TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT...

152
UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 2010 TRAIN SCHEDULING PROBLEM Masterproef voorgedragen tot het bekomen van de graad van Master in de Toegepaste Economische Wetenschappen: Handelsingenieur Lieselotte Michels onder leiding van Prof. dr. ir. M. Vanhoucke

Transcript of TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT...

Page 1: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

UNIVERSITEIT GENT

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE

ACADEMIEJAAR 2009 – 2010

TRAIN SCHEDULING PROBLEM

Masterproef voorgedragen tot het bekomen van de graad van

Master in de Toegepaste Economische Wetenschappen: Handelsingenieur

Lieselotte Michels

onder leiding van

Prof. dr. ir. M. Vanhoucke

Page 2: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM
Page 3: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

UNIVERSITEIT GENT

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE

ACADEMIEJAAR 2009 – 2010

TRAIN SCHEDULING PROBLEM

Masterproef voorgedragen tot het bekomen van de graad van

Master in de Toegepaste Economische Wetenschappen: Handelsingenieur

Lieselotte Michels

onder leiding van

Prof. dr. ir. M. Vanhoucke

Page 4: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

“PERMISSION”

Ondergetekende verklaart dat de inhoud van deze masterproef mag

worden geraadpleegd en/of gereproduceerd, mits bronvermelding.

Page 5: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

i

Woord Vooraf

Met deze thesis beëindig ik mijn studies handelsingenieur. Het was bijzonder verrijkend om

de kennis die ik gedurende mijn vijfjarige studies heb opgedaan te kunnen toepassen op een

praktisch probleem. Een thesis schrijven is evenwel niet mogelijk zonder de hulp van

anderen.

In eerste instantie wil ik NMBS Mobility bedanken en in het bijzonder de heer Benny

Vervoort, adjunct Eerste Adviseur, en mevrouw Ellen Courtois, Commercieel Adviseur. Zij

hebben met plezier mij te woord gestaan en mij de nodige informatie bezorgd.

Vervolgens bedank ik professor dr. Broos Maenhout voor het opvolgen van de vooruitgang

van en het helpen vormgeven aan deze thesis.

Daarnaast bedank ik professor dr. ir. Mario Vanhoucke voor het mogelijk maken van dit

thesisonderzoek.

Tot slot bedank ik mijn schoonzus Alien, licentiate Nederlands-Engels, voor het nalezen van

deze thesis en mijn vriend Frederic voor het luisterend oor dat hij mij steeds met plezier heeft

aangeboden.

Page 6: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

ii

Inhoudsopgave

Hoofdstuk 1: Inleiding ................................................................................................................. 1

1.1 Recente ontwikkelingen in passagierstreinverkeer en mobiliteit .................................... 1

1.1.1 De grote mobiliteitsbehoefte van de Belg ......................................................... 1

1.1.2 Modale verdeling van transportmogelijkheden ................................................. 1

1.1.3 De trein als antwoord op de milieuproblematiek .............................................. 4

1.1.4 Operationele performantie.................................................................................. 4

1.1.5 Liberalisering van het Europese spoorverkeer ................................................. 5

1.2 Opbouw en relevantie van deze thesis ............................................................................. 5

Hoofdstuk 2: Plannen van de dienstregeling .......................................................................... 8

2.1 De verschillende fasen in treinplanning ............................................................................ 8

2.1.1 Schatting van de vraag ....................................................................................... 9

2.1.2 De lijnplanning ..................................................................................................... 9

2.1.3 Planning van de dienstregeling.......................................................................... 9

2.1.4 Planning van het rollend materieel .................................................................. 10

2.1.5 Personeelsplanning .......................................................................................... 11

2.2 Tools voor het opstellen van de dienstregeling .............................................................. 12

2.3 Het opstellen van de dienstregeling bij de NMBS .......................................................... 14

Hoofdstuk 3: Modelleren van de dienstregeling................................................................... 21

3.1 Werkvoorbeeld .................................................................................................................. 22

3.1.1 Probleemgrootte ................................................................................................ 22

3.1.2 Netwerkkarakteristieken ................................................................................... 22

3.1.3 Dienstregeling ................................................................................................... 24

