fwpt.mat-rev.comfwpt.mat-rev.com/.../e9a2e615d81f65cbc0dde21b06806af8.docx · Web...

10
低低 低 陈陈陈 1 ,夏 1 1 陈陈 1,2,3 1 陈陈 2118162 陈陈陈陈 西西,西 7100723 陈陈陈陈陈 陈 210023陈陈 陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈 陈陈陈陈陈陈陈 ,, 陈 陈陈 陈陈陈陈陈陈 陈陈 陈陈 陈陈陈陈陈陈陈陈 陈陈陈 。,,,。(体)(),体 n 陈陈陈陈陈陈陈陈陈陈 陈陈 陈陈陈陈陈陈陈 陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈 陈 传统 ,。 :( 1 陈陈陈 )、;(2 n 陈陈 陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈 陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈 陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈 陈陈陈 陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈 ,,,。,,,,。, 2014 陈陈 4.37%陈陈陈 13.7%陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈 PEA )、( n-BA )、(iso-BA )、( PEI 陈陈 )。 PEA 陈陈陈陈陈 n-BA 陈陈 PEI 陈陈陈陈陈 陈陈陈陈陈陈陈陈陈 陈陈陈陈陈陈陈陈陈陈陈陈陈陈 陈陈 陈 陈陈 陈陈陈陈 陈陈陈陈陈 ,,。,,, 陈陈陈 ,。 陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈 陈陈陈陈陈陈陈陈陈陈陈陈陈陈 陈陈陈陈陈陈陈陈陈陈 陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈 陈陈陈陈陈陈陈陈陈陈陈陈 ,、、, 陈陈陈陈陈陈陈陈陈陈陈陈 陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈陈 ,。 低低低陈陈陈陈陈 陈陈陈陈陈 陈陈陈 陈陈陈陈陈 陈陈陈陈 低低低低陈陈陈 [email protected] 低低低低低 A Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability CHEN Haoran 1 , XIA Yingdong 1 , CHEN Yonghua 1 , HUANG Wei 1,2,3 1 Key Laboratory of Flexible Electronics & Institution of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing 211816, China; 2 Shaanxi Institute of Flexible Electronics), Northwestern Polytechnical University, Xi'an 710072, China; 3 Key Laboratory for Organic Electronics & Information Displays, and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China Since the emergence of organic-inorganic hybrid perovskite materials as light harvesters, the perovskite solar cells have attained a considerable efficiency improvement due to notable achievements in optimizing the fabrication process and device structure, while nevertheless been suffering increasingly serious challenges, especially instability. Layered (low- 陈陈 :(2015CB932200 “陈 ”陈 陈 ); ;(51602149 );(BK20161011BK20161010 ); This work was financially supported by the National Basic Research Program of China, Fundamental Studies of Perovskite Solar Cells (2015CB932200), the Natural Science Foundation of China (51602149), Natural Science Foundation of Jiangsu Province, China (BK20161011, BK20161010), Young 1000 Talents Global Recruitment Program of China, and Jiangsu Specially-Appointed Professor program.

Transcript of fwpt.mat-rev.comfwpt.mat-rev.com/.../e9a2e615d81f65cbc0dde21b06806af8.docx · Web...

Page 1: fwpt.mat-rev.comfwpt.mat-rev.com/.../e9a2e615d81f65cbc0dde21b06806af8.docx · Web view图的格式要求(重要):1)图片推荐使用JPG(300dpi以上)插入进word文档,也可使用origin、matlab、chemlab等制作嵌入2)所有图片内部及注释的文字均要使用英文(增刊投稿除外);所有图片的标题文字均要双语著录3)不得将图

低维钙钛矿:兼具高效率和稳定性的新型太阳能电池光吸收层候选材料

陈皓然 1,夏英东 1,陈永华 1,黄 维 1,2,3

(1 南京工业大学先进材料研究院,南京 211816;2 西北工业大学陕西柔性电子研究院,西安 710072;3 南京邮电大学信息材料与纳米技术研究院,南京 210023)

使用有机无机杂化钙钛矿材料作为光吸收层的钙钛矿太阳能电池自进入人们的视野以来,其制备工艺和器件结构不断得到优化,短短几年内效率取得了非常可观的增长。与此同时,这种基于三维钙钛矿材料的电池的缺点也越来越突出,尤其是材料的不稳定性,严重阻碍了其发展。低维钙钛矿材料具有有机胺层与无机层(金属卤化物钙钛矿晶体)之间相互交替的低维(层状)结构,其中被有机胺隔开的独立钙钛矿层中八面体的层数 n 越小,钙钛矿越接近二维结构。相比传统三维钙钛矿结构,低维钙钛矿材料应用于光伏器件具有两大优势:(1)耐湿性、光热稳定性大大增强;(2)可以通过改变 n 和插入的有机胺的种类来实现光学及电学性质的可调性。

然而,低维钙钛矿具有较大的光学带隙,有机胺的引入降低了载流子迁移率,导致低维钙钛矿电池的效率明显低于三维钙钛矿电池。因此,近三年来除研究钙钛矿层数对材料性质和器件性能的影响外,研究者们主要从选择合适的有机胺和优化薄膜制备工艺方面不断尝试,并取得了丰硕的成果,在充分发挥低维钙钛矿稳定性优势的同时大幅提升了器件效率。目前,低维钙钛矿太阳能电池的光电转换效率已由 2014

