0.33 6,704

21,741 0.323 3,387 0.16 25,128

9 2280 4,551 0.421 2,330 0.51 6,8812265 5,178 0.444 3,426 0.66 8,6042250 2,256 0.441 2,106 0.93 4,3622235 0 0.000 25 0.00 25

11,985 0.435 7,887 0.66 19,872

33,726 0.363 11,274 0.33 45,000

Page 100: Pit Design Scott Zimmer

Table 4-23 (Continued)

Smoothed Mine Production Schedule

Mill Ore Waste W:O TotMtlYear Phase Bench ktonnes TCu ktonnes Ratio ktonnes

2023 8 2115 4,457 0.345 1,331 0.30 5,7882100 5,170 0.374 1,181 0.23 6,3512085 4,963 0.369 642 0.13 5,6052070 5,668 0.429 947 0.17 6,615

20,258 0.382 4,101 0.20 24,359

9 2250 4,080 0.441 0 0.00 4,0802235 7,288 0.436 970 0.13 8,2582220 2,100 0.440 145 0.07 2,245

13,468 0.438 1,115 0.08 14,583

33,726 0.404 5,216 0.15 38,942

2024 8 2055 6,922 0.398 553 0.08 7,4752040 5,222 0.394 345 0.07 5,5672025 3,648 0.378 330 0.09 3,978

15,792 0.392 1,228 0.08 17,020

9 2220 5,548 0.440 383 0.07 5,9312205 7,612 0.464 362 0.05 7,9742190 4,774 0.475 0 0.00 4,774

17,934 0.460 745 0.04 18,679

33,726 0.428 1,973 0.06 35,699

2025 9 2190 2,978 0.475 0 0.00 2,9782175 7,425 0.491 141 0.02 7,5662160 7,353 0.491 47 0.01 7,4002145 7,293 0.515 0 0.00 7,2932130 7,110 0.515 0 0.00 7,1102115 1,567 0.564 0 0.00 1,567

33,726 0.503 188 0.01 33,914

2026 9 2115 5,524 0.564 0 0.00 5,5242100 7,035 0.569 8 0.00 7,0432085 6,968 0.569 38 0.01 7,0062070 6,815 0.554 43 0.01 6,8582055 6,743 0.554 87 0.01 6,8302040 641 0.545 11 0.02 652

33,726 0.562 187 0.01 33,913

2027 9 2040 5,589 0.545 164 0.03 5,7532025 5,763 0.533 206 0.04 5,9692010 7,550 0.483 349 0.05 7,8991995 5,580 0.468 233 0.04 5,8131980 3,180 0.455 80 0.03 3,260

27,662 0.499 1,032 0.04 28,694

Page 101: Pit Design Scott Zimmer

Table 4-24

Exposed Ore Inventory at End of YearRevised (Unsmoothed) Mine Production Schedule

Exposed Months Exposed MonthsPush- Ore @ 33,726 Push- Ore @ 33,726

Year back ktonnes ktpy Year back ktonnes ktpy

2001 4 14,364 5.1 2015 7 17,204 6.1

2002 5 105,547 37.6 2016 8 202,168 71.9

2003 5 71,823 25.6 2017 8 172,265 61.3

2004 5 39,133 13.9 2018 8 138,539 49.3

2005 5 12,061 4.3 2019 8 104,942 37.3

2006 6 146,720 52.2 2020 8 71,736 25.5

2007 6 112,994 40.2 2021 8 40,335 14.4

2008 6 79,268 28.2 2022 8 13,264 4.7

2009 6 45,641 16.2 2023 9 128,840 45.8

2010 6 12,769 4.5 2024 9 95,114 33.8

2011 7 150,109 53.4 2025 9 61,388 21.8

2012 7 116,383 41.4 2026 9 27,662 9.8

2013 7 82,677 29.4 2027 9 0 0.0

2014 7 49,275 17.5

Page 102: Pit Design Scott Zimmer

Table 4-25

Exposed Ore Inventory at End of YearSmoothed Mine Production Schedule @ 75,000 ktpy