3.1.4 Tijd-plaatsdiagrammen ..................................................................................... 25

3.2 Oplijsting van de meest voorkomende objectieven ....................................................... 28

3.2.1 Uitvoerbare dienstregeling ............................................................................... 28

3.2.2 Kwaliteitsmaximalisatie..................................................................................... 29

3.2.3 Kostenminimalisatie .......................................................................................... 33

Page 7: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Inhoudsopgave iii

3.3 Oplijsting van de meest voorkomende restricties .......................................................... 34

3.3.1 Logische restricties ........................................................................................... 35

3.3.2 Reistijd ............................................................................................................... 38

3.3.2.1 Algemeen ............................................................................................... 38

3.3.2.2 Tussen stations ..................................................................................... 40

3.3.2.3 In stations............................................................................................... 42

3.3.3 Veiligheidsrestricties ......................................................................................... 48

3.3.3.1 In stations............................................................................................... 49

3.3.3.2 Tussen stations ..................................................................................... 52

3.4 Overzicht objectieven en restricties in de literatuur en in de praktijk ........................... 54

3.5 Het dienstregelingsprobleem in de literatuur .................................................................. 56

3.5.1 Modelleringstechnieken .................................................................................... 56

3.5.2 Oplossingsmethode .......................................................................................... 57

3.5.3 Probleemgrootte ................................................................................................ 58

3.5.4 Probleemkarakteristieken ................................................................................. 59

3.5.5 Rariteiten............................................................................................................ 63

3.6 Besluit ................................................................................................................................ 65

Hoofdstuk 4: Verbeteren van de dienstregeling (case study) ........................................... 67

4.1 Probleemdefiniëring .......................................................................................................... 67

4.2 Onderzoeksopzet .............................................................................................................. 67

4.2.1 Probleemgrootte ................................................................................................ 68

4.2.2 Probleemkarakteristieken ................................................................................. 69

4.2.3 Huidige dienstregeling ...................................................................................... 71

4.2.4 Motivatie voor netwerkkeuze............................................................................ 71

4.3 Modellering ........................................................................................................................ 72

4.3.1 Methodiek .......................................................................................................... 72

4.3.2 Assumpties ........................................................................................................ 73

4.3.3 Beslissingsvariabelen ....................................................................................... 78

4.3.4 Variabelen.......................................................................................................... 79

4.3.5 Parameters ........................................................................................................ 80

4.3.6 Doelfuncties ....................................................................................................... 82

4.3.7 Restricties .......................................................................................................... 83

4.4 Optimalisatie ...................................................................................................................... 89

4.4.1 Analyse van de huidige dienstregeling............................................................ 89

4.4.2 Bepaling van de initiële parameterwaarden ................................................... 90

4.4.3 Gevoeligheidsanalyses..................................................................................... 93

Page 8: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Inhoudsopgave iv

4.4.4 Conclusies ......................................................................................................... 98

4.5 Simulatie ............................................................................................................................ 99

4.5.1 Opzet ................................................................................................................ 100

4.5.2 Conclusies ....................................................................................................... 102

4.6 Optimalisatie naar meerdere objectieven ..................................................................... 103

4.6.1 Opzet ................................................................................................................ 103

4.6.2 Conclusies ....................................................................................................... 104

4.7 Conclusies van de case study ....................................................................................... 105

Hoofdstuk 5: Algemeen besluit ............................................................................................. 107

5.1 Het plannen van de dienstregeling ................................................................................ 107

5.2 Het modelleren van de dienstregeling .......................................................................... 108

5.3 Het verbeteren van de dienstregeling (case study) ..................................................... 109

5.4 Beperkingen van deze thesis en richtlijnen voor verder onderzoek ........................... 110

Hoofdstuk 6: Lijst van de geraadpleegde werken .............................................................. 111

Hoofdstuk 7: Bijlagen .............................................................................................................. 114

