Produceer met minder energie energie meten is weten - joost duflou

31
Produceer met minder energie: Meten is weten Prof. Dr. ir. Joost Duflou Dept. Werktuigkunde, K.U.Leuven [email protected]

Transcript of Produceer met minder energie energie meten is weten - joost duflou

  • 1. Produceer met minder energie: Meten is wetenProf. Dr. ir. Joost Duflou Dept. Werktuigkunde, [email protected]

2. Manufacturing as part of LCA ManufacturingLCA Phase: ManufacturingPhase:Impact Relevance Case Study Material Body of ProcessingProductKnowledgeManufactureMining Unit Process DistributionApproach Methodology Case StudyAir Bending Use Case StudyLaser Cutting Systems DisposalProduct Approach Take-back Case Study MaterialLaser CuttingRe-pro-Disassembly cessing2 3. Manufacturing Impact RelevanceTotal Industrial Electricity Consumption EU-27 (2007) ManufacturingImpact200 Relevance 180 Case Study160 Body of 140Knowledge Billion kWh120100200 186 Unit Process80142 158 139Approach 60 11281 85 Methodology40 20 Case StudyAir Bending 0 Case StudyLaser Cutting Systems Approach Case StudyLaser Cutting158 Billion kWh consumption of 45 million householdsSource: European Commission, 2009.3Energy Yearly statistics 2007 4. Manufacturing Impact RelevanceTrend towards more Energy Intensive Processes ManufacturingImpact RelevanceSpecific energy Case Studyrequirements (J/cm3) Micro/Nano Body of for various8 orders ofKnowledgemagnitudemanufacturingprocesses Unit ProcessAdvancedApproach Processes MethodologyProcessing rate Case StudyAir Bending Conventional Energy requirements Case StudyLaser Cutting Processes Systems Source: T. Gutowski, J. Dahmus, Approachand A. Thiriez, Electrical Energy Requirements for Manufacturing Case Study Processes, Proceedings 13th CIRPLaser CuttingInternational Conference on Life Cycle Engineering, Leuven, 2006,4 5. Manufacturing Impact Relevance ManufacturingTrend towards more energy intensive processes inImpactsheet metal cutting Relevance Case Study (Guillotine) Body ofKnowledge Shearing Unit ProcessApproach Punching Methodology Case StudyAir Bending Case Study Water Jet CuttingLaser Cutting Systems Approach Plasma Cutting Case StudyLaser CuttingLaser Cutting5 6. Manufacturing Impact ManufacturingCase Study Energy Intensity ofImpactManufacturing: Book support Relevance Case StudyTarget: Determination of sensitivity of energy related Body ofKnowledge environmental impact of discrete parts productionfor chosen manufacturing processes. Unit ProcessApproach Methodology Dimensions blank : Case Study245 x 105 x 1Air Bending Case StudyLaser Cutting Weight : 0.185 kg Systems Approach Material : St37-2(S235JR) Case StudyLaser Cutting6 7. Manufacturing Impact: Case Study ManufacturingCase Study: Book supportImpact1 part 2 parts 6 parts Relevance Case Study Thickness : 1 mm Body ofMaterial : St 37-2Knowledge Cutting length 1,60 m 2.71 m (1.36) 7.01 m (1.17) Unit ProcessApproach Cutting time 14 s 23 s (11.5)60 s (10) Methodology (5 kW laser, rate 7 m / min) Case StudyAir Bending 0.933 kWh Case StudyCutting Energy (47,6 kW) 0.218 kWh 0.358 kWh (0.179)(0.156)Laser CuttingBending Energy Systems 0.107 kWh0.214 kWh 0.643 kWh (Press Brake of 50 ton) Approach Case Study0.572 kWh 1.576 kWhTotal Machining Energy 0.325 kWhLaser Cutting (0.286) (0.263)7 8. Manufacturing Impact: Case Study ManufacturingCase Study: Book supportImpactMaterial Utilisation Influence Relevance Case StudyNesting efficiency75% 85% 95% Body ofKnowledgeProduct