年的 4.37%跃升至 13.7%。在较高效率的低维钙钛矿太阳能电池中已取得成功应用的有机胺类包括苯乙胺(PEA)、正丁胺(n-

BA)、异丁胺(iso-BA)、聚乙烯亚胺(PEI)等。其中 PEA 应用得最早;n-BA 是运用在目前为止最高效的低维钙钛矿电池中的有机胺;而 PEI 插层形成的低维钙钛矿拥有相对更小的光学带隙和更高的耐湿性但载流子的传输会受到更大的限制。低维钙钛矿薄膜的制备起初主要采用简单的一步旋涂法,但此法所得的低维钙钛矿平行于基底生长,器件效率很低。近两年的研究工作将基底预热、浸泡、反溶剂滴加等手段引入到钙钛矿旋涂工艺中,实现了低维钙钛矿优先垂直基底生长,为突破低效率瓶颈提供了可能。此外,以三维钙钛矿为基础,以有机胺为添加剂,制得的二维和三维混合的钙钛矿结构,也可以实现器件效率和稳定性的双提升。本文归纳了低维钙钛矿光伏器件的研究进展,分别对低维钙钛矿的分子结构、插入的有机胺的选择、

钙钛矿薄膜的制备方法等进行介绍,分析了低维钙钛矿太阳能电池面临的问题并展望其前景,以期为制备稳定和环境友好的新型钙钛矿太阳能电池提供参考。关键词:低维钙钛矿 太阳能电池 有机胺 层状钙钛矿 光伏器件

基金项目:国家重点基础研究发展计划项目(2015CB932200);中组部“千人计划”青年项目;国家自然科学基金委青年项目(51602149);江苏省自然科学基金青年科学基金项目(BK20161011;BK20161010);江苏特聘教授This work was financially supported by the National Basic Research Program of China, Fundamental Studies of Perovskite Solar Cells (2015CB932200), the Natural Science Foundation of China (51602149), Natural Science Foundation of Jiangsu Province, China (BK20161011, BK20161010), Young 1000 Talents Global Recruitment Program of China, and Jiangsu Specially-Appointed Professor program.

Administrator, 18年1月2日,
综述文章的题目应如实地反映文章主要内容或观点,切忌大而空
Administrator, 18年1月2日,
关键词的要求:1)不少于3个2)可以是本文题目中的关键学术词语,也可以是本文所涉及领域及其前沿热点方向对应的学术词语3)“制备”、“应用”、“进展”、“综述”等过于笼统的科技词语或非科技名词不得作为关键词4)一般不能只给出缩写词,例如:“QDSSC”,应写作“量子点敏化太阳能电池(QDSSC)”,英文写作“quantum dot-sensitized solar cell (QDSSC)”5)物质名称不宜使用化学式,例如Cu2O,应写作“氧化亚铜”,英文为“copper(I) oxide”
房 威, 19年1月10日,
(重要)本刊要求综述篇文稿的摘要(投稿时可使用一段式摘要,待稿件经评审录用前再行修改):1)字数在600~800字左右2)应凝练、扼要,文句力求简练,不得为堆砌字数而纳入无关内容或无用信息,亦不得在各段之间重复陈述相近的内容3)摘要各段的要旨为:①简述领域研究背景,引出本文主题(简洁)→②指出存在的问题和研究焦点(准确、严谨)→③概述各研究焦点近年所取得成果→④点出文章主要内容或贡献(尽量精简,注意客观)4)尤其注意:虽然只有第四段采用“本文……”的句式,但实际上第二、三段即是对全篇所提问题及论述和进展内容的概括和梳理,是全篇主要内容的缩影,请作者不要把这两段写成“引言式”的内容
Administrator, 01/02/18,
作者单位如有两个以上,请添加相应的序号。同时注意中英文的一致性
Administrator, 18年1月2日,
基金项目类型及基金号在页脚处给出,不同项目以分号隔开
Page 2: fwpt.mat-rev.comfwpt.mat-rev.com/.../e9a2e615d81f65cbc0dde21b06806af8.docx · Web view图的格式要求(重要):1)图片推荐使用JPG(300dpi以上)插入进word文档,也可使用origin、matlab、chemlab等制作嵌入2)所有图片内部及注释的文字均要使用英文(增刊投稿除外);所有图片的标题文字均要双语著录3)不得将图

通信作者:陈永华,[email protected]

中图分类号:   文献标识码:A

Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability

CHEN Haoran1, XIA Yingdong1, CHEN Yonghua1, HUANG Wei1,2,3

1 Key Laboratory of Flexible Electronics & Institution of Advanced Materials, Jiangsu National Synergetic

Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing 211816, China; 2

Shaanxi Institute of Flexible Electronics), Northwestern Polytechnical University, Xi'an 710072, China; 3 Key Laboratory for Organic Electronics & Information Displays, and Institute of Advanced Materials, Nanjing

