Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een...

40
Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg

Transcript of Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een...

Page 1: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management - April 17, 2002

Naar een duurzame energiehuishoudin

gProf. Dr. Wim C. Turkenburg

Page 2: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Energie en duurzame ontwikkeling

• Beschikbaarheid van energiedragers • Toegankelijkheid tot energiebronnen• Betaalbaarheid van energie• Betrouwbaarheid van de

energievoorziening• Kwetsbaarheid van de

energievoorziening• Milieugevolgen van ons energiegebruik

Page 3: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Sustainable Energy:Energy that is produced and used in ways that simultaneously support human development over the long-term in all its social, economic, and environmental dimensions.

Source: World Energy Assessment, 2000

Page 4: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Strategie

• Benutting lokale energiebronnen• Verbetering efficiency van ons

energie- en materiaalgebruik• Ontwikkeling en gebruik

hernieuwbare energiebronnen• Milieuvriendelijker gebruik van

conventionele bronnen

Page 5: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Transitiemanagement

• Vergt een overheid die niet terugtreedt

• Is meer dan initiëren van enkele projecten

• Vergt een systeembenadering• Vergt maatschappelijk draagvlak• Vergt internationale samenwerking• Vergt middelen voor R,D,D&D

Page 6: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

World primary energy consumption in 1998

Fossil fuels: 320 EJ (80%) - oil 142 EJ - natural gas 85 EJ - coal 93 EJ______________________________________________________________________________________________

Renewables: 56 EJ (14%) - large hydro 9 EJ - traditional biomass 38 EJ - ‘new’ renewables 9 EJ______________________________________________________________________________________________

Nuclear: 26 EJ (6%)______________________________________________________________________________________________

Total: 402 EJ (100%)Source: World Energy Assessment, 2000

Page 7: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Page 8: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Productivity of our energy consumption

EJ %

Primary energy

400 100

Final energy

300 75

Useful energy

150 37

Energy service

<60 <15

Page 9: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Outlook for More Efficient Use of

Energy• Cost effective over the next 20

years to reduce primary energy consumed per unit of energy services

• OECD Countries 25-35%• Developing Countries 30- >45%• Economies in transition >40%

• Greater gains in efficiency feasible with advanced energy technologies that offer multiple benefits

Source: World Energy Assessment, 2000

Page 10: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

ICARUS-4

Primary energy consumption

1995

Reference primary energy consumption

2020 (frozen efficiency)

PJ PJ % Mt CO2 Industry 1177 2189 23% 28.6 Agriculture 207 300 41% 7.0 Services 422 924 45% 23.4 Households 427 667 57% 22.6 Transportation 582 704 42% 20.6 Refineries + cokes 237 277 14% 2.3Total Final demand 3051 5061 35% 104.6

Technical reduction potential

2020

Page 11: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

ICARUS-4Technical savings potential

1995-2020

-30-20-10

01020304050

0% 10% 20% 30% 40%

Cumulative primary energy saved (%)

Sp

ecif

ic c

osts

(€/G

J)

Page 12: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Contribution ‘new renewables’

1998 share in world primary energy consumption __________________________________________

- Modern biomass: ~ 7 EJ - Geothermal: 1.8 EJ - Small hydro: 0.3 EJ - Wind turbines: 0.07 EJ - Low temp. solar energy: 0.05 EJ - Solar Thermal Electricity: 0.004 EJ - Solar PV: 0.002 EJ

______________________________________________________________________________________________________

Total: ~ 9 EJ

Source: Wim C. Turkenburg et al, WEA, 2000

Page 13: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Elektriciteitsproductie uit duurzame bronnen in Nederland 1990-2000

0

0.5

1

1.5

2

2.5

3

1988 1990 1992 1994 1996 1998 2000 2002

Ele

ktric

iteit

uit d

uurz

ame

bron

nen

(TW

h)

