32 Haagmans

download 32 Haagmans

of 132

Transcript of 32 Haagmans

  • 8/16/2019 32 Haagmans

    1/132

    N E T H E R L A N D S G E O D E T I C C O M M I S S I O N

    PUBLICATIONS ON GEODESY NE W SERIES

    NUMBER

    32

    NAVGRAV

    NAVIGATION

    ND

    GRAVIMETRIC EXPERIMENT

    AT THE NORTH SEA

    R. H. N. HAAGMANS

    G . J. HUSTI

    P. PLUGERS

    J.

    H . M. SMIT

    G. L. STRANG VAN HEES

    1988

    RIJKSCOMMISSIE VOOR GEODESIE THIJSSEWEG 11 DELFT THE NETHERLANDS

  • 8/16/2019 32 Haagmans

    2/132

    PRINTED

    BY

    W . D. MEINEMA

    B.V.

    DELFT THE NETHERLANDS

    ISBN 90

    6132 237 5

  • 8/16/2019 32 Haagmans

    3/132

    PREF CE

    Accurate gr a v i t y in fo rma t ion a t sea can serve many impor tant

    purposes i n geodesy, s o l i d ea r t h ph ysic s and oceanography. But

    o n l y s in c e t h e e a r l y t w e nt i e s o f t h i s c e nt u ry , t hr ou gh t h e

    pi on ee r in g work o f Vening Meinesz 1929) or 1948) g r a v i t y

    measurements a t sea became po ss ibl e. The in he ren t com pl ica t io n,

    whenever measur ing whi l e moving, i s th e sep ara t ion o f th e

    d i s t u r b i n g e f f e c t s o f t h e m ot io n f ro m th e v e r t i c a l a c c e l e r a t i o n

    due t o gr av i t y . Meanwhi soph i s t a ted modern gr a v i t y meters

    ex is t , see e .g . Be l l and Wat ts , 1986) t h a t l a rg e l y e l im ina te

    these dis turba nces. However the re remains an ef f e c t th a t cannot be

    e l m inated ins trumen ta l l , t he Eo tvos co r r ec t i on . t can on1 y be

    de te rmined accura te l y

    i f

    v e r y pr e c i se n a v i ga t i on i s a v a i l a b l e .

    Wi th t h e excep t ion o f a few areas, where accu ra te rad iop os i t i on in g

    i s ava i lab le , t h i s causes a p roblem. Wi th t he estab l ishment o f t he

    Global P os i t io n in g System GPS) pr ec ise nav iga t io n anywhere a t any

    t i m e became fe as ib le . Hence around 1984 th e idea was born t o

    i n v e s t i g a t e t h e p o t e n t i a l o f GPS f o r t h i s p urp os e i n t h e N o r t h

    Sea, where severa l p rec ise rad io po s i t i on in g sys tems are av a i la b l e

    f o r compar i on. Si nce such an exp er iment re q u i r e d GPS as we1 l as

    sea grav imet ry ,

    i t

    was on1 y lo gi ca l t o broaden the scope o f th e

    exper iment by address ing a t the same t ime o ther in te re s t in g i tems

    i n the f i e l d s o f nav iga t ion and sea grav imet ry. The exper iment was

    named NAVGRAV.

    On one hand t he t e s t o f f e re d t he opp or tu n i t y t o t ake a c lose r

    l oo k a t t h e p r e c i s i o n , r e p e a t a b i l i t y and r e s o l u t i o n o f s ea

    g r a v i me t r y and i t s t r a d e - o f f w i t h s a te 1

    l

    e a1 t i m e t r y d e r i ve d

    gravity. For these purposes two modern sea gravimeters were

    measur ing s imu l taneous ly . Severa l s h ip t ra cks o f an e a r l i e r

    exp erim ent i n 1979 Str an g van Hees, 1983) were repe ated , and

    SEASAT a l t i m e t r y data were analysed. On th e other hand ve ry l i t t l e

    exper ie nce was present i n the area o f GPS i n the Nether lands

    around 1984. Thus, th e exper iment gave op po rt un i t y t o in vo lve as

    many fu tu re p o te n t i a l use rs f rom pr i v a te companies, government

    a g en ci es and u n i v e r s i t i e s , t o g a i n e xp er ie n ce on t h e c a p a b i l i t i e s

    of GPS a t sea and t o compare

    it

    w i t h t h e e s t a bl i sh e d r a d i o

    p os i t io n i n g sys tems i n a v a r i e ty o f experiments. pre para tory GPS

  • 8/16/2019 32 Haagmans

    4/132

  • 8/16/2019 32 Haagmans

    5/132

  • 8/16/2019 32 Haagmans

    6/132

    Nether1ands Navy, t h e commander o f Hr. Ms. Tydeman K t z . G R. van

    Hengel and h i s o f f i c e r s and crew.

    The experime nts y ie l de d an enormous amount o f na vi ga ti on and

    g r av i t y in fo rma t ion and a l o t o f exper ience. Th is re po r t g ives the

    r e s ul ts o f th e NAVGRAV pr o j ec t as they a re obta ined u n t i l now.

    t

    i s o ur imp re ss io n t h a t t h e a va i l a b le da ta co u ld s t i l l be u se d f o r

    fu tu re inve s t ig a t io ns and fo r s tuden t p ro je c ts . The da ta and the

    re qu ir ed documentation can be made av ai la b l e t o any in te re st ed

    group

    D e l f t . December 1988

    Reiner Rumme

    l

    eferences

    Be1l R E., A B. Watts 1986): Ev alu ati on o f the BGM-3 sea g r a v i t y

    meter system on board R/V Conrad. Geophysi CS, vol. 51, no.

    7.

    St ra ng van Hees, G.L. 1983): G r a v i ty Survey o f th e No rth Sea.

    Mar ine Geodesy, vo l . 6, no. 2.

    Vening Meinesz, F.A. 1929): Theory and P r a c ti c e o f Pendulum

    Observat ions a t Sea. Nether l nds Geodet i Commi s s i on,

    Technische Boekhandel Waltman, D e l f t .

    Vening Meinesz, F.A. 1948): G r a v i ty Ex pe dit ion s a t Sea 1923-1938.

    De l f t se U i tgeve rs Maatschapp ij , De l f t .

  • 8/16/2019 32 Haagmans

    7/132

    Contents

    Preface

    R Rummel

    Acknowledgements

    NAVGRAV Navigation and gravimetric experiment

    at the North Sea

    G L Strang van Hees

    GPS and terrestrial radiopositioning sy s t e m

    G J Husti and P Plugers

    Gravity measurements at the North Sea

    G

    L

    Strang van Hees and P Plugers

    Using GP S ship velocity estimates

    for ~ o t v o s orrection

    J

    M

    Smit

    Altimetry derived gravity compared

    with NAVGRAV observed gravity

    R

    H

    N

    Haagmans

    Appendix A

  • 8/16/2019 32 Haagmans

    8/132

  • 8/16/2019 32 Haagmans

    9/132

    S UM M RY

    In April

    1986

    extented test measurements were executed with

    GPS instruments on board of the Dutch Navy vessel Hr. Ms. Tydeman.

    The GPS positions were compared with the best available

    terrestrial radio navigation systems, under variable conditions.

    The precision of GPS turned out to be

    10

    to

    15

    m in absolute

    position, and better than

    3

    m in differential mode.

    Gravity measurements were carried out with two sea

    gravimeters. The differences between the instruments were less

    than mgal for random errors. However systematic errors occured

    on some lines up to a few mgal, probably due to errors in the

    cross-coupling corrections. Also a comparison was made with

    results of a similar project in

    1979.

    Only minor differences are

    present. Remarkable is the rather irregular shape of the gravity

    field, although the sea bottom is very flat. significant gravity

    anomal appears at latitude

    55 13 ,

    longitude

    5 38

    This anomaly

    is caused

    by

    a mass disturbance due to mantle material intruded

    into the crust.

    In sea gravimetry the realizable accuracy is limited

    by

    EOt os correct on errors. To determine EOtvos correct ons bet t r

    than

    0.5

    mgal, ship velocity estimation with an accuracy of

    5

    cm/s

    or

    0.1

    knot is necessary. The possibilities of obtaining ship

    velocity estimates with high accuracy

    by

    using GPS pseudorange

    code measurements and carrier phase measurements are investigated.

    The comparison of Eotvos correct ons computed with ship veloci

    y

    estimates from GPS pseudoranges, Doppler smoothed pseudoranges,

    carrier phase measurements and Syledis and Hyperfix positions

    shows no discrepancies. Best results are obtained from the GPS

    Doppler smoothed pseudorange method. This justifies the conclusion

    that the effect of Eotvos correction errors in sea gravimetry can

    be reduced significantly.

    Gravity anomalies as derived from ship measurements were

    compared with gravity anomalies computed from SEASAT altimetry.

    Altimetry provides, after correction for various disturbances,

    accurate sea surface heights. Wi th good approximation one can

    identify the latter with geoid heights neglecting those parts of

  • 8/16/2019 32 Haagmans

    10/132

    the sea surface

    topography for which no models are available . Two

    alternative methods were applied for the estimation of point

    gravity anomalies from the altimeter derived geoid heights. One

    method was least squares collocation, the other a very fast

    but theoretically less sound technique based on Fourier

    transformation. In both cases the long wavelength part was dealt

    with using the

    GEMlO

    set of potential coefficients. Collocation

    yielded better results. The agreement with shipborne point gravity

    anomalies is on the mgal level with no significant bias. This

    proves that altimeter derived gravity is well suited for a

    preliminary inspection of the gravity field structure of an area

    of interest.

    cknowledgements

    The au tho rs w i sh t o thank

    M r

    M G G J Ju t t e f o r d raw ing some

    maps and mak ing the headers o f t h e a r t i c l e s M r

    A B.

    Sm i t s f o r t h e

    photog raph ica l rep rod uct io n o f a1 graphs Mrs . W G Coops-Luyten

    and Mrs.

    W

    van L i ng en f o r t y p i n g p a r t s o f t h e m a nu sc ri pt .

  • 8/16/2019 32 Haagmans

    11/132

    N VGR V

    N VIG TION N D GR VIMETRIC EXPERIMEN T

    T T HE N OR T H S E

    G L Strang van Hees

    Delft University of Technology

    Faculty of Geod esy

    l Introduction

    The NAVGRAV p r o j e c t was a combi ne d NAVi g a t n and GRAVi met r

    expe r imen t a t t h e No r th Sea. Fo r t h i s p ro j e c t t h e oceanographi c

    vessel H.

    M

    Tydeman o f t h e Royal Dutch Navy was made av ai l a b l e . The

    ex pe d i t i on took p lac e f rom Ap r i l 23 t o May 13 , 1986. The experiment

    was d i v id ed in t o two pa r t s . The f i r s t week f rom Apr 23 t o 30 was

    d e v ot e d t o a t e s t o f t h e p e r s p e c t i v e s o f modern n a v i g a t i o n s y s te ms .

    Du r i ng t he second pe r i od fr om Ap r i l 30 t o May 13 t he p r im a ry goa l

    was t h e eva lua t i on o f t he pe rsp ec t i ve s o f modern sea g ra v ime t r y .

