Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11...

60
P-stable exponentially fitted Obrechkoff methods for y ′′ = f (x, y ) Marnix Van Daele, G.Vanden Berghe [email protected] Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Zaragoza, November 2007 – p.1/60

Transcript of Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11...

Page 1: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

P-stable exponentially fitted

Obrechkoff methodsfor y′′ = f (x, y)

Marnix Van Daele, G. Vanden [email protected]

Vakgroep Toegepaste Wiskunde en Informatica

Universiteit Gent

Zaragoza, November 2007 – p.1/60

Page 2: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

OutlineIntroduction on exponentially fitted (EF) methods

2-step Obrechkoff methods fory′′ = f(x, y)

P-stable Obrechkoff methods fory′′ = f(x, y)

P-stable EF Obrechkoff methods fory′′ = f(x, y)

Conclusions

Zaragoza, November 2007 – p.2/60

Page 3: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Exponentially fitted methodsSince about 1990, the research group of Guido Vanden Berghe at

Ghent University did a lot of work on EF methods.

interpolation :a cos ω x + b sinω x +n−2∑

i=0

ci xi

quadrature (Newton-Cotes, Gauss)

differentiation

integration (linear multistep methods, Runge-Kutta(-Nystrom)

methods for IVP and BVP, eigenvalue problems, ...)

integral equations (Fredholm, Volterra)

. . .

Aim : build methods which perform very good when the solution has a

known exponential of trigonometric behaviour.

Zaragoza, November 2007 – p.3/60

Page 4: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Exponentially fitted methodsresearchers involved at Ghent University:

Guido Vanden Berghe, Hans De Meyer, Jan Vanthournout,

Marnix Van Daele, Philippe Bocher, Hans Vande Vyver,Veerle

LedouxandDavy Hollevoet

collaboration with L. Ixaru

Zaragoza, November 2007 – p.4/60

Page 5: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Linear multistep methodsA well known method to solve

y′′ = f(y) y(a) = ya y′(a) = y′a

is theNumerov method(order 4)

yn+1 − 2 yn + yn−1 =h2

12(f(yn−1) + 10 f(yn) + f(yn+1))

Construction : imposeL[z(x);h] = 0 for z(x) = 1, x, x2, x3, x4

where

L[z(x);h] := z(x + h) + α0 z(x) + α−1 z(x − h)

−h2(

β1 z′′(x + h) + β0 z′′(x) + β−1 z′′(x − h))

Zaragoza, November 2007 – p.5/60

Page 6: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Exponential fittingConsider the initial value problem

y′′ + ω2 y = g(y) y(a) = ya y(a) = y′a .

If |g(y)| ≪ |ω2 y| then

y(x) ≈ α cos(ω x + φ)

To mimic this oscillatory behaviour, one could replace polynomials by

trigonometric (in the complex case : exponential) functions.

Zaragoza, November 2007 – p.6/60

Page 7: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF Numerov methodConstruction : imposeL[z(x);h] = 0 for

z(x) = 1, x, x2, sin(ω x), cos(ω x)

L[z(x);h] := z(x + h) + α0 z(x) + α−1 z(x − h)

−h2(

β1 z′′(x + h) + β0 z′′(x) + β−1 z′′(x − h))

yn+1 − 2 yn + yn−1 = h2 (λf(yn−1) + (1 − 2 λ) f(yn) + λ f(yn+1))

λ =1

4 sin2 θ2

−1

θ2=

1

12+

1

240θ2 +

1

6048θ4 + . . . θ := ω h

Zaragoza, November 2007 – p.7/60

Page 8: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF methodsGeneralisation : to determine the coefficients of a method, we impose

conditions on a linear functional. These conditions are related to

polynomials :

xq|q = 0, . . . , K

exponential or trigonometric functions, multiplied with powers of

x :

xq exp(±µx)|q = 0, . . . , P

or, with ω = i µ,

xq cos(ωx), xq sin(ωx)|q = 0, . . . , P

Classical method :P = −1

Zaragoza, November 2007 – p.8/60

Page 9: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Choice ofωlocal optimization : based on local truncation error (lte)

e.g. for the EF Numerov method

y(xn+1) − yn+1 = −h6

240

(

y(6)(xn) + ω2 y(4)(xn))

+ . . .

