08 Byfield

download 08 Byfield

of 32

Transcript of 08 Byfield

  • 8/2/2019 08 Byfield

    1/32

    The prevention ofdisproportionate collapse using

    catenary action

    Mike Byfield BEng, PhD, CEng, MICE, MIStructEand

    Sakthivel Paramasivam BEng, MSc

    School of Civil Engineering and the Environment

    University of Southampton, United Kingdom

  • 8/2/2019 08 Byfield

    2/32

  • 8/2/2019 08 Byfield

    3/32

  • 8/2/2019 08 Byfield

    4/32

    1983 US Marine Corps HQ, Lebanon - 241 dead + 60 wounded

  • 8/2/2019 08 Byfield

    5/32

    1995 Federal Murrah Building

  • 8/2/2019 08 Byfield

    6/32

    Catenary

    Action

    Steel

    columns

    Bomb

    Damage

    Steel

    columns

    Catenary

    Action

    Bomb

    Damage

    Catenary ActionRedistribution of perimeter columnloads through hat truss in WTC1

  • 8/2/2019 08 Byfield

    7/32

    Accidental limit state load = 1.05 gk + 0.33 qkUK approachDAF = 1Pinned jointsFull reliance oncatenary actionPinned Joint

    Tying Force Method

  • 8/2/2019 08 Byfield

    8/32

  • 8/2/2019 08 Byfield

    9/32

    Design tying load Catenary loadRupture

  • 8/2/2019 08 Byfield

    10/32

  • 8/2/2019 08 Byfield

    11/32

    Notes:

    All columns 356 x 406 x 235 UC

    All main beams 533 x 210 x 82 UBAll secondary beam 457 x 191 x 67 UB

    Steel grade S355

    Concrete grade C35

    Imposed load 5 kN/m2

    Partition load 1 kN/m2

    3 m 3 m 3 m

    533 x 210 x 82 UB

    457x191x67UB

    Support to column removed by brisance

    3 m 3 m 3 m

    12m

    0.5 m

    356 x 406 x 235 UC

    457x191x67UB

    457x191x67UB

    457x191x67UB

    457x191x67UB

    457x191x67UB

    457x191x67UB

    533 x 210 x 82 UB

    3 m 3 m 3 m

    533 x 210 x 82 UB

    457x191x67UB

    Support to column removed by brisance

    3 m 3 m 3 m

    12m

    0.5 m

    356 x 406 x 235 UC

    457x191x67UB

    457x191x67UB

    457x191x67UB

    457x191x67UB

    457x191x67UB

    457x191x67UB

    533 x 210 x 82 UB

  • 8/2/2019 08 Byfield

    12/32

    Design rotation

    capacity = 4o

  • 8/2/2019 08 Byfield

    13/32

  • 8/2/2019 08 Byfield

    14/32

    The Best Guess Scenario, FoS = 0.12

    Full tensile strength of the slab included

    DAF = 1.5

    202 kN

    6.36 kN/m

    A BC

    202 kN 154.2 kN 202 kN 202 kN

    Internal Hinge

    4o

    4569 kN

    0.124569

    528 ==FoS

    202 kN

    6.36 kN/m

    A BC

    202 kN 154.2 kN 202 kN 202 kN

    Internal Hinge

    4o

    4569 kN

    202 kN

    6.36 kN/m

    A BC

    202 kN 154.2 kN 202 kN 202 kN

    Internal Hinge

    4o

    4569 kN

    0.124569

    528 ==FoS

    Accidental limit state load = 1.05 gk + 0.33 qk

  • 8/2/2019 08 Byfield

    15/32

    The Best Case Scenario, FoS = 0.19

    Full tensile strength of the slab included

    DAF = 1.0

    The Worst Case Scenario, FoS = 0.08

    Tensile strength of the slab ignored

    DAF = 2.0 in accordance with US practice

  • 8/2/2019 08 Byfield

    16/32

    202 kN

    6.36 kN/m

    A B

    C

    202 kN 140 kN 202 kN 202 kN

    Internal Hinge

    24.4o

    528 kN

    202 kN

    6.36 kN/m

    A B

    C

    202 kN 140 kN 202 kN 202 kN

    Internal Hinge

    24.4o

    528 kN

    DLF=1.5

    Slab strength included

    What if we have unlimited ductility in the connections?

  • 8/2/2019 08 Byfield

    17/32

    Joint A Joint C

    A

    C

    24o 3.84 m

    DLF=1.5Slab strength included

  • 8/2/2019 08 Byfield

    18/32

    (b) Joint A (c) Joint C

  • 8/2/2019 08 Byfield

    19/32

  • 8/2/2019 08 Byfield

    20/32

    Unsupported columns

  • 8/2/2019 08 Byfield

    21/32

    Unsupported columns

  • 8/2/2019 08 Byfield

    22/32

    1995 Federal Murrah Building

  • 8/2/2019 08 Byfield

    23/32

    Typical Canary

    Wharf Tower

    Flexible cladding

    No stiff internalpartitions

    No columns betweenservice cores andperimeter

    Number of columnsminimised by use of

    transfer beams Low stiffness slab Low ductility Pinned

    connections

  • 8/2/2019 08 Byfield

    24/32

    Rupture

  • 8/2/2019 08 Byfield

    25/32

  • 8/2/2019 08 Byfield

    26/32

  • 8/2/2019 08 Byfield

    27/32

    Rigid Joint

    Partial strength Semi-rigid Joint

    Beam remains elastic

    Plastic Hinge

    Available rotation capacity for industry standard semi-rigid composite connections limited to:1.80o for S355 beams1.43o for S275 beams

  • 8/2/2019 08 Byfield

    28/32

    203 x 86 UC

    End plate (Detail 2)

    75

    55

    20mm stiffener

    533 x 210 x 82 UB

    8

    610

    100

    4T16 rebars

    Detail 2

    60 8

    5

    90

    90

    20090

    300

    6 No. holes 22

    for M20 bolts

  • 8/2/2019 08 Byfield

    29/32

  • 8/2/2019 08 Byfield

    30/32

  • 8/2/2019 08 Byfield

    31/32

  • 8/2/2019 08 Byfield

    32/32

    ConclusionsConclusionsConclusions Tying capacity of industry standard connections is

    generally determined in the absence of beamrotations.

    Connections can develop a prying action that leadsto rapid failure.

    Tying method will not prevent progressive collapsewhen used with low ductility connections

    Semi-rigid (partial strength) connections haveinsufficient ductility to survive the demands ofcatenary action