University of Posts and Telecommunications, Nanjing 210023, China

Since the emergence of organic-inorganic hybrid perovskite materials as light harvesters, the perovskite solar cells

have attained a considerable efficiency improvement due to notable achievements in optimizing the fabrication

process and device structure, while nevertheless been suffering increasingly serious challenges, especially

instability. Layered (low-dimensional) perovskite materials are constructed based on a periodical (or quasi-

periodical, or hybridized) structure which is composed of alternate layers of organic amines and metal halide

perovskite crystals. The layered structure approximates to a two-dimensional structure whilst the number (n) of

planes, which consist of the pyramids’ squares of the perovskite octahedrons, within one separated perovskite layer

approaches 1. For photovoltaic application, these low-dimensional perovskite structures have two advantages

compared to their three-dimensional counterparts. I. remarkably enhanced moisture resistance and thermal

stability, II. tunable optical and electrical characteristics by varying n and selecting different organic amines.

On the other hand, poor carrier mobility (a consequence of the inhibition of out-of-plane charge transport by the

organic amine cations) and wide band gap contribute to a far lower efficiency of low-dimensional perovskite solar

cell than three-dimensional perovskite device. This urges intensive research endeavors to seek favorable organic

amines and optimize perovskite film fabrication process, aiming at boosting photovoltaic efficiency while

exploiting layered perovskite’s stability. And in the past three years, impressive strides have been made in

promoting the low-dimensional perovskite solar cells, with a giant leap in the reported power conversion efficiency

(PCE) from 4.37% to 13.7%.

Phenethylamine (PEA), n-butylamine (n-BA), isobutylamine (iso-BA), polyethylenimine (PEI), etc. have been

found to be satisfactory as the hydrophobic amine interlayers for relatively-high-efficiency layered perovskite solar

cells. PEA is the first to be involved in the attempts, and the n-BA-intercalated perovskite hold the currently

highest efficiency of this new type of photovoltaic devices. PEI intercalation appears to result in narrower band

gap and higher moisture resistance, but also leads to a larger inhibition to the carrier transport. Although one-step

spin coating provides a facile route to obtain layered perovskite films, this method will cause the horizontal growth

(i.e. interlayers parallel to substrate) of the layered structure and in consequence, an extremely low cell efficiency.

Works in the past two years have established a new avenue to overcome the low-efficiency bottleneck, by

introducing various techniques into the spin coating process, e.g. hot casting, immersion (in short-chain amines),

antisolvent dripping, all of which have successfully achieved the preferential out-of-plane alignment of the

inorganic perovskite layers. Besides, researchers also have demonstrated that the 2D-3D hybrid perovskite

structures, which can be constructed on the basis of 3D perovskite with the presence of organic amine additives,

can gain improvements in terms of both efficiency and stability.

PAGE \* MERGEFORMAT2

房 威, 05/23/18,
英文摘要的文意应与中文大致相同(但不是机械翻译中文)
Administrator, 01/02/18,
与中文不同,英文的单位应遵循由小到大的顺序,先学院,再学校
Administrator, 01/02/18,
姓的每个字母都要大写,名只首字母大写。外籍人士的姓名,亦采用姓前名后的顺序
房 威, 08/24/18,
页脚处的基金信息请双语著录
Administrator, 18年1月2日,
请在学校图书馆网站或外网查询,一般至少细化到大类下的2位数字符,例如TB304、TB34、O469等
房 威, 18年8月22日,
1)第一作者为硕士或博士研究生者,投稿时必须以导师作为通信作者2)文章可以有共同第一作者,但不可以列两名通信作者
Page 3: fwpt.mat-rev.comfwpt.mat-rev.com/.../e9a2e615d81f65cbc0dde21b06806af8.docx · Web view图的格式要求(重要):1)图片推荐使用JPG(300dpi以上)插入进word文档,也可使用origin、matlab、chemlab等制作嵌入2)所有图片内部及注释的文字均要使用英文(增刊投稿除外);所有图片的标题文字均要双语著录3)不得将图

This review offers a retrospection of the research efforts with respect to the layered (low-dimensional)

perovskite photovoltaic devices, and provides elaborate descriptions about the structure of low-dimensional

perovskite, the selection of the intercalating organic amines, and the film fabrication process. We then pay

attention to the problems confronting the current state-of-the-art low-dimensional perovskite solar cells. We have

confidence that the low-dimensional perovskite solar cells have a bright future in the development and innovation

of stable and environmental-friendly photovoltaic devices.