=⇒ ω2n = −

y(6)(xn)

y(4)(xn)

ω is step-dependent

Zaragoza, November 2007 – p.9/60

Page 10: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Choice ofωglobal optimization

Preservation of geometric properties (periodicity, energy, . . . )

M. VAN DAELE, G. VANDEN BERGHE, GEOMETRIC

NUMERICAL INTEGRATION BY MEANS OF EXPONENTIALLY

FITTED METHODS, APNUM 57 (2007) 415-435

Several means to give a value toω :

backward error analysis

linearisation : rewritey′′ = f(y) asy′′ + ω2 y = g(y) with

|g(y)| small

Hamiltonian : minimize the leading term inHn+1 − Hn

ω is constant over the interval of integration

Zaragoza, November 2007 – p.10/60

Page 11: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Obrechkoff methods

Nikola Obrechkoff (1896-1963)

Obrechkoff methods (OM) :1940 for quadrature

Milne : OM for solving diff. eq. :1949

Zaragoza, November 2007 – p.11/60

Page 12: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Obrechkoff methods for y′′ = f(x, y)

Two-step methods

yn+1 − 2yn + yn−1 =

m∑

i=1

h2 i(

βi0 y(2i)n+1 + 2βi1 y(2i)

n + βi0 y(2i)n−1

)

L[z(x);h] := z(x + h) − 2 z(x) + z(x − h)

−m∑

i=1

h2 i(

βi0 z(2i)(x + h) + 2βi1 z(2i)(x) + βi0 z(2i)(x − h))

symmetric method :L[z(x);h] ≡ 0 if z(x) is odd

L[1;h] ≡ 0

orderp ⇐⇒ L[xq;h] = 0, q = 0, 1, . . . , p + 1

lte = Cp+2 hp+2y(p+2)(xn) + O(

hp+3)

Cp+2 =L[xp+2;h]

(p + 2)!hp+2

Zaragoza, November 2007 – p.12/60

Page 13: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Two-step OM

m = 1 : p = 4, C6 = −1

240(Numerov method)

yn+1 − 2yn + yn−1 =

h2

12

(

y(2)n+1 + 10 y(2)

n + y(2)n−1

)

m = 2 : p = 8, C10 =59

76204800

yn+1 − 2yn + yn−1 =

h2

252

(

11 y(2)n+1 + 230 y(2)

n + 11 y(2)n−1

)

−h4

15120

(

13 y(4)n+1 − 626 y(4)

n + 13 y(4)n−1

)

Zaragoza, November 2007 – p.13/60

Page 14: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Two-step OM

m = 3 : p = 12, C14 = −45469

1697361329664000

yn+1 − 2yn + yn−1 =

h2

7788

(

229 y(2)n+1 + 7330 y(2)

n + 229 y(2)n−1

)

−h4

25960

(

11 y(4)n+1 − 1422 y(4)

n + 11 y(4)n−1

)

+h6

39251520

(

127 y(6)n+1 + 4846 y(6)

n + 127 y(6)n−1

)

. . .

method of orderp = 4m

Zaragoza, November 2007 – p.14/60

Page 15: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF 2-step OM : the casem = 2

yn+1 − 2yn + yn−1 =

h2(

β10 y(2)n+1 + 2β11 y(2)

n + β10 y(2)n−1

)

+h4(

β20 y(4)n+1 + 2β21 y(4)

n + β20 y(4)n−1

)

5 possibilities:

P = −1 : x2, x4, x6, x8

P = 0 : x2, x4, x6, cos ω x

P = 1 : x2, x4, cos ω x, x sin ω x

P = 2 : x2, cos ω x, x sinω x, x2 cos ω x

P = 3 : cos ω x, x sin ω x, x2 cos ω x, x3 sin ω x

Zaragoza, November 2007 – p.15/60

Page 16: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF 2-step OM : the casem = 2

yn+1 − 2yn + yn−1 =

h2(

β10 y(2)n+1 + 2β11 y(2)

n + β10 y(2)n−1

)