Waterkracht 85 GWhAndere biomassa

84 GWh Wind 54 GWh

Org. fracties avi’s500 GWh

PV 0.31 GWh

Waterkracht 142 GWh

Andere biomassa 655 GWh

Wind 829 GWh

Org. fractie avi’s918 GWh

PV 7 GWh

1990

2000

Bron: Duurzame energie in Nederland, Novem, 1998, 2000

Page 14: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Technical Potential Renewables

Supply in 1998

Technical potential

Biomass 45 ± 10 EJ

200-500 EJ/y

Wind 0.07 EJ

70-180 EJ/y

Solar 0.06 EJ

1,500-50,000 EJ/y

Hydro 9.3 EJ

50 EJ/y

Geothermal

1.8 EJ

5,000 EJ/y

Marine - n.e.

Source: W.C. Turkenburg, Utrecht University, 2002

Page 15: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Potential contribution renewables

Scenario C1

Scenario C2

1850 1900 1950

0

20

40

60

80

100

2000 2050 2100

1850 1900 1950

0

20

40

60

80

100

2000 2050 2100

Oil

Gas

Oil

Gas

Coal

Other

Solar

Traditional renewables

Other

Nuclear

Solar

Biomass

BiomassNuc.

Traditional renewables

Hydro

Hydro

Coal

Percent

Percent

Source: N. Nakićenović et.al., WEA, 2000

Page 16: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Biomass energy conversion

Sources:

- plantations

- forests residues

- agricultural residues

- municipal waste

- animal manure

- etcetera

Page 17: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

2000 (PJ) 2020 (PJ)

Energieteelt 0.04 0-20

Schone reststromen

(b.v. Snoeihout, bermgras)

20 4-40

Omstreden reststromen

(b.v. varkensmest, rioolslib)

15 3-50

Gemengde afvalstromen

(b.v. organische factie huish. Afval)

48 42-51

Totaal 83 49-160

Bron: Marsroutestudie, Novem, 2000

Mogelijke beschikbaarheid

biomassa- en afvalstromen, nu en in 2020

Page 18: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Biomass energy conversion

• Production of heat:improved stoves, advanced domestic heating systems, CHP.

• Production of electricity:(co-)combustion, CHP, gasification (BIG-CC, engines), digestion (gas engines).

• Production of fuels:ethanol, biogas, bio-oil, bio-crude, esters from oilseeds, methanol, hydrogen, hydrocarbons.

Produced by: extraction, fermentation, digestion, pyrolysis, hydrolysis, gasification and synthesis.

Page 19: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Status biomass energy

• Cost biomass from plantation: already favorable in some developing countries (1.5-2 $/GJ).

• Electricity production costs at present often: 0.05-0.15 $/kWh.

• New technology (BIG-CC) may reduce electricity production costs to 0.04 $/kWh.

• Advanced technologies needed to produce bio-fuels (methanol, hydrogen, ethanol) at competitive cost (6-10 $/GJ).

Source: W.C. Turkenburg et.al., WEA, 2000

Page 20: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Biomass energy development strategies

• More experience with, and improvement of, the production of energy crops.

• Creating markets for biomass.• Development and demonstration of key

conversion technologies.• Poly-generation of biomass products

and energy carriers from biomass.• Policy measures like internalizing

external costs and benefits.

Page 21: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Gasification and gas cleaning

Reforming, Shifting, CO2 separation

Methanol production

Fischer Tropsch

Gas separation

Pore enlargement

Ethanol

Drying and Chipping

Chipping

Gas Turbine or boiler

Steam Turbine

Biomass Electricity

Gas Turbine or boiler

Steam Turbine

Electricity

Methanol

Diesel

Hydrogen

Hydrolysis Fermentation

Biofuels for transportation

Page 22: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Modern wind energy

Page 23: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Page 24: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Future development wind

• Wind turbines become larger.• Wind turbines will have fewer components.• Special offshore designs.• 10 percent grid penetration maybe around

2020.• Installed capacity in 2030 could be 1,000 –

2,000 GW.• Potential development energy production

costs: 0.05 –> 0.03 $/kWh (+ 0.01 $/kWh for storage).

