Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van...

83
Cursus H01I6A Verkeersstroomtheorie Uitgave januari 2010 Prof. ir. L.H. Immers dr. ir. C. Tampère dr. ir. S Logghe CIB - Centrum voor Industrieel Beleid / Verkeer en Infrastructuur

Transcript of Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van...

Page 1: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Cursus H01I6A

Verkeersstroomtheorie

Uitgave januari 2010

Prof. ir. L.H. Immers

dr. ir. C. Tampère

dr. ir. S Logghe

CIB - Centrum voor Industrieel Beleid /

Verkeer en Infrastructuur

Page 2: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Voorwoord

In dit deel van het vak Verkeerskunde Basis (H111) komt de verkeersstroomtheorie aan

bod. In deze theorie bestuderen we de dynamische eigenschappen van het verkeer op een

wegvak.

In deze cursustekst wordt eerst een theoretisch kader aangereikt waarmee we

verkeersstromen beschrijven. Vervolgens komen enkele dynamische modellen aan bod

die vanuit empirische bevindingen opgesteld werden. Ter afsluiting bespreken we enkele

recente waarnemingen van congestie.

De uiteengezette theorieën en modellen zijn op basis van talrijke waarnemingen op

snelwegen ontwikkeld. Voor lagere orde wegen, zoals steenwegen en stedelijke

verkeerswegen, zijn vooral de kenmerken van de knooppunten van belang. De

verkeersafwikkeling op knooppunten wordt tijdens het projectwerk

Verkeerslichtenregeling (H112) behandeld.

Deze tekst is een tweede versie. Opmerkingen en suggesties blijven van harte welkom.

Prof. ir. L.H. Immers

ir. S. Logghe

In deze uitgave is een hoofdstuk toegevoegd met een uitgebreide bespreking van de

examenvragen van de afgelopen jaren.

januari 2010

Prof. ir. L.H. Immers

dr. ir. C. Tampère

Page 3: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Inhoud

1 TRAJECTORIES EN MICROSCOPISCHE VARIABELEN ....................................................... 4

2 MACROSCOPISCHE VARIABELEN ............................................................................................ 6

2.1 EEN MEETINTERVAL..................................................................................................................... 6 2.2 DE DICHTHEID .............................................................................................................................. 7 2.3 DE INTENSITEIT ............................................................................................................................ 9 2.4 DE GEMIDDELDE SNELHEID .......................................................................................................... 9 2.5 BEZETTINGSGRAAD.................................................................................................................... 12 2.6 BESLUIT ..................................................................................................................................... 12

3 FUNDAMENTEEL DIAGRAM...................................................................................................... 13

3.1 WAARNEMINGEN. ...................................................................................................................... 13 3.2 DE FUNDAMENTELE DIAGRAMMEN ............................................................................................ 15 3.3 WISKUNDIGE MODELLEN VOOR DE FUNDAMENTELE DIAGRAMMEN ........................................... 16

4 MACROSCOPISCH VERKEERSSTROOMMODEL ................................................................. 18

4.1 AFLEIDING EN FORMULERING..................................................................................................... 18 4.2 KARAKTERISTIEKEN................................................................................................................... 20 4.3 SCHOKGOLVEN........................................................................................................................... 22 4.4 WAAIERS.................................................................................................................................... 25 4.5 DRIEHOEKIG FUNDAMENTEEL DIAGRAM. ................................................................................... 27 4.6 NIET-HOMOGENE WEGEN ........................................................................................................... 28

4.6.1 Een verkeerslicht .................................................................................................................. 28 4.6.2 Wegversmalling met een tijdelijke overbelasting.................................................................. 29

5 MICROSCOPISCHE VERKEERSSTROOMMODELLEN........................................................ 33

5.1 ALGEMENE OPBOUW .................................................................................................................. 33 5.2 VOERTUIG-VOLG MODEL............................................................................................................ 33

6 EEN FILE UIT DE PRAKTIJK...................................................................................................... 36

6.1 BESPREKING VAN DE WEGSECTIE ............................................................................................... 36 6.2 ANALYSE VOLGENS HET MACROSCOPISCH VERKEERSSTROOMMODEL. ...................................... 37 6.3 BIJKOMENDE EMPIRISCHE KENMERKEN...................................................................................... 37

7 EXAMENVRAGEN ......................................................................................................................... 39

Page 4: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

1 Trajectories en microscopische variabelen

In dit eerste hoofdstuk wordt een theoretisch kader ontwikkeld waarbinnen de kenmerken

van een verkeersstroom microscopisch beschreven worden. In een microscopische

benadering van het verkeer beschouwen we de voertuigen elk afzonderlijk.

Figuur 1 Een weg met twee voertuigen langs een x-as en dezelfde voertuigen in

een t-x assenstelsel

Beschouwen we een X-as langs een weg, zoals links in Figuur 1, dan kunnen we de

positie van een voertuig α op moment t0, aanduiden met xα. De wagen die voor dit

voertuig rijdt, zullen we α+1 noemen. Doordat beide voertuigen zich voortbewegen over

de weg, zijn hun posities afhankelijk van de tijd. Rechts in Figuur 1 worden de twee

voertuigen in een t-x assenstelsel voorgesteld.

De positie van een voertuig door de tijd noemen we een trajectorie. Een trajectorie xα(t) is

een zuiver wiskundige functie wanneer we een voertuig als punt beschouwen. In deze

cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor

de trajectorie van dat voertuig. Op Figuur 1 worden de trajectories van voertuigen α en

α+1 door een zwarte lijn aangeduid. De grijze oppervlakte geeft de volledige voertuigen

weer.

Twee trajectories kunnen elkaar niet snijden wanneer de voertuigen op dezelfde rijstrook

rijden. De snelheid vα van een voertuig wordt door de afgeleide van een trajectorie

gegeven. De tweede afgeleide is de versnelling aα. Optrekkende wagens hebben een

Page 5: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

positieve versnelling en remmende wagens hebben negatieve waarden

voor aα.

Een voertuig neemt een zekere ruimte van de weg in. Dit ruimtegebruik (space) sα bestaat

uit de fysische lengte Lα van het voertuig en de volgafstand (distance) dα die de

bestuurder op zijn voorligger aanhoudt. In formulevorm geeft dit:

Analoog aan het ruimtegebruik is er ook het tijdsgebruik (headway) h van een voertuig.

Dit tijdsgebruik kan opgesplitst worden in een volgtijd (gap) g en een bezettingstijd

(occupancy) o.

Bij een constante snelheid van een voertuig, of veralgemenend bij een verwaarlozing van

de versnelling, wordt de bezettingstijd:

Het snelheidsverschil ∆v wordt gegeven door:

Al deze variabelen kunnen gemeten worden. Uit twee kort na elkaar genomen luchtfoto’s

leiden we de posities, de snelheden, de bezettingstijden, het tijdsgebruik en de volgtijden

af. Met behulp van detectielussen, werkend volgens het magnetisch-inductie-principe, en

detectiecamera’s kan vrij goedkoop de snelheid, het ruimtegebruik, de lengte en de

volgafstand van voertuigen opgemeten worden.

Er rijden meestal verschillende types voertuigen en bestuurders op een weg. De

geïdealiseerde verkeerstoestand met slechts 1 type weggebruiker noemen we homogeen.

De verkeerstoestand bestempelen we als stationair wanneer de verkeerstoestand niet

verandert door de tijd. Op een homogene weg hebben de voertuigen dan dezelfde

snelheid en zijn de trajectories rechten.

Page 6: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

2 Macroscopische variabelen

Op macroscopische niveau beschouwen we de voertuigen niet afzonderlijk. Het klassiek

verkeersmodel dat in het eerste cursusdeel aan bod komt is dus macroscopisch. Ook voor

een dynamische beschrijving van het verkeer is dit macroscopische niveau van belang. In

deze paragraaf worden de macroscopische grootheden gedefinieerd die de discrete natuur

van het verkeer in continue grootheden trachten om te zetten.

2.1 Een meetinterval

Eerst en vooral definiëren we een meetinterval S als een oppervlakte in de tijd-

plaatsruimte. Wanneer straks macroscopische grootheden gedefinieerd worden, gebeurt

dit telkens voor een meetinterval. Onderstaande Figuur 2 en Figuur 3 geven enkele

meetintervallen weer:

• S1: Dit rechthoekig meetinterval bestrijkt gedurende een infinitesimaal klein

tijdsinterval dt een wegsectie met lengte ∆X. Benaderend komt dit overeen met een

plaatsinterval ∆X op een bepaald tijdstip t1. We gaan ervan uit dat n voertuigen zich

door dit interval voortbewegen en zullen ze in de tekst aanduiden met een index i.

Een dergelijk plaatsinterval zou vanuit een vliegtuig op een luchtfoto vastgelegd

kunnen worden.

• S2: Dit rechthoekig meetinterval omvat een infinitesimaal kleine weglengte dx

gedurende een tijdsinterval ∆T. Benaderend is dit een tijdsinterval ∆T op een locatie

x2. Voor verdere afleidingen veronderstellen we dat m trajectories dit meetinterval

doorkruisen en gebruiken we voor deze m voertuigen de index j. Op verschillende

locaties in ons wegennet zijn verkeerslussen en detectiecamera’s geïnstalleerd die het

verkeer gedurende tijdsintervallen opmeten.

Figuur 2 Trajectories en de meetintervallen S1 en S2

Page 7: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

• S3 is een willekeurig meetinterval in de tijd-plaatsruimte. Dit meetinterval heeft een

oppervlakte Opp(S3) met dimensies tijd*plaats. Meerdere trajectories doorkruisen dit

meetinterval. De afstand die een voertuig aflegt in het meetinterval is de projectie van

zijn trajectorie op de plaats-as. De verblijftijd van dit voertuig in het meetinterval is

de projectie van de bijhorende trajectorie op de tijdsas.

Figuur 3 Het meetinterval S3

2.2 De dichtheid

Dichtheid is een typisch natuurkundige grootheid die

overgewaaid is naar de verkeerskunde. De dichtheid k geeft het

aantal voertuigen per kilometer weg weer. Voor een

meetinterval op een constant tijdstip, zoals S1, kan k over een

wegsectie met lengte ∆X berekend worden als:

Hierbij is n het aantal voertuigen dat zich op t1 in het

weginterval ∆X bevindt. Het ruimtegebruik van de n voertuigen

kan aan ∆X gelijkgesteld worden zodat:

Figuur 4 Nogmaals plaatsinterval S1

Page 8: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

waarbij het gemiddelde ruimtegebruik in het interval S1 gedefinieerd wordt als

De dichtheid k is afhankelijk van de locatie, het tijdstip en het meetinterval waarover het

gemeten wordt. Zo zullen we formule (2.1) herschrijven, waarbij we deze

afhankelijkheden zullen meenemen in de notatie. Voor de locatie x1 nemen we hier het

midden van het meetinterval ∆X.

De dichtheid wordt traditioneel uitgedrukt in voertuigen per kilometer. De maximale

dichtheid van een weg schommelt rond de 100 voertuigen per kilometer per rijstrook.

De dichtheidsdefinitie in (2.4) is beperkt tot een constant tijdstip. In een volgende stap

willen we deze definitie veralgemenen. Vermenigvuldigen we teller en noemer van (2.4)

met het infinitesimaal klein tijdsinterval dt rond t1 dan wordt de dichtheid:

Op deze manier wordt de noemer van (2.5) gelijk aan de oppervlakte van het meetinterval

S1. De teller geeft de totale verblijftijd van alle voertuigen in het meetinterval S1 weer.

Op deze manier definiëren we de dichtheid op een locatie x, een tijdstip t en voor een

meetinterval S als:

Ter illustratie:

De dichtheid volgens definitie (2.7) voor x2, t2 in het meetinterval S2, zoals opnieuw

weergegeven in figuur 2.4:

Figuur 5 Nogmaals tijdsinterval S2

Page 9: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

2.3 De intensiteit

De intensiteit q kan vergeleken worden met het debiet of de flux van een stroom. De

intensiteit geeft het aantal voertuigen per tijdseenheid weer. Voor het tijdsinterval ∆T op

een plaats x2, zoals het meetinterval S2 in Figuur 5, berekenen we de intensiteit

als

Hierbij is m het aantal wagens dat gedurende ∆T locatie x2 passeert. Dit tijdsinterval

bestaat uit de som van de m tijdsgebruiken. Met het invoeren van een gemiddelde

tijdsgebruik h wordt de intensiteit van het verkeer ook gegeven door:

hh

mq

m

j

1==

∑ (2.10)

De intensiteit wordt uitgedrukt in voertuigen per uur. De maximale intensiteit van een

weg wordt de capaciteit genoemd. Voor een autosnelweg ligt de capaciteit, afhankelijk

van de voertuigsamenstelling, tussen de 1800 en de 2400 voertuigen per uur per rijstrook.

Deze definitie van intensiteit (2.9) is beperkt tot een tijdsinterval. Om tot een algemenere

definitie te komen, vermenigvuldigen we teller en noemer met een infinitesimaal klein

plaatsinterval dx rond x2. De noemer is dan opnieuw de oppervlakte van het meetinterval

en de teller is gelijk aan de totale afgelegde afstand van alle voertuigen in het

meetinterval.

Dit leidt tot een algemene definitie van de intensiteit:

Ter illustratie:

Aan de hand van (2.12) berekenen we de intensiteit voor het meetinterval S1, op de

locatie x1 en tijdstip t1:

2.4 De gemiddelde snelheid

De gemiddelde snelheid u definiëren we als het quotiënt van de intensiteit met de

dichtheid. De gemiddelde snelheid is eveneens afhankelijk van de locatie, het tijdstip en

Page 10: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

het meetinterval. Merk op dat de oppervlakte van het meetinterval niet meer voorkomt in

definitie (2.14):

Deze definitie van de gemiddelde snelheid wordt in een andere vorm ook wel de

fundamentele relatie van de verkeersstroomtheorie genoemd:

Door deze relatie zijn de intensiteit, de dichtheid en de gemiddelde snelheid

onherroepelijk met elkaar verbonden. De kennis van twee van deze grootheden leidt

onmiddellijk tot de overblijvende derde grootheid.

Voor de meetintervallen S1 en S2 berekenen we de gemiddelde snelheid als volgt:

Voor het plaatsinterval S1 wordt de dichtheid gegeven door (2.5) en de intensiteit door

(2.13). De gemiddelde snelheid voor deze n voertuigen in het interval S1 op locatie x1 en

tijdstip t1 wordt dan:

De gemiddelde snelheid in een plaatsinterval bekomen we door het middelen van de

snelheden van alle voertuigen in dit interval.

Voor het tijdsinterval S2 werd de dichtheid berekend in (2.8) en de intensiteit in (2.9). De

gemiddelde snelheid voor de beschouwde m voertuigen wordt dan:

Hieruit blijkt dat de gemiddelde snelheid over een tijdsinterval het harmonisch

gemiddelde is van de individuele snelheden.

Doordat verkeerdelijk vaak gewoon de verschillende individuele snelheden gemiddeld

worden over een tijdsinterval voeren we daarvoor een nieuwe definitie in. De

tijdsgemiddelde snelheid ut, zoals gedefinieerd in (2.18), is dus een middeling van de

individuele snelheden van de voertuigen in een tijdsinterval.

Deze tijdsgemiddelde snelheid ut verschilt van de gemiddelde snelheid u en voldoet

bijgevolg NIET aan de fundamentele relatie (2.15).

Page 11: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Het verschil tussen de gemiddelde en de tijdsgemiddelde snelheid wordt aan de hand van

onderstaand voorbeeldje toegelicht:

Figuur 6 Snelweg met twee rijstroken.

Beschouwen we een lange weg met twee rijstroken, waarbij alle voertuigen op de rechter

rijstrook 60 km/u rijden en de voertuigen op de linker strook 120 km/u. Alle voertuigen

van de eerste rijstrook die gedurende 1 minuut voorbij een detector rijden bevinden zich

op een 1 kilometer lange wegsectie. Voor de linker rijstrook is deze wegsectie gelijk aan

2 kilometer. Bij het bepalen van de tijdsgemiddelde snelheid worden dus snelle wagens

over een veel langere wegsectie beschouwd dan trage wagens. Bij de gemiddelde

snelheid, en ook bij dichtheid, vertrekken we van een wegsectie die even lang is voor

snelle en trage wagens. Het aandeel snelle wagens wordt in de tijdsgemiddelde snelheid

dan ook overschat zodat deze altijd groter of gelijk zal zijn aan de gemiddelde snelheid.