+h4(

β20 y(4)n+1 + 2β21 y(4)

n + β20 y(4)n−1

)

5 possibilities:

P = −1 : x2, x4, x6, x8

β21 =313

15120β20 = −

13

15120β11 =

115

252β10 =

11

252

Zaragoza, November 2007 – p.16/60

Page 17: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF 2-step OM : the casem = 2P = 0 : x2, x4, x6, cos ω x

β10 =1

30−12 β20 β21 =

1

40+5β20 β11 =

7

15+12β20

β20 = −120 − 4 cos (θ) θ2 − 56 θ2 − 120 cos (θ) + 3 θ4

120 θ2 (12 cos (θ) − 12 + cos (θ) θ2 + 5 θ2)

10 20 30−0.007

0

θ

β 20

continuous coefficients

Zaragoza, November 2007 – p.17/60

Page 18: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF 2-step OM : the casem = 2P = 1 : x2, x4, cos ω x, x sin ω x

β10 =1

12− 2 β20 − 2 β21 β11 =

5

12+ 2β20 + 2β21

β20 =θ5 sin θ + 2 (cos θ + 5) θ4 + 48 (cos θ − 1) θ2 + 48 (cos θ − 1)2

12 θ4 (θ3 sin θ − 4 (1 − cos θ)2)

β21 =5 θ5 sin θ − 2 cos θ (cos θ + 5) θ4

− 48 cos θ (cos θ − 1) θ2− 48 (cos θ − 1)2

12 θ4 (θ3 sin θ − 4 (1 − cos θ)2)

10 20 30−0.03

0

0.03

θ

β 20

discontinuous coefficients

Zaragoza, November 2007 – p.18/60

Page 19: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF 2-step OM : the casem = 2P = 2 : x2, cos ω x, x sinω x, x2 cos ω x

discontinuous coefficients

P = 3 : cos ω x, x sin ω x, x2 cos ω x, x3 sin ω x

continuous coefficients

Zaragoza, November 2007 – p.19/60

Page 20: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Stability of two-step OMyn+1 − 2 yn + yn−1 =

m∑

i=1

h2 i(

βi0 y(2i)n+1 + 2βi1 y(2i)

n + βi0 y(2i)n−1

)

applied toy′′ = −λ2 y gives

yn+1 − 2Rmm(ν2) yn + yn−1 = 0 ν := λh

Rmm(ν2) =

1 +

m∑

i=1

(−1)iβi1 ν2i

1 +m∑

i=1

(−1)i+1βi0 ν2i

The stabilitity functionRmm uniquely determines the method.

A method has theinterval of periodicity(0, ν20) if

|Rmm(ν2)|≤1 for 0 < ν2 < ν20 .

The method isP -stableif |Rmm(ν2)|≤1 for all realν 6= 0.

Zaragoza, November 2007 – p.20/60

Page 21: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Stability of two-step OM

m = 1 : p = 4, C6 = −1

240(Numerov) ν2

0 = 6

yn+1 − 2yn + yn−1 =

h2

12

(

y(2)n+1 + 10 y(2)

n + y(2)n−1

)

0 6−1

0

1

ν2

R11

Zaragoza, November 2007 – p.21/60

Page 22: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Stability of two-step OM

m = 2 : p = 8, C10 =59

76204800ν20 = 25.2

yn+1 − 2yn + yn−1 =

h2

252

(

11 y(2)n+1 + 115 y(2)

n + 11 y(2)n−1

)

−h4

15120

(

13 y(4)n+1 − 626 y(4)

n + 13 y(4)n+1

)

0 25.2−1

0

1

ν2

R22

Zaragoza, November 2007 – p.22/60

Page 23: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Stability of two-step OM

m = 3 : p = 12, C14 = −45469

1697361329664000ν20 = 55.60 . . .