Keywords: low-dimensional perovskite, solar cell, organic amine, layered perovskite, photovoltaic device

Correspondence: Yonghua Chen, [email protected]

0 引言钙钛矿材料作为目前最火热的新型光吸收材料,是人们近几年一直在关注和研究的对象之一,其中有

机无机杂化钙钛矿材料发展迅猛。作为一种光学和电学性质显著的半导体材料,它具有高的消光系数 [1]、高的载流子迁移率[2]、小的激子结合能[3]以及易溶液制造加工[4]等优点,被研究者们广泛用于各种结构的太阳能电池中。经过对薄膜制备[5-9]和器件结构[10]的不断优化,有机无机杂化钙钛矿太阳能电池的效率在短短几年内从最初的 3.81%[11]已增长到如今的 22.1%[12]。随着钙钛矿太阳能电池取得突破性进展,其缺点也更加突出,尤其是材料的不稳定性已成为此种电池

发展的最大绊脚石[13-14]。传统的三维钙钛矿结构如图 1(a)所示,………………………使其在光伏器件中可以获得前所未有的高稳定性。

图 1 (a)三维钙钛矿晶体结构[21];(b)使用不同有机胺离子插层所形成的二维钙钛矿结构[22]

Fig.1 The basic structures of (a) three-dimensional perovskites [21] and (b) two-dimensional layered perovskites

intercalated with two different types of organic amine cations [22]

1 低维钙钛矿分子结构常见的低维钙钛矿的通式为(R-NH3)2An-1MnX3n+1,其中 R-NH3代表插层的有机胺离子,A 对应于三维

钙钛矿中原有的 A位阳离子,M 为金属阳离子,X 为卤素阴离子,n表示每一层分开的钙钛矿层中八面体的 层 数 , 也 统称为 低 维 钙 钛 矿 的 层 数 。 插 层 的 有 机 胺 不仅可 以 是单胺 ,还可 以 是双胺甚至多胺(Polyamine),选择具有不同氨基数目的有机胺,就会形成不同的层间结构(见图 1(b)),若选择双胺,那么结构通式就变成(NH3-R-NH3)An-1MnX3n+1。从图 2 可以看出:当 n=1 时,无机层中的八面体只有一层,这时可以将 n=1 时的低维钙钛矿称作二维钙钛矿结构;随着 n 的增大,无机层逐渐变厚,这时的低维钙钛矿(n≥2)也可以称为准二维钙钛矿结构;当 n逐渐增大到无穷时(n=∞),无机层已经厚到可以将有机胺

PAGE \* MERGEFORMAT3

Administrator, 08/24/18,
图、表的标题应跟随正文,不能使用文本框(整个投稿文档的任何地方请都不要使用文本框)
Administrator, 08/24/18,
图的格式要求(重要):1)图片推荐使用JPG(300dpi以上)插入进word文档,也可使用origin、matlab、chemlab等制作嵌入2)所有图片内部及注释的文字均要使用英文(增刊投稿除外);所有图片的标题文字均要双语著录3)不得将图1、图2(或图4、图5,等等)一左一右并排放置,即便是当图1、图2下均只有一幅图时4)我们希望作者更多地使用彩图而非黑白图片5)图片中图形、线条、文字、数字应清晰可辨,普通照片、电镜照片应保证足够的清晰度6)综述文章的图片来源于其他文献的,需在图标题对应位置标引7)带横、纵坐标的图,须在坐标下侧、左侧(有时右侧、上侧亦可能需要)标明物理量和对应单位。物理量的名称(或符号)与物理量的单位之间用“/”分隔(参见图4)8)图片中的所有文字、数字、符号、线条、箭头、标尺等应使用制图软件在图片中标示,不得使用文本框插入
Administrator, 01/02/18,
不要写成“图1a”“图1-a”,等等
Administrator, 08/24/18,
1)参考文献在正文中须依序号由小到大标引2)文章各级标题中不得出现参考文献标引3)前文已标引的文献,再次引用时需使用原序号,即,文末列出的每条参考文献必须是唯一的、相互无重复的
Page 4: fwpt.mat-rev.comfwpt.mat-rev.com/.../e9a2e615d81f65cbc0dde21b06806af8.docx · Web view图的格式要求(重要):1)图片推荐使用JPG(300dpi以上)插入进word文档,也可使用origin、matlab、chemlab等制作嵌入2)所有图片内部及注释的文字均要使用英文(增刊投稿除外);所有图片的标题文字均要双语著录3)不得将图

层完全忽略,这样无穷层数的钙钛矿就趋近于三维钙钛矿结构。从晶向上来划分,不同的晶向有不同的结构通式[23]:常见的用于太阳能电池中的低维钙钛矿(R-NH3)2An-1MnX3n+1 为<100>晶向,此类型的低维钙钛矿在 n 较小(n≤10)时也称作 Ruddlesden-Popper 结构钙钛矿;其他的晶向还有<110>[24]、<111>[25]。低维钙钛矿具有不同的晶向,主要是由于不同结构的有机胺与无机层的自组装方式不同。

图 2 不同 n值的(R-NH3)2An-1MnX3n+1 钙钛矿分子结构示意图[22]

Fig.2 The molecular structures of the (R-NH3)2An-1MnX3n+1 perovskites differing in n value [22]

……………………………………………………………………………………………………………………

…………………

(为方便进行示例,以下使用了来自其他文章中的公式)

XXXXXXXXX如式(1)所示:(αhν)2=A(hν–Eg)                                   (1)