Exposed Months Exposed MonthsPush- Ore @ 33,726 Push- Ore @ 33,726

Year back ktonnes ktpy Year back ktonnes ktpy

2001 4 14,364 5.1 2017 8 172,265 61.3

2002 5 105,547 37.6 2018 8 138,878 49.4

2003 5 71,823 25.6 2019 8 107,787 38.4

2004 5 39,664 14.1 2020 8 82,968 29.5

2005 5 16,847 2021 8 57,791 20.66 163,599

180,446 64.2 2022 8 36,0509 126,516

2006 6 146,752 52.2 162,566 57.8

2007 6 113,026 40.2 2023 8 15,7929 113,048

2008 6 79,405 28.3 128,840 45.8

2009 6 46,527 16.6 2024 9 95,114 33.8

2010 6 22,479 8.0 2025 9 61,388 21.8

2011 6 9,561 2026 9 27,662 9.87 140,610

150,171 53.4 2027 9 0 0.0

2012 7 116,383 41.4

2013 7 82,732 29.4

2014 7 49,438 17.6 Ore at bottom of pushback carriedforward AFTER succeeding

2015 7 19,393 6.9 pushback is stripped

2016 8 202,168 71.9

Page 103: Pit Design Scott Zimmer

Table 4-26

Potential Operating Cost Savings Resulting FromMinimizing Stripped Ore Exposure

Original Mine Plan Unsmoothed Schedule Smoothed Schedule Potential SavingsExposed Exposed Exposed Unsmoothed Schedule Smoothed Schedule

Ore TotMtl Ore TotMtl Ore TotMtl (ktonnes) ($x1000 @ $0.70) (ktonnes) ($x1000 @ $0.70)Year (months) ktonnes (months) ktonnes (months) ktonnes Year Cmltv Year Cmltv Year Cmltv Year Cmltv

2001 5.1 53,182 5.1 53,643 5.1 53,643 461 461 323 323 461 461 323 3232002 37.6 73,309 37.6 73,300 37.6 73,300 -9 452 -6 316 -9 452 -6 3162003 25.6 74,152 25.6 63,000 25.6 72,000 -11,152 -10,700 -7,806 -7,490 -2,152 -1,700 -1,506 -1,1902004 14.1 64,639 13.9 63,000 14.1 72,000 -1,639 -12,339 -1,147 -8,637 7,361 5,661 5,153 3,9632005 64.2 75,709 4.3 63,000 64.2 72,000 -12,709 -25,048 -8,896 -17,534 -3,709 1,952 -2,596 1,3662006 52.2 91,188 52.2 65,000 52.2 72,000 -26,188 -51,236 -18,332 -35,865 -19,188 -17,236 -13,432 -12,0652007 40.2 79,783 40.2 72,000 40.2 72,000 -7,783 -59,019 -5,448 -41,313 -7,783 -25,019 -5,448 -17,5132008 28.3 69,248 28.2 72,000 28.3 72,000 2,752 -56,267 1,926 -39,387 2,752 -22,267 1,926 -15,5872009 17.3 64,064 16.2 72,000 16.6 72,000 7,936 -48,331 5,555 -33,832 7,936 -14,331 5,555 -10,0322010 65.3 74,672 4.5 72,000 8.0 72,000 -2,672 -51,003 -1,870 -35,702 -2,672 -17,003 -1,870 -11,9022011 53.3 99,958 53.4 74,000 53.4 72,000 -25,958 -76,961 -18,171 -53,873 -27,958 -44,961 -19,571 -31,4732012 41.4 85,433 41.4 76,000 41.4 72,000 -9,433 -86,394 -6,603 -60,476 -13,433 -58,394 -9,403 -40,8762013 30.0 74,652 29.4 76,000 29.4 72,000 1,348 -85,046 944 -59,532 -2,652 -61,046 -1,856 -42,7322014 21.0 74,229 17.5 76,000 17.6 72,000 1,771 -83,275 1,240 -58,293 -2,229 -63,275 -1,560 -44,2932015 85.2 80,352 6.1 76,000 6.9 72,000 -4,352 -87,627 -3,046 -61,339 -8,352 -71,627 -5,846 -50,1392016 73.2 66,935 71.9 76,000 71.9 72,000 9,065 -78,562 6,346 -54,993 5,065 -66,562 3,546 -46,5932017 61.6 65,708 61.3 60,000 61.3 72,000 -5,708 -84,270 -3,996 -58,989 6,292 -60,270 4,404 -42,1892018 51.6 65,431 49.3 60,000 49.4 72,000 -5,431 -89,701 -3,802 -62,791 6,569 -53,701 4,598 -37,5912019 46.1 59,458 37.3 60,000 38.4 72,000 542 -89,159 379 -62,411 12,542 -41,159 8,779 -28,8112020 81.7 41,655 25.5 60,000 29.5 60,000 18,345 -70,814 12,842 -49,570 18,345 -22,814 12,842 -15,9702021 69.7 35,939 14.4 60,000 20.6 50,000 24,061 -46,753 16,843 -32,727 14,061 -8,753 9,843 -6,1272022 57.7 35,903 4.7 60,000 57.8 45,000 24,097 -22,656 16,868 -15,859 9,097 344 6,368 2412023 45.6 36,224 45.8 59,703 45.8 38,942 23,479 823 16,435 576 2,718 3,062 1,903 2,1432024 33.6 36,432 33.8 37,940 33.8 35,699 1,508 2,331 1,056 1,632 -733 2,329 -513 1,6302025 21.6 34,877 21.8 33,914 21.8 33,914 -963 1,368 -674 958 -963 1,366 -674 9562026 9.6 35,948 9.8 33,920 9.8 33,913 -2,028 -660 -1,420 -462 -2,035 -669 -1,425 -4682027 -0.1 28,306 0.0 28,645 0.0 28,661 339 -321 237 -225 355 -314 249 -220