yn+1 − 2yn + yn−1 =

h2

7788

(

229 y(2)n+1 + 7330 y(2)

n + 229 y(2)n−1

)

+h4

25960

(

−11 y(4)n+1 + 1422 y(4)

n − 11 y(4)n−1

)

+h6

39251520

(

127 y(6)n+1 + 4846 y(6)

n + 127 y(6)n−1

)

0 55.6062−1

0

1

ν2

R33

Zaragoza, November 2007 – p.23/60

Page 24: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

P-stable 2-step OMAnanthakrishnaiah (1987)

idea : use some parameters to obtain P-stability.

m = 3 andm = 4

e.g.m = 3

yn+1 − 2yn + yn−1 =

h2(

β10 y(2)n+1 + 2β11 y(2)

n + β10 y(2)n−1

)

+h4(

β20 y(4)n+1 + 2β21 y(4)

n + β20 y(4)n−1

)

+h6(

β30 y(6)n+1 + 2β31 y(6)

n + β30 y(6)n−1

)

imposep = 6 : x2, x4, x6,

then 3 parameters (β20, β30 andβ31) remain

R33 =1 − β11 ν2 + β21 ν4 − β31 ν6

1 + β10 ν2 − β20 ν4 + β30 ν6let β31 = β30

Zaragoza, November 2007 – p.24/60

Page 25: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Ananthakrishnaiah’s ideaChoose these 2 remaining parametersβ20, β30 such that the method

becomes P-stable

|R33| =

N3

D3

< 1 ⇐⇒ (D3 − N3) (D3 + N3) > 0

0 0.001−0.008

0

0.004

β30

β 20

Zaragoza, November 2007 – p.25/60

Page 26: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Ananthakrishnaiah’s ideaFind the solution for which the phase-lag,

ν − arccos R33 =

(

13

604800+

13

30β30 +

1

40β20

)

ν7 + O(

ν9)

becomes minimal.

0 0.001−0.008

0

0.004

β30

β 20

Zaragoza, November 2007 – p.26/60

Page 27: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Ananthakrishnaiah’s ideaFind the solution for which the phase-lag,

ν − arccos R33 =

(

13

604800+

13

30β30 +

1

40β20

)

ν7 + O(

ν9)

becomes minimal.

0 0.001−0.008

0

0.004

β30

β 20

This gives(β30, β20) =

(

1

14400,−

1

600

)

.

Zaragoza, November 2007 – p.27/60

Page 28: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Ananthakrishnaiah’s ideaAnanthakrishnaiahm = 3 : p = 6, P-stable,C8 = −

1

50400

yn+1 − 2yn + yn−1 =

h2

20

(

y(2)n+1 + 18 y(2)

n + y(2)n−1

)

−h4

600

(

y(4)n+1 − 22 y(4)

n + y(4)n−1

)

+h6

14400

(

y(6)n+1 + 2 y(6)

n + y(6)n−1

)

Zaragoza, November 2007 – p.28/60

Page 29: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Ananthakrishnaiah’s idea

R33 =1 − 9

20 ν2 + 11600 ν4 − 1

14400 ν6

1 + 120 ν2 + 1

600 ν4 + 114400 ν6

0 20 40 60 80 100−1

0

1

ν

R

|R33| =

N3

D3

< 1 since

(D3 − N3) (D3 + N3) =ν2 (ν2 − 10)2 (ν2 − 60)2

360000

Zaragoza, November 2007 – p.29/60

Page 30: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

P-stable 2-step OMWe were able to generalise Ananthakrishnaiah’s idea in

M. VAN DAELE AND G. VANDEN BERGHE,

P-STABLE OBRECHKOFF METHODS OF ARBITRARY ORDER

FOR SECOND-ORDER DIFFERENTIAL EQUATIONS, NUMERICAL ALGORITHMS 44, 2007,

115-131

Algoritm to construct a P-stable OM for a givenm :

impose order2 m

Dm − Nm andDm + Nm should both be halves of perfect

squares

This leads to a system ofnon-linearequations.