式中:α 为吸收系数;hν 为入射光子的能量(其中 h 为 Plank 常数,ν 为光频率);A 为常量;Eg为材料的光学带隙。

……………………………………………………………………………………………………………………

…………………

2 有机胺的选择和无机层中钙钛矿层数的优化最先制备出的较高效率的低维钙钛矿太阳能电池中运用了苯乙胺(PEA)作为有机阻挡层(见图

3(b))。Smith 等[26]将 n=3 的钙钛矿薄膜(PEA)2(MA)2Pb3I10 与最常见的三维 MAPbI3 钙钛矿进行比较,两者带隙的实测结果分别为 2.1 eV和 1.61 eV,两者的薄膜形貌和薄膜性质也有很大差别。此外,Smith 等对固体和粉末低维钙钛矿进行了粉末 X射线衍射(PXRD)分析,根据两者测试结果之对比发现,粉末钙钛矿存在少量对应于 1、2、4、5 层数的钙钛矿的特征峰,说明所得的钙钛矿并非完全只存在 n=3 的结构,而是掺杂了少量其他层数结构的低维钙钛矿。………………………………

……………………………………………………………………………………………………………………

…………………

PAGE \* MERGEFORMAT2

房 威, 05/16/18,
英文缩略语在文中首次出现时应给出中文或英文全称(SEM、TEM、XRD等熟知的可不给出)。一些物理量符号也同样适用
Administrator, 01/02/18,
物理量的数值与单位之间空1格;组合单位中的点乘符号不得省略,如cm2/(V·s)
Administrator, 18年1月2日,
正文(不包括文末reference list)中人名的著录格式:1)用中文著录的人名,例如“张建国”,不能省略名字,即不能写成“张”2)用英文或类似文种著录时,可以使用“姓”或“名.(空格)姓”两种方式(但在一篇文章中需统一使用一种),例如:“Prandergast”或“T. Prandergast”,“Zhang”或“J. G. Zhang”。(关于如何分辨外国人的姓氏和名字,请所有投稿作者自行查阅相关资料学习或请教导师等,切不可随意判断)
房 威, 05/23/18,
注意规范物理量的正、斜体和上、下标
Administrator, 18年1月2日,
公式、反应式等的格式要求:1)文中反应方程式、公式等均用(1),(2),(3),…编号2) 公式不得用截图。简单的公式建议直接键入;复杂的公式建议使用word自带或MathType等公式编辑器3)正文中需有针对公式中物理量含义的说明性文字(一般紧跟在公式后另起一段予以描述)
Administrator, 01/02/18,
文章中的图,按其在正文中首次出现的先后顺序,用1,2,3…来编号
Page 5: fwpt.mat-rev.comfwpt.mat-rev.com/.../e9a2e615d81f65cbc0dde21b06806af8.docx · Web view图的格式要求(重要):1)图片推荐使用JPG(300dpi以上)插入进word文档,也可使用origin、matlab、chemlab等制作嵌入2)所有图片内部及注释的文字均要使用英文(增刊投稿除外);所有图片的标题文字均要双语著录3)不得将图

………………………Quan 等[18]试图把三维钙钛矿的维度降低,以得到较稳定的钙钛矿结构。计算表明,对传统的三维钙钛矿而言,相对于形成钙钛矿晶体,分解成 PbI2 和 MAI(分子式为 CH3NH3I)会更加稳定一些,其中甲胺阳离子(MA+)的亲水性和挥发性使得 MAPbI3 更容易因湿度和热量而发生降解,并且钙钛矿的分解也不是在内部自发进行,而是由表面开始。而有机胺层间存在范德华力,若要从钙钛矿中去除 PEAI,所需的能量就比仅去除 MAI 要高,薄膜的解吸附速率大大降低,从而使钙钛矿的分解速率降低为原来的 1/1 000。从图 4 可以看出,如预期一样,降低维度的钙钛矿无论是薄膜还是器件都展现出了高稳定性,并且足够厚的层数(n=60)和可降低带隙的甲脒使得电池的认证效率依旧达到了 15.3%。

图 4 (a)不同 n值的(PEA)2(MA)n-1PbnI3n+1 光伏器件的效率分布[18];(b)器件性能和稳定性随层数变化的示意图[18];(c)不同层数的器件随时间推移的效率演变[18]

Fig.4 (a) The PCEs for (PEA)2(MA)n-1PbnI3n+1 perovskite device with different n values [18]; (b) device

performance and stability as functions of n value [18]; (c) performance evolution of the devices with different n

values as a function of time [18]

3 薄膜制备(为方便进行示例,以下小节标题为虚构内容)

3.1 基底预热……………………………………………………………………………………………………………………

PAGE \* MERGEFORMAT3

房 威, 05/23/18,
数值的每3个数位要空格,小数点视为空格例如:12 003.366 5
Page 6: fwpt.mat-rev.comfwpt.mat-rev.com/.../e9a2e615d81f65cbc0dde21b06806af8.docx · Web view图的格式要求(重要):1)图片推荐使用JPG(300dpi以上)插入进word文档,也可使用origin、matlab、chemlab等制作嵌入2)所有图片内部及注释的文字均要使用英文(增刊投稿除外);所有图片的标题文字均要双语著录3)不得将图

…………………

3.2 反溶剂滴加……………………………………………………………………………………………………………………

…………………

(为方便进行示例,以下使用了来自其他文章中的表格)