1,677,386 1,677,065 1,677,072 NPV @ 20% = -16,738 NPV @ 20% = -6,817NPV @ 15% = -20,229 NPV @ 15% = -8,986NPV @ 10% = -23,127 NPV @ 10% = -11,055

Page 104: Pit Design Scott Zimmer

Figure 4-9Exposed Ore Inventory Comparison

0

6

12

18

24

30

36

42

48

54

60

66

72

78

84

90

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

End of Year

Mon

ths

of E

xpos

ed O

re @

33,

726

ktpy

Original Mine PlanUnsmoothed ScheduleSmoothed Schedule

Page 105: Pit Design Scott Zimmer

Table 4-27

Original Mine PlanAnnual Summary by Pushback

Push- Ore Waste W:O TotMtlYear back ktonnes %TCu ktonnes Ratio ktonnes

2001 4 25,364 0.517 91 0.00 25,4555 645 0.502 27,082 41.99 27,727

26,009 0.516 27,173 1.04 53,182

2002 4 14,358 0.520 40 0.00 14,3985 17,349 0.482 41,562 2.40 58,911

31,707 0.499 41,602 1.31 73,309

2003 5 33,727 0.518 10,487 0.31 44,2146 2 0.453 29,936 ###### 29,938

33,729 0.518 40,423 1.20 74,152

2004 5 32,252 0.529 174 0.01 32,4266 1,567 0.457 30,646 19.56 32,213

33,819 0.526 30,820 0.91 64,639

2005 5 21,844 0.533 44 0.00 21,8886 11,880 0.483 32,940 2.77 44,8207 0 0.000 9,001 0.00 9,001

33,724 0.516 41,985 1.24 75,709

2006 6 33,727 0.456 19,080 0.57 52,8077 0 0.000 38,381 0.00 38,381

33,727 0.456 57,461 1.70 91,188

2007 6 33,629 0.411 6,219 0.18 39,8487 99 0.367 39,836 402.38 39,935

33,728 0.411 46,055 1.37 79,783

2008 6 33,376 0.403 3,460 0.10 36,8367 442 0.306 31,970 72.33 32,412

33,818 0.401 35,430 1.05 69,248

2009 5 3,375 0.533 0 0.00 3,3756 27,734 0.435 1,607 0.06 29,3417 2,618 0.339 28,730 10.97 31,348

33,727 0.437 30,337 0.90 64,064

2010 5 9,630 0.522 0 0.00 9,6306 8,134 0.456 232 0.03 8,3667 15,960 0.413 28,517 1.79 44,4778 0 0.000 12,199 0.00 12,199

33,724 0.455 40,948 1.21 74,672

2011 5 941 0.513 0 0.00 9417 32,785 0.426 4,459 0.14 37,2448 0 0.000 61,773 0.00 61,773