Theorem : the approximantRmm(ν2), obtained by generalising

Ananthakrishnaiah’s approach, is given by the real part of the

(m, m)-Padé approximant ofexp(i ν).

This leads to a system oflinearequations.Zaragoza, November 2007 – p.30/60

Page 31: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

Example

R33(ν2) =

1 − 920 ν2 + 11

600 ν4 − 114400 ν6

1 + 120 ν2 + 1

600 ν4 + 114400 ν6

= ℜ

(

1 + 12 i ν − 1

10 ν2 − 1120 i ν3

1 − 12 i ν − 1

10 ν2 + 1120 i ν3

)

=

(

1 − 110 ν2

)2−(

12 ν − 1

120 ν3)2

(

1 − 110 ν2

)2+(

12 ν − 1

120 ν3)2

where1 + 1

2 ν + 110 ν2 + 1

120 ν3

1 − 12 ν + 1

10 ν2 − 1120 ν3

= exp(ν) + O(

ν7)

|R33(ν2)| =

(

1 − 110 ν2

)2−(

12 ν − 1

120 ν3)2

(

1 − 110 ν2

)2+(

12 ν − 1

120 ν3)2

≤ 1

Zaragoza, November 2007 – p.31/60

Page 32: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

ConclusionHow does the P-stable Obrechkoff method

yn+1 − 2yn + yn−1 =m∑

i=1

h2 i(

βi0 y(2i)n+1 + 2βi1 y(2i)

n + βi0 y(2i)n−1

)

of order2 m look like ?

βi0 = (−1)i+1a2i + 2

i−1∑

j=0

(−1)j+1aj a2i−j

βi1 = a2i + 2

i−1∑

j=0

aj a2i−j

i = 1 . . . , m

whereaj =

(m

j )(2 m

j )for 0 ≤ j ≤ m

0 for j > m

Zaragoza, November 2007 – p.32/60

Page 33: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

P-stable Expon. fitted OMHow to obtain P-stable exponentially-fitted Obrechkoff methods ?

yn+1 − 2 yn + yn−1 =m∑

i=1

h2 i(

βi0 y(2i)n+1 + 2βi1 y(2i)

n + βi0 y(2i)n−1

)

applied toy′′ = −λ2 y gives

yn+1 − 2Rmm(θ, ν2) yn + yn−1 = 0

with θ := ω h andν := λh

Padé-approximants=⇒ exponentially-fitted Padé approximants

Construction of Polynomially-fitted(m, m) Padé approximants :

Pm(x)

Pm(−x)= exp(x) + O

(

x2 m+1)

⇐⇒ exp(x) Pm(−x) − Pm(x) = O(

x2 m+1)

⇐⇒d2 q

dx2 q (exp(x) Pm(−x) − Pm(x))∣

x=0= 0 q = 1, . . . , m

Zaragoza, November 2007 – p.33/60

Page 34: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF Padé approximants

F(x, t) = exp(t x) Vm(−t x)−Vm(t x) Vm(x) = 1+

m∑

j=1

aj xj

∂2q

∂x2q F(x, t)∣

(x,t)=(0,θ)= 0 q = 1, . . . , K

(

∂q

∂tqF(x, t)

(x,t)=(i, θ)

)

= 0 q = 0, . . . , P

where0 ≤ K ≤ m andP + K + 1 = m.

This leads to a system ofm linear equations in the unknownsaj ,

j = 1, . . . , m.

The EF(K, P ) Padé approximant toexp(ν) is then given by(K,P )Pm

m (ν) = Vm(ν)/Vm(−ν).

