28-1-2016 AFSLUITINGSBIJEENKOMST Minor Oil & Gas en Minor ... afsluiting minoren 2… · The...

Post on 08-Oct-2020

2 views 0 download

Transcript of 28-1-2016 AFSLUITINGSBIJEENKOMST Minor Oil & Gas en Minor ... afsluiting minoren 2… · The...

Presentatie 1

Dia <nr> van 12

EEM analyse groep

Een EEM analyse toegepast op een windturbine blad

28-01-2016

Dia <nr> van 12

Projectleden

• Oemar Nanhekhan Petrochemie

• Mishel Barri Petrochemie

• Sjoerd Hettinga WTB

• Albert Siebering WTB

• Begeleider: Bauke Kuiper

Dia <nr> van 12

Inhoud

• Opdracht

• Wat is EEM

• Krachten op het blad

• Analyse in Solidworks

• Vergelijking tussen Solidworks en FOCUS6

• Vragen

Dia <nr> van 12

Opdracht

• Theoretische benadering

• EEM analyse in Solidworks

• Vergelijking tussen Solidworks en FOCUS6

• Walkthrough voor Solidworks EEM analyse

Dia <nr> van 12

Wat is EEM

• EEM = Eindige Elementen Methode

• Sterkte berekeningen

• Ingewikkelde constructies

Dia <nr> van 12

Krachten op het blad

• FLIFT

• FZ

• FMPZ

• FWIND

Dia <nr> van 12

Momenten op het blad

-1500

-1000

-500

0

500

1000

1500

2000

0 50 100 150 200 250 300 350

Mo

me

nt

[kN

m]

graden [°]

Fz moment [kNm]

Lifmoment [kNm]

Totaalmoment [kNm]

• Lift grijpt aan op 2/3e deel van het blad• Fz grijpt aan op 1/3e deel van het blad• Shear• Blad 0°hoek

Dia <nr> van 12

Analyse in Solidworks

• Hoekverdraaiing 45°

• Vier krachten aangebracht

• Reactie krachten

Dia <nr> van 12

Vervolg analyse in Solidworks

1 5

0°Fx 102 kN

180°Fx -57 kN

Fy 270 kN Fy 270 kN

2 6

45°Fx 81 kN

225°Fx -30 kN

Fy 321 kN Fy 220 kN

3 7

90°Fx 29 kN

270°Fx 29 kN

Fy 343 kN Fy 199 kN

4 8

135°Fx -32 kN

315°Fx 81 kN

Fy 321 kN Fy 220 kN

1 5

Fx 94 kN

180°

Fx -49 kN

Fy 268 kN Fy 268 kN

M0 1517 kNm M0 -331 kNm

2 6

45°

Fx 74 kN

225°

Fx -28 kN

Fy 318 kN Fy 217 kN

M0 1246 kNm M0 -60 kNm

3 7

90°

Fx 23 kN

270°

Fx 23 kN

Fy 340 kN Fy 196 kN

M0 593 kNm M0 593 kNm

4 8

135°

Fx -28 kN

315°

Fx 74 kN

Fy 319 kN Fy 217 kN

M0 -60 kNm M0 1246 kNmWaarden Solidworks

Waarden theorie

Dia <nr> van 12

Vergelijking tussen Solidworks en FOCUS6

• Resultaten van Solidworks en FOCUS6 vergelijken

– Niet gelukt

– Foutmelding

– Ingewikkeld

– Veel tijd in gestoken

Dia <nr> van 12

Vervolg vergelijking

• Wat was de bedoeling

– Zelfde blad

– Zelfde krachten

– Zelfde oriëntatie

– Vergelijken van inwendige spanningen

Dia <nr> van 12

Vragen?

Presentatie 2

Designing efficiënt small-size turbine

blades

Stefan Wilkens | Rutger Loerts | Pieter de Jong | Cornelis de Jong

Inhoud

• Opdrachtgever en opdracht

• Het Blad ontwerp en parameters

• Conclusie & aanbevelingen

• Vragen

Situatie schets

• epoMAT

– Composites

– Roping

• Kleine windturbine

– Full pitch

Opdracht

“Ontwerp een zo efficiënt mogelijk rotorblad dat geschikt is

voor toepassing op kleine, full pitch, windturbines.”

Wat is bladontwerp

Windsnelheid

Tip Speed Ratio

AirfoilsKoorde

distributie

Bladtwist

Soliditeit

0

0,02

0,04

0,06

0,08

0,1

0,12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Freq

uen

tie

[-]

Windsnelheid [m/s]

Weibull

Energie in de wind?

