r8Am Compact ee ron LA ser...S. M. , et al., X rray pump l obe oss n y of GaAs Nature ics 6, 111...

48
Beamline Instrumentation for Precise Characterization of XͲray FELs 1 Makina YABASHI RIKEN SPringͲ8 Center (RSC), Beamline R&D Group [email protected] August 27, 2013 @New York FEL13 SPringͲ8 Angstrom Compact freeͲelectron LAser

Transcript of r8Am Compact ee ron LA ser...S. M. , et al., X rray pump l obe oss n y of GaAs Nature ics 6, 111...

  • Beamline Instrumentationfor Precise Characterization

    of X ray FELs

    1

    Makina YABASHIRIKEN SPring 8 Center (RSC), Beamline R&D Group

    [email protected] 27, 2013 @New York

    FEL13

    SPring 8 Angstrom Compact free electron LAser

  • Contents

    1. Introduction– Importance of x ray diagnostics

    2. Photon diagnostics (I): pulse energy & transversephase space

    3. Photon diagnostics (II): Longitudinal phase space4. Summary

    2

  • Why are photon diagnostics important forXFEL facilities ?

    • Photon beam is a final product of XFEL source to userexperiments– e.g. studies on X ray nonlinear interactions

    • Photon beam contains a number of key information formachine operation– could be more accurate and robust than electrons

    • Photon diagnostics become strong linkage betweenmachine and users

    3MachineMachine UsersUsersPhoton

    diagnosticsPhoton

    diagnostics

  • Objective

    1. X ray beam profiles in 6 D phase space• Total photon number (pulse energy)• Spatial profile, centroid• Wavefront/Angular divergence• Spectrum• Temporal profile• Arrival timing to external laser• Polarization

    2. Key• Shot to shot (non average)• Nondestructive (for users)• Wide dynamic range (spontaneous to fully saturated x rays)

    4Introduce experiences at SACLA

  • 5

    SACLA @SPring 8

    Compact XFELConstruction: FY2006~2010First lasing: June 2011User Operation:March 2012~

  • Experimental Building

    6

  • Beamline

    7

    EH4: Open hutch

    SACLA SPring 8Exp. Facility

    Laser booth(CPA, OPA)Power amp: ~ 3 TW

    BL3

    5 beamlines (final)Start with BL3 (XFEL) & BL1 (SX)

    EH1: R&D, beamconditioning optics

    EH2: Pump & Probe (CPA/OPA)w unfocused beam

    EH3: 1 um focusing(Imaging/Non linear)

    BL1

    OH: Common optics& diagnostics

    Common X ray optics anddiagnostics have beencentralized in Optics HutchExperimental stations provideonly basic infrastructure (e.g.,optical laser, focusing system)Empty space for various

    experimental instruments

  • Comparison of BL design concept:SACLA vs. LCLS

    8

    Brand new machine with unknownelectron beam propertiesMitigate risks by introducingphoton diagnosticsUtilize X ray diagnostics in opticshutch for both machine and users

    Machine can operate withmatured e diagnosticsX ray optics & diagnostics arelocated in every experimentalhutch (only for users)

    from LCLS web page

  • 9

    X ray beamline (optics and photon diagnostics) played a key role forenabling quick lasing in two months

    Nat. Photon 6, 540 (2012)

    Example: Commissioning of SACLA

  • 10

    Precise ID tuning using beamline optics/diagnostics

    Overlap between e and p beam with an accuracy of ~urad isrequiredE beam trajectory easily bends at the edges of undulator modulesP beam goes through along the e beam in the undulatorP beam can be used to monitor the e beam trajectory in each

    undulator moduleCf. central cone of the undulator radiation

    1/g= 1/16000 = 60 urad for 8 GeV

  • 11

    Key components for SACLA commissioning

    DCM Si(111)High stability;UHV compatible(Ohashi et al.)

    single sensorMPCCD(Hatsui et al)

  • 12

    Spatial profile of monochromaticspontaneous radiation

    ~1 mm

    Angular diameter: ~10 uradCentroid: 1 urad

    Profile of monochromatic spontaneous rad

    Photon energy

    2 2

    2 2 1 12 cos 2 2 2Ru u

    U

    2 2

    2 2 1 12 cos 2 2 2Ru u

    T. Takashi et alPRST 12

  • Pulse Energy 0.4 mJ @10 keVPhoton energy range 4.5 to 15 keV Stability Intensity I/I < 10%

    Pointing 3 ~7% of beam sizeRepetition rate 20 Hz (Max. 60 Hz)

    13

    SACLA: Summary of Performance

  • Contents

    1. Introduction2. Photon diagnostics (I): pulse energy &

    transverse phase space3. Photon diagnostics (II): longitudinal phase space4. Summary