表 1 二维材料的各向异性总结Table 1 Brief summary of anisotropic properties of 2D materials

Anisotropic property 2D material Application Prospect

Raman spectra Black phosphorus, ReS2, ReSe2, MoTe2, WTe2

Determining crystallographic orientation; Analyzing atom-

atom interaction

i) Anisotropic modulation by certain means;ii) Anisotropies of some unmentioned materials (e.g. WS2, antimonene) are worthy of study, also quite a few materials’ anisotropic properties are undiscovered;iii) Developing polarized devices inspired by 2D materials’ anisotropies;iv) Optimizing devices’ performances by exploiting 2D materials’ anisotropies

Photoluminescence (PL) spectra Black phosphorus Polarized photodetectors

Second harmonic generation (SHG)

spectraMoS2, MoTe2

Determining crystallographic orientation and layer-number uniformity; nonlinear effects (frequency doubling, four-

wave mixing, etc.)

Electric conductivity

MoS2, black phosphorus, ReS2

Polarized optoelectric devices, artificial neural systems

Thermal conductivity

MoS2, black phosphorus, WTe2, arsenene

Polarized thermoelectric devices

Optical absorption spectra Black phosphorus, MoTe2 Polarized photodetectors

Young’s Modulus Black phosphorus

Magneto-resistance WTe2

4 结语与展望低维钙钛矿作为一种新型的钙钛矿型光伏材料体系,表现出对水、热以及光照等极好的稳定性,有望

解决传统三维钙钛矿为人们所诟病的不稳定性问题,对钙钛矿光伏器件最终的产业化起到至关重要的作用 。但由于低维的钙钛矿仍然是尚未完全开发的一类新材料,目前也存在着一些待解决的问题,具有较大的提升空间。(1)有机胺的引入会不同程度地影响薄膜的电学性质,例如载流子的传输和扩散长度,这也是导致器件效率较低的根本原因之一。如今研究者们从薄膜工艺方面入手,实现了低维钙钛矿垂直基底生长 ,使低效率的瓶颈找到了突破口。(2)目前有机胺的选择基本局限于苯乙胺和丁胺两种,虽然一些相关文献报道了其他种类的有机胺,例如 2-碘乙胺[37]、环丙胺(CA)[42]、组胺(HA)[43]、苄胺(BZA)[44]和一些其他官能团分子[45-48],但这些研究中并不是以精确原料计量比来制备低维的钙钛矿,而是通过随机自组装,对三维钙钛矿层起到钝化作用,从而提升薄膜和器件的稳定性。所以,探究并寻找到其他更合适的有机胺进行插层,是未来低维钙钛矿的发展趋势之一。(3)从各种表征结果可以分析得出,将原料按照化学计量比进行旋涂所制成的薄膜并不是单一层数的低维钙钛矿,而是大多为混合相 [49]。目前为止的最佳方案是将已合成的低维钙钛矿的单晶溶解在溶剂中 [35],但单晶溶解之后溶液里是否会有部分离子重新自组装形成混合层数的钙钛矿还有待明确。(4)低维钙钛矿在很大程度上解决了传统三维钙钛矿不稳定性的缺

PAGE \* MERGEFORMAT2

房 威, 18年5月24日,
结语的撰写:1)结语是综述文章收尾的段落,其内容要相对概括,可以是一段话,也可以是若干段落2)结语应讲述所存在的问题及未来方向,这些内容应该是在正文中已经进行了探讨、分析或者论证的,或者是引用其他研究作为证据,否则就脱离了正文论述内容或是成为了没有说服力的说教3)我们反对大而空甚至口号式的结语
Microsoft, 08/24/18,
表格的格式要求:1)表格同样按1,2,3…来编号2)所有表格内部及注释文字均要使用英文(增刊投稿除外);对于文字内容复杂的表格,投稿时务必将对应的中文表格附在英文表格后面,以免因不合格的英文表达给审稿人和编辑带来困惑,若稿件被录用,期刊的英文编辑还将对表格英文内容重点润色3)所有表格的标题文字均要双语著录4)表格排版邀整齐,不同的内容应该放在不同的单元格下,不得以回车转行来代替单元格的分隔功能
Page 7: fwpt.mat-rev.comfwpt.mat-rev.com/.../e9a2e615d81f65cbc0dde21b06806af8.docx · Web view图的格式要求(重要):1)图片推荐使用JPG(300dpi以上)插入进word文档,也可使用origin、matlab、chemlab等制作嵌入2)所有图片内部及注释的文字均要使用英文(增刊投稿除外);所有图片的标题文字均要双语著录3)不得将图

点,但重金属铅的毒性问题依然难以改变[50],尽管有研究涉及了以丁胺[51]、苯乙胺[38]和其他杂环胺[43]为有机层的低维卤化锡钙钛矿材料,但器件效率都不甚理想。因此,在未来的低维钙钛矿光伏器件中,无铅化也是必要的研究方向。(5)部分低维钙钛矿光伏器件的迟滞效应比较明显,这有可能与电荷在低维钙钛矿中的传输及界面有关,低维钙钛矿的光物理和光化学性质同样值得深入探究。