Tip Speed Ratio

Koorde verdeling

Airfoil keuze

Airfoil keuze

Software is ook niet alles…

Soliditeit

Tool

Alternatieven

CAD Impressie

Afsluitend

Uitdagend, vooral aerodynamica

Veel onzekerheden in de theorie

Real-world resultaten onzeker

Vragen?

Presentatie 3

Subsea well preparation

Thursday January 28th , 2016

Team:

• Jeffry Dijkuis

• Nanne Post

• Danny van Driel

• Maurits van Gemert

• Hidde van Beekum

Thanks to:

Joan Horbeek, ONE drilling manager

Driss J Costa, Sr. Drilling engineer

42(42)

The assignment

Subsea well preparation:

• Location research – rig positioning

• Drill a 36”hole

• Run a 30” conductor

• Prepare a lift/ installation plan for a 90MT dome placement on the seabed

43(43)

In cooperation with:

L\/DE

44(44)

Contents

• Location

• Drill a 36”hole

• Run a 30” conductor

• Cement conductor

• Dome lifting and installation

• QHSE

• Conclusion

• Questions

45(45)

Location

• Military zone

• Pipeline

• Water depth

• Wildlife

46(46)

Operational working window

• High tide Dover

• Around slack tide

– Start drilling 36”hole

– Entering 36”hole

– Placing dome

47(47)

Drilling 36”hole

• Lithology: Upper North Sea group

• 36” diameter hole

• +/- 70 m below seabed

• 0 degrees inclination

48(48)

Bottom Hole Assembly

49(49)

30” Conductor/environmental riser

• 30” Run safe Dril-Quip conductor

– Yield strength 65.000psi

– collapse pressure:

– Burst pressure:

• Entering 36”hole

– White paint for ROV observation

• Cementing

– Collapse pressure considered with selection of conductor

50(50)

Cement operation

• Conductor support

• Prevent of fluid migration

• Stab-in shoe cement method

– Drillpipe

– Bow spring centralizers

– Cement dart plugs

51(51)

Cement slurry selection

• Tuned® Light XL-NL

– Low density to prevent formation fracks

– Rapid hardening

• Excess volume of 300%

– 50 tons of dry Tuned® Light XL-NL

– 34,5 cubic meters of fresh water

– 25 L of chemical Defoamer

52(52)

Dome

• Dome specs

Surface: 13,30m x 13,80mHeight: 6,80mWeight: 90MtProducer: NAMI B.V.Year of construction: 2008

53(53)

Dome transportation

• Vroon-Vos Paradise

– Clear deck Area: 850m²

– Breadth Moulded 18,00m

– Deck Loading 5t/m²

– Dome Area ±180m²

– Dome width 13,3m

– Dome Loading 0,5t/m²

54(54)

Dome placing

• Paragon C461 Rig Crane

– Lifting capacity 54Mt

• Top drive Vargo TDS-4S

– Lifting capacity 750Mt

Slings

Top Drive HWDP

Hoisting Eye

55(55)

Lift plan explained

56(56)

QHSE

• Ship moving.

• Bad use of instruments.

• Drilling of 36” open hole

• Drilling of 36” open hole

• Hanging-off of 20”extended conductor

• Hoisting of heavy equipment.

57(57)

QHSE BowTie

• Hoisting of dome

58(58)

QHSE Risk Assessment Matrix

• Hoisting of dome

59(59)

Conclusions/Recommendations

• Most suitable, practical and safest way for the operations

• Lifting & placement operations

during slack tide and calm winds

• QHSE models: visualisation operation risks

• Recommendations to ONE b.v. to make use of described barriers

60(60)

Questions?

Presentatie 4

Eindopdracht minor windenergie:

Ontwerpen testwagen kleine windturbine

Sion Bleker

Mark Kiewied

Dylan Possel

Marco Veensma

Inhoud

• Inleiding

• Opdracht

• Doel

• Onderzoeksfase

• Ontwerpfase

• Materiaalkeuze

• Eindontwerp

• Aanbeveling

Inleiding

• Kleine windturbines

• Testen van kleine windturbines

• Windtunnels

Opdracht

• `Ontwerp een testwagen voor de kleine

windturbine’

Doel:

• Een ontwerprapport schrijven, waarin een

omschrijving wordt gegeven voor een

realiseerbare testwagen voor het testen

van kleine windturbines, als alternatief

voor een windtunnel.

Onderzoeksfase

• Inzetbaarheid testwagen

• Metingen en verwerking

• Bevestiging testwagen

• Resultaten

Ontwerpfase

• Functie analyse

• Morfologische overzicht

Schetsen

Materiaalkeuze

Eindontwerp

Aanbeveling

• Elektrische componenten

• Testen van eindontwerp

Vragen?

