PVD-Technologie · 2018. 6. 26. · PVD-Technologie Thomas Götsch Institut für Physikalische...

Post on 26-Mar-2021

0 views 0 download

Transcript of PVD-Technologie · 2018. 6. 26. · PVD-Technologie Thomas Götsch Institut für Physikalische...

PVD-Technologie

Thomas GötschInstitut für Physikalische Chemie

Universität Innsbruck

Modell-Mikro-Festoxid-Brennstoffzellen

Energieforschung (e!MISSION) Projekt-Nr. 848825

Leitung: PD Dr. Simon Penner

Partnerinstitution: Joanneum Research

1. Introduction

2. Characterization of the Anodes

3. Tolerance towards SOFC Fuels

4. Conclusion

2. Characterization of the Anodes

3. Tolerance towards SOFC Fuels

4. Conclusion

1. Introduction

Introduction 4

T. Götsch14.11.2016

Physikalische Chemie, Universität Innsbruck PVD-Technologie — Modell-Mikro-Festoxid-Brennstoffzellen

Solid Oxide Fuel Cells

fuel

electrons

air

O2

H2O, CO2

O2-H2

CH4

electrolyteanode cathode

Ni/YSZperovskites

solid oxide: YSZ doped CeO2 perovskites

perovskitesplatinum

H2, hydrocarbons (CH4, …)

Introduction 5

T. Götsch14.11.2016

Physikalische Chemie, Universität Innsbruck PVD-Technologie — Modell-Mikro-Festoxid-Brennstoffzellen

SOFC Anodes

Atkinson et al. Nature 2004, 3, 17–28

Toebes et al. Catal. Today 2002, 76, 33–42

• Ni/YSZ: not stable in C-rich fuels

• alloying of Ni with Cu: reduction of C-deposition

• porous: transport of fuel to three-phase boundary

• if fuel is not hydrogen

• either catalytic conversion to H2 (steam reforming)

• or direct oxidation of the fuel

Introduction 6

T. Götsch14.11.2016

Physikalische Chemie, Universität Innsbruck PVD-Technologie — Modell-Mikro-Festoxid-Brennstoffzellen

SOFC Anodes

Atkinson et al. Nature 2004, 3, 17–28

Toebes et al. Catal. Today 2002, 76, 33–42

Kim et al. J. Electrochem. Soc. 2002, 149, A247–A250

• Ni/YSZ: not stable in C-rich fuels

• alloying of Ni with Cu: reduction of C-deposition

Cu/Ni: (a) > (b) > (c) > (d) > (e)

Introduction 7

T. Götsch14.11.2016

Physikalische Chemie, Universität Innsbruck PVD-Technologie — Modell-Mikro-Festoxid-Brennstoffzellen

Advantages of Micro-SOFCs

• thinner electrolyte: lower operating temperature?

• lower thermal mass

• less energy required

• increased lifetime

• lower running costs

conventional SOFC

anode-supported SOFC

Micro-SOFC?

800

– 10

00 °

C

600

– 70

0 °C

<

600

°C

Introduction 8

T. Götsch14.11.2016

Physikalische Chemie, Universität Innsbruck PVD-Technologie — Modell-Mikro-Festoxid-Brennstoffzellen

PREPARATION OF THE MODEL ELECTRODES

substrate

NSN

target

• Physical vapour deposition methods: thinner films than conventional techniques

• high vacuum: high purity

• magnetron sputtering: high deposition speed

• plasma at target sputters off the material

Samples:• 8YSZ

• NiCu

• NiCu/8YSZ

on Si, NaCl

2. Characterization of the Anodes

3. Tolerance towards SOFC Fuels

4. Conclusion

1. Introduction

1. Introduction

3. Tolerance towards SOFC Fuels

4. Conclusion

2. Characterization of the Anodes

Characterization of the Model Anodes 11

T. Götsch14.11.2016

Physikalische Chemie, Universität Innsbruck PVD-Technologie — Modell-Mikro-Festoxid-Brennstoffzellen

Composition – Depth Profiles

Characterization of the Model Anodes 12

T. Götsch14.11.2016

Physikalische Chemie, Universität Innsbruck PVD-Technologie — Modell-Mikro-Festoxid-Brennstoffzellen

Chemical State Depth Profiling: YSZ

• Surface: fully oxidized

• Etching: Zr is reduced (preferential O-sputtering)