Weight 0.185 kg0.185 kg 0.185 kg Waste Weight 0.062 kg0.033 kg 0.010 kg Unit ProcessApproachTotal Weight0.247 kg0.218 kg 0.195 kg Methodology Material Energy 3.90 MJ 3.44 MJ 3,08 MJ Case Study(15,8 MJ/kg)1.08 kWh0.96 kWh0.86 kWhAir Bending Case StudyLaser CuttingWaste Energy 0.272 kWh 0.145 kWh 0.044 kWh Systems Recycling Approach -0.27 kWh -0.24 kWh -0.215 kWh (Reduction of 25%) Case StudyLaser Cutting Total Material Energy 0.81 kWh0.72 kWh0.65 kWh8 9. Manufacturing Impact: Case Study ManufacturingCase Study: Book supportImpact Relevance Case Study Contributionmin max average Body ofKnowledgeTotal Material Energy 0.65 kWh0.81 kWh0.73 kWhMachining Energy 0.263 kWh 0.325 kWh 0.294 kWh Unit ProcessApproach Total Energy0.913 kWh 1.135 kWh 1.024 kWh Methodology Case StudyAir Bending Depending on the scenario, direct machining Case Studyrepresents 25 to 33% of the total energyLaser Cuttingconsumption. Systems Approach Note:Not covered in this case study: Case Study Indirect energy consumptionLaser Cutting Consumables consumption (e.g. tooling) Emission impact9 10. Manufacturing Impact: Body of Knowledge ManufacturingImpact Non-negligible influence of manufacturing processes Relevanceon ecological impact of products! Case Study Body of &KnowledgeMany processes inadequately investigated /documented. Unit ProcessApproach MethodologyLarge potential for improvement! Case StudyAir Bending Case StudyLaser Cutting SystemsCO2PE ! - Initiative Approach Cooperative Effort on (CO2) Process Emissions Case StudyLaser Cuttinghttp://www.mech.kuleuven.be/co2pe10 11. Manufacturing Impact: Body of Knowledge Manufacturing CO2PE!: Targets/ObjectivesImpact Relevance Case Study 1. Study the environmental footprint of Body of manufacturing processes with energyKnowledge consumption/CO2 emission as first priority. Scopelimited to discrete part manufacturing. Unit ProcessApproach 2. Develop a methodology that allows to provide data Methodology Case Studyin a format useful for inclusion in LCI dbases.Air Bending Case Study 3. Identify opportunities for improved process design inLaser Cuttingclose cooperation with machine tool developers. SystemsDerive design rules and guidelines in support of Approacheco-design of machine tools. Case StudyLaser Cutting 4. Draft a proposal for an eco-label system formachine tools11 12. Manufacturing Impact:Body of Knowledge ManufacturingCO2PE! Network: 29 partners and still growingImpact Relevance Case Study Body ofKnowledge Unit ProcessApproach Methodology Case StudyAir Bending Case StudyLaser Cutting Systems Approach Case StudyLaser Cutting12 13. Towards Low Impact Manufacturing ManufacturingImpactPotential forUnit ProcessProcess RelevanceEnergy and ResourceLevel Level Case Studyefficiency optimization Body of at different levels.KnowledgeMulti-Multi-MachineMulti-Machine Unit Process LevelApproach Methodology Factory Level Case StudyAir Bending Case StudyLaser CuttingMulti-Facility Systems Level Approach Case StudyLaser CuttingGlobal SupplyChain Level13 14. Unit Process Level: Methodology ManufacturingMethodological approach to analyse unit processesImpact Relevance Case Study Machine Tool Level Body ofKnowledge Unit ProcessLCI-dataApproach Methodology Case StudyAir BendingSub-Unit Level Case StudyLaser Cutting Systems Design Guidelines Approach & Best Practices Case StudyLaser Cutting14 15. Unit Process Level: Methodology ManufacturingMethodological approach to analyse unit processesImpact Relevance Time