Zaragoza, November 2007 – p.34/60

Page 35: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF Padé approximants :m = 1

F(x, t) = exp(t x) V1(−t x) − V1(t x) Vm(x) = 1 + a1 x

(K = 1, P = −1)

∂2

∂x2 F(x, t)∣

(x,t)=(0,θ)= 0 ⇐⇒ θ2 (1 − 2 a1) = 0 ⇐⇒ a1 =

1

2

(1,−1)P 11 (ν) =

1 + 12 x

1 − 12 x(K = 0, P = 0)

ℜ (F(i, θ)) = 0 ⇐⇒ ℜ(

ei θ (1 − i a1 θ) − (1 + i a1θ))

= 0

⇐⇒ a1 =sin θ

θ (cos θ + 1)=

1

2

tan(θ/2)

θ/2

(0,0)P 11 (ν) =

1 + 12

tan(θ/2)θ/2 x

1 − 12

tan(θ/2)θ/2 x

Zaragoza, November 2007 – p.35/60

Page 36: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF Padé approximants :m = 1

m = 1

(K, P ) a1

(1,−1)1

2

(0, 0)tan θ

2

θ

Zaragoza, November 2007 – p.36/60

Page 37: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF Padé approximants :m = 1

m = 1

(K, P ) a1

(1,−1)1

2

(0, 0)1

2+

θ2

24+ O(θ4)

Zaragoza, November 2007 – p.37/60

Page 38: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF Padé approximants :m = 1

m = 1

(K, P ) a1

(1,−1)

0 2π 4π 6π 8π 10π−1

−0.5

0

0.5

1

θ

a 1

(0,0)

0 2π 4π 6π 8π 10π−1

−0.5

0

0.5

1

θ

a 1

Zaragoza, November 2007 – p.38/60

Page 39: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF Padé approximants :m = 2

m = 2

(K, P ) a1 a2

(2,−1)1

2

1

12

(1, 0)1

2

2 tan θ

2− θ

2 θ2 tan θ

2

(0, 1)2 (1 − cos θ)

(θ + sin θ) θ

θ − sin θ

(θ + sin θ) θ2

Zaragoza, November 2007 – p.39/60

Page 40: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF Padé approximants :m = 2

m = 2

(K, P ) a1 a2

(2,−1)1

2

1

12

(1, 0)1

2

1

12+

θ2

720+ O

(

θ4)

(0, 1)1

2+ O(θ4)

1

12+

θ2

360+ O(θ4)

Zaragoza, November 2007 – p.40/60

Page 41: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF Padé approximants :m = 2

m = 2

(K, P ) a1 a2

(2,−1)

0 2π 4π 6π 8π 10π−1

−0.5

0

0.5

1

θ

a 1

0 2π 4π 6π 8π 10π

−0.1

−0.05

0

0.05

0.1

θ

a 2

(1, 0)

0 2π 4π 6π 8π 10π−1

−0.5

0

0.5

1

θ

a 1

0 2π 4π 6π 8π 10π−1

−0.5

0

0.5

1

θ

a 2

(0, 1)

0 2π 4π 6π 8π 10π0

0.1

0.2

0.3

0.4

0.5

θ

a 1

0 2π 4π 6π 8π 10π0

0.02

0.04

0.06

0.08

0.1

θ

a 2

Zaragoza, November 2007 – p.41/60

Page 42: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

m = 3

(K, P ) a1 a2 a3

(3,−1)

0 2π 4π 6π 8π 10π−1

−0.5

0

0.5

1

θ

a 1

0 2π 4π 6π 8π 10π

−0.1

−0.05

0

0.05

0.1

θ

a 2

0 2π 4π 6π 8π 10π−0.015

−0.01

−0.005

0

0.005

0.01

θ

a 3

(2, 0)

0 2π 4π 6π 8π 10π−1

−0.5

0

0.5

1

θ

a 1

0 2π 4π 6π 8π 10π

−0.1

−0.05

0

0.05

0.1

0.15

θ

a 2

0 2π 4π 6π 8π 10π−0.05

0

0.05

θ

a 3

(1, 1)

0 2π 4π 6π 8π 10π−1

−0.5

0

0.5

1

θ

a 1

0 2π 4π 6π 8π 10π0

0.02

0.04

0.06

0.08

0.1

θ

a 2

0 2π 4π 6π 8π 10π0

0.005

0.01

0.015

θ

a 3

(0, 2)