Ter illustratie:

We werken dit voorbeeldje uit tot een vraagstukje. Veronderstel dat op beide

rijstroken telkens 1200 vtg/uur voorbijrijden, wat is dan de dichtheid, de

intensiteit, de gemiddelde snelheid en de tijdsgemiddelde snelheid op deze

weg?

Antwoorden:

q = 2400 vtg/uur

k = 30 vtg/km

u = 80 km/uur

ut = 90 km/uur

Analoog kunnen we ook de plaatsgemiddelde snelheid ux in een plaatsinterval definiëren

als het gemiddelde van de snelheden van alle voertuigen in dit plaatsinterval of:

Uit (2.16) blijkt dat de plaatsgemiddelde snelheid gelijk is aan de gemiddelde snelheid

zoals gedefinieerd in (2.14).

We onderscheiden dus drie definities: de gemiddelde snelheid u, de tijdsgemiddelde

snelheid ut en de plaatsgemiddelde snelheid ux. Hierbij is u altijd gelijk aan ux en geldt

voor deze definities de fundamentele relatie. De tijdsgemiddelde snelheid ut is

verschillend en voldoet NIET aan de fundamentele relatie.

Page 12: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

2.5 Bezettingsgraad

De meeste verkeersmetingen gebeuren op een vaste locatie x2. De bezettingstijd o van een

voertuig is dan eenvoudig op te meten. De bezettingsgraad b in het tijdsinterval S2 wordt

gegeven als:

Veronderstellen we dat alle voertuigen dezelfde lengte hebben, dan bekomen we een

verband tussen de bezettingsgraad b en de dichtheid k. Reken zelf na dat (2.20) door

substitutie van (1.6), (2.9), (2.17) en (2.15) uitgewerkt kan worden tot

Ter illustratie:

Een verkeersstroom heeft een gemiddelde snelheid van 60 km/u en een intensiteit

van 1200 vtg/uur. De wagens hebben allen een lengte van 4 meter, wat is dan de

bezettingsgraad?

De dichtheid k = q / u = 20 vtg/km.

Een dichtheid van 20 vtg/km komt overeen met een ruimtegebruik van 50 meter

per voertuig. Hiervan wordt 4 meter, of 8 % van het ruimtegebruik, door het

voertuig ingenomen.

Invullen van de dichtheid en lengte in (2.21) geeft eveneens:

b = L . k = 0.004 .20 = 8 %

In praktische situaties is deze formule echter niet geldig omdat de verkeersstroom niet

homogeen samengesteld is. Om de dichtheid te bestuderen met verkeersdetectoren wordt

dan ook beter de intensiteit en de gemiddelde snelheid rechtstreeks gemeten volgens (2.8)

en (2.17) om de dichtheid dan met de fundamentele relatie (2.15) te berekenen.

2.6 Besluit

De voorgestelde macroscopische verkeersgrootheden kunnen voor iedere locatie, op elk

tijdstip en voor elk meetinterval berekend worden. In de praktijk gebruiken we vooral

verkeersdetectoren die over een tijdsinterval de macroscopische grootheden u en q

opmeten. Om de gemiddelde snelheid u in een tijdsinterval te berekenen moeten de

individuele voertuigsnelheden harmonisch gemiddeld worden. De discrete natuur van het

verkeer vereist tijdsintervallen van minstens een halve minuut om zinvolle resultaten te

bekomen. Bij tijdsintervallen van meer dan vijf minuten, gaan bepaalde dynamische

kenmerken verloren.

Page 13: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

3 Fundamenteel diagram

In het vorig hoofdstuk werden drie macroscopische grootheden gedefinieerd: de

intensiteit q, de dichtheid k en de gemiddelde snelheid u. Dankzij de fundamentele relatie

q = k.u (2.15) blijkt dat er slechts sprake is van twee onafhankelijke grootheden. In dit

hoofdstuk wordt een empirische relatie tussen de twee resterende onafhankelijke

grootheden voorgesteld. Hierbij vertrekken we van een homogeen samengestelde

verkeersstroom (alle voertuigen zijn gelijk) die stationair is (de verkeersstroom verandert

niet over de weg en door de tijd). Hierdoor kunnen we de notaties wat verlichten doordat

de afhankelijkheid van plaats, tijd en meetinterval geen rol meer spelen in een stationaire

stroom.

3.1 Waarnemingen.

Op een snelweg met drie rijstroken werd de intensiteit q en de gemiddelde snelheid u in

tijdsintervallen van één minuut opgemeten. Elke waarneming geeft dus een waarde voor

de gemiddelde snelheid u en een waarde voor de intensiteit q. In Figuur 7 worden de

verschillende waarnemingspunten in een q-u diagram weergegeven.

Figuur 7 Waarnemingspunten in een q-u diagram

Voor elke waarneming berekenen we de dichtheid k (= q / u). De waarnemingspunten

kunnen hierdoor eveneens in een k-q diagram (Figuur 8) of een k-u diagram (Figuur 9)

uitgezet worden.

Page 14: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Figuur 8 Waarnemingspunten in een k-q diagram.

Figuur 9 Waarnemingspunten in een k-u diagram.

De waarnemingen zijn verricht op een werkelijke snelweg waar het verkeer niet

homogeen is: er zijn verschillende voertuigtypes en de bestuurders variëren in gedrag.

Werkelijk verkeer is ook niet stationair: de voertuigen versnellen en remmen

voortdurend.

Wanneer we een abstractie maken van de inhomogene en onstationaire kenmerken,

kunnen we de empirische kenmerken van het verkeer met een evenwichtsrelatie

beschrijven die we in deze drie diagrammen zullen voorstellen.

Page 15: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

3.2 De fundamentele diagrammen

Het verkeer op een weg bevindt zich altijd in een bepaalde toestand die gekenmerkt

wordt door de intensiteit, de dichtheid en de gemiddelde snelheid. Alle mogelijke

homogene en stationaire verkeerstoestanden vatten we samen in een evenwichtsfunctie

die we grafisch in elk van de drie diagrammen kunnen weergeven. Deze presentatie van

de evenwichtsrelaties is beter gekend als de fundamentele diagrammen. In Figuur 10

worden ze alle drie geschetst en de overeenkomsten ertussen aangeduid.

Figuur 10 De drie gerelateerde fundamentele diagrammen

Door de relatie q = k.u kan in een diagram telkens de derde grootheid teruggevonden

worden. In het q-u en het k-q diagram is de derde grootheid een hoek. De intensiteit in het

k-u diagram is een oppervlakte.Een dergelijk fundamenteel diagram is geldig voor een

bepaalde weg en wordt op basis van waarnemingen opgesteld. Het stationaire en

homogene verkeer bevindt zich dus altijd in een toestand die zich op de zwarte lijn

bevindt. Enkele speciale toestandspunten verdienen extra aandacht

• Volledig vrij verkeer

Wanneer voertuigen niet gehinderd worden door ander verkeer rijden ze met een

maximale snelheid uf (free speed). Deze snelheid is ondermeer afhankelijk van de

ontwerpsnelheid van de weg, de geldende snelheidsbeperking en het weer. Op dat

moment zullen de intensiteit en de dichtheid nagenoeg nul zijn.

Page 16: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

• Verzadigd verkeer

Op een verzadigde weg zijn de intensiteit en de snelheid nul. De voertuigen staan er

in een rij met een maximale dichtheid kj (jam density).

• Capaciteitsverkeer

De capaciteit van een weg wordt gegeven door de maximale intensiteit qc. Op dat

moment is er een bijhorende capaciteitssnelheid uc en een capaciteitsdichtheid kc. De

capaciteitssnelheid uc is lager dan de maximale snelheid uf zoals uit het diagram

blijkt.

3.3 Wiskundige modellen voor de fundamentele diagrammen

In deze paragraaf wordt een wiskundige uitdrukking gezocht voor de evenwichtsrelaties

uit de fundamentele diagrammen. We bekijken het oorspronkelijke diagram van

Greenshield en het driehoekig diagram.

• Greenshield (1934)

Greenshield stelde op basis van een klein aantal soms betwistbare metingen een eerste

formulering op. Hierin wordt de relatie in het k-u diagram lineair aangenomen en zijn de

overige relaties telkens parabolisch (zie Figuur 11).

Figuur 11 De fundamentele diagrammen volgens Greenshield

De capaciteitssnelheid uc is hierin de helft van de maximale snelheid uf. De

capaciteitsdichtheid kc is in dit model de helft van de maximale dichtheid kj. Deze

formulering is een grove vereenvoudiging van het geobserveerde verkeersgedrag, maar

Page 17: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

wordt vanwege zijn eenvoud en om historische redenen nog veel gebruikt.

De wiskundige formulering van de evenwichtsfuncties in het k-u diagram is dan:

Toepassen van de fundamentele relatie geeft de andere relaties ( Qe(k) en Ue(q) ). Merk

op dat de relatie Ue(q) geen functie is!

• Driehoekig diagram

Een tweede veel gebruikte vorm veronderstelt het fundamenteel k-q diagram driehoekig.

Dit eenvoudig diagram heeft grote voordelen bij het dynamisch modelleren van verkeer,

zoals in hoofdstuk 4 aan bod komt.

In deze evenwichtsrelatie is de gemiddelde snelheid gelijk aan de maximale voor alle

verkeerstoestanden met een dichtheid kleiner dan de capaciteitsdichtheid. De tweede tak

van de driehoek, die de capaciteitstoestand met de verzadigde toestand verbindt, heeft een

negatieve constante helling w. In Figuur 12 wordt dit driehoekig diagram voorgesteld.

Figuur 12 De fundamentele diagrammen bij een driehoekig k-q diagram.

Page 18: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

4 Macroscopisch verkeersstroommodel

In de vorige twee hoofdstukken leerden we dat we dankzij de fundamentele relatie

(q=k.u) en de fundamentele diagrammen (Figuur 10) de verkeerstoestand kunnen

beschrijven voor stationair en homogeen verkeer. Hierdoor kunnen we voor een gegeven

waarde van een macroscopische grootheid de twee overige grootheden berekenen. Als het

verkeer stationair en homogeen is, weten we dat deze grootheden op de ganse weg en

over een lange periode geldig blijven.

Werkelijk verkeer is echter niet homogeen en stationair. In dit hoofdstuk proberen we de

verkeersevolutie door de tijd te beschrijven. Hierbij gaan we de afhankelijkheid van het

meetinterval S verwaarlozen in de notatie zodat we zoeken naar de dynamische relatie

tussen q(x,t), u(x,t) en k(x,t). We veronderstellen dus dat we werken met puntvariabelen:

grootheden die op elk moment en op elke locatie eenduidig gedefinieerd zijn. Hierdoor

kunnen we deze drie grootheden als functie in het t-x vlak weergeven.

4.1 Afleiding en formulering

De veranderingen van de macroscopische grootheden over een weg door tijd en plaats

beschrijven we met een verkeersbehoudswet. Hierbij blijft de fundamentele relatie

q(x,t)=k(x,t).u(x,t) geldig.

We delen de te modelleren weg op in cellen met lengte ∆x. De dichtheid van cel i op

tijdsstip tj duiden we aan met k(i,j). Het aantal voertuigen is er k(i,j).∆x . Een tijdsstap ∆t

later, op tj+1, is de dichtheid als volgt veranderd (zie Figuur 13):

• Uit cel i-1 is een aantal voertuigen cel i binnen gereden. De verwachte instroom

wordt gegeven door q(i-1,j). ∆t

• Uit cel i is een aantal voertuigen van cel i naar cel i+1 gereden. Deze uitstroom wordt

gegeven door q(i,j). ∆t

• Door op- of afritten is er een in- of uitstroom mogelijk die we weergeven met

z(i,j).∆x.∆t waarbij z weergegeven wordt per tijds- en lengte-eenheid en positief

genomen wordt voor een toename van het aantal voertuigen.

Figuur 13 Afleiding van de behoudswet

Page 19: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

De beschouwingen omtrent cel i op tijdstip tj leiden tot de volgende formulering van de

toestand:

Verder uitwerken geeft:

Door de limiet te nemen van de tijdsstap en de cellengte naar nul te laten naderen

bekomen we een partiële differentiaalvergelijking of de verkeersbehoudswet :

Aan deze behoudswet voegen we nog een veronderstelling toe: Alle mogelijke

dynamische verkeerstoestanden voldoen aan de stationaire fundamentele diagrammen.

Dit wil zeggen dat de verkeerstoestand op een weg kan veranderen door de tijd, maar op

ieder moment en op elke plaats aan de fundamentele diagrammen voldoet. Hierdoor

‘bewegen’ de opeenvolgende verkeerstoestanden als het ware over de zwarte lijn in de

fundamentele diagrammen.

Deze aanname laat ons toe de intensiteit in functie van de dichtheid te schrijven als:

Invullen van (4.4) in (4.3) en toepassen van de kettingregel geeft een partiële

differentiaalvergelijking waarin slechts partiële afgeleiden naar de dichtheid in

voorkomen.

Hierbij is z(x,t) de hoeveelheid verkeer die per tijds- en plaatseenheid de weg oprijdt (een

negatieve waarde voor afrijdend verkeer) en dQe(k)/dk, kortweg Qe’(k), de afgeleide van

het fundamenteel k-q diagram. In de verdere afleiding beschouwen we enkel een concaaf

fundamenteel diagram zodat Qe’(k) altijd kleiner wordt voor toenemende dichtheden.

Het gebruik van het fundamenteel diagram in de verkeersbehoudswet leidde in de jaren

vijftig tot het eerste dynamisch verkeersmodel. Dit model wordt naar de ontwerpers

genoemd: het LWR-model (Lighthill, Whitham, Richards). Er zijn verschillende

numerieke schema’s ontwikkeld om deze vergelijking met een computer in een bruikbaar

verkeersmodel te implementeren. In de volgende paragraaf gaan we echter iets dieper in

op de analytische studie van deze vergelijking om zo enkele dynamische kenmerken van

een verkeersstroom te achterhalen.

Page 20: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

4.2 Karakteristieken

De partiële vergelijking (4.5) is in de wiskundige analyse gekend als de ‘Burgers

vergelijking’. Met gegeven rand- en beginvoorwaarden kan deze analytisch opgelost

worden.Bekijken we de vergelijking over een weg zonder op en afritten en stellen we

gemakshalve Qe’(k) gelijk aan c, dan wordt de behoudsvergelijking (4.5) vereenvoudigd

tot:

Hiervoor zoeken we de oplossing in een t-x diagram: wat is de verkeersdichtheid op deze

weg in functie van de tijd en plaats. Als oplossing beschouwen we een willekeurige

functie F van de vorm:

Door invullen van (4.7) in (4.6) kan worden geverifieerd dat deze functie inderdaad een

oplossing is van de partiële differentiaalvergelijking. Wanneer x-ct constant is, blijft de

dichtheid ook constant. Dit wil zeggen dat alle punten op de rechte met helling c een

gelijke dichtheid hebben.

Ter illustratie:

In een punt op de x-as (x = x0 en t = 0) geeft (4.7) : k(x0,0) = F(x0).

Op (x0+ct,t) is de dichtheid k(x0+ct,t) ook gelijk aan F(x0).

Alle punten op de rechte met helling c door (x0,0) hebben dus een dichtheid die

gelijk is aan k(x0,0).

Wanneer we een waarde van de dichtheid kennen in een punt, kunnen we een rechte door

dat punt tekenen met helling c. Op deze lijn blijft de dichtheid dan gelijk. Dergelijke

rechte wordt een oplossingslijn of karakteristiek genoemd.

In Figuur 14a schetsen we nu het t-x diagram. Veronderstel de beginwaarde in x0 gelijk

aan k0. Door x0 kan dan een rechte met helling c getekend worden waarop de dichtheid

eveneens k0 is.