PAGE \* MERGEFORMAT3

Page 8: fwpt.mat-rev.comfwpt.mat-rev.com/.../e9a2e615d81f65cbc0dde21b06806af8.docx · Web view图的格式要求(重要):1)图片推荐使用JPG(300dpi以上)插入进word文档,也可使用origin、matlab、chemlab等制作嵌入2)所有图片内部及注释的文字均要使用英文(增刊投稿除外);所有图片的标题文字均要双语著录3)不得将图

参考文献注:每条参考文献都要用英文著录。若需引用中文文献(中文期刊上刊登的英文文章视为英文文献):1. 请只引用期刊论文、有英文会议名称的会议论文、学位论文和书籍,其他中文文献请勿引用;2. 请在英文后另起一段给出中文;3. 请确保期刊英文名称、会议英文名称、学校(机构)英文名称等完整无误;4. 中文期刊的卷号和期号都要标明(外文期刊可只标明卷号),期刊英文名请到万方等数据库查询,不要直接翻译;5. 请在英文最后标明“(in Chinese)”;6. 以下条目26、30、32给出了中文文献的著录示例 (这里省略了原文文献共 51条)

52 Zhu M, Lu Z C, Hu R Z, et al. Acta Metallurgica Sinica, 2016, 52(10), 1239 (in Chinese).

朱敏, 鲁忠臣, 胡仁宗, 等. 金属学报, 2016, 52(10), 1239.

53 Yoshihiko K, Yoshikawa H, Kunio A, et al. Langmuir, 2008, 24, 547.

54 Caruso F, Caruso R A, Mohwald H. Science, 1998, 282(5391), 1111.

55 Enander R T. Lead particulate and methylene chloride risks in automotive refinishing. Ph.D.

Thesis, Tufts University, USA, 2001.

56 Tian H. Fabrication and characterization of highly porous SiOC ceramics from silicone resin.

Master’s thesis, National University of Defense Technology, China, 2011 (in Chinese).

田浩. 硅树脂转化制备高孔隙率 SiOC多孔陶瓷研究. 硕士学位论文, 国防科学技术大学,

2011.

57 Anastas P T, Warner J C. Green Chemistry: Theory and Practice, Oxford University Press,

UK, 1998.

58   Liu G M, Ma L L. Non-destructive testing technology, National Defense Industry Press,

China, 2010 (in Chinese).

刘贵民, 马丽丽. 无损检测技术, 国防工业出版社, 2010.

59 Barker J. In: Catalyst Deactivation, Delmon B, Froment C, ed., Elsevier, Netherlands, 1987,

pp. 253.

60 Dominé D, Bailat J, Steinhauser J, et al. In: Conference Record of the 2006 IEEE 4th World

Conference on Photovoltaic Energy Conversion. Hawaii, 2006, pp. 1465.

61 Schumann S. E.U. patent, EP3024042, 2017.

62 Leung W W, Wang J C, Yang L J. U.S. patent application, US20150287852, 2015.

PAGE \* MERGEFORMAT2

房 威, 05/23/18,
条目61、62为引用专利文献之格式。专利号、专利权人、公开时间等信息请在http://www.freepatentsonline.com/上查询
房 威, 08/24/18,
条目60为引用会议论文之格式。须给出会议名称、会议举办地或组织机构所在地、年份(注意这里页码的著录形式与期刊文献不同)
房 威, 05/23/18,
条目59为引用书籍中的一个章节或篇目之格式(注意这里页码的著录形式与期刊文献不同);书名使用斜体
房 威, 05/23/18,
条目57、58为引用书籍之格式;书名使用斜体,且需给出国别(中英对照时中文不需要国别)
房 威, 05/23/18,
条目55、56分别为引用博士学位论文和硕士学位论文之格式,注意:1)与其他文献形式不同,学位论文要给出论文题名2)需用全称给出校名(机构名),并给出国别(中英对照时中文不需要国别)
Administrator, 01/02/18,
文末reference list中人名著录格式(注意与正文中人名著录格式的要求有区别):1)名简写时,姓在前,名在后,名的首字母后不加“.”且名的简写之间要留空2)名不简写时,姓在后,名在前3)姓/名的首字母大写,其他字母小写4)外文姓名中名的简写放在姓的后面且不加“.”5)在著录时若无法准确区分姓和名,则不宜用缩写,以避免错误例如:“Jens Eisert”可缩写为“Eisert J”(也可不缩写),但不要写为“J. Eisert”、“Eisert J.”、“Eisert Jens”。“Novoselov KS”应写成“Novoselov K S”
Administrator, 01/02/18,
参考文献中个人著者超过三人时,只录入前三人姓名,之后加 “et al”
房 威, 05/23/18,
条目52、53、54为引用期刊文献之格式,刊名使用斜体,之后标出年、卷、期、页码;对于网络版先于印刷版而无法给出卷、期或页码的文献,可以以doi号来代替
Microsoft, 18年8月8日,
本模板的参考文献格式是文章最终刊登时的格式。但在投稿时,请作者注意保留每条文献的文章题名,以方便评审。待文章将要录用前,再按本模板的格式要求删去期刊和会议论文等文章题名。
Page 9: fwpt.mat-rev.comfwpt.mat-rev.com/.../e9a2e615d81f65cbc0dde21b06806af8.docx · Web view图的格式要求(重要):1)图片推荐使用JPG(300dpi以上)插入进word文档,也可使用origin、matlab、chemlab等制作嵌入2)所有图片内部及注释的文字均要使用英文(增刊投稿除外);所有图片的标题文字均要双语著录3)不得将图