33,726 0.428 66,232 1.96 99,958

2012 7 33,701 0.470 392 0.01 34,0938 115 0.302 51,225 445.43 51,340

33,816 0.470 51,617 1.53 85,433

2013 7 31,841 0.480 596 0.02 32,4378 1,884 0.559 40,331 21.41 42,215

33,725 0.485 40,927 1.21 74,652

2014 6 6,248 0.488 102 0.02 6,3507 19,102 0.467 33 0.00 19,1358 8,376 0.537 40,368 4.82 48,744

33,726 0.488 40,503 1.20 74,229

Page 106: Pit Design Scott Zimmer

Table 4-27 (Continued)

Original Mine PlanAnnual Summary by Pushback

Push- Ore Waste W:O TotMtlYear back ktonnes %TCu ktonnes Ratio ktonnes

2015 5 3,776 0.536 0 0.00 3,7766 10,252 0.492 72 0.01 10,3247 5,214 0.486 16 0.00 5,2308 14,484 0.421 13,277 0.92 27,7619 0 0.000 33,261 0.00 33,261

33,726 0.465 46,626 1.38 80,352

2016 7 3,024 0.486 0 0.00 3,0248 30,664 0.415 8,727 0.28 39,3919 129 0.286 24,391 189.08 24,520

33,817 0.421 33,118 0.98 66,935

2017 8 32,733 0.401 2,640 0.08 35,3739 993 0.207 29,342 29.55 30,335

33,726 0.396 31,982 0.95 65,708

2018 8 28,130 0.373 1,115 0.04 29,2459 5,596 0.332 30,590 5.47 36,186

33,726 0.366 31,705 0.94 65,431

2019 8 15,462 0.365 1,417 0.09 16,8799 18,263 0.317 24,316 1.33 42,579

33,725 0.339 25,733 0.76 59,458

2020 8 9,696 0.352 780 0.08 10,4769 24,124 0.440 7,055 0.29 31,179

33,820 0.415 7,835 0.23 41,655

2021 8 16,036 0.335 1,851 0.12 17,8879 17,690 0.466 362 0.02 18,052

33,726 0.403 2,213 0.07 35,939

2022 8 18,948 0.324 1,989 0.10 20,9379 14,778 0.491 188 0.01 14,966

33,726 0.397 2,177 0.06 35,903

2023 8 12,232 0.326 2,498 0.20 14,7309 21,494 0.531 0 0.00 21,494

33,726 0.457 2,498 0.07 36,224

2024 6 6,302 0.479 54 0.01 6,3567 11,152 0.467 41 0.00 11,1938 9,329 0.361 2,512 0.27 11,8419 7,035 0.569 7 0.00 7,042

33,818 0.461 2,614 0.08 36,432

2025 6 3,197 0.458 31 0.01 3,2287 11,968 0.458 398 0.03 12,3668 4,963 0.369 642 0.13 5,6059 13,597 0.561 81 0.01 13,678

33,725 0.487 1,152 0.03 34,877

2026 7 4,143 0.405 114 0.03 4,2578 16,425 0.407 1,845 0.11 18,2709 13,159 0.550 262 0.02 13,421

33,727 0.463 2,221 0.07 35,948

2027 8 5,035 0.382 330 0.07 5,3659 22,073 0.488 868 0.04 22,941

27,108 0.468 1,198 0.04 28,306

Page 107: Pit Design Scott Zimmer

Table 4-28

Revised (Unsmoothed)Production Schedule

Annual Summary by Pushback

Push- Mill Ore Waste W:O TotMtlYear back ktonnes %TCu ktonnes Ratio ktonnes

2001 4 25,365 0.517 91 0.00 25,4565 644 0.502 27,543 42.77 28,187

26,009 0.516 27,634 1.06 53,643

2002 4 14,358 0.520 40 0.00 14,3985 17,349 0.482 41,553 2.40 58,902

31,707 0.499 41,593 1.31 73,300

2003 5 33,724 0.518 9,768 0.29 43,4926 2 0.453 19,506 ##### 19,508

33,726 0.518 29,274 0.87 63,000

2004 5 33,690 0.530 214 0.01 33,9046 36 0.438 29,060 ##### 29,096

33,726 0.530 29,274 0.87 63,000

2005 5 26,072 0.533 4 0.00 26,0766 7,654 0.464 29,270 3.82 36,924

33,726 0.517 29,274 0.87 63,000

2006 5 12,061 0.524 0 0.00 12,0616 21,665 0.473 25,253 1.17 46,9187 0 0.000 6,021 ##### 6,021