Figuur 14 (a) het t-x diagram en (b) het k-q fundamenteel diagram

De waarde van c is eigenlijk gelijk aan Qe’(k0). Dit is de waarde van de afgeleide van het

fundamenteel diagram voor k0. Anders gezegd is c gelijk aan de helling van de raaklijn

aan het fundamenteel k-q diagram in k0. Het k-q diagram kunnen we nu op schaal met het

t-x diagram tekenen zodat gelijke hellingen in beide diagrammen overeenkomen met

Page 21: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

dezelfde snelheid. Hierdoor is het mogelijk om door de beginvoorwaarde in het t-x

diagram een evenwijdige te tekenen met de raaklijn aan het fundamenteel diagram.

Vanuit de begin- en randvoorwaarden kunnen we oplossingslijnen tekenen waarop de

verkeerstoestand gekend is. Bij een bepaalde waarde voor de dichtheid k0 hoort ook een

intensiteit q0 en een gemiddelde snelheid u0. Op een karakteristiek blijven zowel de

dichtheid, de intensiteit als de gemiddelde snelheid gelijk. Merken we op uit het

fundamenteel diagram van Figuur 14b ,dat de snelheid van de voertuigen u0 altijd groter

is dan de snelheid c van de karakteristieken.

Naargelang de helling van de karakteristieken delen we de verschillende verkeers-

toestanden op in verkeersregimes:

• Vrij verkeer (free flow)

Wanneer de dichtheid kleiner is dan de capaciteitsdichtheid kc, spreken we van vrij

verkeer. De gemiddelde snelheid van de verkeersstroom is tijdens dit regime hoger

dan de capaciteitssnelheid uc. Voor vrij verkeer is de snelheid van de karakteristieken

c = Qe’(k) positief. De karakteristieken lopen bijgevolg in de rijrichting. Dit wil

zeggen dat de kenmerken van de verkeersstroom zich in de richting van de

verkeersstroom voortplanten (zie Figuur 14). De helling van de karakteristieken c is

echter altijd kleiner dan de gemiddelde snelheid u0 van de voertuigen. De

eigenschappen van het verkeersregime verplaatsen zich dus trager dan de

afzonderlijke voertuigen.

• Congestie (congestion)

Bij verkeer met een snelheid die lager is dan de capaciteitssnelheid uc of een

dichtheid heeft tussen de capaciteitsdichtheid kc en de maximale dichtheid kj spreken

we van congestie of file. Gedurende congestie is Qe’(k) negatief. De karakteristieken

lopen tegen de rijrichting in (zie Figuur 15) en de eigenschappen van de

verkeersstroom planten zich voort tegen de voertuigstroom in.

Figuur 15 (a) het t-x diagram en (b) het fundamenteel diagram bij congestie

• Capaciteitsverkeer

Capaciteitsverkeer wordt als een afzonderlijk regime beschouwd. In dit regime is de

intensiteit maximaal. Bij capaciteitsverkeer is Qe’(k) gelijk aan nul en lopen de

Page 22: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

karakteristieken evenwijdig met de tijdsas. Dit regime kan zich niet voortplanten in

de verkeersstroom. Capaciteitsverkeer blijft ter plaatse en fungeert dan als opwaartse

randvoorwaarde van congestie en als afwaartse randvoorwaarde voor vrij verkeer. De

plaats waar dit verkeersregime optreedt noemen we de bottleneck van het

verkeersnetwerk.

Onderstaande tabel geeft een overzicht:

Ter illustratie:

In Figuur 16 worden de karakteristieken (volle lijnen) en trajectories (gestipte

lijnen) getekend wanneer de begin- en randvoorwaarden gekend zijn : overal een

dichtheid k0. Merk op dat we eigenlijk oneindig veel karakteristieken kunnen

tekenen. Trajectories daarentegen zijn beperkt in aantal. Een karakteristiek is per

definitie een rechte waarlangs de dichtheid constant is. In dit voorbeeld is langs

alle curven, ook de trajectories, de dichtheid constant.

Figuur 16 Trajectories en karakteristieken bij homogene begin- en

randvoorwaarden

4.3 Schokgolven

Beschouwen we een weg waar op het tijdstip t = 0 twee verkeersdichtheden voorkomen.

Voor x < x0 heeft het verkeer een dichtheid k1 en voor x > x0 is de

dichtheid k2 met k2 > k1.

De overgang tussen de twee verkeerstoestanden in x0 noemen we een front.

Stroomopwaarts van het front vertrekken karakteristieken met een snelheid c1 = Qe’(k1).

Stroomafwaarts van x0 vertrekken er karakteristieken met een snelheid c2 = Qe’(k2).

Doordat k1 kleiner is dan k2 en het fundamenteel diagram concaaf is, zal de snelheid van

de karakteristieken opwaarts van het front groter zijn dan c2. Hierdoor lijkt het alsof de

Page 23: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

verschillende karakteristieken elkaar kruisen (zie Figuur 17). Dit is echter onmogelijk :

op een welbepaalde locatie in het t-x diagram is slechts één verkeerstoestand mogelijk.

Bijgevolg moet er een duidelijke grens zijn tussen deze twee verkeerstoestanden. Op

tijdsstip t = 0 gebeurt deze overgang op locatie x0. We bekijken hoe dit front zich door de

tijd zal verplaatsen

Figuur 17 Karakteristieken bij dichtheidstoename

Nemen we aan dat dit front zich met een snelheid U12 verplaatst en bekijken we de

verkeersstroom over het front.

Figuur 18 Berekenen frontsnelheid

De intensiteit stroomopwaarts van het front is q1 = k1 . u1. Een bewegende waarnemer ziet

een relatieve intensiteit die afhankelijk is van zijn bewegingssnelheid. Een waarnemer

met snelheid U12 juist stroomopwaarts van het front ziet een relatieve intensiteit van

qr1=k1.(u1 – U12). Een waarnemer met eenzelfde snelheid U12 juist stroomafwaarts van het

front ziet een relatieve intensiteit van qr2 = k2.(u2 – U12). Nemen we aan dat onze

waarnemer zich met het front verplaatst, dan ziet hij opwaarts een relatieve intensiteit qr1

en afwaarts een relatieve intensiteit qr2. Doordat ook op het front een behoud van

voertuigen geldt, zijn deze twee relatieve intensiteiten gelijk of:

qr1 = k1.(u1 – U12) = qr2 = k2 (u2 – U12)

Hieruit halen we de snelheid van het front als

Het filefront uit de beginvoorwaarde verplaatst zich dus met een snelheid U12 en vormt

een schokgolf. In de schokgolf eindigen karakteristieken en verandert de

verkeerstoestand discontinu. Trajectories die een schokgolf kruisen veranderen er abrupt

van snelheid.

Page 24: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

De snelheid van de schokgolf is ook grafisch afleesbaar op het fundamenteel diagram.

Hiervoor duiden we de twee verkeerstoestanden aan met coördinaten (k1,q1) en (k2,q2)

zoals op Figuur 19b. De helling van de verbindingslijn tussen deze twee punten is U12.

De schokgolf in het t-x diagram loopt bijgevolg evenwijdig aan de verbindingslijn tussen

de twee verkeerstoestanden in het fundamenteel diagram. Op deze manier kunnen we

grafisch de schokgolf in het t-x diagram tekenen zoals in Figuur 19a.

Bekijken we nu de richting waarin de schokgolf zich voortplant. Doordat de dichtheid

van het verkeer stroomafwaarts groter is dan stroomopwaarts, is het teken van U12 gelijk

aan het teken van (q2 – q1). Wanneer de stroomafwaartse intensiteit groter is dan de

stroomopwaartse, zoals in Figuur 19, verplaatst de schokgolf zich in de rijrichting.

Wanneer de stroomafwaartse intensiteit kleiner is dan de stroomopwaartse, verplaatst de

schokgolf zich tegen de rijrichting in.

Figuur 19 Een schokgolf in (a) het t-x diagram en (b) op het fundamenteel k-q

diagram

Ter illustratie:

We bekijken de evolutie van het verkeer op een weg (Figuur 20) met verkeerstoestand

‘A’ als beginvoorwaarde voor alle punten x < x1 en voor alle t > 0 op de rand x = 0.

Verder is de begintoestand ‘B’ tussen x1 en x2, en stroomafwaarts, voor x> x2, is de

verkeerstoestand ‘C'.

Figuur 20 Samenkomende schokgolven

Uitgaande van de begin- en randvoorwaarden kunnen karakteristieken getekend worden

die evenwijdig lopen met de raaklijnen in de bijhorende verkeerstoestanden in het

fundamenteel diagram. De schokgolf tussen verkeerstoestand ‘A’ en ‘B’ loopt met de

Page 25: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

rijrichting mee. De schokgolf tussen ‘B’ en ‘C’ loopt tegen de rijrichting in. Waar deze

twee schokgolven elkaar ontmoeten verdwijnt verkeerstoestand ‘B’ en loopt er een

schokgolf tussen verkeerstoestand ‘A’ en ‘C’.

4.4 Waaiers

Daarnet zagen we dat schokgolven ontstaan wanneer de dichtheid stroomafwaarts groter

is dan stroomopwaarts. In Figuur 21 beschouwen we een weg waar de dichtheid

stroomafwaarts (k1) lager is dan de stroomopwaartse dichtheid (k2).

Figuur 21 Karakteristieken bij afnemende dichtheid

De karakteristieken stroomafwaarts van x0 hebben een snelheid c1 die groter is dan de

stroomafwaartse karakteristieksnelheid c2. Hierdoor ontstaat er als het ware een lege

ruimte in het t-x diagram tussen de karakteristieken die vanuit x0 vertrekken met snelheid

c1 en c2. Doordat er op elke positie een verkeerstoestand is, moet hiervoor een oplossing

bestaan.

Figuur 22 Uitsmeren abrupte dichtheidsverandering

Beschouwen we de abrupte overgang van de verkeerstoestand k2 naar k1 ter hoogte van x0

nu als geleidelijk zoals in Figuur 22. In dat geval komen alle tussenliggende dichtheden

aan bod en vertrekken er karakteristieken met alle mogelijke snelheden tussen c2 en c1.

Op deze manier vertrekt er vanuit x0 een waaier van karakteristieken waardoor alle

tussenliggende dichtheden verschijnen in de oplossing in het t-x diagram (Figuur 23).

De horizontale karakteristiek in de waaier komt overeen met het capaciteitsregime. Dit is

een wezenlijk kenmerk van het LWR model: de overgang van een stroomopwaartse

congestie naar een vrij verkeersregime stroomafwaarts gebeurt steeds via het

capaciteitsregime. De uitstroom uit de file is steeds optimaal.

Page 26: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Figuur 23 Een waaier van karakteristieken bij een dichtheidsval

Ter illustratie:

We bekijken een weg met verkeerstoestand ‘A’ als begin- en randvoorwaarde,

behalve tussen x0 en x1 waar voor t = 0 verkeerstoestand ‘B’ van toepassing is

zoals in Figuur 24.

Bij de overgang van ‘A’ naar ‘B’ ontstaat een schokgolf en bij de overgang van

‘B’ naar ‘A’ ontstaat een waaier. De schokgolf is een rechte zolang deze de

homogene toestand ‘A’ en ‘B’ gescheiden houdt. Wanneer de karakteristieken uit

de waaier botsen met verkeerstoestand ‘A’ wordt de schokgolf een kromme. Merk

op dat ter hoogte van x1 de capaciteitstoestand ontstaat (een horizontale

karakteristiek). De helling van de schokgolf die de overgang naar

verkeerstoestand ‘A’ maakt is ter hoogte van x1 gelijk aan de helling tussen ‘A’ en

‘C’ in het fundamenteel diagram.

Figuur 24 Illustratie met waaiers en schokgolven

Door het gebruik van karakteristieken, schokgolven en waaiers, kan vanuit de begin- en

randvoorwaarden een oplossing geconstrueerd worden. Voor de randvoorwaarden gelden

echter bijkomende regels. Zo kunnen karakteristieken met een negatieve snelheid de

opwaartse rand (de t-as) niet doorkruisen. Op dat ogenblik is er congestie opwaarts van

onze randvoorwaarde en beïnvloedt de oplossing dus de randvoorwaarde zelf.

Page 27: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

4.5 Driehoekig fundamenteel diagram.

Tot nu toe werkten we met een algemeen concaaf fundamenteel diagram. Voor de

verdere uitwerking van dit LWR model gebruiken we het driehoekig fundamenteel

diagram zoals voorgesteld in hoofdstuk 3 op Figuur 12. De afgeleide van dit diagram is

discontinu. Voor dichtheden kleiner dan de capaciteitsdichtheid is Qe’(k) gelijk aan de

vrije snelheid uf. Voor dichtheden groter dan kc is Qe’(k) gelijk aan w. De discontinuïteit

van Qe’(k) vangen we op door te veronderstellen dat alle tussenliggende waarden (tussen

uf en w) in kc voorkomen.

Het gebruik van het driehoekig fundamenteel diagram brengt volgende voordelen met

zich mee:

• De karakteristieken hebben gedurende het vrije verkeersregime een snelheid uf. Deze

snelheid is gelijk aan de snelheid van de voertuigen. Trajectories en karakteristieken

lopen evenwijdig gedurende vrij verkeer.

• Schokgolven tussen twee toestanden binnen het vrij verkeersregime hebben eveneens

de snelheid uf. Deze schokgolven, die dus evenwijdig met de karakteristieken en

trajectories lopen, heten ‘slips’.

• Schokgolven tussen twee congestie toestanden verlopen via een vaste snelheid w.

• De snelheid van karakteristieken in waaiers varieert tussen w en uf. Voor al deze

tussenliggende karakteristieksnelheden is de dichtheid kc. De verkeerstoestand in een

waaier is dus automatisch het capaciteitsregime.

Al deze beschouwingen komen in volgende illustratie naar voren:

Ter illustratie:

We bekijken opnieuw een weg met verkeerstoestand ‘A’ als begin- en

randvoorwaarde, behalve tussen x1 en x2 waar in het begin verkeerstoestand ‘B’

geldt zoals in Figuur 25. In de waaier tussen ‘B’ en ‘A’ is de verkeerstoestand

‘C’. De weg functioneert er in het capaciteitsregime. De schokgolf tussen

verkeerstoestand ‘A’ en de waaier is nu geen kromme meer, maar een ‘slip’: een

schokgolf die evenwijdig loopt met de karakteristieken en snelheid uf heeft.

Figuur 25 Schokgolven en waaiers met een driehoekig fundamenteel diagram

Page 28: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

4.6 Niet-homogene wegen

Tot nu toe werd het verkeer op homogene wegen beschouwd. De voortplanting van de

karakteristieken, schokgolven en waaiers kunnen we nu op een dergelijke homogene

sectie berekenen. De oorzaak van verstoringen zoals schokgolven en waaiers ligt echter

in niet homogene punten in het verkeersnetwerk. Op deze overgangen geldt nog steeds

het behoud van voertuigen. Aan de hand van enkele voorbeelden bekijken we de

mechanismen en verkeerstoestanden.

4.6.1 Een verkeerslicht

In een eerste voorbeeld bestuderen we een verkeerslicht (zie Figuur 26). Beschouwen we

een weg waarvoor verkeerstoestand ‘A’ fungeert als begin- en randvoorwaarden. Op

locatie xs, is er een stoplicht dat op rood springt tussen ts en te. Juist stroomopwaarts van

de stopstreep zal volledig verzadigd verkeer in toestand ‘J’ ontstaan. De intensiteit in

deze toestand is nul, zodat aan de stopvoorwaarde voldaan wordt. Hierdoor ontstaat er

een schokgolf tussen verkeerstoestand ‘A’ en ‘J’. De stopstreep fungeert als stroom-

opwaartse randvoorwaarde met verkeerstoestand ‘J’ en er vertrekken van hieruit

karakteristieken met snelheid w tegen de rijrichting in. Hoe groter de intensiteit van

verkeerstoestand ‘A’, hoe sneller de schokgolf zich tegen de rijrichting in voortplant.

Stroomafwaarts van de stopstreep is het verkeer in de ‘totaal vrij verkeer’ toestand ‘O’.