    2

    Navigation

    The f o l o w i n g t e r r e s t r i a1 r a d i o p o s i t i o n i n g s ys te ms were

    av a i l ab l e : Sy l ed i s , H i f i x and Hype r f i x . On the o th e r hand s i x GPS

    re ce iv er s were on our d ispos a l th r ee Texas Ins t rum ents , two Serce l

    and one Tr im ble. Four ins t rum ents were p la ce d on board and two on

    land as re fe renc e s t a t i on s . To compare t he p rec i s i on o f t h e GPS w i t h

    th e t e r r e s t r a1 systems a scheme o f l es were steamed, mai n l y i n

    th e a rea cove red by Sy l ed i S s e e f i g u r e 1 S yl e d i S was assumed t o

    be t h e most accu ra te t e r r e s t r i a l sys tem. I n t he same a rea H i f i x was

    a v a i l a b l e to o , w hich gave a good i n s i g h t i n t o th e r e l i a b i l i t y of t h e

    t e r r e s t r i a l sys tems. The t h i r d sys tem, Hyp e r f i x , was used as

    r e f e r e n c e s ys te m i n t h e n o r t h e r n p a r t o f t h e m ea su rin g a r ea f i g u r e

    1 However th e l a t t e r system was on1 y rec en t l i n s t a l l e d and s t l

    i n a t e s t i n g phase . Th i s caused sometimes l ane s l i p s , and a comple te

    one day gap when th e system was o ut o f or de r.

    Some sp e c i a l t e s t s were c a r r i e d o u t i n or d er t o t e s t t h e

    r e l i a b i l i t y o f t h e system s under s p e c ia l c o n d i ti o n s .

  • 8/16/2019 32 Haagmans

    12/132

     

    steaming around oil platforms in circles with radii of loom SOOm

    and 1500m to check the influence of reflections;

    suddenly increasing and decreasing of the ships velocity and

    sudden changes of the ships direction;

    precision of the radio systems in case of a long landpath of the

    radi o waves.

    However all these experiments caused no measurable deviations.

    G.P.S. survey NAVGRAV

    23 29 April 986

    2

    3 4 5

    6 7 8

    Gravity survey NAVGRAV

    23 April 3 M a y l986

    2 d 2 5

    6

    7 8

    9

    5 7 - +

    .m

    eln unlvcrs~ty

    f

    Technology

    e~anment f

    G eo d esy

    Figure

    l

    Figure :

    Navigation experiment NAVGRAV Gravity survey NAVGRAV

    The

    GPS

    tests were aimed at:

    absolute precision compared with terrestrial systems;

    relative precision between ship and land receivers;

    relative precision between different receivers on board;

    relative precision between ship and launch and

    velocity determination with GPS.

    All data were registrated at seconds intervals.

  • 8/16/2019 32 Haagmans

    13/132

    3 ravity

    Dur ing the second pe r io d a rec tangu la r p a t te rn o f l i ne s was

    steamed see f i g u r e 2) . As the ava i l ab le nav iga t io n systems were out

    o f range i n the nor thern Nor th Sea, another r ad io po s i t i on in g system

    was chosen, Pul se 8. The p re c is i o n o f t h i s system was 20

    m

    which i s

    s u f f i c i e n t f o r g r a v i t y s u rv ey needs.

    The purpose o f t he sea g r a v i t y measurements was t o dete rmine

    th e pr e c is io n o f modern sea grav ime ters . Two gravim eter systems were

    i n s ta l e d next t o each other, the sea gr avi meters Bodensee Kss 5 o f

    th e D e l f t Un iv er si ty o f Technology and the Bodensee Kss 30 o f the

    U ni v er si ty of Hamburg. The d i f fer en ce between th e measured g r a v i t y

    o f bo th ins t ruments g ives an in s ig h t in to the in t e rn a l p rec is io n and

    b i as o f t he g rav i meters. Ex te rna l e r r o r s

    l

    e nav iga t ion e r ro r s and

    the Eotvos cor rect ion were e l imina ted .

    Pa r t o f the reg ion has a l ready been surveyed i n 1979 St rang

    van Hees, 1983 ). Some o f th ese

    l

    nes were remeasured i n order t o

    determine the ex terna l p re c i s i on o f g ra v i ty measurements. Add i t io na l

    l es were p ut i n between th e pr ev iou s measured l es. Thi

    S

    g ives

    t h e p o s s i b l i t y t o i n ve s t i g at e th e p r ec i si o n o f t h e i n t e r p o l a t i o n o f

    g r av i t y anoma lies i n c ross l i n e d i re c t i on . The l i ne s a re about 25

    km ap art , which i s chosen i n correspondence wi th t he es t im ated

    roughness o f t h e g r a v i t y f i e l d .

    Nearly a1 l measurements were c a r ri e d ou t under excel l e n t

    weather co ndi t ion s. Therefore the qu a l i t y o f the measurements i s

    very good.

    The good cooper at ion on board between the s c i e n t i s t s and th e

    Royal Net herl and s Navy i s ver y much appr eci ated . Commander K l t z .

    G.R. van Hengel of th e H.M. Tydeman and h i s o f f i c e r s and crew gave

    a l l suppo rt t o make t h i s exped i t ion succes fu l .

    4

    List of participating institutes and firms

    D e l f t Un iv ers i ty o f Techno logy, Fac u l ty o f Geodesy

    - Un iv er s i ty o f Hannover, I n s t i t u t e o f Geodesy

    Techn ica l Un iv er s i ty Mun ich, In s t i t u t e o f Astronomica l and

    Physical Geodesy

    Un iv er s i ty o f Hamburg, I n s t i t u t e o f Geophys ics

  • 8/16/2019 32 Haagmans

    14/132

      U n i v e r s i t y o f U t r e c h t , F a c u l t y o f G e op hy sic s

    Hydrographic Se rv ic e o f t he Royal Nethe r lands Navy

    Survey Department o f R i j k swa te rs taa t

    She1

    l

    I n t e r n a t i o n a l e P r e t ro l e u m Maa t sc h ap p ij

    Osi r is Seaway

    I n t e r s i t e S u r v e y s

    Radio Hol land

    NESA

    Nether lands Hydrographic Serv ices

    Oretech

    - Nortech Surveys

    5

    eferences

    Rummel, R., G.L. Str an g van Hees and H. Ve rs lu i j s 1983): G r a v it y

    F i e l d I n v e s t i g a t i o n i n t h e N o r t h Sea. I n : S a t e l l i t e M icrowave

    Sensing ed. T.D. Al le n) , John Wi le y 8 Sons, New York.

    Salzrnann,

    M.A., G.

    J. H us ti , G.L. St ra ng van Hees, P.

    J . G .

    Teunissen

    1987

    l

    NAVGRAV, a comprehens

    i

    e comb

    i

    ed nav i ga t

    i

    on and

    g r a v i me t r y e xp er ime nt on t h e N o r t h Sea; o b j e c t i v e s a nd f i r s t

    exper iences. Proceedings Int er na t i o na l Symposium on Marine

    P o s it io n in g , Reston, October 14-17, 1986.

    St ran g van Hees, G.L. 1983): G ra vi ty Survey o f th e No rth Sea.

    Mar e Geodesy, vo l 6, no.

    2.

  • 8/16/2019 32 Haagmans

    15/132

      PS

    N D

    TERR ESTRI L R DIOPOSITIONING

    SYSTEMS

    G J Hust i

    P Plugers

    Delft University of Technology

    Faculty of Geodesy

    l

    Introduction

    One o f t he ob je ct iv es o f th e NAVGRAV p r o je c t was t o

    i n v e s t i g a t e t h e s u i t a b i l i t y o f t h e Glo ba l P o s i t i o n i n g System f o r

    p o s i t i o n and ve lo c i t y de te rmina t i on a t sea . GPS

    w l l

    o b v i o u s l y

    p l a y an i m po rt an t r o l e i n g r a v i m e t r i c s u r v e yi n g i n t h e n ea r

    f u t u r e , where t h e d e s i r e d a c cu ra cy i s a bo ut 2 0 met er i n p o s i t i o n

    and

    5

    cm/sec i n ve lo c i t y . Such an accuracy i s now qu i te p oss ib le

    w i t h GPS, bu t co ul d no t be achieved dur in g th e 24 hour non-stop

    grav met r survey , because o f th e m ed number o f sa te e s

    av a i la b l e i n 1986. Each day two observat io n windows were a va i l ab le

    f i g u r e

    1 :

    Date :24C lpr1 986 Stat ion :No rth sea

    L a t i t u d e : 54'00'00 Longitude: 4'00'00 Height 5 0 M

    T i w of day

    Figure

    1 GPS

    windows in April 24 1986 4

    =

    54O

    h

    =

    4

  • 8/16/2019 32 Haagmans

    16/132

    f i r s t pe r iod 2: 00 8: 00 hou rs

    second p e r io d 13: 00 18: 00 hou rs

    For t h i s reas on GPS was used du r in g t h e NAVGRAV p r o j e c t on1 y

    f o r var iou s exper imenta l purposes. For th e grav i metr survey

    t r ad i t io na l ra d i o po s i t i on in g systems were deployed.

    2. quipment

    Several p os i t io n i ng systems were on board du r in g both per iods

    of surveying, as shown below:

    1st period: April 23 29 2nd period: April 3 May 13

    GPS receivers GPS receivers

    Tri mbl e 4000A Radio Hol lan d) Trim ble 4000A Radio Ho lla nd )

    *

    Serce l TR5S Ri jk sw ate rs taa t

    )

    Rubidium cl oc k T.U. Munich)

    TI-4100 Un iv er si ty o f Hannover)

    TI-4100 Technical Un iv er si ty Munich)

    Cesium cl oc k Nor tech Surveys)

    Rubid ium cl oc k Technical Un iv er si ty Munich)

    Radio positioning systems Radio posi tioning systems

    Sy led is O s ir i s Seaway) Pulse 8

    H i f i x Hr.Ms. Tydeman) Hype rf Hr . Ms. Tydeman

    )

    Hyp er f Hr. Ms. Tydeman) Oceanlog Hr. Ms. Tydeman)

    *

    Loran C R i j ksw a t e r s t a a t

    Ocean log Hr.Ms. Tydeman)

    * Survey epartment of t he Min istr y of Transp ort and Pu blic Works

    D u rin g t h e f i r s t p e r i o d an a d d i t i o n a l TI-4100 r e ce i ve r

    Nor tech Surveys) was se t up a t an on-shore s t a t io n . F i r s t a t

    Haarlem A p r i l 21 - 251, and a f t e r t h a t a t D e l f t [ A p r i l 25

    281,

    i n o rde r t o be ab le to pos t-process the da ta i n t rans loca t io n ,

    i . e . d i f f e r e n t i a l , mode. For t h i s reason, a l l GPS rec e iv ers were

    scheduled to ope rate i n the same mode [P or S code) and t o t ra ck

    the same sa te l l i t es .

    I n add it io n, GPS measurements c a r ri e d out a t a second

  • 8/16/2019 32 Haagmans

    17/132

    on-shore s t a t n Stavanger Norway) were k dl y prov ded by th e

    Norwegian Hydrographic Service, f o r t r an sl oc at io n purposes over a

    great er d is tance. Unfor tunate1y, these dat a cou ld no t be used,

    because o f a d i f f e r en t s a t e l l i t e obse rva t ion scheme a t S tavanger .

    A complete overview o f th e equipment i s shown i n appendices 1

    and 2. The instrum ents were set up on board a t two lo cat ion s: i n

    th e char troom and i n lab - l , where th e observers kept contact b y

    telephone. I n t h e chartroom t he INTERPLOT-200 s oft war e o f

    I n t e r s i t e Surveys was runni ng on a HP9920 computer f o r re al - t im e

    navig a t ion . A very impor tant sub ject was the t ime synchron i sa t ion

    o f a l l th e pos i t io n i ng systems. Th is prob lem was so lved by

    sync hroni zing th e c lo ck o f th e He wlet t Packard computer w it h GPS

    t im e us in g th e one puls e per second output f rom the TI-4100

    rece ive rs .

    Dur ing the second pe r iod o f t he p ro jec t f rom Ap r i l 30 t o May

    13 o n l y one Trimb le GPS re ce iv er remained on board and t he Pulse 8

    po s i t i on in g system was used as pr imary po s i t i on in g system fo r th e

    g rav i me t r i c su rvey. Bo th po s i t ion ing systems y i e lded sa t i s f ac to ry

    r e s u l t s d u r i n g t h e e n t i r e p e ri o d.