study Power study Case StudyTimePower Body of# Production modeshare (%), # Production mode(avg, kW)Knowledge 1 Start-up ModeT1 1 Start-up ModeP1 2 Full Power ModeT2 2 Full Power ModeP2 Unit Process3 Partial Power Mode T3 3 Partial Power Mode P3Approach 4 Standby Mode T4 4 Standby Mode P4 5 Shutdown ModeT5 5 Shutdown ModeP5 Methodology6 OFF Mode T6 6 OFF Mode P6 m Other Mode(s)Tm m Other Mode(s)Pm Case StudyAir Bending Case StudyLaser Cutting T T + T 115 * 24 T Ps * s + Pe * e 16 - s e + Systems m T 3600 3600 3600 250 Approach Pm + Pi * i + +P* i =1 Tm 8 off 8 Case Study Laser Cutting Ere =3600 Equivalent energy demand per unit of time15of effective use 16. Case Study: Air Bending Study: Manufacturing Unit Process Analysis of Air BendingImpact Relevance Case Study Body ofKnowledgeTime study Unit Process Human needsApproach and distractionTool SetupPreparation on4,6% pc 7,2% Workpiece 10,2% Methodology measuring Case Study 6,8%Air BendingSupporting tasks 16,6% Case StudyLaser CuttingWorkpiece transport Systems 14,0% Loading newsheet Approach 13,1% Case StudyIntermediateLaser Cutting actionPunch moving 14,9% downwards and Punch moving bending upwards 9,4%163,1% 17. Case Study: Air BendingStudy: Manufacturing Time study analysisImpact % of Relevancen production modetotal time Case Study 1 tool setup: get tool, change and carry away4.6 Body ofKnowledge2 preparation on pc: load new order from7.2 central server + programming or adapting bending program Unit Process 3 supporting task: move pallets, rearrange16.6Approach sheets, counting, administrative tasks Methodology4 new sheet: take a new sheet and position it 13.0 against backgauge Case Study 5apunch moving downwards and bending: 9.4Air Bendingactual bending process Case Study 5bpunch moving upwards3.1Laser Cutting 6 intermediate action: consult instruction14.9 Systems screen and turn the part around betweenstand by two bends Approach move down 7 transport workpiece: put workpieces away+ 14.0 Case Study rearrange themLaser Cutting8 measure: measure the workpiece6.8move up 9 human needs and distraction: being absent,10.2 non-productivity: drinking, talking,17 18. Case Study: Air Bending Study: ManufacturingPower and energy consumption analysisImpact Cumulative RelevancePower (W) Total yearly Case Study energy consumption9.8 kW Body of (2000 hours)Knowledge M1: main pump1,2 MWhM2: pump to clamp 26 % Unit Process Drives + serverApproach9%65 %6,3 kW Methodology 0,4 MWh2,9 MWh Case StudyAir Bendingstand by Case StudyLaser Cutting 3,1 kWmove down Systemsmove up1,7 kW Approach Case StudyTime (% of totalLaser Cutting production time)12345a 5b6 78 9 5% 7% 17%13% 9% 3% 15% 7% 14% 10% Pumps responsible for > 90% of energy consumption 18 19. Case Study: Air Bending Study: ManufacturingAlternative pump control system:Impact Influence of hydraulic pump and speed control system Relevance Case Study Power and Energy Consumption for a similar task of 40 ton, 1mm/s Body ofKnowledgeMax. Capacity Technical adjustmentsMachine Tool A80 ton Conventional hydraulic press brake Unit Process Machine Tool B135 tonA + adjustable flow pumpApproachMachine Tool C135 tonA + adjustable flow pump and frequency MethodologyconvertorMachine Tool D 80 tonA + adjustable flow pump and frequency Case Study convertorAir Bending Case Study 12 (kWh /Laser Cutting10 Bend)A B C DPower (kW) 8 Machine A Systems 6 Machine B Bending 0,055 0,046 0,029 0,022 Energy Approach4 Machine C Standby Machine D Energy0,105 