Ook hier is de intensiteit nul. De schokgolf tussen verkeerstoestand ‘A’ en ‘O’ is een slip

met snelheid uf. De stopstreep fungeert hier als een stroomafwaartse randvoorwaarde van

verkeerstoestand ‘O’ vanwaar karakteristieken met snelheid uf vertrekken.

Wanneer de stopvoorwaarde op te ophoudt kunnen we de weg opnieuw beschouwen als

een weg met volgende beginvoorwaarden:

• Verkeerstoestand A voor x < x1 (= xs + (te-ts) / UAJ)

• Verkeerstoestand J voor x1 < x <xs

• Verkeerstoestand O voor x > xs

Oplossen van dit probleem levert een waaier op tussen verkeerstoestand J en O, en twee

schokgolven die uiteindelijk in (tm,xm) zullen samenvloeien in een slip.

Uit het voorbeeld blijkt duidelijk dat vlak na het opheffen van de stopvoorwaarde, de weg

op capaciteitsregime functioneert en de wachtrij afneemt. Nadat de wachtrij opgelost is

komt de oorspronkelijke verkeerstoestand terug. Let ook op de abrupte

snelheidsveranderingen op de schokgolven. In werkelijkheid zal het remmen en

optrekken een zekere tijd in beslag nemen en zal de schokgolf wat uitgesmeerd worden.

Page 29: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Figuur 26 Een verkeerslicht (a) de karakteristieken (b) het fundamenteel diagram

en (c) de gesimuleerde trajectories

4.6.2 Wegversmalling met een tijdelijke overbelasting.

In een tweede voorbeeld beschouwen we een weg met drie rijstroken waar tussen x3 en x5

de weg versmalt tot twee rijstroken (zie Figuur 28). De maximale snelheid ter hoogte van

de versmalling blijft uf, de capaciteitsintensiteit en de verzadigde dichtheid reduceren tot

twee derde van de oorspronkelijke waarden. We bestuderen de evolutie van het verkeer

over deze weg waarbij verkeerstoestand ‘A’ geldt als beginvoorwaarde. Tussen t0 en t1 is

verkeerstoestand ‘D’ de opwaartse randvoorwaarde en na t1 geldt opnieuw ‘A’. Merken

Page 30: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

we op dat de intensiteit qD groter is dan de capaciteit qC2 van de versmalling.

De karakteristieken die vanuit de beginvoorwaarde vertrekken hebben snelheid uf. De

overgang ter hoogte van x3 en x5 vormt geen probleem. Toestand ‘A’ en ‘D’ worden met

een slip door de oorsprong van elkaar gescheiden. Deze schokgolf kan probleemloos tot

aan de versmalling doorlopen. De versmalling kan slechts de capaciteit qc2 afwikkelen en

dit levert een stroomafwaartse randvoorwaarde: de intensiteit zal gelijk zijn aan de

capaciteit qc2 van de versmalling, en de verkeerstoestand zal zich in het congestie regime

bevinden. Verkeerstoestand ‘B’ heeft een intensiteit die gelijk is aan de capaciteit van de

versmalling en ligt in het congestiegebied van het fundamenteel diagram van de weg met

drie rijstroken.

De schokgolf tussen verkeerstoestanden ‘ B’ en ‘D’ loopt tegen de rijrichting in (QD is

groter dan QB). Op t1 ontstaat een schokgolf tussen ‘D’ en ‘A’. Wanneer deze de

schokgolf tussen ‘D’ en ‘B’ ontmoet, verdwijnt verkeersregime ‘D’ definitief. Hieruit

vertrekt een nieuwe voorwaartse schokgolf tussen ‘A’ en ‘B’ die de congestie terug doet

afnemen. Wanneer deze golf de versmalling bereikt is de file voorbij. In de versmalling

zal het capaciteitsregime zich in waaier vorm uitspreiden. Bij het einde van de

versmalling, bij x5, zorgt de continuïteit van de intensiteit voor een behoud van toestand

‘C2’. In het fundamenteel diagram bij de weg met drie rijstroken hoort de

verkeerstoestand ‘C2‘ bij het vrij verkeer en hebben de karakteristieken een snelheid uf.

De evolutie van de verkeerstoestanden bekijken we even zoals een waarnemer langs de

kant van de weg dit zou doen. Voldoende opwaarts van de versmalling, zoals in x1, merkt

een waarnemer een tijdelijke verhoogde verkeersintensiteit qD. Congestie wordt er niet

waargenomen. Een waarnemer dichter bij de versmalling in x2, ziet na verkeerstoestand

‘A’ tijdelijk een verhoogde verkeersintensiteit qD, die hoger is dan de capaciteit van de

versmalling. Daarna ontstaat file, waarbij de intensiteit gelijk is aan de capaciteit van de

bottleneck. Na de file komt een vrij verkeersregime met een intensiteit die lager is dan de

capaciteit van de versmalling.

Figuur 27 Het fundamenteel k-q diagram voor de snelweg met versmalling

In de versmalling, zoals in x4, ziet een waarnemer nooit congestie. De verkeerstoestand

evolueert van ‘A’ naar het capaciteitsregime ‘C2’.

Page 31: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Figuur 28 Het t-x diagram van een snelweg met een wegversmalling

Voorbij de versmalling, zoals in x6, ziet een waarnemer nooit verkeersintensiteiten die

hoger zijn dan de capaciteit van de versmalling.

Een waarnemer opwaarts van een versmalling, of algemener van een bottleneck, kan

slechts tijdelijk een verkeersintensiteit groter dan de bottleneckcapaciteit waarnemen.

Afhankelijk van de afstand tot de bottleneck wordt deze hogere intensiteit gevolgd door

congestie.

Een waarnemer afwaarts van een bottleneck, kan nooit een verkeersintensiteit groter dan

de capaciteit van de bottleneck zien.

De werking van ‘bottlenecks’ is een belangrijk mechanisme in het functioneren van ons

wegennet. De locatie en het tijdstip van werking bepalen de plaats en lengte van de file.

In het voorbeeld zorgde de fysieke versmalling van de snelweg voor een bottleneck.

Andere situaties zorgen voor gelijkaardige ‘bottleneck’-effecten:

• Wanneer er via een oprit veel verkeer de autosnelweg komt opgereden, is de

verkeersvraag voorbij de oprit aanzienlijk hoger dan stroomopwaarts van de oprit.

Page 32: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Hierdoor raakt de capaciteit net voorbij de oprit sneller bereikt en treedt daar vaak een

bottleneck in werking.

• Door een lokale inhomogeniteit (vb enkele vrachtwagens op een rij, ...) wordt de

capaciteit lokaal en tijdelijk iets lager, zodat een bottleneck er in werking kan treden.

• Een ongeval zorgt ook voor een lokale en tijdelijke vermindering van de capaciteit en

veroorzaakt het gevreesde ‘bottleneck’ effect.

• Slecht weer haalt de capaciteit naar omlaag. Vaak gebeurt dit vrij lokaal (vb rijmen

ijsplekken op een brug).

Page 33: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

5 Microscopische verkeersstroommodellen.

In dit hoofdstuk wordt het verkeer niet aan de hand van de geaggregeerde grootheden

dichtheid, intensiteit of gemiddelde snelheid gemodelleerd. Op microscopische schaal

komen de interacties tussen de individuele bestuurders, voertuigen en de infrastructuur

aan bod.

5.1 Algemene opbouw

Een microscopisch verkeersmodel beschrijft de interacties van de verschillende

voertuigen. Doordat het gedrag van iedere bestuurder niet exact te voorspellen valt zijn

dit meestal stochastische modellen. Ze worden als simulatiemodel met een computer

geïmplementeerd. De kenmerken van de bestuurder en het voertuig op tijdsstap t + ∆t

worden op basis van hun kenmerken op tijdstap t berekend. Op die manier worden o.a. de

positie en de snelheid van alle voertuigen berekend. Ten opzichte van macroscopische

dynamische modellen kunnen gemakkelijker verschillende types van voertuigen en

bestuurders gespecificeerd worden. De benodigde rekenkracht en de vele parameters

maken deze modellen soms wat moeilijker in de omgang.

De meeste microsimulatiemodellen omvatten de volgende componenten:

• Het voertuigvolg-model (car-following model)

Hierin wordt het gedrag van een voertuig bepaald op basis van het rijgedrag van het

voorrijdende voertuig.

• Het rijstrook-wissel model (lane-change model)

De manier waarop een voertuig van rijstrook verandert op basis van de in zijn nabije

omgeving rijdende voertuigen komt hier aan bod.

• Route keuze model

Net zoals in het prognose model moeten de voertuigen zich een kortste weg door het

infrastructuurnetwerk zoeken. De HB matrix wordt per tijdsperiode (bijvoorbeeld

voor 15 minuten) ingegeven zodat we van een dynamische HB matrix spreken.

• Extra modules

Doordat de positie, snelheid en versnelling van iedere wagen bijvoorbeeld om de

halve seconde gekend is, kunnen deze modules makkelijk afgeleide effecten zoals

vervuiling, lawaaihinder, tijdsverlies en economische kosten berekenen.

Naast de voertuigen kunnen ook dynamische kenmerken van het infrastructuursysteem,

zoals verkeerslichten, weersomstandigheden en ongevallen, gemodelleerd worden.

5.2 Voertuig-volg model

In deze paragraaf bespreken we een eenvoudig voorbeeld van het voertuig-volg model. In

dit model wordt de versnelling van een wagen beschreven aan de hand van kenmerken

van de vooroprijdende wagen.

Page 34: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

In formule 5.1 wordt de versnelling evenredig met het snelheidsverschil met de

voorganger verondersteld. Wanneer beide voertuigen even snel rijden, is de versnelling

nul. De versnelling van een voertuig wordt omgekeerd evenredig met het kwadraat van

de afstand tot de voorligger verondersteld. De invloed van die voorligger wordt groter

wanneer hij zich dichtbij bevindt.

Er zijn twee parameters in deze formule:

• Tr : De reactietijd van het voertuig. De bestuurder reageert vertraagd op

veranderingen, of omgekeerd, hij reageert op veranderingen die een tijd Tr geleden

gebeuren.

• Sens: De gevoeligheid van de bestuurder. Deze factor geeft aan hoe hevig een volger

reageert op veranderingen in het rijgedrag van zijn voorganger.

In onderstaande figuren wordt het volggedrag van een voertuig weergegeven. De beide

voertuigen vertrekken vanuit stilstand. De volger heeft een ruimtegebruik van 100 meter

terwijl de eerste wagen 20 seconden optrekt met een versnelling van 1 m/s² en daarna

afremt tot stilstand met –1 m/s². De reactietijd is 1 seconde en de gevoeligheid is 5000

m²/s.

Figuur 29 Een experiment met het voertuig-volgmodel formule (5.1)

Page 35: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

In een stationaire en homogene verkeerssituatie is het snelheidsverschil en bijgevolg de

versnelling altijd nul. In dergelijke omstandigheden kan een link gelegd worden met de

fundamentele diagrammen door beide zijden van 5.1 te integreren over de tijd:

(hierbij houden we rekening met dsα( t) / dt = ∆vα (t) )

Hierin is C een integratieconstante. Bij homogeen en stationair verkeer is de snelheid

constant en voor alle voertuigen gelijk. Daardoor is de reactietijd Tr niet meer van belang

en is de gemiddelde snelheid u gelijk aan vα. Het ruimtegebruik is voor alle

wagens hetzelfde en bijgevolg gelijk aan het gemiddeld ruimtegebruik s. De link met de

dichtheid uit 2.2 kunnen we erbij halen om te komen tot:

De integratieconstante en de gevoeligheid kunnen tenslotte ut enkele randvoorwaarden

gehaald worden:

• bij een dichtheid van 0 is de snelheid uf.

• bij een snelheid van 0 is de dichtheid maximaal en gelijk aan kj

Hierdoor komen we tot de vergelijking

Vergelijking 5.4 geeft de relatie weer uit het fundamenteel k-u diagram en deze komt

overeen met formulering 3.1. Dit voertuig-volgmodel werd zo opgesteld dat het in

stationaire en homogene toestand leidt tot de fundamentele diagrammen van Greenshield.

Andere voertuigvolgmodellen leiden op hun beurt tot andere fundamentele diagrammen.

Page 36: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

6 Een file uit de praktijk

In dit laatste hoofdstuk wordt een werkelijk verkeerspatroon geanalyseerd en enkele

bijkomende effecten besproken.

6.1 Bespreking van de wegsectie

Als voorbeeld nemen we een acht kilometer lange sectie van de E17 Gent – Antwerpen

vlak voor de Kennedytunnel. De snelweg heeft er drie rechtsgelegen op- en afritten

gevolgd door een linkse afrit en door twee linkse opritten. De snelweg buigt af naar

rechts tussen kilometer 6 en 7. Vijftien cameradetectoren, genummerd van CLO F tot

CLO I, meten de intensiteit (voertuigen/min) en de gemiddelde snelheid (km/uur) per

minuut voor de drie rijstroken. Het studiegebied wordt schematisch weergegeven in

figuur 6.1.

Figuur 30 Een stukje E17 met verkeersdetectoren

In figuur 6.2 worden de intensiteit en de gemiddelde snelheid voor de drie rijstroken van

28 september 1999 weergegeven. Horizontaal staat de tijdsas en de plaats is verticaal

uitgezet. Voertuigen rijden van links onder naar rechts boven.

Figuur 31 De waarnemingen : (boven) de gemiddelde snelheid [km/uur] en (onder)

de intensiteit [vtg/minuut]

Page 37: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

6.2 Analyse volgens het macroscopisch verkeersstroommodel.

De meetresultaten worden in een eerste fase besproken met het macroscopisch

verkeersstroommodel uit hoofdstuk 4 in het achterhoofd. In dit verkeersmodel worden

drie verkeersregimes onderscheiden: ‘Vrij verkeer’, ‘capaciteitsverkeer’ en ‘congestie’.

Voor 7u10 bevindt het verkeer zich in het ‘vrij verkeer regime’. De voertuigen rijden er

met hoge snelheid en de toestandspunten van dit regime bevinden zich op de bovenste tak

in het fundamenteel intensiteit-snelheids diagram. De verkeerssituatie hangt af van de

toestand stroomopwaarts van de bestudeerde sectie. Kleine schommelingen in de

verkeersvraag veroorzaken dan ook golven die zich met de rijrichting voortbewegen.

Deze golven zijn enkel bij de intensiteit te zien. Dit wijst op een snelheid die

onafhankelijk is van de intensiteit wat neerkomt op een horizontale tak in het intensiteit-

snelheids diagram (zoals in Figuur 12 rechts).

Ter hoogte van detector CLO3 wordt de capaciteit van de weg om 7:10 bereikt door een

stijgende toevoer vanaf de eerste linkse oprit. Dit ‘capaciteitsregime’ houdt aan tot 9:30

en de toestandspunten van dit regime bevinden zich uiterst rechts in het fundamenteel

intensiteit-snelheids diagram.

Vanuit de bottleneck ontstaat het ‘congestie regime’ dat zich tegen de rijrichting in

voortplant. De snelheid is laag en de toestand wordt er bepaald door de stroomopwaartse

bottleneck. In het fundamenteel intensiteit-snelheids diagram bevinden we ons op de

onderste tak.

De drie regimes die uit het macroscopisch verkeersstroommodel afgeleid worden, zijn in

de verkeersdata duidelijk te onderscheiden.

6.3 Bijkomende empirische kenmerken.

Uit de verkeersmetingen kunnen naast de drie regimes nog andere effecten waargenomen

worden die niet vanuit het verkeersstroommodel kunnen worden verklaard.

De intensiteit uit de bottleneck ligt lager dan de maximale intensiteit, die tijdens het ‘vrij

verkeer - regime’ bereikt wordt. Hierdoor is de intensiteit van het verkeer stroomafwaarts

van de bottleneck, een ‘vrij verkeer’ regime met de bottleneck als randvoorwaarde, lager

dan voor het bottleneck regime. Dit effect wordt de capaciteitsval (capacity drop)

genoemd.