Presentatie 5

Review of NOGEPA std. 43

Client: Henk WierengaStudents:Jens HorbeekJasper MoonenJohn de VosJoey Wolven 75

Content of the presentation

• Introduction

• Example of ambiguity in Dutch legislation

• Health Safety and Environmental

• Findings of the research

• Conclusion

• Recommendation

76

• Macondo, Deepwater Horizon

“everybody was reminded to the need of procedures andstandards”

“learned lessons from the accident where implemented intoindustrial guidelines and standards”

Introduction

77

Example of ambiguity in Dutch legislation

• Article 8.3.1.11

“The protection mechanism is constructed in a way that fluids can be pumped into the borehole without using the drilling equipment, while at the same time gas or liquids can be discharged through a choke manifold “

78

Blowout preventer

79

• Engie prefers not to circulate below the lowest ram becausethe lowest ram is the last resort to seal the well.

• State Supervision of Mines says, based on the article 8.3.1.11, you must build in the opportunity to circulate below the lowest ram.

• Main problem, legislation lacks clarity

80

Health, Safety, Environment & Quality

• Used Risk Assessment Matrix (RAM) and Bowtie method

• Risk 1, Wrong information taken into the NOGEPA 43 standard 43, causing operational hazards

• Risk 2, Slackness in testing Blowout preventer

• Risk 3, Not enough pressure from accumulator unit

• After adding barriers, acceptable risks81

Before adding barriers After adding barriers

Risk 1 Risk 1

Risk 2 Risk 2

Risk 3 Risk 3

Findings of the research

• Dutch Oil and Gas Exploration and Production Association is working on a new version• Implementing “shall, should and could method”

• Shall, Means that such method or practice reflects a mandatory provision of law

• Should, Means that such method or practice reflects a Good Operating Practice

• Could, Means that such method or practice is of an advisory nature or mentioned by way of example

• Operating companies are not in one line with State Supervision of Mines

• Current legislation and Standard 43 are insufficient 82

Conclusion

• Current standard 43 needs improvements.

• Clarification is needed for a good collaboration between SodM and the operating companies

• Implement new layout

• “Shall, should and could” method

83

Recommendations

• Determine the ambiguities in the Dutch legislation and NOGEPA standard 43

• Share thoughts and information about operating safely with regard to the BOP.

• Use the “shall, should and could” build up in the new standard 43.

• Develop an application that contains legislation, API standard 53 and NOGEPA standard 43

• Don’t circulate below the lowest ram 84

“We can take the horse to the water,

but we can not make the horse drink”

- Jens Horbeek, 7 January 2016 -

85

Presentatie 6

Base Case Offshore Windfarm

Minor: Windenergie

Door

Vincent van der Kooi en Leon Mulder

Inhoudsopgave

• Achtergrond en opdracht

• Vooronderzoek

• Enquête

• Tool

• Response

• Eindconclusie en aanbevelingen

• Vragen

Achtergrond

• Topconsortium Kenniscentrum Wind op Zee

– Fase windpark

– Opleidingen

– Rijksoverheid doelstelling

Opdracht

• Beschrijving base case offshore windpark

– Fasen van een project offshore windpark

– Partijen/werkzaamheden/kwalificaties

– Aantallen medewerkers in diverse functies beschrijven

– Beschrijven van opleidingen van die medewerkers

Vooronderzoek

• Vincent:

– Onderzoekfase & Constructiefase

– Deskresearch

– Offshore energy 2015

• Leon:

– O&Mfase & Ontmantelingsfase

– Deskresearch

– Offshore energy 2015

Vooronderzoek

• Bestaande onderzoeken gevonden

• Vacaturen bekeken van onderhoudsmonteurs/installatie

monteurs/administratieve medewerkers

• TKI Windopzee Supplychain tool

• 4coffshore.com

– Alle offshore windparken

– Betrokken ondernemingen

– Betrokken logistiek

Enquête

Enquête

Tool

Tool

Tool

Tool

Tool

Tool

Response

Response Ingevuld

• Operations en Maintenance 3 1

• Construction 1 0

• Ontwikkelingsfase 0 0

Eindconclusie, aanbevelingen en

resultaten

• Resultaten

– Opzet onderzoeksrapport met aanbevelingen

– Fasen van een windpark uiteengezet

– Overzicht beschikbare opleidingen

Eindconclusie, aanbevelingen en

resultaten

Vragen?