    3. Antenna o f fse t

    The in t e rs ec t ion p o i n t o f t h e main mast and the ho r izon t a l

    beam was adopted as th e re ference po in t fo r a1 po s i t i on in g

    systems. The antenna of fs et s, as determined i n a th re e d imensional

    coord ina te system, are g iven i n ta b l e 1 .

    GPS re c e i v e r X m) Y m) AH m) remark

    TI-4100 Munich) -0.25 +38.8 -5.0 u n t i l Apr.27, 15h

    TI -4 100 Hannover -3 .0

    0.1 +0.5 u n t i l Apr.27, 15h

    TI-4100 Hannover) -0.25 +38.8 -5.0 from Apr. 27, 15h

    Tr im bl e 4000A +2.6

    + 0 . 1 +0.8 u n t i l Apr.27, 12h

    Trimble 4000A

    +O. 4

    - 2. 3 +3.8 from Apr.27, 12h

    Serce +0.25 +38.8 -5.0

    Y = h ea ding d i r e c t i o n

    X

    =

    s t ar b o ar d d i r e c t i o n

    AH = ve r t i c a l h e ig h t d i ff e ren ce u p = p o s i t i v e )

    Table

    l

    ntenna offsets

    17

  • 8/16/2019 32 Haagmans

    18/132

    The antenna o ff s e t t o th e refere nce p o in t was computed as fol lo ws :

    ~ O

    (

    X

    s i n

    a

    - Y cos

    a

    R

    R cos p

    where:

    = 180 n

    R = 6378388 metre

    a

    = ship course

    4. Real - t ime nav igat ion

    The re al -ti m e na vi ga tio n dat a was hand led by th e HP9920

    computer usi ng t h e INTERPLOT-200 so ftw are , by which t h e Syl ed i

    S

    Hif and Hyperf x p o s it ons were recorded. The raw data and th e

    computed po si t io ns were s imul taneously stor ed on 3.5 dis ke tte s.

    The current l most re1 b l e te r r es t r 1 ra di o po s i t i on was

    selec ted as pr imary pos i t i on and used f o r the g rav ime tr ic survey.

    This pr imary po s i t i on was a lso monitored on the br idge f o r

    c o n t r o l l i n g t h e d e s ir e d s a i l i n g r o u t e f o r t h e g r a v i m e t ri c s urve y.

    Moreover, th e fo l l o wi ng GPS p os it io n s were computed i n

    real - t ime and recorded on 3.5 d is ke t te s or 4 t ra ck tape:

    1. TI-4100 (Munich), a f t e r A p r il 27 th e TI-4100 (Hannover)

    us ing the Nor tech rea l - t ime nav iga t i on

    sof tware

    2. Tr imble, usin g th e rece iver software

    3. Sercel, us ing the receiver sof tware (n ot involved here)

    5.

    GPSFIX program

    I n order t o post-process th e TI-4100 raw data new soft war e

    was developed a t th e F ac ul ty of Geodesy on t he V X 750 computer.

    Various s ubro utin es, which had been developed be fo re ( c f . de Jong,

    1985 and Viss er, 1988) were u t i l ze d here. However, these

    subrou t ines had t o be converted from HP Basic 3.0 t o F or tra n 77.

    Th

    convers n was necessary, because th e HP computer cou l d no t

  • 8/16/2019 32 Haagmans

    19/132

    handle such la rge amounts o f data w i th in a reasonable pe r io d o f

    t ime.

    S in ce t h e s t r u c t u r e o f such a n a v i g a t i o n p rogram i s g e n e r a l l y

    known, o nl y some main fea tur es are pre sented here. The na vig at i on

    program GPSFIX has the fol lowing steps:

    1. rea d TI-4100 raw data 8 b i t numbers) i n Hannover or

    She1 format

    2. decode th e data blo cks ( ephemeris o r measurements )

    3 . compute s a t e l l i t e coord in ates f rom Broadcas t Ephemer is

    4. compute pseudoranges o r Doppler ai de d pseudoranges, u s in g

    e i t h e r P o r S code and app ly i onospher i c co r re c t i on and

    t ropospher ic cor rec t ion for a s tandard a tmosphere

    5. compute p o s i t i o n and v e l o c i t y ( e i t h e r fr om 4 s a t e l l i t e s o r

    fr om 3 s a t e l l i t e s w i t h f i x e d h e i g h t o r f ro m two s a t e l l i t e s

    w i t h f i x e d h e i gh t and f i x e d c lo c k o f f s e t )

    The menu op t i on s o f th e GPSFIX program are pres ente d below i n

    tab le 2 .

    RUN

    GPSFIX

    e n te r r e c e iv e r t yp e ( t i o r t r i m b l e )

    t

    she1 o r hannover data (1 or 2 2

    enter input dataset name

    enter output dataset name

    un fo rmat ted ou tpu t ( y o r n ) n

    s t o r e u s e r s o l u t i o n ( y o r n ) [ n

    en te r i t e s t [ no test=O, leve l=1 ,2 ,3 ,4 )

    [

    0

    e nt er l a t i t u d e ( dd,mm,ss)

    en te r lo ng it ud e (ddd,mm,ss)

    en te r he igh t (m)

    e n t e r a p r i o r i s .d . o f l a t i t u d e (m) 1000.001

    en te r a p r i o r i s .d . o f l ong i t u de (m) 1000.00 ]

    en te r a p r i o r i s .d . o f he i gh t (m) 5 .001

    e n t e r a p r i o r i s .d . o f b i a s (m)

    [

    100000000.00

    e nt er a p r i o r i S d. o f pseudoranges (m) [ 4.001

    en ter minimum el ev at io n (degr) 5.001

    en te r d r y t emperatu re

    (c) 15.001

    en ter wet temperature (c ) 12.001

    en te r p ressu re

    (

    mbar

    )

    1012.001

    do pp le ra id o r normal (dopp le r o r no rma l ) [ dopp r ]

    S

    d. o f phase measurements (c yc le s) 0.021

    Table

    2.

    Menu of the GPSFIX program

  • 8/16/2019 32 Haagmans

    20/132

    The unknowns are est ima ted f rom th e f o l lo wi ng equat ion:

    where:

    dX

    =

    vec to r of co r r ec t i ons

    (

    Ap AA Ah AT T

    dL

    =

    vector of observed minus computed pseudoranges

    A = d e si g n ma t r i x

    P = weigh t ma t r i x o f t h e observa t ions

    L

    Px = w ei gh t ma t r i x o f t h e unknowns ( f o r f i x i n g t h e h e i g h t

    o r f i x i n g t h e h e i gh t and t h e c lo c k o f f s e t )

    The c l oc k d r i f t A can be determined f rom the prev ious c lock

    o f f s e t s AT b y means o f a r e g r e ss i o n l i n e . Th i s c l o c k d r i f t i s use d

    f o r t h e p r e d i c t i o n o f t h e f i x e d c l o c k o f f s e t , when o n l y tw o

    s a t e l l i t e s a r e a va i la b le f o r p o s it i on i ng .

    The v e l o c i t y can be es t ima ted i n a s im i l a r way us i ng the same

    d e si g n ma t r i x ( c f . S mi t, t h i s i s su e ) .

    An example o f th e ou tpu t data i s shown i n appendix 3. Each

    r e c o r d o f p o s i t i o n f i x c on ta in s t h e f o l l o w i n g d ata :

    -dat e [yymmdd] and ti me [ S ]

    - l a t i t u d e [ d e g ], l o n g i tu d e [ d e g l, h e i g h t [ m l , cl o c k o f f s e t [ m]

    - cl oc k d r i f t w i t h i t s st an da rd d e v i a t i o n [m /sl

    -speed [m/sl and headin g [d eg l

    -number o f s a t e l l i t e s used f o r t h e p o s i t i o n f i x

    -es t imated s tandard dev ia t io ns o f th e unknowns [m]

    - t ra cke d sa te l l i t e s (s at el l i t e PRN numbers) and GDOP

    6

    Transfo rmat io n between

    WGS7

    and ED5

    Tra nsfo rma t i o n between WGS72 and ED50 was c a r r i e d o u t i n a

    l o c a l

    sys tem us in g seven t rans fo rmat io n parameters accord i ng to :

  • 8/16/2019 32 Haagmans

    21/132

    where:

    XWCS7

    =

    v e c t o r o f GPS c o or d in a te s i n WGS7 (X Y Z IT

    = vec tor o f te r r e s t r 1 ED50 coord i na tes (X Y Zpl

    X

    =

    c e n t r e o f t h e s h i f t e d l o c a l syste m

    XT

    =

    vec to r o f t r an s l a t i o n paramete rs (X

    T YT

    S

    = s c a l e f a c t o r

    R = d i f f e r e n t i a l r o t a t i o n m a t ri x as fo l lo w s :

    The f o l l o w in g values ob ta in ed from th e NEDOC-project (H us t i , 1983)

    a re used f o r th e t r ans fo rma t ion pa rameters:

    The cen t re o f the lo ca l sys tem i s g i ven by the mean va lues o f th e

    Doppler coo rd ina te s of th e NEDOC s ta t io n s (Leeuwarden, Ko ot wi jk,

    Her ike rberg, Tongeren, D e l f t , Axel , Herstmonceau and Kessin gland) ,

    which were used f o r t he determi na t n of th e above tr a ns f ormat n

    parameters:

    The inverse t rans f orma t ion can be der ive d f rom equat ion (3) and

    i s g i v e n b y:

  • 8/16/2019 32 Haagmans

    22/132

    The p r e c i s i o n o f t h i s t r a ns f o rma t i o n i s es t ima t ed t o b e b e t t e r

    th an 1 me tre. The smal l d i f f e r e n ce s between T ra n s i t WGS72 and GPS

    WGS72 ar e ne gl ec te d.

    The post-p roc ess ing was ca r r i e d ou t on th e VAX 750 a t th e

    Fa cu lt y o f Geodesy. The fo l l ow in g prepa rat i ons had t o be done

    f i r s t :

    a. t he 3 .5 d isk e t te s con ta in i ng r ea l - t im e po s i t io ns and raw

    data were tr a n s fe r re d from HP217 t o VAX u si ng a HP con vers ion

    program

    b. th e GPS raw data (dat a bloc ks wi th 8 b i t numbers) were copied

    t o

    9

    t ra ck tape by She l l and the Hannover U ni ve rs i t y

    c . deve lopmen t o f va r ious so ftware , i n o rde r t o ca r r y ou t

    t rans fo rma t ions , f i l e se lec t io n , t ran s lo ca t i on and comparison

    o f d i f f e r e n t t yp e s o f p o s i t i o n in g systems.