33,726 0.491 31,274 0.93 65,000

2007 6 33,726 0.433 12,315 0.37 46,0417 0 0.000 25,959 ##### 25,959

33,726 0.433 38,274 1.13 72,000

2008 6 33,726 0.399 5,346 0.16 39,0727 0 0.000 32,928 ##### 32,928

33,726 0.399 38,274 1.13 72,000

2009 6 33,627 0.422 2,471 0.07 36,0987 99 0.367 35,803 ##### 35,902

33,726 0.422 38,274 1.13 72,000

2010 6 32,872 0.462 1,047 0.03 33,9197 854 0.320 37,227 43.59 38,081

33,726 0.458 38,274 1.13 72,000

2011 6 12,739 0.477 109 0.01 12,8487 20,987 0.405 40,165 1.91 61,152

33,726 0.432 40,274 1.19 74,000

2012 7 33,726 0.431 3,035 0.09 36,7618 0 0.000 39,239 ##### 39,239

33,726 0.431 42,274 1.25 76,000

2013 7 33,706 0.474 221 0.01 33,9278 20 0.413 42,053 ##### 42,073

33,726 0.474 42,274 1.25 76,000

2014 7 33,402 0.477 535 0.02 33,9378 324 0.291 41,739 ##### 42,063

33,726 0.476 42,274 1.25 76,000

2015 7 32,071 0.472 125 0.00 32,1968 1,655 0.595 42,149 25.47 43,804

33,726 0.478 42,274 1.25 76,000

2016 7 17,204 0.446 465 0.03 17,6698 16,522 0.484 41,809 2.53 58,331

33,726 0.465 42,274 1.25 76,000

Page 108: Pit Design Scott Zimmer

Table 4-28 (Continued)

Revised (Unsmoothed)Production Schedule

Annual Summary by Pushback

Push- Mill Ore Waste W:O TotMtlYear back ktonnes %TCu ktonnes Ratio ktonnes

2017 8 33,726 0.413 20,009 0.59 53,7359 0 0.000 6,265 ##### 6,265

33,726 0.413 26,274 0.78 60,000

2018 8 33,726 0.405 2,983 0.09 36,7099 0 0.000 23,291 ##### 23,291

33,726 0.405 26,274 0.78 60,000

2019 8 33,597 0.373 1,914 0.06 35,5119 129 0.286 24,360 ##### 24,489

33,726 0.373 26,274 0.78 60,000

2020 8 33,206 0.352 3,434 0.10 36,6409 520 0.187 22,840 43.92 23,360

33,726 0.349 26,274 0.78 60,000

2021 8 31,401 0.329 3,455 0.11 34,8569 2,325 0.315 22,819 9.81 25,144

33,726 0.328 26,274 0.78 60,000

2022 8 27,071 0.376 5,702 0.21 32,7739 6,655 0.347 20,572 3.09 27,227

33,726 0.370 26,274 0.78 60,000

2023 8 13,264 0.391 1,026 0.08 14,2909 20,462 0.412 24,951 1.22 45,413

33,726 0.404 25,977 0.77 59,703

2024 9 33,726 0.450 4,214 0.12 37,940

2025 9 33,726 0.503 188 0.01 33,914

2026 9 33,726 0.561 194 0.01 33,920

2027 9 27,620 0.499 1,025 0.04 28,645

Page 109: Pit Design Scott Zimmer

Table 4-29

Revised (Smoothed)Production Schedule

Annual Summary by Pushback

Push- Mill Ore Waste W:O TotMtlYear back ktonnes %TCu ktonnes Ratio ktonnes

2001 4 25,365 0.517 91 0.00 25,4565 644 0.502 27,543 42.77 28,187

26,009 0.516 27,634 1.06 53,643

2002 4 14,358 0.520 40 0.00 14,3985 17,349 0.482 41,553 2.40 58,902

31,707 0.499 41,593 1.27 72,000

2003 5 33,724 0.518 9,768 0.29 43,4926 2 0.453 28,506 ##### 28,508

33,726 0.518 38,274 1.13 72,000

2004 5 32,159 0.529 160 0.00 32,3196 1,567 0.457 38,114 24.32 39,681

33,726 0.526 38,274 1.13 72,000

2005 5 22,817 0.533 57 0.00 22,8746 10,909 0.485 26,899 2.47 37,8087 0 0.000 11,318 ##### 11,318