0,180 0,122 0,097 Case Study 2Laser Cutting0Total 0,160 0,226 0,151 0,1191 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 EnergyTime (s) 19 20. Case Study: Air Bending Study: Manufacturing Case Study: Press Brake RedesignImpact Relevance Traditional press: Alternative press design: Case StudyConventional hydraulic pumpServo motor driven pump Body ofKnowledge Unit ProcessApproach Methodology Case StudyAir Bending Case StudyLaser Cutting Systems ApproachComparison basis: Case Study Availabilty and functionality of a small press brakeLaser Cutting for bending operations during one year20 21. Case Study: Air BendingStudy: ManufacturingTraditional hydraulic press designImpactEnergy consuming unitsFunction Relevance Case Study M1 Hydraulic pump 1Move the pistons connected to the(main pump) ram Body ofKnowledgeM2 Hydraulic pump 2Clamp the toolset (punch and die)(pump to clamp) Unit ProcessM3 Small motor Compensate deformation of theApproachpunch MethodologyDrives 5 Servo motors + drives Move backgauge Case StudyAir BendingServer PC + control panels + Programming the machinedisplay Case StudyLaser Cutting Systems Approach Case StudyLaser Cutting21 22. Case Study: Air BendingStudy: ManufacturingAlternative press design based on servo pumpsImpact RelevanceEnergy consuming unitsFunction Case Study 2 Servo pumps + drivesMove the pistons connected to the ram Body ofKnowledge2 Servo motors + drives Move backgauge FeedFeed (24 V, drives) Unit ProcessApproach ValvesHydraulic circuit MethodologyFan Cooling of the electrical cabinet Case Study Pc + control panels + display Programming the machineAir Bending Case StudyLaser Cutting Systems Approach Case StudyLaser Cutting22 23. Case Study: Air Bending Study: Manufacturing Alternative press design:Impact Power consumption measurements Relevance Case Study Body ofKnowledge Unit ProcessApproach Methodology Case StudyAir Bending Case StudyLaser Cutting Systems Approach Case StudyLaser Cutting23 24. Case Study: Air BendingStudy: Press brake redesign: comparative results ManufacturingImpactPower measurements: (kW) Traditional pressAlternative press Relevance Machine mode M1 M2M3 pc total 2 SP 2 SM Other total Case Studystart-up /shut down- - -0,26 0,260,10 0,13 0,410,63 Body ofstand by 1,40 0,03 0,00 0,26 1,69 0,10 0,13 0,410,63Knowledge move down max 9,50 0,03 0,00 0,26 9,796,20 0,13 0,416,73Production & bend min 2,80 0,03 0,00 0,26 3,10 0,22 0,13 0,410,75 Unit ProcessApproachmove up 6,00 0,03 0,00 0,26 6,29 0,10 0,13 0,410,63 12,0 MethodologyMax: 9,8 kW Case Study 10,0 Max: 6,7 kWTotal power (kW)Air Bending8,0 Case StudyMin: 0,8 kWLaser Cutting 6,0 Min: 3,1 kW Traditional Alternative Systems4,0 Approach2,0 Case StudyLaser Cutting 0,0123 4 5a5b 678924Production mode 25. Case Study: Air Bending Study: Manufacturing Traditional pressComparison energy consumptionImpactkWh/year Relevance 1,2 MWh/year 2,9 MWh/year Traditional Alternative difference Case Studystand-by 29511100 1851 Body of26 % move down* 1203282921Knowledge move up 391 393529%Total kWh45451421 312465 % Unit Process Total EUR** 440 - 68.7%138303Approach 250 days per year Methodology 0,4 MWh/year 8 hours per shift 1 shift per day Case Study2000 hours per yearAir BendingAlternative press0.0969 EUR/kWh** (Eurostat and INSEE) Case Study 0,04 MWh/yearLaser Cutting 0,3 MWh/year* To calculate the energy to move down, an average 3% value is used: Systems20%PPEB: 6,4 kW (power to bend 25 ton) ApproachPPRM: 1,5 kW (power to bend 