Verder blijkt dat de bottleneck in werking treedt bij het overschrijden van een intensiteit

van 100 voertuigen per minuut over drie rijstroken tezamen en pas verdwijnt bij het

onderschrijden van 70 vtg/min. Dit hysteresiseffect zorgt er dus voor dat het bottleneck

regime langer duurt dan strikt noodzakelijk. In Figuur 32 worden de verschillende

toestandspunten ter hoogte van de bottleneck in een q-u diagram weergegeven. Door deze

punten chronologisch met elkaar te verbinden blijkt dat het ontstaan en het opheffen van

het bottleneck regime via een ander pad verloopt.

Page 38: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

36

Figuur 32 Fundamenteel intensiteit – snelheids diagram waarbij de opeenvolgende

toestandspunten met elkaar verbonden zijn

De golven binnen het ‘congestie regime’ in Figuur 32, kunnen niet verklaard worden met

het macroscopisch model uit hoofdstuk 4. Deze start-en-stop-golven ontstaan door kleine

verstoringen in de bottleneck en ontwikkelen zich tot grotere golven met sterk variërende

intensiteit en snelheid.

De eerste twee congestiegolven hebben een periode van tien minuten. Tussen de golven

wordt zelfs een ‘vrij verkeer’ snelheid gehaald. Latere golven hebben lagere

voertuigsnelheden en volgen elkaar sneller op. Kenmerkend voor deze golven is dat ze

zich met een constante snelheid tegen de rijrichting in voortbewegen. Bestuurders kruisen

deze golven en ervaren ze als een opeenvolging van optrekken en afremmen.

Page 39: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

7 Examenvragen

Dit hoofdstuk bevat de examenvragen van de afgelopen jaren, voorzien van oplossingen.

De examenvragen zijn een integraal onderdeel van de lesstof Verkeersstroomtheorie.

Probeer de vragen eerst zelf op te lossen en bestudeer daarna de uitgebreide bespreking

van de oplossingen.

Page 40: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Examenvraag juni 2004

Gegeven:

• een weg met een driehoekig fundamenteel diagram

• kritische dichtheid = 25 vtg/km

• maximale golfsnelheid (tegen rijrichting) = - 4 m/s

• snelheidslimiet (streng gehandhaafd) = 72 km/u

• op deze weg staat een verkeerslicht met een vaste cyclustijd (= groentijd +

roodtijd) van 120 s

Gevraagd:

a) Teken het fundamenteel diagram en duid hierop alle relevante punten en

snelheden aan.

b) Wat is de minimale vaste groentijd opdat geen enkel voertuig twee keer voor rood

komt te staan bij een intensiteit/capaciteit verhouding van 80%?

c) Wat is in die situatie de maximale afstand vóór de stopstreep waar voertuigen tot

stilstand komen? Duid deze afstand aan in een x-t diagram dat de fileopbouw

weergeeft.

d) Wanneer in de cyclus is de wachtrij (= rij van aaneengesloten stilstaande

voertuigen) maximaal? Hoe lang is die rij, uitgedrukt in meters? En in

voertuigen? Duid de maximale wachtrij aan in je x-t diagram.

Page 41: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Oplossing examenvraag juni 2004

Trood = 24 s

Tgroen = 96 s

Lmax= 73,8 m of 11,1 vtg

∆xmax = 320 m

Deze oplossingen volgen uit volgende redeneringen:

a) volgt uit ligging gegeven punten en gegeven hellingen in fundamenteel diagram; let op: kies gelijke

eenheden voor alle grootheden (hier gekozen voor m, s en vtg; kon ook km, u en vtg, als het maar

consistent is);

b) totaal aantal voertuigen aangevoerd tijdens een cyclus = totaal aantal voertuigen afgevoerd tijdens

groentijd, anders blijven er voertuigen tijdens meer dan 1 cyclus staan, dus: groen krit cyclus vraagT q T q=

waaruit Tgroen;

c) zie aanduiding op figuur; volgt uit driehoeken ∆ABD en ∆BCD:

( ) ( )

max max max

B rood max cyclus B max

x AB c BC V

T T c T T V

∆ = ⋅ = ⋅

= − = −

Dit zijn twee vergelijkingen in twee onbekenden TB en ∆xmax met de gegeven oplossing (Trood is bekend uit

a).

d) uit de x-t plot volgt meteen dat de wachtrij maximaal is op het eind van de roodtijd, Lmax volgt dan

makkelijk uit: max roodL T c= . Dit is het antwoord in meters, vermenigvuldiging met de filedichtheid

kstilstand levert het antwoord uitgedrukt in voertuigen.

( )/k vtg m

( )/q vtg s

kritq

vraagq

kritkvraagk

0.025

0.5

20

0.02

krit

krit

max

vraag

vtgk

m

vtgq

s

mV

s

vtgk

s

=

=

=

=

maxcc

maxV

0.4

0.15

4

3.077

vraag

stilstand

max

vtgq

s

vtgk

m

mc

s

mc

s

=

=

= −

= −

stilstandk

Page 42: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

x

t

maxx∆

maxL

roodT groenT

cyclusT

laatste voertuig dat even stilstaat

en nog door groen moet

BA C

D

BT

Page 43: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Examenvraag september 2004

Op een provinciale weg rijdt een auto met 90 km/u in een constante stroom voertuigen

met dezelfde snelheid en gemiddelde tussenafstand (achterbumper – achterbumper) van

75 m. De bestuurder van deze auto wil linksaf de oprit van zijn woning inrijden maar

moet daarvoor 20 seconden wachten alvorens in de tegenstroom een veilig hiaat optreedt

om over te steken. De bewoner maakt aldus opnieuw de weg vrij voor de file auto's die

achter hem ontstaan was.

a) Vul de ontbrekende gegevens (x- en y-coördinaten + hellingen) aan in het hieronder

afgebeelde fundamenteel diagram en stel de situatie in een x-t diagram voor.

b) Met welke snelheid komt het verkeer onmiddellijk na het vrijmaken van de weg bij

die oprit voorbij als je veronderstelt dat de eerste-orde theorie van toepassing is? Wat

is op dat ogenblik de gemiddelde tussenafstand (achterbumper – achterbumper)

tussen de voertuigen in deze stroom?

c) Hoe lang duurt het voordat de bewoner ter plekke van zijn oprit weer verkeer met

tussenafstand 75 meter voorbij ziet komen?

d) Indien het fundamenteel diagram niet driehoekig maar concaaf (bol) was geweest met

dezelfde filedichtheid en capaciteit, had hij dan korter, even lang of langer moeten

wachten op het herstel van het oorspronkelijke verkeersregime? (geen berekeningen,

alleen schets + redenering)

Laat in de formulering van uw antwoorden zien dat u begrijpt hoe u aan de antwoorden

komt. Illustreer uw antwoorden, indien nodig, met een schets en/of formule.

( )/k vtg m

( )/q vtg s

kritq

vraagq

kritkvraagk

0.02

90

krit

max

vtgk

m

k mV

u

=

=maxc

maxV

0.14stilstand

vtgk

m=

stilstandk

Page 44: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Oplossing examenvraag september 2004

Vraag a

Zie bijgaande figuur

Vraag b

Er ontstaat capaciteitsregime, dus 90 km/u bij een dichtheid van 20 vtg/km of 50 m/vtg

Vraag c

Noem de periode van stilstand T1 en de gezochte tijd T2. Vanwege het continuïteitsprincipe geldt dat het

verkeer dat normaliter ongehinderd gepasseerd zou zijn in de periode (T1 +T2) met intensiteit q1, nu

afgewikkeld werd in de periode T2 alleen, maar dan aan capaciteitsregime qc. We vinden dan eenvoudig:

( )1 2 1 2 cT T q T q+ =

waaruit: T2 = 40 seconden.

Een alternatieve manier om dit antwoord te vinden ware geweest om uit het x-t diagram via

driehoeksrekening T2 samen te stellen.

Vraag d

Het fundamenteel diagram en bijhorende x-t diagram ziet er dan uit zoals aangegeven met de stippellijnen

in de figuur, waardoor het langer duurt voordat het originele regime hersteld is. Dit is te verklaren doordat

niet onmiddellijk na de startgolf het capaciteitsregime ontstaat maar slechts geleidelijk, zoals bijvoorbeeld

uit de doorsnede (momentopname op t’) duidelijk wordt.

( )/k vtg m

( )/q vtg s

kritq

vraagq

kritkvraagk

0.02

0.5

90

0.0133

krit

krit

max

vraag

vtgk

m

vtgq

s

k mV

u

vtgk

m

=

=

=

=

maxcc

maxV

1200

0.14

15

9.47

vraag

stilstand

max

vtgq

u

vtgk

m

kmc

u

kmc

u

=

=

= −

= −

stilstandk

Page 45: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

x

t

1T 2T

t’

x

kcrit

kstilsta

nd

kvra

ag

dic

hth

eid o

p t’

Page 46: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Examenvraag juni 2005

Gegeven:

• Op een 2-strooks snelweg waarop per rijstrook het

afgebeelde driehoekige fundamenteel diagram geldt, is

nevenstaande verkeerssituatie ontstaan op t=0.

• Niemand wisselt van rijstrook tussen stroken 1 en 2

• De verkeerstoestand per rijstrook in de gebieden

α, β, γ, δ, ε, ζ en η is homogeen; de toestand op beide

stroken in gebied α kenmerkt zich in het fundamenteel

diagram als punt J en die in gebied η als C

• Op de randen x=0 en x=L geldt voor t > 0 de constante

randvoorwaarde J respectievelijk C, tenzij in je oplossing

een golf door deze rand snijdt en een andere toestand

oplegt

• De golfsnelheden c tussen de gebieden β, γ, δ, ε, ζ zijn

allen gelijk aan elkaar, en gelijk over de twee rijstroken: 1 2 1 2 1 2 1 2

c c c c c c c c c Cteβγ βγ γδ γδ δε δε εζ εζ= = = = = = = = =

Merk op dat dus niets gegeven is over 1 2 1 2, , enc c c cαβ αβ ζη ζη

• De gebiedjes β, γ, δ, ε, ζ hebben op t=0 een gelijke lengte

lgolf

β

γ

δ

ε

ζ

α

η

J J

B A

A B

B A

C C

A B

B A

x=0

x=L

lgolf

lgolf

lgolf

lgolf

lgolf

k

q

uf

w

C

J

1 2

1 2

D

rijr

ich

tin

g

Page 47: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Gevraagd:

a. Stel: in de zone ,x x xαβ ζη ∈ geldt initieel een stop en go patroon, waarbij de

voertuigen in gebieden aangeduid als A stilstaan, en in gebieden B rijden met uf.

Je merkt dus dat de stop en go golven op de twee stroken in tegenfase zijn.

Beargumenteer waarom – rekening houdend met de gegevens – de enig mogelijke

oplossingen voor toestanden A en B respectievelijk J en C zijn. Identificeer ook

de golfsnelheid c.

b. Hoe evolueert na t=0 de scheiding tussen gebieden α en β op rijstrook 1

(schokgolf met of tegen rijrichting, waaier, slip, blijft ter plekke, anders)? En op

strook 2? En de scheiding tussen gebieden ζ en η op strook 1? En op strook 2?

Licht telkens je antwoord kort toe, desgewenst aan de hand van een kleine schets

in t-x en in het fundamenteel diagram.

c. Teken voor beide rijstroken apart in een t-x diagram het verloop van de

verkeerstoestand over x∈[0,L] voor t > 0.

d. Stel: Jim en Ben houden een wedstrijd. Op t=0 vertrekken beide heren vanaf xαβ

(scheiding tussen α en β op t=0) respectievelijk op strook 1 en 2.

Wie bereikt het eerst de scheiding tussen gebieden ε en ζ (ermee rekening

houdend dat die zich verplaatst met snelheid c)? Teken hiervoor hun trajectorie in

je t-x diagrammen.

e. Men weet dat de wens tot rijstrookwisseling afhangt van het (subjectieve)

voordeel dat men denkt te halen door in de andere rijstrook te rijden. Een

subjectieve maat hiervoor is de verhouding f tussen de tijd dat je op je eigen

rijstrook ingehaald wordt door voertuigen op de andere rijstrook, gedeeld door de

tijd dat jij hen inhaalt. Naarmate deze verhouding f groter dan 1 wordt, vergroot

de neiging om naar die andere strook te wisselen.

Wie zal tijdens de wedstrijd de grootste neiging tot rijstrookwisselen hebben, Jim

of Ben? Motiveer je antwoord. Vind voor beide heren een – desnoods

benaderende – analytische uitdrukking voor f in termen van de dichtheden,

intensiteiten en/of golfsnelheden uit het fundamenteel diagram en schat hieruit

een typische grootteorde voor f.

Bonusvraag

Stel dat in gebied α niet toestand J geldt, maar een toestand D. Hoe ziet dan het t-x

diagram eruit? Maakt dit verschil voor de wedstrijd tussen Jim en Ben? Beargumenteer je

antwoord.

Page 48: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Oplossing examenvraag juni 2005

a. Toestand A = J en toestand B = C; golfsnelheid c = w

Argumentatie: In A staat verkeer stil; punt J is het enige punt in het fundamenteel

diagram waarvoor dit geldt. In toestand B wordt aan vrije snelheid gereden en ligt

dus op de vrije verkeerstak van het fundamenteel diagram. Anderzijds beweegt de

golf tussen B en J zich volgens de gegevens met dezelfde snelheid als die van J

naar B, die met snelheid w moet gaan (opwaartse grens van een waaier naar

toestand C of naar een punt op de congestietak). Daaruit volgt dat toestand B op

de congestietak moet liggen. Alleen punt C ligt zowel op de vrije verkeer tak als

op de congestietak, dus B = C.

b. Overgang α naar β: Op strook 1 een waaier tussen J en C; op strook 2 is er geen

sprake van een overgang tussen 2 fasen, dat is homogeen J-gebied.

Overgang ζ naar η: Op strook 1 is er geen sprake van een overgang, dit is

homogeen C-gebied; op strook 2 opnieuw de waaier van J naar C. Zie ook de

schetsen.

C

C

k

x

t

C

overgang ζ – ηstrook 1

C

C

k

x

t

C

overgang ζ – ηstrook 1

J

C

J

C

k

x

t

overgang α – βstrook 1

overgang ζ – ηstrook 2

J

C

J

C

k

x

t

overgang α – βstrook 1

overgang ζ – ηstrook 2

J

J

k

x

t

J

overgang α – βstrook 2

J

J

k

x

t

J

overgang α – βstrook 2

Page 49: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

c. Zie de schetsen

t

x

k

J

C

J

C

C

J

C

tijd inhalendtijd ingehaald

strook

trajectorie van Jim

1

finish

start

t

x

k

J

J

J

C

C

J

C

tijd inhalendtijd ingehaald

strook

trajectorie van Ben

2

ter vergelijking de trajectorie van Jim

finish

start

d. Ze bereiken tegelijk deze scheiding; zie de trajectorieën onder punt c

Page 50: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

e. De neiging is bij beide even groot.

Argumentatie: Door de tegenfase wordt elk van beide heren voortdurend

ingehaald, zolang hij zich bevindt in een stop en go golf gekenmerkt door J (=A).

Analoog halen zij voortdurend verkeer in zolang ze in gebied C (=B) rijden. De

verblijftijd in elk van deze gebieden vinden we door projectie van de trajectorie

op de t-as. Voor elk stilstaand stuk is dat: golf

J

lt

w∆ = ; voor elk rijdend stuk geldt:

golf

C

f

lt

u w∆ =

+ (of bij benadering:

golf

C

f

lt

u∆ ≈ ). Voor beide geldt dus:

2

2

golf

f f

golf

f

l

u w uwfl w w

u w

+ = = ≈

+

, wat met typische waarden voor uf (100-120

km/u) en w (15-20 km/u) uitkomt tussen 6 en 9.

Merk op dat – ongeacht op welke strook je rijdt – je dus steeds de indruk hebt dat

je meer ingehaald wordt dan dat je zelf inhaalt. Dit klopt voor wat de tijdsduur

maar niet wat het aantal voertuigen betreft, want het gaat telkens om evenveel

inhalende als ingehaalde voertuigen. Het zou dus onjuist zijn om vanuit deze

perceptie te concluderen dat de andere strook sneller vooruit gaat, want gemiddeld

gaan ze even snel. Hoewel dit een idealisatie is, benadert het de situatie in de

praktijk vrij goed.

f. Het onderste deel van de schets bij punt c verandert als hieronder geschetst, maar

dat verandert niets aan de wedstrijd, want de golven gaan steeds trager of even

traag als de voertuigen en starten op dezelfde plaats. Ze blijven dus steeds achter

beide heren en beïnvloeden hun trajectorie niet.