0 2π 4π 6π 8π 10π−1

−0.5

0

0.5

1

θ

a 1

0 2π 4π 6π 8π 10π

−0.1

−0.05

0

0.05

0.1

0.15

θ

a 2

0 2π 4π 6π 8π 10π−0.05

0

0.05

θ

a 3

Zaragoza, November 2007 – p.42/60

Page 43: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF Padé approximants :m = 1

−1 −0.5 0 0.5 10

0.5

1

1.5

2

2.5

ν

exp(ν)(1,−1)P

11(ν)

(0,0)P11(ν), θ=1

(0,0)P11(ν), θ=2

(0,0)P11(ν), θ=4

Zaragoza, November 2007 – p.43/60

Page 44: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF Padé approximants :m = 3

−1 0 1 2 3 40

10

20

30

40

50

ν

θ=0

exp(ν)(3,−1)P

33(ν)

(2,0)P33(ν)

(1,1)P33(ν)

(0,2)P33(ν)

Zaragoza, November 2007 – p.44/60

Page 45: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF Padé approximants :m = 3

−1 0 1 2 3 40

10

20

30

40

50θ=1

ν

exp(ν)(3,−1)P

33(ν)

(2,0)P33(ν)

(1,1)P33(ν)

(0,2)P33(ν)

Zaragoza, November 2007 – p.45/60

Page 46: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF Padé approximants :m = 3

−1 0 1 2 3 40

10

20

30

40

50θ=2

ν

exp(ν)(3,−1)P

33(ν)

(2,0)P33(ν)

(1,1)P33(ν)

(0,2)P33(ν)

Zaragoza, November 2007 – p.46/60

Page 47: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF Padé approximants :m = 3

−1 0 1 2 3 40

10

20

30

40

50θ=4

ν

exp(ν)(3,−1)P

33(ν)

(2,0)P33(ν)

(1,1)P33(ν)

(0,2)P33(ν)

Zaragoza, November 2007 – p.47/60

Page 48: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF Padé approximants :m = 3

−1 0 1 2 3 40

10

20

30

40

50θ=7

ν

exp(ν)(3,−1)P

33(ν)

(2,0)P33(ν)

(1,1)P33(ν)

(0,2)P33(ν)

Zaragoza, November 2007 – p.48/60

Page 49: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

EF Padé approximants :m = 3

−1 −0.5 0 0.5 10

0.5

1

1.5

2θ=7

ν

exp(ν)(3,−1)P

33(ν)

(2,0)P33(ν)

(1,1)P33(ν)

(0,2)P33(ν)

−1 0 1 2 3 40

10

20

30

40

50θ=7

ν

exp(ν)(3,−1)P

33(ν)

(2,0)P33(ν)

(1,1)P33(ν)

(0,2)P33(ν)

Zaragoza, November 2007 – p.49/60

Page 50: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

The Stiefel-Bettis problem

z′′ + z = 0.001 exp(ix) z(0) = 1 z′(0) = 0.995i 0 ≤ x ≤ 40π

equivalent real form

u′′ + u = 0.001 cos(x), u(0) = 1, u′(0) = 0,

v′′ + v = 0.001 sin(x), v(0) = 0, v′(0) = 0.9995 .

z(x) = u(x) + i v(x)

u(x) = cos(x) + 0.0005x sin(x)

v(x) = sin(x) − 0.0005x cos(x)

γ(x) =√

u2(x) + v2(x) =√

1 + (0.0005x)2

E := maxxj∈[0, 40 π]

‖y(xj) − yj‖ h = 2−i π ω = 1Zaragoza, November 2007 – p.50/60

Page 51: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

The Stiefel-Bettis problemm = 1

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0−15

−10

−5

0

log10(h)

log1

0(E

)

: P = −1 ⋄ : P = 0Zaragoza, November 2007 – p.51/60

Page 52: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

The Stiefel-Bettis problemm = 2

−1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0−16

−14

−12

−10

−8

−6

−4

−2

0

log10(h)

log1

0(E

)

: P = −1 ⋄ : P = 0 : P = 1Zaragoza, November 2007 – p.52/60

Page 53: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

The Stiefel-Bettis problemm = 3

−1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0−15

−10

−5

0

log10(h)

log1

0(E

)