    14

  • 15

    Pulse energy measurement

    Pulse to pulse, wide dynamic range w/o saturation

    Ion chamber using gas ionizationsemi transparent in wide wavelength rangeabsolute measurementneed care to nonlinearityneed cost space for vacuum system

    Foil based backscattering monitorsemi transparent above a few keVneed care to damage to foil

    Calorimeterabsolute measurementdestructiveaverage measurement

  • 16

    Pulse energy diagnostics:Thin foil backscattering monitor

    Geometry

    X rays

    y

    Semi transparentfilm

    Photodiode

    x

    y

    U

    L

    D

    R

    Quadrant photodiodesHamamatsu, S3590 09t300 um, 10 x10 mm2

    xxx IKIIIIKx

    RL

    RL

    yyy IKIIIIKy

    DU

    DU

    ComptonScattering

    Slope: KxL R U DI I I I IIntensity

    Position

    Collaboration with LCLS

    Tono et al., RSI 82, 023108 (2011)

    CVD ”nano” DiamondSmooth Debye Scherrer ringSpeckle freeSemi transparent (>97%@10 keV)Wide d range (10 nJ ~ 10 mJ)

  • Application (1): Gain curve measurement

    17

    Lg ~ 2.3 m

    Lg ~ 4.6 m (2011 autumn)

    Linear ScaleLog Scale

  • 18

    Application (2)Routine monitoring at control room

    Pulse energy (uJ)

    Vertical position (um)

    Horizontal position (um)

  • Application (III)Monitoring of Beamline Transmittance

    19

    Mirror1

    Mirror 2a(

  • Photon energy /keV

    Pulse energy / J

    Radiometer XGMD4.4 32.26 0.35 32.9 2.05.8 104.2 1.3 106.6 6.19.6 95.3 2.3 93.9 6.113.6 42.2 1.1 40.8 2.916.8 0.96 0.03 ---

    20

    “From Relative to Absolute”International Collaboration

    20T. Tanaka et al., NIMA 659, 528 (2011).K. Tiedtke et al., JAP. 103, 94511 (2008).

    Thin-foil monitor(SACLA)

    Calorimeter(AIST)

    RT-type:Worked!

    Gas monitor detector(DESY/PTB)

    Nov. 24, 2011

    Max. Deviation = 3.3%Kato et al, Appl. Phys. Lett.101, 023503 (2012)

  • New portable calorimeter operatingat room temperature

    RT-type (2013/4)Cryo-type (2011/11)

    Saito san(AIST)

    Tanaka, Saito et al, in preparationPush to commercially available device

    Developed by AIST and RIKEN, tested on April 2013

  • Spatial Profile Diagnostics (I)

    22

    Ce:YAG (300 um t)high efficiency (~ 1 uJ/pls)destructiveCVD B doped diamond (30 um t)low efficiencysemi transparent (>97% for 10 keV)speckle free> Available as inline, routine monitors

    Retractable screens Phosphor coupled MCP monitor

    Very high efficiency to imagespontaneous radiationRoutine use for undulator

    alignment in every two weeks

  • Spatial Profile & Pointing Stability

    23

    Temperature stabilization of injector section (2012 autumn)

    July 25, 2012 Sep. 18, 2012

    V40 um, H50 um

    V10 um, H20 um

  • Spatial Profile Diagnostics (II)

    24

    Slit/knife edge scanning methodStability ? (intensity/position)

    1 um Focusing at EH3

    -0.1

    0.1

    0.3

    0.5

    0.7

    0.9

    1.1

    0 10 20 30 40 500

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0 10 20 30 40 50

    II0 I / I0

    Wire position /a.u.

    Sig

    nal /

    a.u.

    Wire position /a.u.

    First derivative

    Yumoto et al Nature Photon. 7, 43 (2013)

  • 25

    Measurement of nano scale spotwith two stage focusing system

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    -600 -300 0 300 600

    Inte

    nsity

    (arb

    . uni

    t)

    Position (nm)

    Beam profileWire scan profileGaussian 45nm(FWHM)

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    -600 -300 0 300 600In

    tens

    ity (a

    rb. u

    nit)

    Position (nm)

    Beam profileWire scan profileGaussian 55nm(FWHM)

    Vertical direction Horizontal direction

    45nm(FWHM)

    55nm(FWHM)

    X ray energy: 10keVMimura et al, in preparation

    ~1020 W/cm2

  • Beamline Optics & Diagnostics

    Photodiode & Screen monitor x7intensity/profile

    Gas Monitor x1

    Thin-foil monitor x2

    Mirror 1

    Mirror 2a Mirror 2b

    Monochromator

    Slit

    In-line spectrometer x1

    Tono et al., New J Phys. 15, 083035 (2013)

  • Contents

    1. Introduction2. Photon diagnostics (I): Intensity & transverse phase space3. Photon diagnostics (II): Longitudinal phase space4. Summary