7.1 Percentage van de beroepsbevolking werkend buiten woonplaats (provincie) ........ 114

7.2 Modale verdeling van transportmogelijkheden............................................................. 115

7.3 Kostenvergelijking auto vs. openbaar vervoer ............................................................. 117

7.4 De trein als antwoord op de milieuproblematiek .......................................................... 119

7.5 Nieuwe dienstregeling en tijd-plaatsdiagrammen horende bij voorbeeld objectief 4 120

7.6 Dienstregeling en tijd-plaatsdiagrammen horende bij voorbeeld objectief 5 ............. 122

7.7 Tijd-plaatsdiagrammen horende bij voorbeeld objectief 6........................................... 124

7.8 Overzicht aantal stations en treinen in testinstantie, per auteur ................................. 125

7.9 Oorspronkelijk netwerk ................................................................................................... 128

7.10 Berekening van de gewichten horende bij de transfertijden .................................... 129

7.11 Berekening van de gewichten horende bij de reistijden........................................... 131

7.12 Overzicht van de gedefinieerde verzamelingen........................................................ 133

Page 9: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

v

Lijst van gebruikte afkortingen

CR-trein: CityRail-trein

FOD: Federale Overheidsdienst

IC-trein: InterCity trein

ICT-trein: extra ingelegde trein naar de kust in het hoogseizoen

IR-trein: InterRegio trein

L-trein: stoptrein

Min: minuten

NMBS Mobility: De dienst binnen NMBS verantwoordelijk voor de planning van de

dienstregeling

NMBS: Nationale Maatschappij der Belgische Spoorwegen

P-trein: piekuurtrein

Sec: seconden

Page 10: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

vi

Lijst van definities

Conflict: er is sprake van een conflict tussen twee treinen wanneer deze twee zich op

hetzelfde moment op hetzelfde spoor bevinden. Deze situatie komt voor in twee gevallen.

Ten eerste kan een trein sneller reizen dan de trein voor zich, waardoor hij hem inhaalt en

uiteindelijk op hem inrijdt. Ten tweede kunnen twee treinen die in de tegengestelde richting

reizen frontaal op elkaar inrijden.

Enkelsporige baanvakken: als er in een bepaald gebied slechts één spoorlijn getrokken is,

dan is dit een enkelsporig baanvak. Treinen uit beide richtingen moeten het spoor gebruiken

en er kan slechts een trein tegelijk op rijden. Enkelsporige baanvakken komen vaak voor in

Noord-Amerika.

Haltetijd: een trein die stopt in een station, blijft daar gedurende een tijd wachten. Deze

wachttijd heet de haltetijd. Deze tijd is nodig voor het in- en uitstappen van passagiers, om in

sommige, vooraf bepaalde stations veiligheidscontrole uit te voeren en voor andere diensten.

Lijn: een treinlijn is een verbinding tussen een begin- en eindstation, bijvoorbeeld Brussel-

Zuid – De Panne. Daartussen stopt de trein in een bepaalde stations.

Link: dit is een term voor de sporen die twee opeenvolgende stations verbinden.

Meersporige baanvakken: in dit geval zijn er minstens twee spoorlijnen aanwezig. Hier

werd dan aan elk baanvak een richting toegewezen; treinen uit de tegenovergestelde richting

mogen dus het spoor niet gebruiken. In Europa vindt men vooral meersporige baanvakken

terug. Hier en daar echter, in de minder drukke regio‟s, treft men enkelsporige baanvakken

aan.

Omkeertijd: wanneer een trein aankomt in zijn eindstation, dan heeft deze trein een

bepaalde tijd nodig om om te keren. Deze tijd is nodig voor het schoonmaken, de

veiligheidscontrole, om bepaalde wagons af te koppelen en uit de weg te plaatsen, als

buffertijd om vertraging in te halen,… Na het omkeren vat de trein gewoonlijk de terugreis

aan. Het gebeurt echter ook dat een trein op een andere lijn gaat rijden.

Opvolgtijd: de tijdsspanne tussen twee opeenvolgende treinen op hetzelfde spoor, al dan

niet in dezelfde richting.

Page 11: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Lijst van definities vii

Parkeren: het parkeren van een trein is het uit de weg zetten ervan. Treinen moeten soms

geparkeerd worden wanneer ze een lange haltetijd in een station hebben en men deze trein

uit de weg moet zetten om een andere trein te laten passeren. Ook parkeert men treinen om

te laten „overnachten‟.