Page 51: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

t

x

k

D

C

J

C

C

J

C

tijd inhalendtijd ingehaald

strook

trajectorie van Jim

1strook

trajectorie van Jim

1

finish

start

finish

start

t

x

k

J

J

C

C

J

C

finish

start

finish

start

tijd inhalendtijd ingehaaldtijd inhalendtijd ingehaald

strook

trajectorie van Ben

2strook

trajectorie van Ben

2

ter vergelijking de trajectorie van Jim

D

Page 52: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Examenvraag september 2005

Gevraagd:

a. Teken het verloop van het filepatroon in een t-x diagram (tot iets voorbij het

tijdstip waarbij alle eventuele overgangsverschijnselen zijn verdwenen en één of

meerdere stationair bewegende golven zijn ontstaan). Teken ook een trajectorie

die bij t=0 precies in het midden van gebiedje β start. Doe dit in de

veronderstelling dat ...:

i. ... de toestanden A en B overeenkomen met de respectievelijke

punten C en G van het fundamenteel diagram.

ii. ... de toestanden A en B overeenkomen met de respectievelijke

punten G en J van het fundamenteel diagram.

iii. ... de toestanden A en B overeenkomen met de respectievelijke

punten F en G van het fundamenteel diagram.

β

γ

δ

ε

ζ

α

η

F

B

A

B

F

A

B

x=0

x=L

k

q

uf w

C

J

F G

start

rijric

hting

β

γ

δ

ε

ζ

α

η

F

B

A

B

F

A

B

x=0

x=L

k

q

uf w

C

J

F G

start

rijric

hting

Gegeven is een weg bestaande uit één rijstrook waarop

het afgebeelde driehoekige fundamenteel diagram geldt.

Nevenstaande schets toont een stop-&-go patroon van

toepassing op deze weg. De bedoeling van de vraag is het

t-x diagram te schetsen van een aantal varianten

Deze varianten hebben allen bij t=0 de verkeerstoestand

F opwaarts én afwaarts van het stop-en-go gebied

gemeen. Dit blijft zo voor t>0, tenzij golven uit je

oplossing de grenzen x=0 of x=L doorsnijden en een

andere verkeerstoestand opleggen.

We trekken er ons hierbij niets van aan hoe de

begintoestand is kunnen ontstaan (als het fysiek al

mogelijk was!). Neem de toestand op t=0 gewoon als

gegeven en teken het vervolg in t.

Page 53: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

b. Stel dat lengte l0 van de gebiedjes β, γ, δ, ε en ζ gelijk is en zo kort dat we de 5

blokjes in feite als 1 homogene verkeerstoestand kunnen benaderen. Geef een

analytische uitdrukking voor de gemiddelde dichtheid, intensiteit en snelheid

(volgens de fundamentele relatie) binnen deze quasi-homogene verkeerstoestand.

Geef schetsmatig het verloop in t-x weer van de drie in vraag a beschouwde

gevallen en controleer of dit consistent is met de meer verfijnde oplossingen die je

in deel a van de vraag construeerde (vergelijk beide x-t diagrammen).

Page 54: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Oplossing examenvraag september 2005

a) t-x diagramma en trajectorieen

Page 55: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden
Page 56: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden
Page 57: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Examenvraag juni 2006

Vooreerst een definitie: voertuig verliesuren (VVU) = het verschil tussen de totale

verblijftijd in een gebied S (in t-x) en de totale verblijftijd, mocht dezelfde hoeveelheid

voertuigen dezelfde afstand afleggen met vrije snelheid. Eenheid: vtg * u.

Het succes van een ingreep in de verkeersafwikkeling wordt vaak afgemeten aan het

aantal VVU dat al dan niet wordt uitgespaard. In deze vraag onderzoeken we de

maatregel “toeritdosering” vanuit dit standpunt.

a) Stel een algemene formule op voor het berekenen van de totale verblijftijd in een

willekeurig gebied S in een t-x diagram (tips: denk aan de algemene definities voor q,

k en u; controleer de dimensies (eenheden) van je formule).

b) In het vervolg van deze vraag mag je steeds uitgaan van een oneindige vrije snelheid.

Welke invloed heeft dat op de berekening van de VVU?

c) Teken het fundamenteel diagram van intensiteit q tegen dichtheid k als je er – naast

de aanname uit (b) – vanuit mag gaan dat de karakteristieke snelheid bij congestie een

constante is. Hoeveel parameters heb je nodig om dit diagram eenduidig te bepalen?

Duid alleen die parameters aan in je diagram.

Beschouw nu een snelweg A met oprit B (in x = 0), beide met fundamenteel diagram

zoals in (c). De capaciteit van de snelweg is C en die van de oprit C’ (C’<C). Vanaf t = 0

is de verkeersvraag gedurende een periode T constant en gelijk aan C – I (I ≤ C/2) voor

de snelweg en 2 I voor de oprit. Na die periode (dus vanaf t = T) veranderen deze

waarden respectievelijk in de constanten C – 2 I en I en dit tot t = ∞.

d) Neem nu aan dat verkeer vanaf de oprit voorrang ‘neemt’ ten opzichte van verkeer op

de snelweg (ook al is dit tegen de verkeersregels, de praktijk leunt sterk bij dit

extreem aan). Er ontstaat dan alleen file op de snelweg. Op welk tijdstip t* is die file

volledig opgelost (geen ingewikkelde berekening!)?

e) Teken het t-x diagram van de snelweg voor vraag (d) en duid alle daarin gebruikte

golfsnelheden en dichtheden aan in een fundamenteel diagram. Duid de maximale

filelengte L aan en bereken ze.

f) Bereken aan de hand van je resultaat uit vraag (b), (d) en (e) het aantal voertuig

verliesuren VVU in een gebied S = [0,t*] × [-L, 0]. (tip: de oppervlakte van een

driehoek is ½ basis × hoogte)

g) Men voert nu toeritdosering in. De regeling is perfect: er wordt precies zoveel verkeer

van oprit B op snelweg A gelaten dan toegelaten om net geen file op de snelweg te

creëren. File ontstaat nu alleen op de oprit. Op welk tijdstip t*’ is die file nu opgelost?

Teken het t-x diagram van de oprit en duid alle daarin gebruikte golfsnelheden en

dichtheden aan in een fundamenteel diagram. Duid de maximale filelengte L’ aan en

bereken ze.

Page 58: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

h) Bereken aan de hand van je resultaat uit (b) en (g) het aantal voertuig verliesuren

VVU’ in een gebied S’ = [0,t*’] × [-L’, 0]. Wat concludeer je over de zin van het

toepassen van toeritdosering in dit geval: doen of niet doen en waarom (niet)?

i) Stel dat vlak vóór de oprit een afrit zit (op x = –dx met dx << L) en de verkeersvraag

op de snelweg is die zoals tevoren, vermeerderd met Iaf (< I) die via de afrit de

snelweg verlaat. Blijft dan je conclusie uit (h) gelijk? Waarom (niet)? Wat leert je dit

over de omstandigheden waarin toeritdosering zinvol toegepast kan worden (vanuit

het oogpunt VVU)?

Page 59: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Oplossing examenvraag juni 2006

a) Uit de algemene definitie voor de dichtheid: dVU

kdS

= volgt:

dVU k dS= of ( ),S x t

VU k dS k t x dt dx= =∫ ∫ ∫

b) De totale verblijftijd in S met vrije snelheid wordt nul, dus de formule uit (a) geeft niet

alleen voertuiguren, maar gelijk VVU.

c) 2 parameters volstaan (de vrije snelheid is immers bekend, waardoor de vrije verkeer

tak vertikaal staat bij k = 0): 2 uit {C,w,J}

k

q

C

J

k

q

C

wof

k

q

wof

J

d) Door de oneindige snelheid wordt de samenvoeging met capaciteit C direct volledig

belast. Gedurende [0,T] blijft onverwerkt: ( )2T C I I T C I T− + − = . Daarna is de totale

vraag C – I , dus kleiner dan C en worden van de file ( )C C I I− − = vtg per tijdseenheid

afgebouwd. Het duurt dus nog eens T, of t* = 2T.

e) In het FD:

- uit gelijkvormige driehoeken: c1=w (w=C/J>0)

- uit vergelijking ∆(C/2/C-2I) met ∆(C-I/2/C-2I) volgt direct c2=-w/2 (w>0)

Hieruit: L = - c2T = CT/2J

f) Uit (b): VVU = integraal van k*opp in t-x, dus alleen te berekenen waar k≠0. Dit is

slechts zo in 2 gebiedjes, op te splitsen in 3 driehoekjes:

( ) ( ) ( )2 2 2 2 1 1

2 2 1

a bVVU k opp k opp k opp

k TL k tL k TL

= ∆ + ∆ + ∆

= + +

L werd hierboven al berekend. ∆1 heeft gelijke hellingshoeken w en c1 en is dus

gelijkbenig, zodat t=T/2. Uit het FD volgt met wat driehoeksmeetkunde verder:

1 / /k I w JI C= = en 2 2 / 2 /k I w JI C= = , zodat: 2VVU T I= .

Page 60: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

k

q

C

J

C – I

C – 2I

1

2c1 c2

k1 k2

k=0q=C – I

k=kk=k22q=C q=C –– 2I2I

k=kk=k11q=C q=C –– II

k=0q=C – 2I

k=0 q=C

2a 1

2bL

t

TT

0

0 t*=2T

c2c1

t

x

k

q

C

J

C – I

C – 2I

1

2c1 c2

k1 k2

k=0q=C – I

k=kk=k22q=C q=C –– 2I2I

k=kk=k11q=C q=C –– II

k=0q=C – 2I

k=0 q=C

2a 1

2bL

t

TT

0

0 t*=2T

c2c1

t

x

g) Volgens dezelfde redenering als in (d) duurt het opnieuw T om de file op te lossen, dus

t*’=2T. Er is nu in het FD iets meer rekenwerk nodig om te verkrijgen:

( )

( )

( )

( )

1

2

1

2

' ''

' '

' 2 '' 2

' '

''

' '

''

' ' 2

C I Ck C I

w J

C I Ck C I

w J

ICc

J C I

ICc

J C I

−= = −

−= = −

−=

=−

De filelengte ( )1

'' '

' '

TICL c T

J C I= =

−.

h) Net als in (f) sommeren we k maal opp van 3 driehoekjes:

( ) ( ) ( )1 1 1 1 2 2

2 2 1

' ' '

' ' ' ' ' ' '

a bVVU k opp k opp k opp

k TL k t L k TL

= ∆ + ∆ + ∆

= + +

Met '

'' '

L TIt

w C I= =

− volgt na flink schrappen: 2

VVU T I= .

Page 61: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

k

q

C’

J’

2 I

I

2’

1’

k2’ k1’

c2’ c1’

k=0q=2I

k=kk=k11’’ q=Iq=I k=kk=k22’’

q=2Iq=2I

k=0q=I

k=0 q=I

1a 21b L’

t

TT

0

0 t*’=2T

c1’c2’

t

x

k=0 q=2I

k

q

C’

J’

2 I

I

2’

1’

k2’ k1’

c2’ c1’

k=0q=2I

k=kk=k11’’ q=Iq=I k=kk=k22’’

q=2Iq=2I

k=0q=I

k=0 q=I

1a 21b L’

t

TT

0

0 t*’=2T

c1’c2’

t

x

k=0 q=2I

Het maakt voor de VVU dus niets uit waar je de voertuigen ophoudt! In feite hoeft dit

niet te verbazen: het knelpunt wordt in beide gevallen even zwaar en even efficiënt belast

(gedurende 2T aan capaciteit). Er is dus in beide gevallen even veel ‘ellende’, de

toeritdosering bepaalt alleen welke groep deze ellende te verwerken krijgt. Elke

tussenliggende dosering zou – zolang ze maar het knelpunt continue aan capaciteit laat

afwikkelen – de file een beetje op beide wegen laten ontstaan, maar zou in totaal

evenveel VVU uitlokken. Alleen als je te zwaar doseert en het knelpunt minder dan C

afhandelt, duurt de file langer en worden er meer VVU opgelopen.

i) Dit extra verkeer belast het knelpunt niet extra. De file duurt dus even lang. Alleen: bij

dosering zoals in (g) staat er nooit file op de snelweg. De stroom Iaf wikkelt dus in vrije

snelheid af en loopt geen VVU op. Doseer je niet, dan ontstaat er file, waarin ook de Iaf

‘gevangen’ zit. Zij lopen dan mee VVU op in de staart van een file van een knelpunt dat

zij zelf niet belasten. Voor het andere verkeer blijft de VVU = T2I. Het verlies van Iaf

vergroot dus (onnodig!) het totale aantal VVU.

Conclusie: toeritdosering is met het oog op totale VVU alleen nuttig, indien daarmee

vermeden wordt dat de file van het knelpunt terugslaat naar stromen die niet door het

knelpunt moeten maar anders wel verlies oplopen doordat ze in de terugslaande file

terecht komen.

Page 62: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Examenvraag augustus 2006

Jij bent verkeersingenieur van het Vlaamse Gewest. Je weet dat je bevoegde minister

uitsluitend geïnteresseerd is in het minimaliseren van voertuig verliesuren door

filevorming op welk wegtype dan ook (dus niet in de locatie waar de files staan of in

welke verkeersstromen al dan niet rijden ten koste van andere). Men vraagt jou om een

geschikte locatie te selecteren voor een proef met toeritdosering.

a) Met welke locatie doe je je minister allicht het meeste plezier en waarom (je mag

veronderstellen dat beide locaties knelpunten zijn):

- E40 Gent � Brussel, laatste oprit (van het af-/opritcomplex Ternat) vóór de

aansluiting met de ring, of

- Brusselse ring, oprit van de aansluiting Ninoofsesteenweg (af-/opritcomplex dat

deze belangrijke in- en uitvalsweg naar/van Brussel Centrum aan de ring

koppelt)?

Wat ook je advies was, men heeft (om welke redenen dan ook) uiteindelijk gekozen voor

Ternat. Stel, de verkeersvraag op de E40 nabij Ternat benadert al sterk de capaciteit van

de weg. Alle verkeer via de oprit is in feite ‘te veel’ en zal file veroorzaken. Je beslist

maximaal te doseren gedurende de twee drukste spitsuren (7 – 9 u). De verkeersvraag aan

de oprit is heel die tijd 1080 vtg/uur. Je dosering geeft telkens afwisselend 2 seconden

groen (goed voor 1 voertuig) en 8 seconden rood.

b) Welke is de gemiddelde verkeersstroom op de oprit?

c) En wat is de gemiddelde snelheid van het verkeer indien C = 1800 vtg/u, Vvrij =

72 km/u en de maximale dichtheid 125 vtg/km bedraagt (veronderstel een

driehoekig fundamenteel diagram)?

d) Hoe lang is de file op (en eventueel stroomopwaarts van) de oprit om 9 uur (als er

om 7 uur nog geen stond)?

e) Hoe lang doet een voertuig dat om 9 uur achteraan aansluit erover om op de

snelweg te geraken indien je ook na 9 uur even streng zou blijven doseren?

f) Denk je dat bestuurders in werkelijkheid zoveel geduld zullen hebben? Welke

alternatieven hebben ongeduldige bestuurders die vóór jouw ingreep om 9 u via

oprit Ternat naar Brussel reden maar die nu de wachttijd op en voor de oprit niet

zien zitten?

Page 63: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Oplossing examenvraag augustus 2006

a) Beide locaties zijn knelpunten; dus door te doseren kan je (deels) bepalen welk

verkeer (de oprit of hoofdrijbaan) de verliesuren oploopt, maar je kan ze niet

vermijden. Je kunt wel vermijden dat de file terugslaat naar verkeersstromen die

niet door het knelpunt moeten, maar die zonder dosering in de terugslaande file

terecht zouden komen. Daar zitten de ‘vermijdbare’ voertuigverliesuren.