    27

  • 28

    70

    60

    50

    40

    30

    20

    10

    0

    2 (d

    eg)

    20181614121086

    photon energy (keV)

    Dia(111) Dia(220) Dia(311)

    111

    220

    311

    Spectral range 6~20 keV

    MPCCD

    XFEL

    Thin Diamond film

    Central wavelength monitor

    phot

    on e

    nerg

    y

    shot number

    300 eV

    Inubushi sanDiffraction ring from CVD diamond

  • HighWavelength StabilityRoutinely Achieved

    29

    10.0

    9.9

    9.8

    9.7

    9.6

    9.5

    phot

    on e

    nerg

    y (k

    eV)

    200150100500

    shot number

    E

  • XFEL 1D focusPulse energy < 10 uJ

    S. M. Durbin, et al., X ray pump optical probe cross correlation studyof GaAs Nature Photonics 6, 111

    Conduction band

    Egap < EphotonAbsorption

    Valence band

    Egap > EphotonTransmission

    30

    ArrivalTiming

    Transient transmission of optical laser inducedwith X rays; Spatial decoding

    Sato san (SACLA/U Tokyo)Ogawa san, Togashi san (SACLA)

    10 keV X rays

    Harmand et al, Nat. Photon 2013

  • Jitters and Resolution

    Delay 0

    Sato et al., in preparation Single shot image

    Histogram of arrival timeTiming jitter: 130 fs (rms)

    ~ 10 fs resolution

    Sorting

    Shot

    num

    ber

    900 um 2.1 ps

    31

  • • Transmission grating• Efficiency can be tuned from 0.1% to 40%• Install to optics hutch as a permanent component

    Collaboration with Ch. David (PSI)

    Si grating 300 nm p/1 um t

    75020070150150

    64015015070

    GG GGGG G

    G G G G G G G G G G GG

    L

    P

    L

    L L

    L

    P

    L L

    PL

    PPL PLG

    L

    LPL

    “From destructive to nondestructive”Branching with beam splitter

    32

    T mon.

    Exp.

  • Pulse Energy 0.4 mJ @10 keVPhoton energy range 4.5 to 15 keV Stability Intensity I/I < 10%

    Pointing 3 ~7% of beam sizeRepetition rate 20 Hz (Max. 60 Hz)Pulse duration ??Peak Power ??

    33

    Summary of Performance

  • Temporal profile/Pulse duration

    THz streaking methodGrguraš et al, Nat Photon. 2012

    ref. T CAV

    Frequency domainTTF 2 PRL (2002)Shintake et al, Nat Photon (2008)

  • 35

    Temporal vs. Frequency

    FT-10 0 100

    20

    40

    60

    80

    Time (fs)

    Pow

    er (G

    W) =6 fs

    9750 9760 9770 9780 97900

    1

    2

    3[ 10 11 ]

    Photon energy (eV)

    Phot

    on fl

    ux(p

    hoto

    ns/p

    ls/0

    .1%

    b.w

    .)

    Temporal domain Frequency domain

    -30 -20 -10 0 10 20 300

    20

    40

    60

    Time (fs)

    Pow

    er (G

    W)

    =30 fs

    9700 9710 9720 9730 97400

    0.5

    1[ 10 12 ]

    Photon energy (eV)

    Phot

    on fl

    ux(p

    hoto

    ns/p

    ls/0

    .1%

    b.w

    .)

    9715 9716 9717 9718 9719 97200

    0.5

    1

    Photon energy (eV)

    ~100 meV

    Resolution

  • Recent developments of single shotspectrometers

    LCLS: Collimated beam +bent, thin crystal analyzer

    D. Zhu et al, APL 101, 034103 (2012)

    SACLA: Diverged beam (elliptical mirror) + flat,thick crystal analyzer

    M. Yabashi et al, PRL 97, 084802 (2006)Y. Inubushi et al, PRL 109 144801 (2012)

    10 keVUndulator

    MPCCD camera

    Si crystal

    Elliptical mirror

    SwissFEL: Grating

    P. Karvinen et al, Opt. Lett. 37 5073 (2012)36

  • 37

    PrincipleDivergent beam+ Flat Crystal Analyzer+ Position Sensitive Detector

    Flat crystalanalyzer

    B

    B

    min

    22 22

    cot

    cot 3.2 cos 4cot

    B

    B x B es B hkl hkl

    c

    EE

    s r F dL v

    focussize extinction

    Detectorpixel size

    Higher order reflection >higher resolution

    Resolution

    -40 -20 0 20 400

    0.5

    1

    -40 -20 0 20 40

    Position ( m)

    FWHM =16.9 meV

    Inte

    nsity

    (a.u

    .)