Presentatie 7

Power-To-Gas

25-2-2016 106

Banaz Al Jaff

Alexander Tieman

Maziar Hosseini

Hassan Bakry

Jeroen Bogers

Minor Oil & Gas

2015-2016

OMRIN

• Waste Collection and

separation

• 172.000 Households

• 7.000 companies

• Energy

25-2-2016 107

Introduction• 3 Situation

• H2 injection into the

fermenter

25-2-2016108

The process at OMRIN

• Questions

• Yield

• Electrolyzer

• Problems

• Gas separation

25-2-2016109

Methanogens

• Biochemistry

4 H2 + CO2 CH4 + 2 H2O +131 kJ mol-1

25-2-2016110

Electrolyser

Splits water into H2 and O2

2 configurations

Uniform

Bipolar

25-2-2016111

Injection of Gas

Side Sparger

• Pros

• Easy to instal

• Good mixing

• Tested in industry

• Cons

• Dead zone

• Possible to clog

Bubbling sticks

• Pros

• No Dead zone

• Easy to mount

• Less lightly to clog

• Cons

• bending

• Presure

25-2-2016112

Methane Increase

• Maximum temperature

rise

• Temp rise of 0,11 °C

25-2-2016113

• With H2 injection

• Methane increase

60% 66%

• Carbon dioxide

Decrease

40% 32,4%

Separation of gasses

• Filtration

25-2-2016114

Cost-Benefit Analysis

25-2-2016115

• Methane

• € 481.600 annualy

• € 1.444.800 annualy with subsidy

biomethane

• Electrolyser

• 10 MWh (40,05 euros for 1 MWh)

• € 10.000.000

Risk analysis

• Risk

H2 under pressure

• Cause

Lack of Maintenance

• Event

Leakage

25-2-2016 116

Recommendations

• Sulphate seperation, in the reactor or after te

filtration step

• A pilot plant for testing hydrogen injection with

the side sparger method or the bubbling stick

method.

• Electricity is cheaper at night, so that is the

most efficient time to produce hydrogen.

25-2-2016117

25-2-2016118

Any questions

Presentatie 8

Digitizing archives to SAPBy: Jelle Dijkstra, Siebe Fennema, Richard Hamelijnck, Maureen Radstok, Bas Roosken

120

Table of contents

Introduction

The assignment

Results

Templates

QHSE

Recommendation

BIM (Building Information Management)

121

Introduction

• Background NAM plant Den Helder

• LoCal, HiCal and Nogat

• The assignment• Digitizing archive to SAP

122

Methods

• Interviews• Six employees

• Template

• Select key data from interviews

• Pumps and compressors

• Searching the archive

• Strategy

• Sap System123

Results

• Templates

• Ten templates for pumps

• Five templates for compressors

• QHSE

• Wrong input data K-9100 compressor

124

Template pump

125

• Pump information

• Type of seal

• Driver

• Pump curves

• Technical drawings

126

QHSE

Quality, Health, Safety and Environment

K-9100 LoCal compressor

• Risk assessment matrix

• Bowtie

127

Wrong input data K-9100 compressor

Risk assessment matrix without barriers

128

Wrong input data K-9100 compressor

Bowtie

129

Wrong input data K-9100 compressor

Bowtie

130

Wrong input data K-9100 compressor

Bowtie

131

Wrong input data K-9100 compressor

Bowtie

132

Wrong input data K-9100 compressor

Risk assessment matrix with barriers

133

Conclusion

• Templates

1. Ten different pumps;

2. Five different compressors;

3. One template for a valve

• QHSE

1. Risk assessment matrix

2. Bowtie

134

Recommendations

One system for all data:

• BIM (Building Information Model)

• Possibility to link with SAP

135

136

137

Questions?

138

Thanks!

To the NAM

And to you for your attention!

139

Presentatie 9

Reliability Centered MaintenanceI N AS S O C IATIO N W I TH V E C TO R M AI N TE N AN C E M AN AG E ME N T AN D N HL U N I V E R SITY O F AP P L IE D S C I E N CES

Barry Slort Merchant Navy School (Maritime Officer)Eren Uslu Mechanical EngineeringJordy D`hondt Mechanical EngineeringLonneke Weel Chemical EngineeringMartijn Looman Merchant Navy School (Maritime Officer)

Date: 28-01-2016

Table of Contents

• Introduction

• RCM Methodology

• Qualitative Analysis

• Failure Mode Effect and Criticality Analysis (FMECA)

• Diesel Engine

• Generator

• Quantitative Analysis

• RCM Simulations

• Software

142

RCM Methodology

143

• RCM (Reliability Centered Maintenance)

• Qualitative analysis

• Quantative analysis

Qualitative analysis

• FMECA (Failure mode, effect and criticality analysis)

• 1. What are the functions and performance standards of the asset?