Reistijd: de reistijd is de tijd die een trein nodig heeft om van zijn beginstation naar zijn

eindstation te reizen.

Reizigerskilometer: dit is het aantal kilometers dat een reiziger gemiddeld reist met de trein.

Rijpad: een rijpad is het deel van het netwerk waarover een trein rijdt. Dit is niet hetzelfde als

een treinlijn; het gaat hier immers om de fysieke sporen.

Treinkilometer: dit is het aantal kilometers dat een trein gereden heeft in een bepaalde tijd.

Treintype: op de Belgische sporen reizen zes verschillende types reizigerstreinen. Vier

ervan vormen het basisaanbod treinen, nl. de InterCity- (IC), InterRegio- (IR), Stop- (L) en

CityRailtreinen (CR). Deze vier verschillen in snelheid waarmee ze reizen, het aantal

passagiers dat ze vervoeren, het stoppatroon dat ze volgen en de totale afstand waarover ze

reizen. De IC-treinen zijn de snelste, maar stoppen enkel in grote stations. De IR-treinen

reizen minder snel en stoppen in meer stations dan de IC-treinen. De L- treinen zijn de

traagste en stoppen in elk station dat ze passeren. CR-treinen reizen even snel als de L-

treinen, maar rijden enkel in Brussel. Verder zijn er nog twee types die het treinaanbod

aanvullen, nl. de P- en ICT-treinen. P-treinen worden ingelegd tijdens piekuren om de

grotere reizigersstroom op te vangen, terwijl ICT-treinen de grote toeloop naar de kust

opvangen tijdens de zomer. Elke treinlijn is exact een treintype.

Verbinding: wanneer er geen rechtstreekse trein bestaat voor de reis die de passagier wil

ondernemen, moet hij op een gegeven moment een of meerdere overstappen maken. Stel

dat de passagier moet overstappen van trein a op trein b, dan is a-b een verbinding.

Page 12: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

viii

Lijst van figuren

Figuur 1: De jaarlijkse verandering in het aantal vervoerde treinreizigers uitgedrukt in %

(gebaseerd op [27]) ......................................................................................................................... 2

Figuur 2: De evolutie en extrapolatie van het aantal afgelegde treinkilometers ten opzichte

van 1997 (gebaseerd op [27]) ........................................................................................................ 3

Figuur 3: Opbouw thesis (eigen werk)........................................................................................... 6

Figuur 4: Schematische voorstelling van de verschillende fasen in het treinplanningsproces

(gebaseerd op [35]) ......................................................................................................................... 9

Figuur 5: Het hiërarchisch treinplanningsproces (aangepast uit [15]) ...................................... 12

Figuur 6: Tijd-plaatsdiagram van de treinlijnen tussen Rotterdam en Utrecht (overgenomen

uit [17]) ........................................................................................................................................... 14

Figuur 7: De verschillende stappen in het opstellen van de dienstregeling. (Gebaseerd op

gesprek met mevrouw Courtois E., 2 maart 2010, Brussel) ...................................................... 15

Figuur 8: Het treinplanningsproces bij de NMBS (eigen werk) ................................................. 17

Figuur 9: Het netwerkschema (aangepast uit [36]) .................................................................... 24

Figuur 10: Het tijd-plaatsdiagram tussen Heist-op-den-Berg en Aarschot (eigen werk)......... 25

Figuur 11: Het tijd-plaatsdiagram tussen Hasselt en Aarschot (eigen werk) ........................... 26

Figuur 12: Het tijd-plaatsdiagram tussen Leuven en Aarschot (eigen werk) ........................... 26

Figuur 13: Het tijd-plaatsdiagram tussen Leuven en Hasselt via Sint-Truiden, met 0 minuten

als oorsprong (eigen werk) ........................................................................................................... 27

Figuur 14: Het tijd-plaatsdiagram tussen Leuven en Hasselt via Sint-Truiden, met 30 minuten

als oorsprong (eigen werk) ........................................................................................................... 27