    The f o l lo w in g sof tware was developed i n For t ra n 77:

    GPSFIX GPS n av ig a t i on program

    TRANS tr ans fo rm a ti on between WGS72 and ED50 i n t h r e e st ep s

    1. v,A,h (WGS72)

    >

    X,Y,Z (WGS72)

    2. X,Y,Z (WGS72) > X,Y,Z (ED50)

    3. X,Y,Z (ED50) > v,A,(h) (ED50)

    SELECT reads var i ous po si t i on f i l e s , checks, se le ct s and

    w r i t e s t o a b i n a r y p o s i t i o n f i l e (BPF), w hich can

    be read by a l l t he fo l lo w i ng p rograms

    READBF reads th e b i na ry po si t i on f i l e s (BPF) and conver ts

    them t o ASCII f i l e s

    TRANSLOC: pr epa res d i f f e r e n t i a l GPS com puta tion :

    1. r e a ds two s imul ta ne ou s b in a r y p o s i t i o n f i l e s f o r

    the re fe rence and the moving s ta t ion

    2. f i n d s th e correspon ding rec ords and checks whether

    f o r ins tance the obse rved s a te l l i t e s and the used

    ephemer is da ta a re iden t ica l

    3. computes a p o s i t i o n co r r e c t i o n p e r f i x a t t h e

    r e fe r en c e s t a t i o n and a p p l ie s t h i s c o r r e c t i o n t o

    the mov ing s ta t ion

  • 8/16/2019 32 Haagmans

    23/132

    4. ou tpu t: co r rec ted b i na ry pos i t i on f i l e o f t he

    moving stat ion

    COMPARE 1. reads two bi na ry p o s it io n f i l e s (BPF) which ar e t o

    be compared, and f in d s the corresponding po si ti on s

    ( i f necessa ry by i n te rpo la t i on )

    2. c orr ect s the GPS po si t i on f o r antenna o f f s e t and

    transforms from

    WGS72 t o ED50

    3.

    computes the po si t i on di f fer en ces and standard

    devi a t ns

    4. output: a. p rec i s i on/accuracy anal y s i S

    b. p l o t f i l e

    f lo w ch ar t o f the post-processing i s presented i n appendix

    4. The l e f t hand sid e shows th e pr oces sing o f th e r e a l -time GPS

    po si t io ns and the var ious rad io pos i t i on in g systems, such as

    Syledis, H i f i x and Hyperf ix. The r i g h t hand sid e shows the

    post-processing using the program GPSFIX.

    The posi t ion f s obtained f o r t he v ari ous systems can be

    compared and analysed by th e program COMPARE. The subjec ts below

    w i l l

    be t rea ted i n the sequel :

    -

    zero base l i n e te s t i n Haarlem

    -

    reference stat ions Haar lem/Delf t

    -

    comparison of pos i t io ns f rom H i f i x and Syled is

    comparison of real- t i me po si t io ns from Tr imble and Syledis

    comparison of pos i t io ns f rom TI-4100 t o Syled is ( inc lud ing

    t ra ns l oca t i on)

    -

    t r an s lo c a t io n between two GPS re cei ver s on board of Hr.Ms.

    Tydeman

    launch exper iment ( in c lu d in g t ransloc at ion )

    Some p a rt s o f t he na vig ati on data have already been in ve st ig at ed

    ( c f . S mit, 1988 or Visser, 1988).

    8

    Zero base l i n e te s t

    i n

    Haarlem

    On Ap ri l 21 two TI-4100 rece ivers of the Munich Un iv er si ty o f

    Technology and No rtech Surveys were se t up a t Haarlem and

  • 8/16/2019 32 Haagmans

    24/132

    connected t o the same antenna u si ng a beam s p l i t t e r . The

    ob se rv at io ns were re co rd ed fro m 14:OO t o 18:15 UTC.

    The po s i t i on d i f fe r enc es between two rece ive rs , ob ta ined f rom

    sep ara te com putations us in g th e program GPSFIX w i th P code non

    smoothed pseudoranges are presented i n appendix 5. Dur ing t he

    f i r s t hou r, where exact l the same sate1 l e s and ephemer were

    used f o r b oth computat ions, the re i s good agreement: th e nois e

    lev e l i s approx imate ly 1.2 meter. I n th e next pa r t , when on ly two

    s a t e l l i t e s were ava i l ab le and no a tomic c lo ck was used, the re i s a

    remarkable c lock d r i f t e f fe c t . S ince each rece ive r uses i t s own

    in t e rn a l qua r t z c lock , such a c lock d r i f t can be expec ted.

    9

    Reference s ta t i on s Haar lem and D e l f t

    Dur ing th e f i r s t week o f th e NAVGRAV pr o j e c t one on-shore

    TI-4100 r ec ei ve r (Nortech Surveys) was obse rving simu lta neo usl y

    wi th th e GPS re ce iv er s on board o f th e Hr. Ms. Tydeman, f i r s t a t

    Haarlem (A p r i l 21-25) and then a t De l f t ( Ap r i l 25-28 ), i n o rde r t o

    be ab le t o p rocess i n t rans loca t ion mode. The s ing le p o i n t r es u l t s

    a re d iscussed he re separate1 y, whi l e t he t rans loca t ion re su l t s

    us ing these re fe rence pos i t i ons

    w l l be d iscussed i n sec t io n 12.

    The known t e r r e s t r i a l coo rdi nat es and th e computed mean value

    o f t h e GPS p o s i t i o n s ar e shown i n t a b l e 3. The trans for me d WGS72

    coord ina tes are ob ta ined f rom ED50 coord ina tes ( c f . equat ion ( 3 ) ) .

    s ta t ion : Haar

    l

    m D e l f t

    ED50

    52 23 13.226

    ( t e r r e s t r i a l )

    4 37 05.666

    h 17.00 m

    I I1

    p 52'23 10.44

    51'59 10.00

    WGS72 4 3 7 0 0 . 1 3

    4 23 14.33

    (trans form ed) h 66.59 m

    77.75 m

    I I

    52'23 10.36

    51 59'09.67

    WGS72 4 3 7 0 0 . 6 1

    4 23 14.16

    (by GPS) h 66.78 m 67.45 m

    Table 3 Coordinates of the reference stations

  • 8/16/2019 32 Haagmans

    25/132

    Di f f e re nce s be tween s t a t i on a i r y 3-D po s i t i on s and t h e i r mean

    v a l u es a r e p l o t t e d f o r t h e s t a t i o n s H aarlem and D e l f t :

    Appendix 6: Stat ion Haar lem:

    P

    code non-smoothed pseudo range

    Appendix

    7:

    S t a t io n D e l f t

    :

    P code non-smoothed pseudo range

    Appendix

    8:

    S t a t io n D e l f t

    :

    P code Dop pler -aid ed pseudorange

    Appendix 9:

    S t a t io n D e l f t

    :

    S code non-smoothed pseudorange

    The s i n g l e p o i n t p o s i t i o n i n g w i t h P code y i e l d s g e n e r a l l y

    e x ce l l e n t r e s u l t s . The o b t a i n e d d i f f e r e n c e s w i t h t h e known v a l u e s

    a r e w i t h i n 10

    m

    (appendices

    6

    and 7 . Computat ion wi th Doppler

    a ide d pseudorange g iv es a lower no i se l ev e l , bu t no improvement i n

    accuracy (appendix 8 . The p os i t io n i ng us ing S code g iv es a much

    h i g h er n o i s e l e v e l and i n t h i s case sm a ll s y st e m at ic e r r o r s

    (appendix 9 ) .

    10.

    Com parison o f p o s i t i o n s f r o m H i f i x and S y l e d i s

    The p r e c i s i o n o f H i f x and S y l e d i s d i s t a n c e o r d i s t a n c e

    d i f f e r e n c e measurements i s e s t im a t e d t o be 1 2 metres. However,

    bo th sys tems may have much la rg er sys tem at ic p o s i t io n er r o rs due

    d i f f e r e n t r e f e r e n c e system s, t o c a l

    i

    r a t o n e r r o r s and t o t h e

    i

    f

    l

    ence o f th e geometr i c

    i

    t e r s e c t

    i

    n. Therefore

    i i

    common

    p r a c t i c e t o c a r r y o u t a l o c a l r e - c a l i b r a t i o n b y a p p l yi n g l o c a l

    c o r r e c t i o n s , i n o r d e r t o remove t h e s y s te m a ti c e r r o r s and t o

    improve the ex terna l accuracy .

    comparison between th e two systems, wi th ou t any

    r e - c a l

    i

    r a t

    i

    n , measured

    i

    an area o f good coverage,

    i

    shown

    i n appendix 10. Obvious1y t h e r e a lw ay s e x i s t s a c e r t a i n s y s t e m a ti c

    e r r o r b etw een t h e t w o p o s i t i o n i n g sys te ms, i n t h i s s p e c i a l c as e an

    average o f

    6.6 m

    i n l a t i t u d e a nd 3. 8 m i n l on g i tu d e . The e r r o r

    d i s t r i b u t i o n i n f i g u r e 2 shows th e same sys tem ati c e r ro r s . The

    s t an d ar d d e v i a t i o n s o f t h e d i f f er e n c e s a f t e r e l

    i i

    n a t

    i

    n o f t h e s e

    s y s te m a t ic e r r o r s ar e :

  • 8/16/2019 32 Haagmans

    26/132

    I n th e se s ta n d ar d d e v i a t i o n s t h e i n f l u e n c e o f b o t h S y l e d i s and

    H i f i x p o s i t i o n e r r o r s a r e i n v ol v ed . Thus t h e p r e c i s i o n o f each

    system may be about 2

    metre

    i n po s i t i on ) , wh ich seems reasonable .

    ,numbe of observations ,numbe

    of observ tions

    Figure

    2.

    Latitude and longitude differences. Hifix - Syledis

    m)

    However, th e sys temat ic p os i t io n er r or s , which are expected t o be

    a t a 3-5 m etre s l e v e l a r e d i f f i c u l t t o de te rm in e. t should be

    p o i n t e d o u t t h a t t h i s p o s i t i o n a cc ur ac y does n o t a1 low t o e v a l u a t e

    GPS p o s i t i o n s b e t t e r t h an t h i s l e v e l .

    11 Comparison of positions from Trimble and Syledis

    The T r imb l e 4000A r e c e i v e r y i e l d e d v e r y s a t i s f a c t o r y r e s u l t s

    t h ro u g ho u t t h e w hole p e r i o d and p ro v i d ed r e l i a b l e p o s i t i o n s a t 15

    seconds in t er va ls . An example o f these rea l - t im e po s i t i on s

    compared t o Sy le d is i s shown i n appendix

    11

    From the d i f f e rences

    i n c l u d i n g s y st e ma t ic e r r o r s ) t h e f o l l o w i n g s ta n da r d d e v i a t i o n s

    are ob ta i ned:

    T h i s r e s u l t , o b ta i ne d f ro m 911 p o s i t i o n f i x e s a t i n t e r v a l s o f 15

    seconds , i s qu i t e good f o r a s in g le f requency rece ive r . The e r r o r

    d i s t r i b u t i o n s o f t he se d i f f e r e n c e s ar e shown i n f i g u r e 3.

  • 8/16/2019 32 Haagmans

    27/132

      wnber

    of observations

    ,number

    of observat~ons

    Figure 3. La t i t ud e and lon gi tu de d i f feren ces. Tr imble-Sy led is

    m)

    12. Comparison o f po si t i on s from two TI 4100 receivers and Sy led is

    number of TI-4100 p os it io n s obtained on board o f th e Hr.Ms.

    Tydeman were pos t-pr ocessed w i t h t h e GPSFIX program. The si n g l e

    pos it ns obt ain ed by th e Munich and Hannover r ec e iv e rs on Apr

    25, i n th e same obser vat ion per iod usin g P code) are compared t o

    Syledis, a f t e r re duc t ion o f b oth GPS antenna po si t i on s t o the same

    refere nce po int . The d i f fer enc es are p lo t t e d i n appendices 12 and

    13 re sp ec t iv ely , showing a pre cis ion o f about 10 metres.

    I f

    we compare the p o s it io n dif fe re nc es o f th e two GPS

    re ce ive rs on board c f . appendix 14) we may conclude t h a t the re i s

    no s ign i f i can t d i sc repancy .

    I n ad di

    t

    n, th e observat ns co l

    l

    cted by the Hannover

    receiver on Apr i l 25 ar e als o processed as Doppler aide d

    pseudoranges, compared

    w i t h Syl ed i

    S

    and p1otted appendi

    X

    15.

    Thi

    S

    gi ve s some mprovement i n p r e ci s io n and accuracy. Compared

    w it h th e s ta ti on ar y measurement shown i n appendix

    8, it has a

    higher no ise leve l pos s ib l y caused by Sy led is .