20 ton) Case Study 77%Laser CuttingA potential energy reduction of3124 kWh/year is equivalent to1,1 MWh/year0.89 households25 26. Case Study: Laser CuttingStudy: Manufacturing Unit Process Analysis of Laser CuttingImpact Relevance Case Study Body ofKnowledge Unit ProcessApproach Methodology Case StudyAir Bending Case StudyLaser Cutting Systems Approach Case StudyLaser Cutting Power profile of a 5kW CO2-laser cutting machine tool.26 27. Case Study: Laser Cutting Study: ManufacturingTime and power studies: Time StudyImpact Cutting Sheets 84,2% RelevanceChangingTables Case Study 6,3% Body of ProgramKnowledgeLoading0,8%Power Study Unit ProcessChanging 80Configuration C - 6kW Other CheckingApproach 70 3,8% WorkpieceLaser Head 0,4% Configuration C - 5kW4,5% Methodology60Power (kW) 50Configuration C - 4kW Case StudyAir Bending 40 3050%Configuration B - 5kW Case Study 20Configuration B - 4kWLaser Cutting10 Configuration A - 4kW0 Systems1 2 3 456 Configuration A - 2,5kW Approach Laser Output (kW) Case StudyDifferent machine tool architectures (positioning system)Laser Cutting Configuration A : hybrid (4m x 2m)Configuration B: flying optics (4m x 2m)Configuration C: flying optics (12,5m x 3m) 27 28. Case Study: Laser Cutting Study: Manufacturing Total impact analysisImpact1 hour of laser cutting at full power load of 5 kW Relevance Case Study Impact % (mpts) Body ofKnowledge Energy Consumption52.2 kWh 1357 68.1Process Gas (N2) 13.6 m193 9.7 Unit Process ConsumptionApproachProduced Waste (St37-2) 6.5 kg406 20.4 Methodology 7.3 mg NO2Emissions 4.9 mg NO 351.8 Case Study917 mg aerosolsAir Bending Case StudyTotal1991Laser Cutting Most impact created by energy (electricity) consumption Systems ApproachImprovement potential can be found in: Case Study Replacement of laser source ( CO2-laser fiber/diode laser)Laser Cutting Selectively switching on/off subsystems Increasing the nesting efficiency. Selecting the right machine tool for the job28 29. Case Study: Laser Cutting Study: Manufacturing Systems Level Analysis of Laser CuttingImpact Relevance Case Study Body ofKnowledge Unit ProcessApproach MethodologyEnergy Case StudyinputAir Bending100% Case StudyLaser Cutting Systems Approach Case Study Sankey diagram for a 5kW CO2 laser cutter at full loadLaser Cutting Could wasted energy be retrieved ?29 30. System Level Opportunities ManufacturingImpact Inefficiency of the Relevance applied unit processes Case Study Body ofKnowledge Unit ProcessApproach Methodology Case StudyAir Bending Case StudyLaser Cutting Systems Approach Case StudyLaser CuttingOpportunity at system level Grassmann exergy diagram for the book support example30 31. Conclusions ManufacturingImpact At unit process level systematic analysis of impact Relevancefactors (energy, emissions, consumables) allows Case Study identification of improvement potential for CNC Body ofsheet metal working process of -25 to -65%.KnowledgeISO/TC 39/WG 12: ISO WD 14955-1Part 1: Unit ProcessEnergy-saving design methodology for machine toolsApproach Methodology At systems level machine tool selection and efficient Case Study process planning (e.g. nesting) significantlyAir Bendinginfluence the total manufacturing impact. Case StudyLaser Cutting At systems level so-called energy losses can be Systems considered potential resources. Exergy analysis Approach allows systematic quantification of the system Case StudyLaser Cuttingperformance.Need for exergy based performance indicators31