Grofweg laat toeritdosering de verliesuren op de oprit (en aanvoerende wegen)

ontstaan ipv op de hoofdrijbaan. De locatie op de ring is dan de beste optie. Je

vermijdt hiermee dat er ter hoogte van de oprit file op de ring ontstaat, die

onmiddellijk ook verkeer zou vastzetten dat de afrit (even stroomopwaarts) wil

nemen naar de drukke invalsweg (en dat dus niet door het knelpunt moet). Op de

E40-locatie kan je verwachten dat er bij Ternat wel verkeer bijkomt, maar

nauwelijks verkeer de snelweg wil verlaten (kortom: quasi iedereen moet daar

door de flessenhals = geen ‘vermijdbare’ verliesuren).

NB: als je via eenzelfde redenering de locatie ‘Ring’ afwees omdat dosering daar

terugslag naar Brussel centrum zou veroorzaken en daarmee vermijdbare

verliesuren, werd dit ook goed gerekend (de redenering is namelijk OK, al is dit

risico in de praktijk makkelijker op te vangen m.b.v. buffers op de oprit, en

doordat bestuurders die de gedoseerde oprit wilden nemen, nu bv. naar een andere

oprit rijden; op de hoofdrijbaan rijdt vele malen meer verkeer en bestaat deze

optie daar niet).

b) Per cyclus van 10 seconden rijdt er 1 voertuig, de intensiteit is dus 1/10 vtg/s of

360 vtg/u

c) In een ∆ FD bereken je eenvoudig dat 360 vtg/u op de congestietak overeenkomt

met kq = 105 vtg/km en dus V = Iq/kq = 3.4 km/u

d) Hier gaan velen de fout in! Men berekent de golfsnelheid c van de terugslaande

file. Dit is de helling van de lijn tussen (kf,If)=(15,1080) op de vrij verkeer tak en

(kq,Iq)=(105,360) op de congestietak � c = (360-1080)/(105-15) =8 km/u; Na 2

uur zit deze schokgolf dus 16 km ver!

NB: elke andere redenering bv op basis van continuïteit (“netto 720 vtg/u

onverwerkt over 2 uur is 1440 vtg in de file à dichtheid kq = zoveel km”) is fout,

want houdt geen rekening met de terugslag van de filegolf! Je doet dan namelijk

alsof die file geen dimensie heeft en vertikaal gestapeld staat. De terugslaande file

‘slokt’ echter nog extra voertuigen op die je op die manier in ‘vrij verkeer’ gebied

zou veronderstellen. Wél kun je stellen dat:

# vtg in de file = # vtg in vertikale stapel + # uit vrij gebied opgeslokt door de file

L * kq = 1440 + L * kf, waaruit L = 1440/(105-15) = 16 km

e) 2 redeneringen zijn mogelijk:

- 16 km à 3.4 km/u = 4u40min

- 16 km à 105 vtg/km = 1680 vtg weg te werken aan 360 vtg/u = 4u40min

f) - ander vertrektijdstip

- andere oprit en via de snelweg

- via onderliggend wegennet ipv de snelweg

- met andere vervoerswijze

- rit niet maken (door te verhuizen of ander werk te zoeken of…)

Page 64: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Examenvraag juni 2007

Om de trek van en naar de kust te stroomlijnen, past de politie op de E40 vaak blokrijden

toe. Laten we er – hoewel hierover discussie bestaat – van uitgaan dat de capaciteit, en bij

uitbreiding het fundamenteel diagram, hierdoor niet wijzigt.

Het doel van de maatregel is dan om in de stroom die dicht tegen capaciteit aanzit, op

gecontroleerde wijze blokken aan te brengen waarin aan capaciteit afgewikkeld wordt.

Tussen deze blokken in creëert men hierdoor een stukje lege weg (hiaat). Als er dan

instabiliteiten ontstaan in het dichte blok (een kettingreactie waarbij opeenvolgende

voertuigen steeds harder moeten remmen en mogelijk zelfs tot stilstand komen), heeft het

laatste voertuig nog de kans om weer te versnellen voordat het volgende blok eraan komt.

Het ontstaan van stop-en-go golven wordt aldus verhinderd, met een homogene, stabiele

en dus veilige verkeersstroom tot gevolg.

Een blok wordt praktisch als volgt gevormd. Een gemotoriseerde agent voegt via een

oprit in, neemt de optimale snelheid aan en gebaart dat het verboden is hem in te halen.

Na een periode ∆t0 voegt via dezelfde oprit een tweede agent in die het tweede blok

vormt enzovoort.

a) Welke is de optimale snelheid waarmee de agent moet rijden om het blok aan

capaciteit te laten afwikkelen en welke dichtheid stelt zich in in het blok achter de

agent? Duid beide aan in het fundamenteel diagram.

b) Schets het x-t diagram als opwaarts van het invoegpunt van de agenten een constante

vraag q1 heerst zoals aangeduid in het fundamenteel diagram (laat minimaal 3 agenten

invoegen, de rest van de schets is herhaling). Teken trajectories van voertuigen in je

diagram.

c) Noemen we het invoegpunt van de agenten x0 en de plaats waar telkens het laatste

voertuig aansluit bij een blok x1. Schets de snelheid die de volgende drie detectors in

de loop van de tijd zouden waarnemen (duid geen waarneming aan als 0):

- detector stroomopwaarts van zowel x0 als x1

- detector tussen x0 en x1

- detector stroomafwaarts van zowel x0 als x1

d) Stel dat het voor de stabiliteit van de stroom nodig is dat er tussen twee blokken een

hiaat ontstaat van ∆t1 seconden. Hoe lang na de eerste agent moet de tweede dan

invoegen? Leid een analytische formule af voor dit tijdsinterval ∆t0 tussen twee

agenten (in je formule komen alleen parameters van het fundamenteel diagram, de

verkeersvraag q1 en ∆t1 voor). Duid beide

intervallen aan in je x-t diagram.

Pas je formule toe op volgende gegevens:

capaciteit 5000 vtg/u

verkeersvraag q1 4500 vtg/u

snelheid agent 80 km/u

vereiste hiaat ∆t1 60 s

k

q

q1

k

q

q1

Page 65: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Oplossing examenvraag juni 2007

a) Hij moet rijden aan kritische snelheid uc, waarbij zich kritische dichtheid kc instelt.

k

qqc

kc

q1

k1

k

qqc

kc

q1

k1

b)

t

x

x0

t0 ∆t0

∆t1

t

u

u1

uc

x1

∆t0

∆t1

t

x

x0

t0 ∆t0∆t0

∆t1∆t1

t

u

u1

uc

x1

∆t0

∆t1∆t1

c) Zie antwoord b)

d) De oplossing uit c) is periodiek met periode ∆t0. Bekijken we één periode op de

stroomopwaartse en stroomafwaartse meetlocatie, dan weten we dat er evenveel

Page 66: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

voertuigen in die periode gepasseerd zijn (behoud van voertuig, nergens stapelt

verkeer zich op): ( )0 00 1 0 1 1 0opwaarts afwaarts

t t cN t q N t t q t∆ ∆= ∆ = = ∆ − ∆ + ∆ waaruit: 0 1

1

c

c

qt t

q q∆ = ∆

−.

Je rekent eenvoudig uit dat met deze gegevens voor een hiaat van 1 minuut de

agenten elke 10 minuten een blok moeten vormen. Enigszins verrassend is de

oplossing niet gevoelig voor de waarde u1.

Merk op dat je evengoed antwoord d) kunt afleiden louter uit het x-t diagram op basis

van: tijdsintervallen, (golf)snelheden en wat driehoeksrekening; het rekent iets langer

maar levert uiteraard hetzelfde resultaat op.

e) Toemaatje: Je kunt op vergelijkbare wijze een analytische formule voor de stabiele

lengte L van een blok opstellen. Bekijk opnieuw de stroomafwaartse detector. Het

blok herken je aan de metingen uc. Het duurt 0 1

t t∆ − ∆ seconden om het blok van

lengte L aan snelheid uc te laten passeren, dus: ( ) 1 1

0 1

1

c

c

c

t u qL t t u

q q

∆= ∆ − ∆ =

−. Met de

numerieke gegevens vind je een bloklengte van 12 km!

Page 67: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Examenvraag september 2007

Gegeven:

• een snelweg met 7 detectoren, rijrichting D7 � D1

• de weg heeft 3 rijstroken met uitzondering van een versmalling tot 2 rijstroken ter

hoogte van detector D4

• op de snelweg heerst een vrije snelheid F3, behalve in de versmalling waar de

snelheid beperkt is tot F2 (< F3)

• de dichtheid bij stilstand voor een rijstrook is J1, te vermenigvuldigen met het

aantal rijstroken, de maximale golfsnelheid is overal w, zodat de driehoekig

veronderstelde fundamentele diagrammen van dichtheid k versus intensiteit q

worden zoals afgebeeld

• vanaf t = 0 bouwt de verkeersvraag (=intensiteit stroomopwaarts van D7)

geleidelijk op, om op t = t0 de waarde C2 te overschrijden; vanaf t0 handhaaft de

vraag zich op q0 = ½ (C2+C3) tot t1

• op t = t1 gebeuren gelijktijdig twee dingen: (i) de verkeersvraag bij D7 verandert

ogenblikkelijk naar C2; (ii) ter hoogte van detector D2 gebeurt een ongeval

waardoor de capaciteit tot het einde van de analyseperiode terugvalt tot C1;

verkeer kan hier over 1 rijstrook passeren aan lage snelheid F1 (zie fundamenteel

diagram)

• op t = t2 valt de verkeersvraag ogenblikkelijk terug op 0 en dat blijft zo tot het

einde van de analyseperiode.

q(k)

k

3J12J1J1

C1

C2

C3

F1

F2

F3

w

w

w

D7

D6

D5

D4

D3

D2

D1

t < t1 t ≥ t1

Page 68: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Gevraagd:

a) Teken (te beginnen vanaf t0 en eindigend met een lege weg) het x,t diagram met

alle optredende golven, waaiers, slips etcetera. Zorg daarbij dat de golfsnelheden

consistent zijn met je fundamentele diagrammen.

- het tijdstip t1 kies je zelf, zodanig dat de filestaart stabiliseert ergens tussen D5

en D6

- het tijdstip t2 kies je zelf, zodanig dat de filestaart keert ergens tussen D6 en D7

b) Teken voor alle 7 detectoren een apart k-q diagram waarin je – met als

‘achtergrondje’ de lijnen van het plaatselijke fundamentele diagram – de

waargenomen verkeerstoestanden tussen t = 0 en t = ∞ uitzet. Gebruik daarbij de

volgende symbolen:

‘�’ voor toestanden die louter door de opwaartse randvoorwaarde (=

verkeersvraag) beïnvloed zijn,

‘�’ voor toestanden die door de wegversmalling zijn opgelegd

‘����’ voor toestanden die door het ongeval zijn opgelegd.

Page 69: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Oplossing examenvraag september 2007

Page 70: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden
Page 71: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Examenvraag juni 2008

Beschouw een knelpunt veroorzaakt door een oprit op een

snelweg met bijgevoegd fundamenteel diagram (zowel

voor als na de oprit). Merk op dat de vrije snelheid dus

oneindig is.

Je mag veronderstellen dat invoegend verkeer altijd

voorrang neemt op reeds aanwezig snelwegverkeer.

De verkeersvraag op de snelweg en oprit is gegeven in

bijgaande figuur.

Volgende parameters zijn gegeven:

C 900 vtg/u

I–

200 vtg/u

I+ 300 vtg/u

w 10 km/u

∆t1 1 u

∆t2 0.5 u

∆t3 0.5 u

∆t4 0.5 u

∆t5 1 u

∆t6 0.5 u

Gevraagd:

a) Hoe lang wordt de file maximaal? Wanneer is alle file opgelost?

b) Teken het verloop in x en t van de filevorming. Duid alle verkeerstoestanden die

voorkomen aan op je fundamenteel diagram, alsook alle schokgolven.

c) Wat is de totale verblijftijd (aantal voertuiguren) in het netwerk (oprit, snelweg

voor invoegen, snelweg na invoegen)?

d) Wat is de gemiddelde verkeersvraag die het knelpunt te verwerken krijgt? Wat is

dus de gemiddelde I/C verhouding?

q

t0

I–

I+

C - I–

C

∆t1 ∆t2 ∆t3 ∆t4 ∆t5 ∆t6

snelweg

oprit

Τ

q

t0

I–

I+

C - I–

C

∆t1 ∆t2 ∆t3 ∆t4 ∆t5 ∆t6

snelweg

oprit

q

t0

I–

I+

C - I–

C

∆t1 ∆t2 ∆t3 ∆t4 ∆t5 ∆t6

snelweg

oprit

Τ

w

C

k

q

w

C

k

q

w

C

k

q

Page 72: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

e) Stel: we trachten de afwikkeling tijdens de periode T in dit knelpunt te modelleren

met een statisch model. We veronderstellen de reistijdfunctie (reistijd per

voertuig) voor elk van de drie schakels (oprit, snelweg voor invoegen, snelweg na

invoegen) gelijk en in de vorm van een BPR-achtige curve:

4

*0.15

It

C

=

De parameter C* van deze BPR-curve mag normaliter niet veel afwijken van de

fysieke capaciteit en we kiezen deze dus gelijk aan 900 vtg/u voor de

snelwegschakels en 450 vtg/u voor de oprit. Bereken de totale verblijftijd op de

drie schakels samen volgens het statische model.

f) Hoe verklaar je de overeenkomsten en/of verschillen tussen het statische en

dynamische resultaat? Had je dit verwacht? Stel dat de totale verkeersvraag 10%

lager zou liggen, hoeveel kleiner zou dan volgens het statische model de totale

verblijftijd worden? Denk je dat je met het dynamische model dezelfde

gevoeligheid zou krijgen (alleen kwalitatief, geen berekeningen voor het

dynamische model)?

Page 73: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Oplossing examenvraag juni 2008

a) Men vindt eenvoudig in het fundamenteel diagram:

kj = 90 vtg/km; k- = 20 vtg/km; k

+ = 30 vtg/km; w1 = 10/3 km/u; v1 = 20 km/u

De capaciteit Csnelweg die – nadat de oprit zijn deel ingenomen heeft – nog over is

voor verkeer op de snelweg is aangegeven in bovenstaande figuur. Men verkrijgt

hoger getoond x-t diagram. Toevallig komt telkens met het snijpunt van

schokgolven een verandering van de verkeersvraag op de snelweg overeen, wat de

figuur sterk vereenvoudigt.

b) Lmax = 10 km, waardoor de file, die vanaf het eind van ∆t5 oplost met snelheid

v1=20km/u, een half uur later opgelost is; dit komt toevallig precies overeen met

het eind van interval ∆t6 en dus lost de file op tegen het eind van interval T.

c) Door de oneindige vrije snelheid is de verblijftijd op de oprit en in het knelpunt

zelf (= snelweg na de oprit) waar geen file optreedt gelijk aan 0. Blijft over het

filegebied, waar de totale verblijftijd = Sk dS∫ . Deze integraal valt uiteen in 3

gebieden met homogene dichtheid:

( ) ( ) ( )1 2 3

1*5 1.5*1030 20*1.5*10 30

2 2

600

TTS k Opp k Opp k Opp

vtg u

+ − += ∆ + ∆ + ∆

= + +

=

w

C

k

q

C – I+

C - I–

k- k+ kj

v1

w1

w

C

k

q

C – I+

C - I–

k- k+ kj

v1

w1

x

t∆t1 ∆t2 ∆t3 ∆t4 ∆t5 ∆t6

Τ

C CC - I–C – I+ C – I+

Lmax

Csnelweg

t

1

23

x

t∆t1 ∆t2 ∆t3 ∆t4 ∆t5 ∆t6

Τ

C CC - I–C – I+ C – I+

Lmax

Csnelweg

t

1

23

Page 74: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

d) Gemiddelde verkeersvraag = integraal van de opgegeven intensiteiten over de tijd

/ periode T = 900 vtg/u � gemiddelde I/C = 1

Dit is geen toeval uiteraard nadat bleek dat er file stond precies vanaf de start tot

het eind van interval T; het knelpunt is dus gemiddeld precies aan capaciteit

belast, zij het met perioden van overbelasting en rustiger periodes afgewisseld.

e) Voor de 3 schakels i in het statische model berekenen we de gemiddelde

intensiteit in T en berekenen we de totale verblijftijd als het aantal voertuigen Ni *

verblijftijd per voertuig:

( )1

* * *

ii istat

ii i

i i i

T II ITTS N I T

C C C

εε ε

ε

αα α

+

= = =

met α = 0.15; ε = 4

De totale verblijftijd is dan:

18 96 540 654

oprit snelweg knelpunt

stat stat stat statTTS TTS TTS TTS

vtg u

= + +

= + + =

f) De benadering van de dynamische TTS is verrassend goed (binnen de 10%).