    Energy (meV)

    Measured at SPring 8M. Yabashi et al, PRL97, 084802 (2006)

  • 140x103

    120

    100

    80

    60

    40

    20

    Inte

    nsity

    (a.u

    .)

    10.1010.0510.009.959.90

    Photon energy (keV)

    120

    100

    80

    60

    40

    20

    0

    inte

    nsity

    (a.u

    .)

    -2 -1 0 1 2Relative photon energy (eV)

    100 m

    10 keVUndulator

    MPCCD camera

    Si crystal

    Elliptical mirror

    Si (555)Resolution :

    ~14 meV

    Si (111)Resolution :

    ~1 eV

    Inubushi san (SACLA)

    Development at SACLA

    38

  • 39

    Single shot spectra: wide range (~100 eV)with Si111

    Spike profiles change in every shot due to SASE schemeBut central energy is stable

  • 40

    Single shot spectra: high resolution (14 meV)with Si 555

    Bunch compressionSpike width in freq. domain

    WeakNarrow

    StrongBroad

    Fourier relationship between temporal and frequency

  • Experiment

    Simulation“SIMPLEX”

    41

    E=600 meV (FWHM)E=290 meVE=110 meV

    =31 fs =8.9 fs =4.5 fs (FWHM)

    Y. Inubushi, et al, PRL. 109 144801 (2012).

    Evaluation of pulse duration using XFEL simulation

  • E = 400 60 meV ~6.5 1.5 fs

    300 uJ/pls (@ 10 keV) P > 40 GW

    Recent operation condition (Jan 2013)

    42

  • Pulse Energy 0.3 mJ @10 keVPhoton energy range 4.5 to 15 keV Stability Intensity I/I < 10%

    Pointing 3 ~7% of beam sizeRepetition rate 10 Hz (Max. 60 Hz)Pulse duration < 10 fsPeak Power > 40 GW

    43

    Summary of Performance

    Note: recent nonlinear X ray experiment suggests shorter pulseduration (FWHM: 2.5 2.8 fs, Tamasaku et al, PRL 2013)Continue to develop new methods

  • Normalization of SASE spikes by comparingtwo spectra from +1 and 1 order Katayama san

    (SACLA)

    +1

    1

    Application (II): Dispersive Absorption Spectroscopy

    Collaborated with Profs. Toshinori Suzuki (Kyoto U), Kazuhiko Misawa (TUAT)Kiyotaka Asakura (Hokkaido U) 44

  • 2.1462.146 2.1362.1362.1312.131

    2.1262.1262.1212.121

    2.1172.1172.1402.140

    • Zn thickness 20 m• 200 shots (one K value)• Observable range 30 ~ 40 eV

    (one K value)• resolution ~0.4 eV200 shots (20 s) for measuringXAS with good S/N level

    Dispersive X ray absorption spectrum

    Katayama et al, APL, in press

    10 shots100 shots

    Static artifact

    rms deviation = 0.9%

    K value

    45

  • Summary• Photon diagnostics are practically working for reliable and stable operation

    of XFEL machine• Advanced diagnostics promote to develop user experimental methods• Close collaboration among machine, beamline, and control interface

    people is essential

    • Absolute pulse energy: easily measured with RT calorimeter• Spatial profile: screen based and edge scan based methods are available,

    single shot high resolution method is demanded• Wavefront: grating interferometer shows excellent performance• Spectrum: high resolution below 20 meV with crystal spectrometer, useful

    for seeded operation• Arrival timing: below 10 fs is possible• Pulse duration: still need to develop, especially below 10 fs region

    Spectral spikes, THz streaking, auto/cross correlation w XNL

    • Still a lot of exciting challenges. Your valuable inputs, proposals, andcollaboration are highly appreciated 46

  • AcknowledgementAll SACLA/SPring 8 MembersEspecially,Kensuke Tono, Tadashi Togashi, Yuichi Inubushi, Tetsuo Katayama, KanadeOgawa, Takaki Hatsui, Yasumasa Joti, Togo Kudo, Takashi Kameshima, YoichiKirihara, Shun Ono, Hiroaki Kimura, Hiromitsu Tomizawa, Haruhiko Ohashi,Hirokatsu Yumoto, Takahisa Koyama, Shunji Goto, Kenji Tamasaku, MitsuruNagasono, Kazuaki Togawa, Takashi Tanaka, Toru Hara, Hitoshi Tanaka,Ryotaro Tanaka, Mitsuhiro Yamaga, Toru Ohata, Yukito Furukawa, TakashiSugimoto, Hideo Kitamura, & Tetsuya Ishikawa

    Yoshiro Fujiwara & Engineering TeamOsaka University

    Yasuhisa Sano, Satoshi Matsuyama, Taito Osaka,Univ. of Tokyo

    Hidekazu Mimura, Takahiro Sato, Ichiro Inoue

    47

    Thank you for your attention

  • 48

    END