    The Hannover rec ei ve r observa tions o f Apri l 25 were also

    p rocess ed i n t r ans l oc a t i on mode r e l a t i v e t o t h e s ta t i o n D e l f t . The

    d i f f e r enc es w i t h t he Sy l ed is po s i t i ons a r e p l o t t e d i n appendix 16.

    f these r e s u l t s are compared w i t h those of appendix 13, i t

    appears th a t some improvement o f th e accuracy i s obtained i n

  • 8/16/2019 32 Haagmans

    28/132

    tr an sl oc at io n mode sin ce the slopes are removed. The nois e le ve l

    inc lud ing Syled is) i s now below 3 m The gaps i n the p l o t i n

    appendix 16 are caused by the f a c t t h a t no t always th e same

    s a t e l l i t e conf igura t ion was observed by both rece ive rs. I n case of

    d i f f e r en t sate1 l i t e con f igu ra t ions o r ephemeris o f d i f f e r en t ages,

    th e p o s i t i o n f i x e s ar e ign ore d by program TRANSLOC.

    13.

    Launch experiment

    On Apr 24 a l unch exp eri ment was c a r r i e d ou t. A TI-4100

    rece ive r and a H i f i x rece iver were i ns ta l l e d i n the launch, which

    was s a i l i n g near th e Hr.Ms. Tydeman a t dist anc es of up t o 4 km.

    t

    was intended t o inv es t ig at e the accuracy of d i f f e r e n t ia l GPS

    between two moving vessels a t s hort di st an ce . Thus, we have a GPS

    posi

    t

    n d i

    f f

    erence and a corresponding Hi

    f

    pos i t n d i f f e rence

    between the Hr.Ms. Tydeman and the launch, which can be compared.

    Th exper ment was, however, no t successf U l because the T I 41 00

    re ce iv er on board o f th e H r. Ms. Tydeman was se t t o

    S

    code

    operato r mistake), wh i le the TI-4100 rec eive r on the launch set

    t o P code. The re su l t s o f

    the computations were very poor.

    The launch po si ti on s obtain ed from the TI-4100 data were

    compared i n the fo ll ow in g way:

    a. The s in gl e GPS po si ti on s a re compared t o t he H i f i x

    po s it io ns , both measured on board o f th e launch. The

    re s u l ts shown i n appendix 17 are very sa t i s f ac to ry s ince

    a preci s ion i n l a t i tu de and long i tude of about 2 metre and

    systemat ic er r or s o f 4 .1

    m

    and 13.6

    m

    respect i ve ly a re

    achieved. These system atic e rr o r s are of co urse caused by

    both H i f and GPS.

    b. Next the GPS po si ti on s are improved by tr an sl oc at io n

    re la t i v e t o the s t a t ion Haarlem and compared t o H i f i x

    po si ti on s. The re s u lt s presented i n appendix 18 show no

    signi f icant improvement.

    14. Conclusions

    The Sy ledis and H i f i x po si t i on in g systems, used as a

    re fe rence dur ing the p ro jec t , y ie ld a p rec is ion o f about

    2

    m i n

    l a t i t u d e and longitu de. However, th e systematic e rr or may be 3 -

    5

  • 8/16/2019 32 Haagmans

    29/132

    metres. Thus th e GPS p o s it i o n s can on ly be eva luat ed wi th th e same

    accuracy leve l .

    The Tr mbl e 4000A in te rn al softwa re pro v ide d re a l - t ime

    r e 1 a b l e p o s i t i o n s w i t h a s t an d ar d d e v i a t i o n o f 10 - 20 m b y S

    code c o n t r i b u t i o n o f H y f i x / S yl e d i s i s in c lu d e d) .

    The T I-4100 rece ive rs p rov ided good re su l t s a f t e r

    post -processing. The s tandard dev ia t i on fo r a po s i t i on w i thou t

    t r a n s l o c a t i o n i s es ti m at ed t o 10

    m

    us in g P code, and 10

    -

    20 m

    u s i n g S code c o n t r i b u t i o n o f H y f i x /Sy l e d i s i s i nc l u d e d) . The

    t ra ns loc a t io n mode y i e l ds a s tandard dev ia t i on o f about 3

    m

    i n c l u d i n g Sy l e d i s n o is e.

    15

    L i t e r a t u r e

    Hatch, R. R. 1986) : Dynamic d i f f e r e n t i a l GPS a t th e cent imeter

    lev e l . P roceedings o f the Four th In t e rn a t io na l Geode ti c

    Symposium on S a t e l l i t e Po si t io nin g, Aust in , Texas.

    Jong, C.D. de 198 5): P r a c t i c a l Work on GPS. Tr ai ne e Re po rt,

    D e l f t Un ive rs i t y o f Techno logy , Fac u l ty o f Geodesy.

    Lachapel le, G. and N. Beck 19 82 ): NAVSTAR GPS S in g le P o i n t

    Po s i t i on in g a t She l tech Canada

    -

    Pre l im ina ry Resu l ts . The

    Canadian Surve yor, vo l. 36, no. 1.

    Lachapel le , G.

    W

    Falkenberg,

    M

    Casey 198 7): Use o f Phase Dat a

    f o r Ac c ur ate D i f f e r e n t i a l GPS K in e ma ti c Po s i t i o n i n g . B u l l e t i n

    Gbodesi que, vo l. 61 no. 4.

    S lu i t e r , P.G. and G.J. Hus t i 1987) : Eva lu at io n o f th e TI -user

    s o l u t i o n i n dynamic mode. M arine Geodesy, vo l. 11, no. 1.

    Smit, J.H.M. 1988): Sea grav ime try and Eotvos co rr ec t i on .

    Graduate thes is , D e l f t Un iv e r s i t y o f Techno logy , Fa cu l ty of

    Geodesy.

    Vi sse r, J.L.M. 1988): GPS pl aa ts be pa li ng op zee. Graduate th e si s,

    Del

    f t

    Un iv er s i ty o f Technology, Fa cu l ty o f Geodesy.

  • 8/16/2019 32 Haagmans

    30/132

  • 8/16/2019 32 Haagmans

    31/132

    1 Equipment i n the pe r i od Ap r i l 23-29

    2 Equipment i n th e p e ri o d May 1-13

    3 Ou tput d ata o f t h e GPSFIX program

    4 Flow diagram of th e post-processing

    5 Zero base l ine te s t i n Haarlem ( Ap r i l 211

    6 Reference sa t i on Haar lem ( A p r i l 24)

    7 Re fe re nc e s t a t i o n D e l f t ( A p r i l 2 5)

    8 Re fe re nc e s t a t i o n D e l f t [ D o pp l er a i d e d ] ( A p r i l 2 5)

    9 Re fe re nc e s t a t i o n D e l f t [ S c od e ] ( A p r i l 2 6)

    10 Comparison H i f i x t o Sy led is (A p r i l 241

    11 Comparison Tr imble t o Sy l ed is (A p r i l 24)

    12 Tydeman: GPS (TI/M) S yl ed is ( A p r i l 25)

    13 Tydeman: GPS (TI/ H) S yl ed is ( A p r i l 25)

    14 Tydeman: GPS (TI/M) GPS(TI/H) ( A p r i l 25 )

    15 Tydeman: GPS (TI /H/Doppler a ided ) - Sy l e d i s ( Ap r i l 2 5 1

    16 Tydeman: GPS tT I/H /tr an slo c) S yl ed is ( A p r i l 25)

    17 Launch: GPS tTI /H )

    -

    H i f i x

    18 Launch: GPS (T I/ H/ tr an sl oc ) - H i f i x

  • 8/16/2019 32 Haagmans

    32/132

    G

    c

    e

    3

    5

    f

    o

    N

    e

    N

    d

    s

    d

    v

    s

    w

    e

    N

    o

    d

    a

    H

    l

    o

    n

    D

    g

    d

    a

    C

    u

    m

    t

    a

    e

    d

    f

    e

    R

    d

    a

    a

    s

    a

    d

    r

    a

    d

    a

    N

    e

    s

    m

    a

    n

    m

    s

    t

    C

    H

    A

    R

    T

    R

    O

    O

    M

     

    s

    e

    e

    G

    c

    e

    H

    I

    n

    e

    e

    Y

     

    P

    o

    T

    m

    N

    e

    s

    u

    o

    d

    s

    d

    v

    G

    a

    P

     

    d

    a

    o

    n

    3

    5

    f

    o

    d

    s

    d

    v

    P

    o

     

    S

    e

    s

    6

    p

    o

    n

    N

    g

    o

    c

    e

    I

    N

    O

    i

    n

    o

    m

    a

    o

    2

    H

    H

    x

    m

    a

    S

    eQ

    f

    a

     

    T

    V

    d

    d

    s

    a

    f

    o

    n

    g

    o

    o

    h

    b

    d

    N

    e

    s

    u

    o

    a

    p

    s

    p

    s

    C

    G

    T

    O

    d

    n

    N

    G

    O

    e

    m

    e

    o

    W

    o

    b

    d

    H

    M

    T

    m

    a

    8

     

    s

    a

    d

    d

    a

    o

    n

    p

    n

    e

    o

    q

    o

    i

    n

    o

    m

    a

    o

     

    G

    c

    e

    I

    [

    T

    o

     

    d

    s

    d

    v

    d

    a

    o

    n

    R

    W

     

    i

    n

    e

    n

     

    t

    a

    d

    v

     

    f

    o

    g

    a

    y

    R

    m

    u

    d

    a

    o

    n

    p

    <

    o

    n

    L

    A

    B

    1

    G

    c

    e

    H

    d

    s

    d

    v

    R

    G

    d

    a

    H

     

    G

    R

    A

    V

    I

    T

    Y

     

    R

    O

    O

    M

     

    G

    r

    a

    y

    m

    e

    e

    T

    G

    A

    p

    n

    x

     

    E

    q

    pm

    e

    n

    n

    h

    p

    o

    A

    p

    2

    2

  • 8/16/2019 32 Haagmans

    33/132

  • 8/16/2019 32 Haagmans

    34/132

  • 8/16/2019 32 Haagmans

    35/132

  • 8/16/2019 32 Haagmans

    36/132

  • 8/16/2019 32 Haagmans

    37/132

  • 8/16/2019 32 Haagmans

    38/132

  • 8/16/2019 32 Haagmans

    39/132

  • 8/16/2019 32 Haagmans

    40/132

  • 8/16/2019 32 Haagmans

    41/132

  • 8/16/2019 32 Haagmans

    42/132

  • 8/16/2019 32 Haagmans

    43/132

  • 8/16/2019 32 Haagmans

    44/132

  • 8/16/2019 32 Haagmans

    45/132

  • 8/16/2019 32 Haagmans

    46/132

  • 8/16/2019 32 Haagmans

    47/132

  • 8/16/2019 32 Haagmans

    48/132

  • 8/16/2019 32 Haagmans

    49/132

    changes o f speed and course o f t he ship. The smoothing sp l i n e

    program has the advantage th a t i t computes automat ica l ly the

    d e r i v a t i v e o f a f u n c t i o n w hich i s i n t h i s case t h e r e q u i r e d speed

    o f t h e s h i p i n n o r t h and e as t d i r e c t i o n .