Haoran Chen received her B.S. Degree in applied chemistry from Inner Mongolia

University for the Nationalities in 2016. She is currently pursuing her Ph.D. at the

Institute of Advanced Materials (IAM), Nanjing Tech University under the supervision of

Prof. Yonghua Chen. Her research has focused on low dimensional organic–inorganic

hybrid perovskite solar cells.

陈皓然,2016 年 6月毕业于内蒙古民族大学,获得理学学士学位。现为南京工业大学先进材料研究院博士研究生,在陈永华教授的指导下进行研究。目前主要研究领域为低维有机-无机杂化钙钛矿太阳能电池。

Yonghua Chen received his B.E. degree in chemistry from Inner Mongolia University in

2006 and received his Ph.D. degree in polymer chemistry and physics from the

Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, in 2011. After

two-year postdoctoral research at Wake Forest University and two-year postdoctoral

research at Case Western Reserve University, he is currently a full professor in Nanjing

Tech University. His research interests are organic and organic/inorganic hybrid

optoelectronic materials and devices, including organic light-emitting diodes and field-

induced polymer electroluminescent devices for flat panel displays and solid state

lighting, and polymer and perovskite solar cells for energy conversion.

陈永华,南京工业大学先进材料研究院教授、博士研究生导师。2006 年 7月本科毕业于内蒙古大学化学化工学院,2011 年 7月在中国科学院长春应用化学研究所高分子化学与物理专业取得博士学位,2011—

2015 年分别在美国维克森林大学和凯斯西储大学进行博士后研究工作。2015 年 12月回国后,先后入选第十四批江苏省六大人才高峰、第六批江苏省特聘教授和第十三批“千人计划”青年项目。主要从事有机光电子材料与器件的研究工作。近年来,在有机光电子材料与器件领域发表论文 50余篇,包括 Nature

Communications、Advanced Materials、Light:Science & Applications、Nano Letters、Angewandte Chemie

International Edition 和 Advanced Functional Materials 等。

Wei Huang received his B.S., M.S., and Ph.D. degrees in Chemistry from Peking

University in 1983, 1988, and 1992, respectively. In 2001, he became a chair professor at

Fudan University, where he founded the Institute of Advanced Materials (IAM). In June

2006, he was appointed as the Deputy President of Nanjing University of Posts and

Telecommunications. In July 2012, he was appointed as the President of Nanjing

University of Technology. In June 2017, he was appointed as the Deputy President of

Northwestern Polytechnical University. He is a member of the Chinese Academy of

Sciences. His research interests include organic optoelectronics, nanomaterials, polymer

chemistry, plastic electronics, and bioelectronics.

黄维,中国科学院院士,俄罗斯科学院外籍院士、名誉博士,西北工业大学常务副校长,教授,博士研究生导师,有机电子学/柔性电子学家。教育部“长江学者”特聘教授,国家杰出青年科学基金获得者,中组部“千人计划”国家特聘专家,科技部“973”项目首席科学家。英国谢菲尔德大学名誉博士,英国皇家化学学会会士,美国光学学会会士,中国科协常委,中国化学会副理事长,中国化工学会副理事长,江

PAGE \* MERGEFORMAT3

房 威, 18年8月24日,
1)作者介绍使用双语著录2)至少要给出第一作者和通信作者的简介3)每位作者的照片都应非常清晰
Page 10: fwpt.mat-rev.comfwpt.mat-rev.com/.../e9a2e615d81f65cbc0dde21b06806af8.docx · Web view图的格式要求(重要):1)图片推荐使用JPG(300dpi以上)插入进word文档,也可使用origin、matlab、chemlab等制作嵌入2)所有图片内部及注释的文字均要使用英文(增刊投稿除外);所有图片的标题文字均要双语著录3)不得将图

苏省科协副主席,江苏省侨联副主席,Advanced Materials、Advanced Electronic Materials 和 npj Flexible

Electronics 等国际权威学术杂志主编或(顾问)编委。长期从事有机光电、柔性电子等相关领域的研究,并 取 得 了 大量系统 性 、创新性 的 研 究 成 果 , 以第一或通讯作 者身份在 Nature Materials 、 Nature

Photonics、Nature Nanotechnology、Nature Communications、Advanced Materials、Journal of the American

Chemical Society 等 SCI 学术期刊发表研究论文 560余篇,获授权或公开美国、新加坡和中国等国发明专利200余项,出版了《有机电子学》、《生物光电子学》等学术专著。曾获国家自然科学奖二等奖和何梁何利基金科技进步奖等奖励,成果入围中国高等学校十大科技进展。

PAGE \* MERGEFORMAT2