Figuur 15: De invloed van wachttijd ontstaan door een conflict tussen twee treinen (eigen

werk) ............................................................................................................................................... 30

Figuur 16: Het netwerkschema met aanduiding van een boog en een knooppunt (aangepast

uit [36]) ........................................................................................................................................... 34

Figuur 17: Visuele voorstelling van de restrictie „continuïteit van de treinbeweging door het

netwerk‟ (eigen werk) .................................................................................................................... 35

Figuur 18: Visuele voorstelling van de restrictie „vertrek uit knooppunt‟ (eigen werk) ............ 36

Page 13: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Lijst van figuren ix

Figuur 19: Visuele voorstelling van de restrictie „consistentie van treinen op elke link‟ (eigen

werk) ............................................................................................................................................... 37

Figuur 20: Schematische voorstelling van de restrictie „totale reistijd‟ (eigen werk) ............... 39

Figuur 21: Schematische voorstelling van de restrictie „reistijdsupplement‟ (eigen werk) ...... 42

Figuur 22: Het tijd-plaatsdiagram van lijn D en B tussen Leuven en Aarschot (eigen werk).. 45

Figuur 23: Het tijd-plaatsdiagram van lijn D en A tussen Heist-op-den-Berg en Aarschot

(eigen werk) ................................................................................................................................... 46

Figuur 24: Het tijd-plaatsdiagram van lijn A, B en C tussen Alken en Aarschot met een

overstap in Hasselt (eigen werk).................................................................................................. 47

Figuur 25: Schematische voorstelling van de opvolgtijd in situatie a, b, c en d (eigen werk) 50

Figuur 26: Schematische voorstelling van de opvolgtijd in situatie e1 en e2 (eigen werk) .... 51

Figuur 27: Visuele voorstelling van de receptie- en expeditietijd (aangepast uit [2]) .............. 53

Figuur 28: Het netwerkschema (eigen werk) .............................................................................. 68

Figuur 29: Evolutie van de procentuele verdeling van de primaire transportkeuze om naar het

werk te gaan tussen 2005 en 2008 (gebaseerd op [13]) ......................................................... 115

Figuur 30: Procentuele verdeling van de primaire transportkeuze van Belgen om naar het

werk te gaan in 2008 (gebaseerd op [13]) ................................................................................ 115

Figuur 31: Invloed van de gemiddelde afstand op de gekozen verplaatsingsmodus

(overgenomen uit [13])................................................................................................................ 116

Figuur 32: Specifieke CO2-emissie van reizigers- en goederenverkeer (overgenomen uit [28])

...................................................................................................................................................... 119

Figuur 33: Evolutie van de totale CO2-emissie van spoor- vs. wegverkeer sinds 1990

(overgenomen uit [28])................................................................................................................ 119

Figuur 34: Nieuw tijd-plaatsdiagram tussen Heist-op-den-Berg en Aarschot, horende bij het

voorbeeld van objectief 4 (eigen werk)...................................................................................... 121

Figuur 35: Nieuw tijd-plaatsdiagram tussen Hasselt en Aarschot, horende bij het voorbeeld

van objectief 4 (eigen werk) ....................................................................................................... 121

Figuur 36: Oorspronkelijk tijd-plaatsdiagram tussen Alken en Aarschot met een overstap in

Hasselt, horende bij het voorbeeld van objectief 5 (eigen werk) ............................................ 123

Figuur 37: Tijd-plaatsdiagram van de optimale verbinding tussen Alken en Aarschot met een

overstap in Hasselt, horende bij het voorbeeld van objectief 5 (eigen werk)......................... 123

Figuur 38: Nieuw tijd-plaatsdiagram van lijn C en A horende bij het voorbeeld van objectief 6

(eigen werk) ................................................................................................................................. 124

Figuur 39: Nieuw tijd-plaatsdiagram van lijn B en A horende bij het voorbeeld van objectief 6

(eigen werk) ................................................................................................................................. 124

Figuur 40: Deel van het Belgische spoornetwerk anno 2010.................................................. 128

Page 14: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

x

Lijst van tabellen

Tabel 1: Rollen van verschillende NMBS-diensten bij de planning van de dienstregeling