    The grav imeter has a s t ro ng magnetic and el ec t r on ic al damping

    i n o rd e r t o re duc e t h e i n fl u e nc e o f t h e v e r t i c a l a c c el e ra t io n s o f

    th e sh ip. However, t h i s damping causes a s low rea ct io n on course

    and speed changes. A f te r a change i t takes about 15 minutes befo re

    the g rav i me te r i s t a b i

    l

    ed ag ai n. The co urs e and speed changes

    are o bta in ed f rom the smoothed po s i t on datase t . A l p e r i o d s w i t h

    changes are removed f rom the dataset , re su l t in g i n a c lean datase t

    w i t h o n l y s t r a i g h t l i n e t ra c ks .

    t should be emphasized that

    f

    i e r i n g and c le a n i n g t h e

    p o s i t i o n datase t was a t ime consuming and pr ec is e job. A l l

    i r r e g u l a r i t i e s were i ns p ec te d and a na ly ze d i n d i v i d u a l l y . t was

    the most

    i

    mportant p a r t o f th e who1 e computat n, because

    u n de te c te d i r r e g u l a r movements o f t h e s h i p r e s u l t i n l a r g e e r r o r s

    i n t h e g r a v i t y an omali es , w hich can p o s s i b l y l e a d t o f a l s e

    geophys ica l i n t e rp re ta t ions .

    3. G r a v i m e t e r r e g i s t r a t i o n

    The grav imeter outpu t o f th e Kss-5 grav imeter D e l f t l was

    recorded on a HP9845 computer , toge ther w i t h th e p o s i t io n s and

    t ime. Every 10 seconds the grav imeter obs ervat i on was rea d by the

    computer and th e mean va lu e over one min ute 6 re ad in gs ) was

    recorded on magnet ic tape. Th is gave t he p o s s i b i l i t y t o

    immed ia tel y de tec t and e l im ina te g ross e r r o r s i n t he read ings ,

    s i nc e the 6 read ings shou ld be c lo se tog eth er . The same technique

    was used f o r th e po s i t io ns and t ime. The t ime as rece iv ed from the

    main cloc k on board was compared w i th t h e in te rn a l computer clo ck.

    f

    t he d i f f e r en ce was t oo b i g t he e r ro r was us ua l l y caused by t he

    da ta t ransmiss ion and cou ld be co r rec ted f o r .

    The g ra v i t y read ings were a l so s l i g h t l y smoothed by t he

    smoothing spl i e program. The program i s used ma inl y t o t e s t on

    e r r o r s i n t h e g r a v i t y r e g i s t r a t i o n . T h is way e r r o r s c o u l d be

    c o r r e c t e d f o r .

    The Hamburg g ra v i meter Kss-30 da ta was pro ces sed

  • 8/16/2019 32 Haagmans

    50/132

    i

    dependent . The ou tp ut was rec ord ed on magnetic tape , to ge th er

    w i t h t he s h ip s gy ro and log . The p re l im ina ry g r a v i t y anomal ies

    were computed a t once.

    4

    omputation of the gravity anomalies

    The g ra v i t y va lues ( i n mgal 1 are computed w i t h t he f o l ow ing

    formula:

    aR

    g = S - ( R

    --•r

    t dgE ~ . tC H

    where:

    g = g r a v i t y

    S = c a l i b r a t i o n c on s ta n t o f t h e g r av i me t er = 1 060

    R = read ing o f t he g ravime ter

    aR = change o f read ing per t ime u n i t , computed f om the

    sp l ine program

    = t ime-cons tant o f the grav imeter , 200 seconds

    AgE

    =

    Eotvos co r rec t ion

    D

    =

    d r i f t o f t he g rav ime te r computed f rom a ha rbour

    connect ion before and af ter the measurements

    t = t i me s i n c e b e g in n i n g o f t h e c r u i s e

    C = cross -cou pl in g co rr ec t i on computed f rom measured

    hor izo nta l acce lera t ions and beam mot ion

    H

    = harbour connect ion.

    H i s computed fr o m t h e g r a v i t y v a l u e i n t h e h a rb ou r, t h e

    g r av ime te r r e a d i n g i n t h e h a rb ou r a nd t h e h e i g h t d i f f e r e n c e

    between the ha rbour g r av i t y s t a t io n and t he wa te r l ev e l . Th is

    c o r r e c t i o n re du ce s t h e c omputed g r a v i t y v a l ue s t o t h e h e i g h t o f

    t he water l ev e l .

    S t r i c t speak ing t he g ra v i t y va lues shou ld a1 so be reduced

    f o r t i d e s , however t h i s c o r r e c t i o n i s u s u a l l y s ma l le r th a n mgal

    and i s neg lec ted.

    The harbour conn ect io n i n Den Helder can be computed w i t h equ at ion

    ( 2 ) u s i n g t h e go and R v al ue s a s p re se nt ed i n t a b l e 1.

  • 8/16/2019 32 Haagmans

    51/132

    Date and tim e 23 A p r il 1986, 11.00 h.

    Gr av i t y value on th e j e t t y : 981323.93 mgal

    Cor r ec t ions t o water leve l 0 .86 mgal

    Grav

    i

    y on water

    l

    ve

    l

    981324.79 mgal

    =

    g

    0

    Gravimeter re ad ing 4328.5

    =

    R

    Table

    l

    H

    =

    go - S-R.

    =

    981324.79 - 1.060 4328.5

    =

    976736.58 mgal ( 2 )

    On

    r e t u r n a f t e r t h e f i r s t p e r i o d on 29 Ap ri

    l

    1986, 12.00 h. t h e

    . ..

    .---

    g ra vi meter re aa i ng was 4 3 ~ ~

    .

    The d r i f t i s 4329.0

    -

    4328.5

    =

    0.5 mgal i n 6 days. Before s t a r t o f

    t h e second pe rio d, 30 Apr i 17.00 h. t he re ad in g was 4329.0 and

    a f t e r re t u r n on 13 May, 11.00 h. : 4328.8, thus a d r i f t o f 0.2 mgal

    i n 14 days. For both per iod s the d r i f t may be neglected, so D was

    se t t o zero dur ing the whole per iod.

    The Eotvos co rr ec ti on i s computed by:

    2 2

    v v

    AgE

    =

    2 V s i n a cosfp - = 2 v

    R

    cosfp

    e a s t

    e e

    where:

    AgE

    =

    Eotvos cor re c t i o n

    =

    ea r th s angu la r v e l o c i t y

    v = s h ip v e l o c i t y

    a

    =

    ship course

    fp

    =

    l a t i t u d e

    R =

    ea r th r ad i us

    e

    The ve lo c i t y v i s ob ta ined d i r e c t l y f rom the sp l i n e program.

    east

    The

    free air anomalies

    Ag were computed b y su b tr a ct in g t h e

    norma

    l

    grav i y f rom th e computed gr av i t y . The Geodeti Reference

    System 1967 i s used f o r the redu ct ion, i n which the normal g ra v i ty

    i

    def

    i

    ed as:

    =

    978 031.85 5185.88 s in 2 fp

    -

    5.74 s i n 2fp mgal

    4

  • 8/16/2019 32 Haagmans

    52/132

    and a f r ee a i r g r av i t y anomaly as:

    The

    Bouguer anomalies

    ar e computed by th e sim ple Bouguer pl a t e

    r ed u ct io n . The Bouguer p l a t e i s an i n f i n i t e f l a t p l a t e w i t h a

    th ickness o f t he loc a l depth and a dens i t y equa l t o the d i f f e re nce

    i n de ns it y between th e cr us t 2670 kg/m3) and th e seawater

    3

    [

    1030 kg/m3 1 so p = 1640 kg/m . The Bouguer anoma l s are:

    = ASFA

    nGpd

    = AgFA 0.0687 d mga l

    where d i s the depth i n meters.

    As t he bot tom o f th e North Sea i s ve ry smooth and the depth

    varies between about 30 m and 60 m,

    t

    i s no t necessary t o compute

    topograph ic cor rect ions.

    5. Computat ion o f th e cross-over po in ts

    An independent check on th e pr ec is io n o f t he measurements i s

    obta i ned a t th e cross-over po in ts and on some repeated l i ne s. The

    NAVGRAV p r o j e c t cont ain ed 350 cross-over p oi n ts . A problem was t o

    d evelop an e f f i c i e n t method t o f i n d t h e cr oss- over p o in t s . T h i s i s

    so lved as fo l lows .

    The whole area was devided i n t o 1 X 1 km bl o cks and each

    b lock was un ique l y numbered. F i r s t , the whole a rea i s d i v i de d in t o

    9

    blocks, numbered 1 t o

    9

    [ see f i gu re 11. Each b lock i s subd iv ided

    a g a i n i n t o 9 b loc ks and so on . The smal les t b loc k i s 1 X 1 km

    .

    The advantage o f t h i s method i s th a t th e same numbering can be

    used t o compute mean b lock anomal ies f o r b loc ks w i th d i f fe re n t

    si de lengths, inc rea sin g wi th a fac to r 3 each t ime, so 1 km, 3 km,

    9

    km, 27 km, 81 km and 243 km.

    The b loc k numbers cons is t o f s i x d ig i ts , e .g. 254268 i s a b lock

    o f 1 X

    1

    km. The f i r s t

    5

    d i g i t s : 25426 i s t h e 3 X 3 km bl o ck and

    2542 i s t h e

    X

    9 km b lo ck i n which t h e p o in t i s s i t u a t e d .

    E ve ry g r a v i t y o b se rv a ti o n i s l a b e l l e d w i t h a s p e c i f i c b l oc k

    number.

  • 8/16/2019 32 Haagmans

    53/132

    F ig u re l Bloc k numbering

    Wit h a ve ry f a s t s o r t i n g r o u t i n e a1

    l

    measurements to ge th er w i t h

    t h e i r l i n e numbers) are so rte d i n sequence o f the b locknumber. The

    bloc ks con ta i n in g measurements f rom d i f f e r e n t l i n e s were

    considered as cross-over poi nts . The observat ion in te rv al a lon g a

    l i n e i s about

    300

    m

    so u su a l l y

    3

    p o i n t s o f a l i n e a re s i t u a t ed

    2

    i ns i de one b lock o f

    X

    1 km.

    The mean va lue o f the se th re e p o i n ts was compared w i t h t he

    mean va lue o f the th ree po i n t s o f th e o ther ne . The d i f fe r enc e

    i s the c ross -ove r po i n t d i f f e re nce and g ives an impression o f t he

    precision of the measurements.

    The NAVGRAV p r o j e c t co nt ai ne d

    350

    cross-over poi nts . The ro ot

    mean square o f t h e di ff er en ce s was 1.08

    mgal

    w hich i s ve ry

    s a t i s f y i n g . A h is to gram o f t he se d i f f e re n ce s i s g ive n i n f i g u re 2.

    59 o f t h e ob served d i f f e re nce s i s le ss t h an m i l l i g a l w hich

    i s be t t e r than expected on beforehand. As th e s tandard dev ia t ion

    o f a d i ff e r e n c e

    i s

    i

    t ime s t h e s t a n d a rd d e v ia t i o n o f t h e g ra v i t y

    measurements t h e

    s ta nd ard d e v i a t i o n o f a s i n g l e g ra v i t y c ro ss -o ve r

    p o in t i s

    1.08/f i = 0.76

    mgal

    As these cross-over p oi nt d if fe re nc es a re caused by random noi se

    t

    i s no t necessary t o co r rec t t h e g r av i t y va lues between the

    cross-over po in ts . The same method i s used t o compute th e

  • 8/16/2019 32 Haagmans

    54/132

    cross-over po i n t s f o r th e measurements f rom a s im i l r p r o j ec t i n

    1979. The cross-over d i f fe re nc es of 1979 ar e presented i n th e

    h i s to g r am o f f i g u r e 3 . t conta ins 188 cross-over po in ts w i th a

    standard dev ia t ion o f 1 .57 mgal.

    Next t h e NAVGRAV measurements ar e compared w i t h t h e g r a v i t y

    measurements observed i n 1979 i n th e same area. One ob je c t i v e o f

    t h e who le p r o je c t was t o s t u d y t h e r e p e a t a b i l i t y and t h e e x t e r n a l

    accuracy o f th e g r a v i t y measurements. Ther efore some l es, which

    were measured i n 1979, have been repeated i n 1986 r e s u l t i n g i n

    1453 check p o in ts both a long t r ac k and cross-over po in ts .