33,726 0.517 38,274 1.13 72,000

2006 5 16,805 0.527 0 0.00 16,8056 16,921 0.468 9,570 0.57 26,4917 0 0.000 28,704 ##### 28,704

33,726 0.497 38,274 1.13 72,000

2007 6 33,726 0.433 12,315 0.37 46,0417 0 0.000 25,959 ##### 25,959

33,726 0.433 38,274 1.13 72,000

2008 6 33,621 0.399 5,335 0.16 38,9567 105 0.355 32,939 ##### 33,044

33,726 0.399 38,274 1.13 72,000

2009 6 32,878 0.422 2,440 0.07 35,3187 848 0.322 35,834 42.26 36,682

33,726 0.419 38,274 1.13 72,000

2010 6 24,048 0.450 988 0.04 25,0367 9,678 0.387 32,578 3.37 42,2568 0 0.000 4,708 ##### 4,708

33,726 0.432 38,274 1.13 72,000

2011 6 12,876 0.490 126 0.01 13,0027 20,850 0.417 12,017 0.58 32,8678 0 0.000 26,131 ##### 26,131

33,726 0.445 38,274 1.13 72,000

2012 6 9,499 0.472 83 0.01 9,5827 24,227 0.439 1,789 0.07 26,0168 0 0.000 36,402 ##### 36,402

33,726 0.448 38,274 1.13 72,000

2013 7 33,651 0.474 236 0.01 33,8878 75 0.330 38,038 ##### 38,113

33,726 0.474 38,274 1.13 72,000

2014 7 33,294 0.478 540 0.02 33,8348 432 0.295 37,734 87.35 38,166

33,726 0.476 38,274 1.13 72,000

Page 110: Pit Design Scott Zimmer

Table 4-29 (Continued)

Revised (Smoothed)Production Schedule

Annual Summary by Pushback

Push- Mill Ore Waste W:O TotMtlYear back ktonnes %TCu ktonnes Ratio ktonnes

2015 7 30,045 0.472 58 0.00 30,1038 3,681 0.567 38,216 10.38 41,897

33,726 0.482 38,274 1.13 72,000

2016 7 19,393 0.449 512 0.03 19,9058 14,333 0.478 31,970 2.23 46,3039 0 0.000 5,792 ##### 5,792

33,726 0.461 38,274 1.13 72,000

2017 8 33,726 0.413 13,799 0.41 47,5259 0 0.000 24,475 ##### 24,475

33,726 0.413 38,274 1.13 72,000

2018 8 33,387 0.406 2,911 0.09 36,2989 339 0.213 35,363 ##### 35,702

33,726 0.404 38,274 1.13 72,000

2019 8 31,091 0.374 1,781 0.06 32,8729 2,635 0.302 36,493 13.85 39,128

33,726 0.368 38,274 1.13 72,000

2020 8 24,819 0.360 2,156 0.09 26,9759 8,907 0.355 24,118 2.71 33,025

33,726 0.359 26,274 0.78 60,000

2021 8 25,177 0.332 2,950 0.12 28,1279 8,549 0.396 13,324 1.56 21,873

33,726 0.348 16,274 0.48 50,000

2022 8 21,741 0.323 3,387 0.16 25,1289 11,985 0.435 7,887 0.66 19,872

33,726 0.363 11,274 0.33 45,000

2023 8 20,258 0.382 4,101 0.20 24,3599 13,468 0.438 1,115 0.08 14,583

33,726 0.404 5,216 0.15 38,942

2024 8 15,792 0.392 1,228 0.08 17,0209 17,934 0.460 745 0.04 18,679

33,726 0.428 1,973 0.06 35,699

2025 9 33,726 0.503 188 0.01 33,914

2026 9 33,726 0.562 187 0.01 33,913

2027 9 27,662 0.499 1,032 0.04 28,694