(eigen werk) ................................................................................................................................... 18

Tabel 2: Schematisch verloop van het opmaken van de dienstregeling bij de NMBS

(gebaseerd op gesprek met mevrouw Courtois E., 2 maart 2010, Brussel) ............................ 19

Tabel 3: De frequentie van treinen per lijn (gebaseerd op [36]) ................................................ 24

Tabel 4: Dienstregeling (overgenomen uit [36]) ......................................................................... 25

Tabel 5: Boven- en ondergrens aan de vertrek- en aankomsttijd voor lijn B0, in minuten

(eigen werk) ................................................................................................................................... 39

Tabel 6: Effect van snelheidslimieten op de reistijd van lijn A (eigen werk) ............................ 40

Tabel 7: Berekening van de ideale reistijd en de reistijd inclusief versnellings- en

vertragingstijd (eigen werk) .......................................................................................................... 41

Tabel 8: Vermelde omkeertijden in de literatuur en in de praktijk (eigen werk) ....................... 43

Tabel 9: Vermelde haltetijden in de literatuur en in de praktijk (eigen werk) ........................... 43

Tabel 10: Vermelde transfertijden in de literatuur en in de praktijk (eigen werk) .................... 47

Tabel 11: Vermelde opvolgtijden in de literatuur en in de praktijk (eigen werk) ...................... 49

Tabel 12: Overzicht van de objectieven en restricties per auteur en in de praktijk, met

aanduiding of al dan niet een cyclische dienstregeling wordt nagestreefd (eigen werk) ........ 54

Tabel 13: Indeling van modellering naar lineair, cyclisch en event-model (eigen werk) ......... 57

Tabel 14: Beslissingsregels (eigen werk) ................................................................................... 58

Tabel 15: Overzicht van modelleringtechniek, oplossingsmethode, probleemgrootte en

probleemkarakteristieken per auteur (eigen werk) ..................................................................... 60

Tabel 16: Rariteiten per auteur (eigen werk) .............................................................................. 64

Tabel 17: De dienstregeling (eigen werk) ................................................................................... 71

Tabel 18: Gekozen verbinding (eigen werk) ............................................................................... 74

Tabel 19: Aantal uit- en opstappende passagiers voor verbinding x-y, uitgedrukt in aantal

passagiers (eigen werk)................................................................................................................ 75

Tabel 20: Beslissingsregels voor corrigeren van het aantal overstappende passagiers (eigen

werk) ............................................................................................................................................... 76

Page 15: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Lijst van tabellen xi

Tabel 21: Beslissingsregels voor het toekennen van prioriteiten aan verbindingen (eigen

werk) ............................................................................................................................................... 76

Tabel 22: Finaal aantal overstappende passagiers (eigen werk) ............................................. 76

Tabel 23: De mogelijke 𝒓𝒙𝒚𝟏, 𝒚𝟐-waarden (gebaseerd op e-mailverkeer met mevrouw

Courtois E., 15 maart, 2010) ........................................................................................................ 81

Tabel 24: Parameterwaarden in de huidige dienstregeling (eigen werk) ................................. 90

Tabel 25: Parameterwaarden en –intervallen in het LP-model (eigen werk) ........................... 92

Tabel 26: Gevoeligheidsanalyse van de onder- vs. bovenlimiet voor de rijtijtolerantie (resp.

R(LB) en R(UB)) (eigen werk) ...................................................................................................... 93

Tabel 27: Gevoeligheidsanalyse van de rijtijdtolerantieonderlimiet (R(LB)) en de maximum

transfertijd voor een A-prioriteitverbinding (Ta) (eigen werk) .................................................... 94

Tabel 28: De gevoeligheidsanalyse van de maximum transfertijd voor prioriteit B-

verbindingen (Tb) en de onderlimiet van de rijtijdtolerantie (R(LB)) (eigen werk) ................... 94

Tabel 29: De gevoeligheidsanalyse van de maximum transfertijd voor prioriteit C-

verbindingen (Tc) en de onderlimiet van de rijtijdtolerantie (R(LB)) (eigen werk) ................... 95