• 2. In what way can the asset fail to fulfil his function?

• 3. What causes each functional failure?

• 4. What happens when each failure occurs?

• 5. What are the consequences of each failure?

• 6. What should (or can) be done to prevent or predict the (unacceptable) failure?

• 7. What should be done if a suitable preventive task cannot be found?

144

Qualitative Analysis

• Two different assets:

- The diesel engine

- The generator

• Seven questions used for this analysis (FMECA)

• Data used of 18 different diesel engines.

• Time frame of 5 years (320,037 hours).

145

Qualitative AnalysisFailure Mode Effect and Criticality Analysis (FMECA) DIESEL ENGINE

146

Sub systems

Asset Diesel engine

Fuelsystem

Lub. oilsystem

Coolingsystem

Scavenging air system

Exhaustgas

system

Startingsystem

Control and

monitoring

system

Maincompone

nts

1. Function (fuel system) Supply of diesel oil to the engine

2. Failure mode Restricted fuel supply

3. Cause Fuel injector failure

4. Consequence Decreasing RPM’s

5. Failure priority Cannot comply with demanded power

6. How to prevent this failure Exchanging of the injectors after certain running hours

7. What if there is no preventive task? Not applicable

Quantitative Analysis

• Mean Time Between Failure (MTBF)

• Mean Repair Time (MRT)

• Mean Time To Restore (MTR)

147

RCM Simulations

RCM clogging of fuel filters

• MTBF: 3000 hours

• Cost per uptime €0,04

• Average availability 99,93%

148

Questions?

149

Presentatie 10

Project E-grid

Irfan Bontje

Rik Brouwer

Noud van Brummelen

Quincy Garia

151

INTRODUCTION

Minor wind energy

Minor Olie & Gas

152

INTRODUCTION

220 Kv connection to G17, L5, F17, F3 en haze

220 kV – 6 kV transformer

reactive power compensator

153

WHY?

Sell fuel gas instead of using it

Safety

Longer profitable exploration opportunity

Small future discoveries are faster profitable

BEMS

Decrease CO2 emissions

Abandonment postponed if platforms are used as substations

154

Alternating current Direct current

Distance 0-80 km 80+ km

Losses Higher Lower

Instalation costs Lower Higher

Compensation coils Essential DNA

Coverter DNA Essential

Cables costs Higher Lower

155

CABLE ON COMPENSATION COIL

Spreadsheet setup Different capacity’s

Different situations

Compensation coil

Cable behaviour

Price estimate Koper vs aluminium

Cable estimate

156

SPREADSHEET SETUP

compensatie op situatie

Configuration Gemini G17 F17 L5 F3 Hanze

1

2

3

4

5

cos phi=1

cos phi=0,52

cos phi=0,8

157

PRICE ESTIMATE

gas € 34.796.034,00per year

electricity € 46.394.712,00per year

Co2 rights € 1.667.533,01per year

Difference in power -€ 11.598.678,00per year

Sub total € 36.463.567,01per year

total € 24.864.889,01per year

158

€ 210.000.000,00

€ 230.000.000,00

€ 250.000.000,00

€ 270.000.000,00

€ 290.000.000,00

0 50 100 150 200 250

cost

pri

ce [€]

Power in [MW]

copper cable and compensation coil

1

2

3

4

5

€ 210.000.000,00

€ 230.000.000,00

€ 250.000.000,00

€ 270.000.000,00

€ 290.000.000,00

0 50 100 150 200 250

cost

pri

ce

Power in MW

Aluminium cable and componsation coil

1

2

3

4

5

LAW SURROUNDING THE NORTH SEAPOWER CABLE

-Wind Energy Law at Sea:

. Realization and exploitation

-generate more sustainable energy

-ensure a share of renewable sources by

atleast 14 percent in 2020

-To realise this law is essential

159

LAW AND REGULATIONS

(kavel besluit) decided where, which conditions built, exploited

Lot decision doesn’t give right to establish and exploit windfarms

-Electricity and Gas Law (Stroom wet)

Energy Agreement can’t be fulfilled without it

Old Gas and Electricy Law still applies.

160

HSE

161

GRID OPERATIONAL (MECHANICAL FORCES)

162

CONCLUSION

• A lot more details are needed.

• Recommendations Technical research

Economical research

Potential grants

Business continuity (decision making)

• First step to a brighter emission free future.

163

ANY QUESTIONS?

164

Maritime Campus Netherlands

www.maritimecampus.nl