: P = −1 ⋄ : P = 0 : P = 1 ⋆ : P = 2Zaragoza, November 2007 – p.53/60

Page 54: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

The Duffing problem

y′′(x) = −y(x) − y(x)3 + cos(Ωx) 0 ≤ x ≤ 50π

B = 0.002 Ω = 1.01

y(x) =

4∑

i=0

K2i+1 cos[(2i + 1)Ωx] ,

(K1, K3, K5, K7, K9) =(

0.20017947753661502, 2.46946143255559 10−4,

3.0401498519692437 10−7, 3.743490701609247 10−10,

4.609682949622697 10−13)

Zaragoza, November 2007 – p.54/60

Page 55: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

The Duffing problemy(3)(x) = −(1 + 3 y2(x)) y′(x) − B Ω sin(Ωx)

y(4)(x) = −(1 + 3 y2(x)) y′′(x) − 6y(x)y′(x)2 − B Ω2 cos(Ωx)

y(5)(x) = −(1 + 3 y2(x)) y′′′(x) − 6y′(x)3 − 18y(x)y′(x)y′′(x)

+B Ω3 sin(Ωx)

y(6)(x) = −(1 + 3 y2(x)) y(4)(x) − 24y(x)y′(x)y(3)(x) − 18y(x)y′′(x)2

−36y′(x)2y′′(x) + B cos(Ω x)Ω4

y(7)(x) = −(1 + 3 y2(x)) y(5)(x) − 30 y(x) y(4)(x)

−60 (y′(x) + y(x) y′′(x)) y′′′(x) − B sin(Ω x)Ω5− 90 y′(x) y′′(x)2

z′′ =

y

y′

′′

=

f(x, y)

g(x, y, y′)

g(x, y, y′) =ddx

f(x, y(x))

E := maxxj∈[0, 50 π] ‖z(xj) − zj‖

h = π/2i, i = 2, 3, . . . , 7 ω = Ω

Zaragoza, November 2007 – p.55/60

Page 56: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

The Duffing problemm = 1

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4−15

−10

−5

0

log10(h)

log1

0(E

)

: P = −1 ⋄ : P = 0Zaragoza, November 2007 – p.56/60

Page 57: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

The Duffing problemm = 2

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4−15

−10

−5

0

log10(h)

log1

0(E

)

: P = −1 ⋄ : P = 0 : P = 1Zaragoza, November 2007 – p.57/60

Page 58: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

The Duffing problemm = 3

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4−15

−10

−5

0

log10(h)

log1

0(E

)

: P = −1 ⋄ : P = 0 : P = 1 ⋆ : P = 2Zaragoza, November 2007 – p.58/60

Page 59: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

The Duffing problemm = 3, (K, P ) = (2, 0)

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4−15

−10

−5

0

log10(h)

log1

0(E

)

ω = 0 (circles) ω = 1.01 (diamonds) ω = 0.7 (squares)

ω = 2 (asterisks)Zaragoza, November 2007 – p.59/60

Page 60: Marnix.VanDaele@UGentmvdaele/voordrachten/zaragoza... · 2007. 11. 19. · 0 6 −1 0 1 ν2 R 11 Zaragoza, November 2007 – p.21/60. Stability of two-step OM m = 2 : p = 8, C10 =

ConclusionTwo-step P-stable exponentially fitted Obrechkoff methods :

for any givenm, P-stable EF(K, P )-methods of order2 m exist

the construction is based on EF Padé approximants to the

exponential function

the coefficients depend on a parameterθ

the coefficients are continous functions ofθ iff P is odd

numerical examples are given as an illustration

References :

M. Van Daele and G. Vanden Berghe, P-stable Obrechkoff methods of arbitrary order for

second-order differential equations, Numerical Algorithms44, 2007, 115-131

M. Van Daele and G. Vanden Berghe, P-stable exponentially fitted Obrechkoff methods

of arbitrary order for second-order differential equations, accepted for publication in

Numerical Algorithms

Zaragoza, November 2007 – p.60/60