    F igu re 4 shows the h is togram o f a l l c ross-over po in ts o f 1979

    and 1986. 54 o f th e measurements show di f f er en ce s o f le ss than 1

    mgal and th e s tandard dev i a t ion i s 1 .47 mgal. Th is va lue can s t i l l

    be reduced i systemat i errors some

    l

    es ar e removed. The

    rem ain in g standard de vi at io n becomes 1.20 mgal As t h i s va lue i s

    the re s u l t o f t he d i f f e re nce i n two obse rva t ions , each obse rva t ion

    1

    has a r .m.s. o f 1 .20 = 0.85 mgal.

    6. Comparison o f t he two grav imet ers Kss-5 nd Kss-30

    I n or d e r t o check t h e p r e c i s i o n o f t h e g r a vimet er s , a p a r t

    f rom ex te rna l in f luences as e r ro rs i n the pos i t ion , speed and

    course o f the sh ip , bo th g rav imeters were se t up next t o each

    oth er. One Bodensee Kss-5 gravi mete r, belon ging t o th e D e l f t

    Un iv er si ty o f Technology and one Bodensee Kss-30 o f t he U n iv er si ty

    o f Hamburg. The comparison i s made on 8908 measured g r a v i t y

    po in ts . F igu re

    5

    shows a h is togram o f th e d i f fe ren ces.

    Cur i us l y t he re i a systemat i d i f ference of 1 mgal between

    bo th ins trumen ts , p robab ly caused by a d i f f e ren ce i n the

    connec t ion t o the ha rbou r po in t . The s tanda rd dev ia t ion o f a l l

    d i f f e r e n ce s i s 1.12 mgal

    Apart f rom t h i s some l i n e s show a systemat ic d i f f er en ce , caused by

    inaccuracy o f t he cross-coupl ing e f fec t as a re s u l t o f bad weather

    cond i t ions .

    f

    t hese sys tema tic e r ro rs a re co r rec ted fo r , t h e

    r e ma inin g st an d ar d d e v ia t i o n o f t h e d i f f e r e n ce s i s o n l y 0 .61 mgal

    Thi s means th a t bo th g rav imeters cor respond in cr ed ib ly we l l .

    F igu re 6 shows t h e d i f f e r e n ce s a f t e r co r r e c t i n g f o r s ys te ma t ic

    e r r o r s .

  • 8/16/2019 32 Haagmans

    55/132

    7.

    The g r a v i t y anomalies

    The f re e a i r gr a v i ty anomalies are computed w i th the

    te r n a t nal g r a v i t y form ula 1967. Iso-anomal y maps have been

    drawn o f th e 1979 measurements ( f i g u r e 7) and th e 1986

    measurements ( f i g u r e 8 ) . As these maps a re based on complete1y

    independent data they give a good

    im pre ssio n o f t h e r e l i a b i l i t y o f

    t h e r e s u l t s .

    Comparison o f the two maps shows th a t a1 l main features of

    the gr a v i ty f i e l d are the same i n both maps. Only minor

    d i f fe ren ces a re present . Remarkable i s the ra th er i r re gu la r shape

    of the g r av i t y f i e ld , a l though the bottom o f the North Sea i s very

    f l a t . The i r r eg u l a r i t i e s a re caused by s t r uc tu r es i ns i de t he ea r t h

    c r u s t beneath th e sediment lay er . The North Sea Graben ru nn ing

    from North-West t o South-East can c l e a r ly be id en t i f i e d .

    The g r a v i t y map of th e North Sea shows a very d e ta i l e d

    p i c t u r e . t prov ides va luable in form at ion fo r geophysica l

    i n t e r p r e t a t i o n , f o r o i l a nd gas e x p l o ra t i o n and f o r s c i e n t i f i c

    research.

    The most remarkable g r a v i t y anomaly s i tu a t e d a t l a t i t u d e

    55 13 , lon gi tu de 5 38 ( f ig u re 9) . T his anomaly i s very sharp.

    Gravity changes 50 m l g a l wi th in 20 km dist anc e. The to t a l mass

    d is tu rbance cor respond ing t o t h i s anomaly i s equ iva len t w i th a

    cube w it h s id e le ng th o f 10 km and an anomalous de n si ty o f 500

    kg/m On geologica l maps a mass in t r us io n i s ind ic ate d on t h i s

    p lace. Mantle mate r ia l has ascended in to the cr us t up t o a depth

    o f 10 t o 15 km. However the s iz e of th e in t r us io n is , accord ing t o

    th e measurements, pro bably bigg er th an in di ca te d i n the map.

    Bes ides the con tour represe n ta t i on g r av i t y p r o f i l e s have been

    p lo t t e d showing the f r e e a i r and Bouguer anomal ies. The p ro f e s

    r e f l e c t t h e d e t a i l e d s t r u ct u r e o f t h e g r a v i t y f i e l d and ar e s u it e d

    f o r smal l scal e stu di es ( c f . appendi X A).

    7.1.

    Mean block anomalies

    I n the da taset a1

    l

    po in t anomal ie s are s tor ed together w i th

    the coord inates and block numbers, which are descr ibed i n sec t io n

    5 f

    t h e d a ta s et i s s o r te d f o r i ns ta nc e on t h e f i r s t o f 4

    d i g i t s of the blocknumbers, we get a1

    l

    the measurements inside

  • 8/16/2019 32 Haagmans

    56/132

     

    each

    9

    X

    9

    km bl oc k. The mean va lu e of t h e measurement in s l d e

    each blo ck i s th e mean bloc k anomaly. I n t h e same way t i s easy

    t o ob ta in mean b lock anoma li es o f b lock s i zes wh ich a re a

    m u l t i p l e o f 3 t i m es t h e u n f t b l o c k s i z e . F or o t h e r b l o c k s i z e s t h e

    b lo ck numbers should be recomputed which i s an easy job w i t h t he

    e x i s t i n g computer programs.

    navgrav 9 8 6

    gr vity differences on cross points

    millig l

    EZGB 3 5 0 points

    l O S st dev

    igure

    56

  • 8/16/2019 32 Haagmans

    57/132

    gravity 979

    g r a v i t y d i f f e r e n c e s o n c r o s s p o i n t s

    number o f po ints

    Figure

    mil l iga l

    E B B

    1 8 8

    points

    1 . 5 7 st.dev

    navgrav 986

    +

    9 7 9

    g ra v i t y d i f f erences o n cro s s po i n t s

    number of points

    o 0 r

    Figure 4

    mil l iga l

    ZZl 1 4 5 3 points

    1 . 4 7

    st.dev

  • 8/16/2019 32 Haagmans

    58/132

    N A V G R A V D e l f t H am bu rg

    g r a v i t y d i f f e r e n c e s

    number of points

    Figure

    milligal

    EZZ 8908 points

    l 2 st dev

    N A V G R A V D e l f t H a mb ur g

    s m o o t h e d g r a v i t y d i f f e r e n c e s

    Figure 6

    number of points

    milligal

    EZB 8930 points

    0 6 st dev

  • 8/16/2019 32 Haagmans

    59/132

    Figure 7. Free air gravity anomalies in mgal measured in 1979

  • 8/16/2019 32 Haagmans

    60/132

    Figure

    8.

    Free air gravity anomalies in mgal measured in

    1986

    6

  • 8/16/2019 32 Haagmans

    61/132

    N O R T H S E R : G R R V I T Y R N O M R L Y L 5 5 3

    D IS TA NC E I N

    K M

    F U L L L I N E : F R EE A I R RNOM RLY

    L I N E : L 5 5 1 3

    OPEN I E BOUGUER RNUMRL f

    ORl E: WRY   l 9 8

    S I R R I F I N I S H

    W E H . w . S . : 1 5 4 4 5 6 2 9 45

    U.1.W. COOROINRTES X 7 8 8 4 4 4 U 2 7 7 7 5

    c 6 1 2 8 7 3 0

    6 1 1 9 7 8 5

    CEOGRRPHICRL COOROINRTES P H I:

    5 5 . 2 1 9 5 5 . 2 1 8

    LRWBOR:

    7 . 5 3 5 1 . 86 5

    N O R T H S E R : D E P T H L 5 5 3

    O IS TA NC E I N

    K M

    Figure 9 The largest gravity anomaly

  • 8/16/2019 32 Haagmans

    62/132

    8. Literature

    Col lette,

    B.

    J. 1960): The gravity field of the North Sea. Gravity

    expedi t ons 1948-1 958, v01 V, part

    I I

    Nether lands Geodet

    c

    Commission.

    Fleischer,

    U.

    1974): Seegravimetrie. Journal of Geophysics, vol.

    40, no. 1.

    Strang van Hees, G.L. 1983): Gravity survey of the North Sea.

    Marine Geodesy, vol.

    6

    no. 2.

    Vening Meinesz, F.A. 1932, 1934, 1941, 1948): Gravity expeditions

    at sea. Vol.

    I 1 1 1 1 1

    IV, Netherlands Geodetic Commission.

  • 8/16/2019 32 Haagmans

    63/132

    USING GP S SHIP VELOCITY ESTIM TES

    FOR EOTVOS CORRECTION

    J H M Smit

    Delft University of Technology

    Faculty of Geodesy

    l

    Introduction

    I n sea g rav ime t ry the nowadays re a l i z ab le accuracy i s l i m i t ed

    by Eo tvos co r rec t ion e r ro r s . The Eo tvos e f fe c t i s caused by the

    m ot io n o f t h e s h i p r e l a t i v e t o t h e r o t a t i n g e a rt h . T h i s mo ti on

    re su l t s i n a c o r i o l i s a cce le ra t i o n which must be co r re c te d f o r . To

    determine the Eo tvos co r re c t io n t o be t te r than 0 .5 mgal s h ip

    v e l o c i ty e st im at io n w i th an accuracy o f 0 .1 knot (approx imate1 y 5

    cm/s) i s necessa ry . H igh p rec is io n HF o r MF te r r e s t r i a l nav iga t ion

    systems of f e r such accuracy, b u t on1 y near shore. For ocean

    gr av i t y surveys the G lobal Pos i t io n in g System i s a lmost th e on ly

    p o ss ib i l t y t o o b t a i n h i g h p r e c i s i o n s h i p v e l o c i t y e st im at es .

    The NAVGRAV na v ig a t i o n dat a was used t o compare Eo tvo s

    co rre ct ion s computed f rom Syl ed is and Hyper f i x v e l oc i t y est imates

    w it h those f rom GPS v e l o c i ty es t imates (Smit , 1988).

    2 ~ o t v o s orrect ion

    The Eotvos corr ec t io n can be wr i t t en :

    2

    v

    AgE = wv

    E

    cosp

    r

    i n which i s t h e e a r t h s r o t a t i o n a ng ula r v e l o c i t y , v t h e s h i p

    E

    veloci ty east component,

    p

    t h e l a t i t u d e , v t h e s h i p v e l o c i t y and r

    t h e e a r t h r a d iu s . When t h e sh ip ve lo c i t y i s gi ven i n kn ot s, t h e

    Eo tvos co r rec t ion i n mgal i s :

    AgE = 7.503-v cosp + 0.00415-v2

    E

    (2 )

    F ormula ( 2 ) g i ve s t h e co r re c t i o n t o b e added t o t h e g r a v i t y

    measurements. For th e s h i p heading east the g r a v i t y read i ng

    becomes to o smal and the Eotvos co rr ec t io n po s i t i ve . When th e

    eas t ve lo c i t y component i s exa c t l y zero, i . e . when the sh ip i s

    headi ng no r th o r south, t he Eotvos co r rec t ion p rac t a l l zero.