Tabel 30: De gevoeligheidsanalyse van de maximum transfertijd voor prioriteit A-

verbindingen (Ta) en maximum haltetijden (H) (eigen werk) .................................................... 96

Tabel 31: Gevoeligheidsanalyse van de minimum en maximum omkeertijd (resp. O(LB) en

O(UB)) (eigen werk) ...................................................................................................................... 96

Tabel 32: Gevoeligheidsanalyse van de minimum omkeertijd (O(LB)) en de

rijtijdtolerantiebovenlimiet (R(UB)) (eigen werk) ......................................................................... 96

Tabel 33: Gevoeligheidsanalyse van de minimum en maximum koppeltijd (resp. K(LB) en

K(UB)) (eigen werk) ...................................................................................................................... 97

Tabel 34: Gevoeligheidsanalyse van de synchronisatietolerantie (S) en de

rijtijdtolerantieonderlimiet (R(LB)) (eigen werk) .......................................................................... 97

Tabel 35: Finale parameterwaarden en hun aanpasbaarheid (eigen werk) ............................ 98

Tabel 36: Optimale dienstregeling (eigen werk) ......................................................................... 99

Tabel 37: Verwachte vertragingen vrijgegeven door NMBS (gebaseerd op e-mailverkeer met

mevrouw Courtois E., 15 maart 2010)....................................................................................... 100

Tabel 38: Assumpties i.v.m. verwachte vertraging (eigen werk)............................................. 100

Tabel 39: De performantie van de optimale dienstregeling en de huidige dienstregeling

(eigen werk) ................................................................................................................................. 102

Tabel 40: Analyse van de totale kost voor de huidige dienstregeling en drie optimale

dienstregelingen (eigen werk) .................................................................................................... 104

Tabel 41: Percentage van de beroepsbevolking dat werkt buiten zijn eigen provincie

(gebaseerd op [34]) ..................................................................................................................... 114

Tabel 42: Nieuwe dienstregeling horende bij het voorbeeld van objectief 4 (eigen werk).... 120

Page 16: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Lijst van tabellen xii

Tabel 43: Nieuwe dienstregeling horende bij het voorbeeld van objectief 5 (eigen werk).... 122

Tabel 44: Overzicht van het aantal stations en treinen in de testinstantie, per auteur (eigen

werk) ............................................................................................................................................. 126

Tabel 45: Aantal overstappers per verbinding (eigen werk) .................................................... 129

Tabel 46: Gegevens uit de oktobertellingen 2007 m.b.t. transfers (e-mailverkeer met

mevrouw Courtois E., 15 maart 2010)....................................................................................... 130

Tabel 47: Gewichten geldend voor de reistijden (gebaseerd op e-mailverkeer met mevrouw

Courtois E., 2 maart en 21 april 2010) ...................................................................................... 131

Tabel 48: Oktobertellingen 2007 m.b.t. treinritten (e-mailverkeer met mevrouw Courtois E., 2

maart 2010) ................................................................................................................................. 132

Page 17: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

1

Hoofdstuk 1: Inleiding

1.1 Recente ontwikkelingen in passagierstreinverkeer en

mobiliteit

1.1.1 De grote mobiliteitsbehoefte van de Belg

De mobiliteitsbehoefte van de Belg is groot. Miljoenen Belgen verplaatsen zich elke dag om

te gaan werken, inkopen te doen, familie te bezoeken, uitstapjes te maken, etc. Volgende

bevindingen illustreren dit.

o Volgens de FOD Mobiliteit en Vervoer bedroeg voor een Belg in 2008 het gemiddeld

aantal gereisde kilometers van en naar het werk 34km per dag. Het totaal aantal

gereisde kilometers per dag bedroeg 125km [13].

o Van alle werknemers in het arrondissement Brussel, is bijna twee derde woonachtig

buiten Brussel. Het gaat hier om meer dan 375.000 werknemers [34].

o In 2001 bedroeg het aandeel van de beroepsbevolking werkend in zijn eigen

woongemeente slechts 26,2%, tegenover 48% in 1970. Over de tijd heen is de mobiliteit

van de Belg dus aanzienlijk toegenomen [34].

o Uit onderzoek blijkt dat gemiddeld 28,8%, d.i. 1.044.240 mensen, van de Belgische

beroepsbevolking buiten zijn eigen provincie werkt. Dit aantal varieert sterk naargelang

de beschouwde provincie [34]. Voor exacte cijfers wordt verwezen naar bijlage 7.1.