• Close to substrate: reduction

Characterization of the Model Anodes 13

T. Götsch14.11.2016

Physikalische Chemie, Universität Innsbruck PVD-Technologie — Modell-Mikro-Festoxid-Brennstoffzellen

Chemical State Depth Profiling: Nickel/copper

Characterization of the Model Anodes 14

T. Götsch14.11.2016

Physikalische Chemie, Universität Innsbruck PVD-Technologie — Modell-Mikro-Festoxid-Brennstoffzellen

YSZ: Morphology

• polycrystalline cubic YSZ

• about 10 nm grain size

Characterization of the Model Anodes 15

T. Götsch14.11.2016

Physikalische Chemie, Universität Innsbruck PVD-Technologie — Modell-Mikro-Festoxid-Brennstoffzellen

YSZ Phase Transition

Red data points from Götsch et al. AIP Adv. 2016, 6, 025119

• unit cell height (from diffraction)

• tetragonal/cubic phase transformation between 8 and 9.3 mol% Y2O3

1. Introduction

3. Tolerance towards SOFC Fuels

4. Conclusion

2. Characterization of the Anodes

1. Introduction

2. Characterization of the Anodes

4. Conclusion

3. Tolerance towards SOFC Fuels

Tolerance towards SOFC Fuels 18

T. Götsch14.11.2016

Physikalische Chemie, Universität Innsbruck PVD-Technologie — Modell-Mikro-Festoxid-Brennstoffzellen

Carbon Deposition: CH4 at 800 °C

NiCu/YSZ

NiCu

Tolerance towards SOFC Fuels 19

T. Götsch14.11.2016

Physikalische Chemie, Universität Innsbruck PVD-Technologie — Modell-Mikro-Festoxid-Brennstoffzellen

Crystallography

θ

YSZ

YSZ Methane

NiCu

NiCu Methane

NiCu/YSZ

NiCu/YSZ Methane

Tolerance towards SOFC Fuels 20

T. Götsch14.11.2016

Physikalische Chemie, Universität Innsbruck PVD-Technologie — Modell-Mikro-Festoxid-Brennstoffzellen

Spectrum Imaging: Elemental Distribution

Scale bars: 200 nm

Scale bars: 2 µm

• mixed Ni-Cu particles with varying composition

• partially oxidized (esp. Ni-rich crystallites)

• Core-shell particles Ni-rich core, Cu-rich shell

• C-deposition for faces with Ni/Cu = 3.5 to 5

• no carbon for Ni/Cu = 0.5 (blue arrows)

Tolerance towards SOFC Fuels 21

T. Götsch14.11.2016

Physikalische Chemie, Universität Innsbruck PVD-Technologie — Modell-Mikro-Festoxid-Brennstoffzellen

Surface Topology

1. Introduction

2. Characterization of the Anodes

4. Conclusion

3. Tolerance towards SOFC Fuels

1. Introduction

2. Characterization of the Anodes

3. Tolerance towards SOFC Fuels

4. Conclusion

Conclusion 24

T. Götsch14.11.2016

Physikalische Chemie, Universität Innsbruck PVD-Technologie — Modell-Mikro-Festoxid-Brennstoffzellen

Summary & Outlook• NiCu treated in methane shows core-shell structure

• Cu-rich surfaces inhibit carbon deposition

• can be achieved by prereduction of NiCu[1]

• tetragonal/cubic YSZ phase transition could be narrowed down to lie between 8 and 9.3 mol% Y2O3

• preparation of Micro-SOFC is feasible

• addition of a cathode to the NiCu/YSZ model anode

• reduction of operating temperature, running costs and increase of life time of SOFCs

[1] Kim et al. J. Electrochem. Soc. 2002, 149, A247–A250

Conclusion 25

T. Götsch14.11.2016

Physikalische Chemie, Universität Innsbruck PVD-Technologie — Modell-Mikro-Festoxid-Brennstoffzellen

AcknowledgementsProjektleitung:

• PD Dr. Simon Penner Nanostructured Model Catalysts Innsbruck Institut für Physikalische Chemie Universität Innsbruck

Experimente:

• Thomas Götsch, MSc Nanostructured Model Catalysts Innsbruck Institut für Physikalische Chemie Universität Innsbruck

Probenpräparation

• Dr. Reinhard Kaindl Institut für Oberfächentechnologien und Photonik Joanneum Research — Materials

http://webapp.uibk.ac.at/physchem/nmci/