  • 8/16/2019 32 Haagmans

    64/132

    The Eotvos co r r ec t on s tandard de v ia t io n when ne g l ec t in g

    the second t e rm on t he r i g h t hand s id e o f f o rmu la (2 ) :

    i n w hic h

    a

    i s t h e s ta nd a rd d e v i a ti o n o f t h e s h i p e a s t v e l o c i t y .

    v

    Taking p = 52 and t h e req u i re d Eo tvos co r rec t io n s tandard

    d e v i a t i o n a = 0 .5 mgal y i e l d s f o r t h e r e q u i r e d e as t v e l o c i t y

    s tandard dev ia t ion :

    a

    =

    0.1 kno t 0.05 ms- l

    v

    Because o f t he v e l oc i t y accu racy requ i red t he Eo tvos co r re c t i on

    a r e s t r i c t i v e fa c t o r i n sea g ra vi me tr y.

    The Global Po si t i on in g System, when f u l l y deployed, w i l l

    o f f e r h i gh ve lo c i t y accu racy worldw ide, 24 hours pe r day.

    Therefore, GPS i s a pro mis ing development fo r sea grav im etry .

    3. S h ip v e l o c i t y e s t im a t i o n w i t GPS

    Sh ip ve lo c i t y can be es t ima ted w i t h t h e G lobal Pos i t i o n in g

    System u s in g pseudorange code measurements, c a r r i e r phase

    measurements o r a com bin atio n o f thes e measurement type s. The

    pseudorange method and t he combinat ion method y i e l d s h i p p os i t io ns

    a t every ( r ec ei ve r dependent) epoch. The po si t i on s can be

    c on ve rt ed t o s h i p v e l o c i t i e s b y n um eric al d i f f e r e n t i a t i o n . The

    c a r r i e r phase method y i e l d s s h i p v e l o c i t i e s a t e v er y epoch.

    3.1. GPS ps eu do rang ing

    Pseudorange pos i t io n i ng i s re a l i ze d by th e measurement o f

    fo ur pseudoranges between the re ce iv er and fou r s a t e l l i t e s . These

    ranges a re de te rmi ned by c ross -co r re l a t g t h e coded s i gnal

    t ransmi t t e d by (and un ique f o r ) each sate1 l e , w i t h an i d e n t i c a l

    s ig na l generated i n th e re ce ive r . The four unknowns are the

    r e c e i v e r c o o r d i n a t e s X, y , z (or

    p

    h h ) a n d t h e t i me b i a s

    between th e r e ce iv er cl oc k and th e GPS t im e frame.

    The l i n ea r i z ed model f o r pseudorange s in g l e po in t po s i t i on ing

    can be wr i t t en :

    d r = ATdx

    6

  • 8/16/2019 32 Haagmans

    65/132

    where d r t h e ve ct or o f observed minus computed pseudoranges,

    A

    t h e d es ig n m a tr i x c o n ta i n i ng t h e p a r t i a l d e r i v a t i v e s o f t h e

    pseudoranges w i th respect t o rec e iv er car tes i an coord ina tes and

    c lock b ias , T the t rans fo rma t ion ma t r i x f rom geograph ical t o

    ca r tes ian coo rdinates, and dx the vec to r o f co r rec t ion s t o the

    geographical coordin ates and clo ck b i as.

    So lu t i on o f equa t ion 5 ) by a co l lo ca t io n model i s :

    1

    T T

    dx

    =

    P

    + T ~ ~ P

    T) T A P d r

    wh ich a l l ows one o r more unknowns t o be he ld f i x e d b y g i v i ng i t a

    la rge weigh t f ac to r i n the a p r i o r i we igh t ma t r i x o f unknowns P .

    T hi s way any number o f unknowns can be computed l e s s th an o r equal

    t o t h e number o f s a t e l l i t e s a v a i l a b l e .

    The satel

    l

    e ca rt es i an co ordinate s are computed f rom a se t

    o f o r b i t p ara me te rs , an e xt e ns ion o f t h e s i x Ke p le r i a n o r b i t

    parameters. They are found i n the second and t h i r d subframe o f th e

    sa te l l i t e nav i ga t i on message Van Dierendonck e t a l . 1978) .

    The a lgo r i th m descr ibed above y i e l ds po s i t i on est imates Q, A

    h i n a ce r t a i n re ference system a t every rec e iv er dependent )

    epoch. The two systems used f o r GPS a re t h e World Geodetic System

    1972 and 1984. The p o s i t io n s , i n WGS72 o r WGS84, g iven e. g. every

    3

    seconds f o r a TI-4100 rec eiv er, must now be conver ted t o

    ve lo c i t i es , e .g . every 60 seconds, which i s the observa t ion pe r io d

    o f th e gr a v i ty meter. Th is can be done e .g . w i th a le as t squares

    second order polynomial i t o f t h e l a t i t u d e and l o n g i t ud e

    est imates. The second term o f th e polynomial repre sents th e no rt h

    ve lo c i t y and t h e e a st v e l o c i t y a cco rd in g t o :

    The mean ~ o t v o s or re ct io n over 60 seconds computed from:

  • 8/16/2019 32 Haagmans

    66/132

    3.2. PS Doppler smoothed pseudoranging

    A com bina tion o f pseudorange code measurements and c a r r i e r

    phase measurements i s used i n th e case o f Doppler smoothed

    pseudoranging, as des cr ibe d by Hatch, 1982). Hatch, 19861, and

    Lachapel l e e t a l , 1987). Suppose t h a t pseudorange measurements

    ar e ava i bl e on bo th GPS c a r r i e r waves L1 and L2. The L1 c a r r i e r

    w it h a frequency o f 1575.42 MHz i s modulated w i th t he C A code,

    the P code and th e sate1 e navi ga t io n message. The L2 c a r r i e r

    w it h a freque ncy o f 1227.60 MHz i s modulated w it h t he P code and

    th e s a t e l l i t e na vi ga ti on message. The P code pseudorange

    measurements P and PL2 on the L1 and L2 ca r r ie rs , res pec t ive ly ,

    L

    ar e combined i n t o a fre que ncy w eighted average measurement:

    Wit h a TI-4100 re c ei ve r one f i n d s t h e pseudorange code measurement

    centered i n the in te rv a l o f ca r r ie r phase measurement. The c a r r i e r

    s t a r t phase measurement preceeds the code measurement which i t s e l f

    i s fo l low ed by the c ar r i e r end phase measurement. The in te rv a l o f

    c a r r i e r phases i s a constan t 160 m i seconds. Averaging o f

    ca r r i e r s t a r t phase and ca r r i e r end phase y i e l d s t h e c a r r i e r

    phases

    C

    and

    CL2

    on the L1 and L2 carr ier respect ive1y, whichL

    are combined by d i f fe renc ing :

    The d i f f e re nc in g re su l t s i n a longer wavelength whose i n i t i a l

    a mb ig u it y i s ea s ie r t o r e so l ve .

    A smoothed pseudorange can be formed by av era gin g t h e

    measured pseudorange P wi th i t s pr ed ic ted value

    P

    i n a r e c u r si v e

    f i l t e r :

    P = F + C -

    C

    n l n

    C n - l ) . ~

  • 8/16/2019 32 Haagmans

    67/132

    The second te rm on the r i g h t hand s i de o f fo rmula 12) i s the

    in te gr at ed Doppler count over the t im e in te rv al between epoch n- l

    and n , co nve rt ed t o mete rs b y mu l t i p l y i n g w i t h t h e ve lo c i t y o f

    l i g h t c d i v i d e d b y t h e d i f f e r e n c e o f t h e two c a r r i e r f re qu en c ie s

    fl and f The var iance o f th e p red i c ted pseudorange i s g iven by:

    2

    i n w hich

    cr

    i s t h e va ri a nce o f t h e d i f f e re n ce d ca r r i e r phase

    measurement C.

    I f a c y c l e s l i p i s d e te ct ed b y e v a lu a t i ng t h e a bs ol ut e v a l ue

    o f th e di f f er en ce between t he measured pseudorange P and i t s

    2

    p r e d i c t i o n b t he f i l t e r i s re se t by ta ki ng

    cr2

    =

    cr

    The smoothed pseudoranges are used i n th e l i n e a ri z e d model o f

    formula 5) i n th e same way as descr ib ed i n chapter 3.1. again

    y i e l d i n g p o s i t i o n e s ti m at es

    cp X

    h i n WGS72 o r WGS84 a t every

    rec ei ve r dependent) epoch. The po si t i on s are converted t o

    v el o c i t i e s ev ery 60 seconds by a le as t squares second order

    polynomial

    f i t

    o f l a t i t u d e and long i tude est imates, compare

    formula e 7) and

    8).

    The mean ~ o t v o s or re ct io ns per 60 seconds

    can be computed w i t h

    9 ) .

    3.3.

    PS c a r r i e r v e l o c i t i es

    The l i ne a r model f o r c a r r i e r f requency ve lo c i t y es t im a t ion

    can be wr i t te n, see Kleusberg e t a l , 1985):

    i n w hich c i s t he ca r r ie r wavelength, A f i s t he v e ct or o f

    o bserve d ca r r i e r f re qu en cy sh i f t s , a a f u n c t i o n o f sa te 1 t e

    c a r t e s i a n c oo rd in at es , s a t e l l i t e v e l o c i t y and c l oc k d r i f t , A t h e

    d es ig n m a t r i x c o n ta i n i ng t h e p a r t i a l d e r i v a t i v e s o f t h e

    pseudoranges w i th respect t o rec e iv er car tes i an coord ina tes and

    c lock b ias , T the t rans fo rmat ion ma t r i x f rom geographical t o

  • 8/16/2019 32 Haagmans

    68/132

    car tes i an cbord ina tes and he vec to r o f unknown t ime de r i v a t i ve s

    o f geograph ica l coo rd ina tes and unknown rece ive r c lock d r i f t o r

    f requency o f f se t :

    Here v v v a re t he ve lo c i t y components i n no r th , eas t and

    N E H

    upward d i re c t io n resp ec t iv e ly . The eas t ve lo c i t y component v must

    E

    be c o r r e c te d f o r t h e e a r t h r o t a t i o n e f f e c t N+ h)ocosv .

    So l u t io n o f equat ion 16 ) by a co l l o ca t io n model i s :

    - 1

    X = P. T A Ph AfAT) T A Ph Af ao h Af )

    wh ich a l l ows one o r more unknowns t o be h e l d f i x e d by g i v i ng i t a

    la rg e weight f ac to r i n t he a p r i o r i we ight m a t r i x o f unknowns P.

    T hi s way any number o f unknowns can be computed l e ss tha n o r equal

    t o t h e n umber o f s a t e l l i t e s a v a i l a b l e . When e s t i ma t i n g s h i p

    ve lo c i t i es one can us ua l l y cons t ra i n t he he igh t component t o ze ro

    by se l ec t in g a p roper we igh t.

    W i th a TI-4100 r e c e i v e r one f i n d s a c a r r i e r v e l o c i t y

    measurement cen tered i n t h e in te r va l o f ca r r ie r phase

    measurements. The ca r r i e r s t a r t phase measurement preceeds th e

    ca r r ie r ve lo c i t y measurement o r ca r r ie r phase t ime de r i v a t i ve )

    which i t s e l f i s fo l low ed by th e ca r r ie r end phase measurement. The

    in te rv a l o f ca r r ie r phases i s a cons tan t 160 mi l l i se conds compare

    chapter 3.2.

    1

    D i f f e r e n c i n g o f c a r r i e r s t a r t phase and c a r r i e r en d

    phase an d d i v i d i n g b y t h e t i me i n t e r v a l o f 160 m i l seconds y ie lds

    c a r r i e r v e l o c i t i e s o n L1 and L 2 w hic h a r e b o th eq ua l t o t h e d i r e c t

    c a r r i e r