Echter, dit is eerder een gelukstreffer door goede calibratie, want de statische TTS

is afhankelijk van een aantal vrij arbitraire parameters: de periode T, de

parameters α (=0.15) en ε (=4) van de BPR-curve en de rekenwaarden van de

capaciteiten C*.

Dit blijkt pas goed bij de gevoeligheidsanalyse. De TTSstat voor een 10% lagere

vraag vinden we door de eerder berekende TTSstat te vermenigvuldigen met 0.95

(want de TTS is evenredig met I5) en wordt dus 430 vtgu. In het dynamische

model is vrijwel elke overbelasting weg (slechts heel kortstondige filevorming

tijdens ∆t3) en valt de TTS terug op een heel kleine waarde en niet tot 66% zoals

het statische model suggereert. De gevoeligheid van het statische model is dus

totaal verschillend (en fout), waardoor het model (dat nochtans goed gecalibreerd

was!) voor scenario analyses de facto onbruikbaar wordt.

Dit geldt in feite bij uitbreiding ook voor alle statische analyses van sterk door

congestie gekenmerkte netwerken. Wees je daarvan bewust als je ooit statische

modelresultaten moet interpreteren!

Page 75: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Examenvraag september 2008

We beschouwen een knelpunt veroorzaakt door een oprit op een

snelweg met bijgevoegd fundamenteel diagram (zowel voor als na

de oprit).

Je mag veronderstellen dat invoegend verkeer altijd voorrang neemt

op reeds aanwezig snelwegverkeer.

De verkeersvraag op de snelweg en oprit is gegeven in bijgaande

figuur.

Volgende parameters zijn gegeven:

C 900 vtg/u

I–

300 vtg/u

I+ 400 vtg/u

∆t1 1 u

∆t2 5 u

∆t3 2 u

∆t4 1 u

Gevraagd:

a) Teken een volledig fundamenteel diagram en x-t verloop van het filepatroon op de snelweg.

Beantwoord op basis hiervan volgende vragen:

i. Duid op een fundamenteel diagram alle golfsnelheden aan en bereken ze (als functie

van w; als je echt een numerieke waarde denkt nodig te hebben voor w, kies je die

zelf)

ii. Wat is de maximale filelengte die voorkomt (als functie van w)? Wanneer wordt die

bereikt?

iii. Wat is de reistijd van het eerste voertuig op de snelweg? En die van het laatste

voertuig op de snelweg? (dus niet van voertuigen afkomstig van de oprit)

iv. Teken het verloop van de intensiteit als functie van de tijd in [0,T] voor de volgende

drie locaties op de snelweg:

- w km stroomafwaarts van de oprit

- w-ε km stroomopwaarts van de oprit

- 3w km stroomopwaarts van de oprit

b) Wat is de totale vraag in T (oprit + snelweg samen)? Wat is het maximale aantal voertuigen

dat in T kan afgewikkeld worden?

c) Zijn de antwoorden in b) een voldoende voorwaarde om binnen t ≤ T de file te laten

oplossen? Of kun je een tegenvoorbeeld verzinnen, dus een schets van een situatie (verdeling

van de verkeersvraag in T) waarbij de antwoorden in b) hetzelfde blijven maar de file toch

niet binnen t ≤ T opgelost is?

w

C

k

q

w

C

k

q

q

t0

I–

I+

C - I–

C

∆t1 ∆t2 ∆t3 ∆t4

snelweg

oprit

Τ

C - I+

q

t0

I–

I+

C - I–

C

∆t1 ∆t2 ∆t3 ∆t4

snelweg

oprit

Τ

C - I+

Page 76: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Oplossing examenvraag september 2008

x

t

C CC - I–C – I+

LmaxLmax

Csnelweg

t

∆t1 ∆t2 ∆t3 ∆t4

C - I–

w

C

k

q

C – I+

C - I–

kj

v1

w1

w

C

k

q

C – I+

C - I–

kj

v1

w1

a) Uit bovenstaande diagrammen leiden we af:

i. w1 = w/4 ; v1 = -2w

ii. Lmax = ∆t1*w+(∆t2-∆t1)*w1 = 2w bereikt precies op (∆t2+∆t1)=6

iii. reistijd eerste voertuig = 0 want reist met snelheid ∞

reistijd laatste voertuig = v1 * ∆t4 = 1

iv.

Isnelweg

∆t2∆t1 ∆t3 ∆t4∆t1 ∆t3 ∆t4

t

C

C – I+C - I–

I+

I–

+w

-3w

-w+ε

b) ( ) ( ) ( )1 2 3 4 8100

8100

t C I t C I I t C I I t I

T C

− − + + − −∆ + + ∆ − + + ∆ − + + ∆ =

=

c) Nee! Als de vraag zo in de tijd gespreid is dat er ook maar even geen volledige benutting van de capaciteit is, staat er op

het einde van T nog file. Verschuif bijvoorbeeld het vraagpatroon van de snelweg 1 uur naar rechts over de t-as. De totale

vraag blijft gelijk, maar in het eerste uur wordt van de capaciteit C ∆t1 slechts I- benut. Er blijven dan op t = T nog C-I-

voertuigen in de file over.

NB: Dit is trouwens typisch de reden waarom bij kruispunten, ook al is over wat langere periode gezien I<C, er binnen die

periode toch een filelengte > 0 te verwachten is. De vraag komt namelijk random verdeeld toe en dus is er een kans >0 dat

daarbij kortstondige periodes van overbelasting optreden.

Page 77: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Examenvraag juni 2009

Gegeven:

- een weg met volgende fundamentele relatie tussen snelheid V en dichtheid

k: ( )e J kV k w

k

−=

- verkeersvraag: 34

0 0

0 10

0 10

q t

q Jw t T

q T t

= <

= ≤ ≤ = <

- Vanaf x=0 is er een wegversmalling met capaciteit ½ Jw

Gevraagd:

i. teken het fundamenteel diagram van intensiteit tegen dichtheid

ii. teken het x-t diagram (tip: als je een ruitjesblad gebruikt met de

tijdsas in eenheden T en de x-as in eenheden Tw, kun je veel

berekeningen eenvoudig grafisch oplossen!)

iii. bereken het aantal voertuigverliesuren

iv. stel: op t=4T komt er een truck op de rijbaan ter hoogte van x=-5Tw

met snelheid w. Het andere verkeer kan deze truck niet inhalen. Op

t=5T verdwijnt deze weer, zodat het andere verkeer vrije baan

heeft.

a. teken opnieuw het x-t diagram en bepaal het aantal

voertuigverliesuren

b. vergelijk beide uitkomsten voor de voertuigverliesuren en verklaar

je antwoord

c. Bonus: hoe zou het aantal voertuigverliesuren veranderen als de

truck een andere snelheid had, bijvoorbeeld 2w, 1/2w of 0?

Page 78: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Oplossing examenvraag juni 2009

i. Aangezien q=k V geldt: ( ) ( )eq k w J k= − ; zie figuur

ii. Het x-t diagram komt overeen met de grote driehoek in de figuur (geschaduwd, dus

zonder de kleine driehoek achter de truck)

iii. Door de oneindige vrije snelheid is de verblijftijd waar geen file optreedt gelijk aan 0.

Blijft over het filegebied, waar de totale verblijftijd = Sk dS∫ . Het aantal

voertuigverliesuren is daarom gelijk aan de oppervlakte van de aangeduide driehoek

(15 5

2

T Tw⋅) vermenigvuldigd met de homogene dichtheid (½ J ) in dit gebied =

275

4w J T

iv. De truck legt een bewegende randvoorwaarde op, die stelt dat de relatieve intensiteit

die voorbij de truck gaat = 0 en de snelheid van verkeer opwaarts ≤ w. Stroomafwaarts

van de truck ontstaat dus een 0-toestand (waardoor de instroom in de file tijdelijk stopt

en de filestaart tussen t=4T en t=5T krimpt met snelheid w). Stroomopwaarts van de

truck wordt de snelheid van verkeer gedwongen w te zijn, met volgens het

fundamenteel diagram een bijhorende dichtheid k= ½ J. Hierdoor genereert de truck een

schokgolf met dezelfde snelheid als die van de oorspronkelijke filestaart. Wanneer de

truck weer verdwijnt, ontstaat een waaier met kritische dichtheid en capaciteitsstroom,

waarvan de meest opwaartse karakteristiek met snelheid –w de schokgolf inhaalt en

oplost (op t=8T); de meest afwaartse karakteristiek met snelheid ∞ raakt de filestaart

onmiddellijk op t=5T. Door dit laatste groeit de file terug aan met snelheid –w, totdat

de instroom in de filestaart terugvalt op de oorspronkelijke verkeersvraag ¾ Jw (zodra

de file achter de truck opgelost is op t=8T), en de filestaart ook de oorspronkelijke

schokgolfsnelheid van – ½ w weer aanneemt.

a. Uit de figuur zie je eenvoudig dat het aantal voertuigverliesuren even groot is

als in vraag iii: de door de truck gegenereerde file beslaat immers precies

dezelfde oppervlakte als diegene die uit de oorspronkelijke file ‘uitgesneden’

wordt, en de dichtheid erin is ook gelijk.

b. De voertuigverliesuren zijn gelijk, omdat het niets uitmaakt waar de voertuigen

voor de wegversmalling wachten (in de oorspronkelijke file of tijdelijk

opgehouden door de truck). Zolang het knelpunt gedurende 15T aan capaciteit

benut wordt bij eenzelfde verkeersvraag, zullen er even veel voertuigen even

lang in de wachtrij staan, wat ook de positie of dichtheid van die wachtrij is, en

Page 79: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

of er daarin nu wel of niet tijdelijk ‘verstoringen’ optreden zoals een trage

truck.

c. Bij een andere snelheid van de truck, verandert de vorm van de driehoek file

erachter; de uitsnede uit het filegebied blijft gelijk. Rijdt de truck sneller dan

w, dan wordt de oppervlakte van de driehoek erachter groter, maar de dichtheid

erin kleiner; rijdt de truck trager, krijgen we een kleinere driehoek met hogere

dichtheid, maar het product van oppervlakte en dichtheid blijft steeds gelijk.

Hoe dan ook zullen omwille van de argumenten in b de voertuigverliesuren

precies gelijk blijven.

4T 5T 8T 10T 15T

-2Tw

-5Tw

-4Tw

-7Tw

¾ Jw

0

x

t

t0

k

q

J½ J

¾ Jw

Jw

½ Jw

w-w

-½w

-½wRandvoorwaarde

door truck:

v = +w

w

w -w

0

C=Jw

k= ½J

k= ½J

Page 80: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Examenvraag september 2009

Gegeven:

- een weg over het domein 2 ,3R I w R I w

xC I C I

∈ − − −

- er geldt het volgende fundamentele diagram van snelheid V tegen intensiteit q over dit

domein:

( )w q

V qC q

=−

- op x=0 staat een verkeerslicht met roodtijd R

- de verkeersvraag stroomopwaarts is I

Gevraagd

a. teken het fundamenteel diagram van intensiteit q tegen de dichtheid k en benoem alle

relevante punten.

b. bereken de minimale groentijd G1 opdat er nog net een periodisch herhalend patroon

onstaat (d.i. elke cyclus ontwikkelt zich een zelfde patroon zonder dat er filelengtes

onbeperkt groeien voor t → ∞ ). Gebruik hiervoor een eenvoudige redenering en

berekening, geen ingewikkelde schetsen)

c. stel de groentijd 2R I

GC I

=−

en noem t0 het begin van een willekeurige roodfase in dit

periodieke patroon. Teken het x-t diagram over het x-domein en over twee periodes,

dus ( )0 0, 2t t t R G∈ + + .

d. stel nu dat stroomafwaarts van het verkeerslicht de kenmerken veranderen, zodat nu

geldt:

( )

( )2

w q R I wV q x

C q C I

w q R I wV q x

I q C I

= < − −

= ≥ − −

vervolledig nu je x-t plot van vraag c en houd daarbij rekening met de nieuwe

wegkenmerken afwaarts van het licht.

Page 81: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

e. teken trajectories en bereken reistijden voor vier voertuigen met volgende

vertrektijdstippen:

• 1 0t t+=

• 2 02

Gt t R= + +

• 13 0 2

2

Gt t R

= + +

• 34 0 4

t t R G= + +

f. geef een intuïtieve verklaring voor je antwoord in e

Page 82: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

Oplossing examenvraag september 2009

a. zie tekening

b. Opdat de file nooit oneindig opbouwt moet het laatste voertuig dat stil kwam te staan

net voor een nieuwe roodfase de stopstreep passeren. Anders gezegd: er moet binnen 1

cyclus precies evenveel verkeer afgevoerd worden als er aangevoerd wordt, of:

( )1 1R G I G C+ =

waaruit eenvoudig volgt:

1

R IG

C I=

c. Zie de oplossing voor 0x ≤ in de tekening. De hierin gebruikte waarden zijn:

I

C Ik

w

−= ,

I

I wv

C I=

−,

I

Ic

J= . De file voor het verkeerslicht slaat terug over

een afstand 1 1

R I wl wG

C I= =

−.

d. Zie de tekening over het volledige x-domein. De file voor de

capaciteitsvernauwing slaat terug over een zelfde afstand l1 als die voor het

verkeerslicht, want ze slaat terug gedurende een zelfde tijdsduur G1 met dezelfde

golfsnelheid w. Het weer oplossen van deze file duurt 1

1

lR

v= .

e. Men ziet eenvoudig in dat de reistijd op t1 = R, dit is namelijk alleen de wachttijd

gedurende een volle roodtijd. Vertrekkend op t2 ervaart men geen vertraging voor

het licht, maar het duurt 1

1

lR

v= om de file voor de vernauwing te passeren.

Hetzelfde geldt voor t4. Op t3 ervaart men precies de helft van het maximale

tijdsverlies voor het licht + precies de helft van het maximale tijdverlies in de file

voor de vernauwing, dus 1 12 2

R R R+ = . Het maakt dus niet uit wanneer je

vertrekt: iedereen ervaart een vertraging R.

f. Intuïtief ziet men dit zo in: geheel stroomopwaarts en geheel stroomafwaarts is de

intensiteit gedurende de hele periode constant en gelijk aan I. De tussentijd tussen

twee opeenvolgende voertuigen is zowel bij vertrek als aankomst dus steeds

precies 1/I en niemand haalt elkaar in. Iemand die dus 1/I seconden na zijn

voorganger vertrekt komt ook 1/I seconden na hem aan. Dus moeten beide

voertuigen dezelfde reistijd hebben. En dit geldt voor elk paar voertuigen, dus

hebben alle voertuigen dezelfde reistijd. Hoe groot is die dan? De reistijd voor een

vertrek op t1 is vanzelfsprekend alleen een volle roodtijd R, dus heeft iedereen de

reistijd R. PS: ook andere intuïtieve verklaringen zijn mogelijk.

Page 83: Cursus H01I6A - Departement Werktuigkunde...cursus nemen we het achterste punt, de achterbumper, van het voertuig als referentie voor de trajectorie van dat voertuig. Op Figuur 1 worden

0

-2

x [ ]

t [ ]

R I w

C I−

R I

C I−

-1

3

1

2

k

q

JkI

C

I

vI

-w

-cI

0

k= J

C=Jw

q=I

k=kI

q=I

k=0

q=I

k=0

q=I

k=0

q=I

k=kI

0

k= J

C=Jw

q=I

k=kI

q=I

k=0k= J

0 C=Jw

q=I

k=0

R G

G1

t0+ t3 t2 t4