Page 25: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Experience curves

20000

10000

5000

1000

100

10 100 1000 10000 100000

1982

1987

1963

1980

Windmills (USA)(learning rate ~ 20%)

RD&D phase

Commercializationphase

USAJapan

Cumulative MW installed

19811983

500

Photovoltaics(learning rate ~ 20%)

Gas turbines (USA)(learning rate ~ 20%, ~10%)

US

(199

0)$

/kW

1995

1992

200

2000

Source: IIASA, 1998

Page 26: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Solar PV stand-alone systems

• consumer products• telecom• leisure• water pumping• lighting & signalling• rural electrification• etc.

PV-pumped cattle drinking trough (NL)

Solar Home System

(Bolivia)

Source: W.C. Sinke, ECN, NL, 2001

Page 27: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Grid-connected PV systems

• building- & infrastructure-integrated PV– roofs– facades– sound barriers– etc.

• ground-based power plants

“City of the Sun” 50,000 m2 PV (NL)

PV sound barrier (NL)“PV gold” (Japan)

Source: W.C. Sinke, ECN, NL, 2001

Page 28: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

PV systems

user

PV

griddc/ac grid-connected PV system

user

PV

regulator

(storage)

stand-alone PV system

Source: Wim C. Sinke, ECN, 2001

Page 29: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

0

50

100

150

200

250

300M

Wp

/yr

1983

1985

1987

1989

1991

1993

1995

1997

1999

year

- Average growth: 18% per year

- Market 1999:

85% c-Si / 13% a-Si / 2% rest

Page 30: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Potential development Solar PV

• Investment costs grid-connected PV-systems may come down from 5-10 $/W –> 1 $/W.

• Energy payback time may come down from 3-9 years –> 1-2 years (or less).

• Electricity production costs may come down from 0.3-2.5 $/kWh –> 0.05-0.25 $/kWh.

• PV can play major role in rural electrification.

Source: W.C. Turkenburg et.al., WEA, 2000

Page 31: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Major options to reduce costs

• Increase conversion efficiency (of the cell, the module and the system).

• Strong reduction in material use (thin film solar cell development).

• Mass production of PV components (module plants of 50-100 MWp/year).

• Reduction Balance-of-System costs (e.g. multi-functional use of PV area).

Page 32: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Energy losses in PV systems

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

Zand

voor

t

REMU/SCW

Nieuw

Slot

en

Arthur

And

erse

n

Thom

dur

a

Eneco

1

Eneco

2

Wou

dhuis

%

Static MPPT andinverterdynamic MPPT

diode

DC cableresistance

mismatch

temperature

low irradiation

spectrum

reflection

Page 33: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Page 34: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Energy Pay Back Time (yr) of present PV systems

0

1

2

3

4

5

6

7

mc-Si roof

thin film roof

mc-Si ground

thin filmground

mc-Si roof

thin film roof

mc-Si ground

thin filmground

Module Module frame Supports

Medium-high irradiation(1700 kWh/m2/yr)

Low Irradiation(1100 kWh/m2/yr)

Bron: Alsema & Nieuwlaar, Energy Policy, 2000

Energy analysis of photovoltaic systems

Page 35: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Toekomstig werk PV-milieu

• LCA van geavanceerde kristallijn-silicium technologie

• LCA van energie-opslagsystemen• leercurves van PV systemen• monitoring van decentrale PV

systemen m.b.v. sattelietdata (voor instraling)

Page 36: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Page 37: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Page 38: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

Page 39: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management

CO2 capture options

Page 40: Copernicus Institute Sustainable Development and Transition Management - April 17, 2002 Naar een duurzame energiehuishouding Prof. Dr. Wim C. Turkenburg.

Copernicus InstituteSustainable Development and Transition Management