1.1.2 Modale verdeling van transportmogelijkheden

Om zich te kunnen verplaatsen heeft men de keuze tussen verschillende vervoerswijzen: de

auto, de bus, de tram, de metro, het vliegtuig, de fiets, te voet, de boot en de trein. De meest

gekozen vervoerswijze is echter de auto en het wegennet is dan ook overbelast. Dit blijkt uit

de dagelijkse ellenlange kilometers file in België, maar liefst zo‟n 140km per dag [38]. Voor

de modale verdeling van de gekozen vervoerswijze, wordt verwezen naar bijlage 7.2. Om

deze verzadiging van het wegennetwerk en de CO2-uitstoot te verminderen, probeert de

overheid het gebruik van alternatieve vervoersmiddelen, waaronder de trein, te stimuleren.

Page 18: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 1: Introductie 2 2

De voorkeur voor de auto is echter niet absoluut. Uit analyse blijkt dat wanneer de

gemiddelde afstand naar het werk meer dan 30 km bedraagt, de voorkeur voor de wagen

gevoelig begint af te nemen in het voordeel van de trein. Voor de visualisatie van deze

bevinding, wordt opnieuw verwezen naar bijlage 7.2.

Onderstaande figuur geeft de jaarlijkse verandering in het aantal vervoerde reizigers weer.

Het aantal reizigers is over de laatste vijf opgemeten jaren telkens met vijf procent gestegen.

De tweede figuur beschrijft de wijziging van het aantal afgelegde kilometers tussen 1997 en

2008 met 1997 als referentiejaar. Uit beide grafieken is een gestage, maar zekere opmars

van de trein af te leiden. Wanneer de trend uit de Figuur 2 wordt geëxtrapoleerd naar 2020,

komen we op een procentuele stijging van het aantal afgelegde kilometers ten belope van

16% t.o.v. 1997. Om deze verwachte groei op te vangen, is er een intensere benutting en/of

uitbreiding nodig van de beschikbare capaciteit, nl. sporen en zitplaatsen. Sinds 2006

investeert NMBS dan ook jaarlijks bijna 540 miljoen euro in haar rollend materieel [32].

Ouder rollend materieel wordt vernieuwd, dubbeldekkers worden aangekocht, etc. De NMBS

voorziet een capaciteitsuitbreiding van ruim 34% tegen 2016; dit zijn zo‟n 375.000 extra

zitplaatsen [29].

Figuur 1: De jaarlijkse verandering in het aantal vervoerde treinreizigers uitgedrukt in %

(gebaseerd op [27])

Jaarlijkse wijziging in het aantal vervoerde treinreizigers

0,0%

1,0%

2,0%

3,0%

4,0%

5,0%

6,0%

7,0%

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Page 19: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 1: Introductie 3 3

Figuur 2: De evolutie en extrapolatie van het aantal afgelegde treinkilometers ten opzichte van

1997 (gebaseerd op [27])

Als men het kostenplaatje van de verschillende transportmodi vergelijkt, blijkt het openbaar

vervoer veel goedkoper te zijn dan de wagen. Stel een tweeverdienergezin waarin de ene

persoon op 26 km en de tweede persoon op 58 km van zijn werk woont. Wanneer beide

gezinsleden elk met de wagen naar het werk gaan, kost dit hen jaarlijks om en bij de 8000

euro, terwijl het openbaar vervoer hen jaarlijks 1000 euro zou kosten [1]. Een markante

besparing dus (voor meer uitleg zie bijlage 7.3). Waarom wint de auto het dan met zo‟n grote

voorsprong van het openbaar vervoer? Hiervoor zijn volgens onderzoek van de FOD

Mobiliteit en Vervoer vijf grote redenen [13]:

1. De uurregeling is niet of te weinig afgestemd op de werkuren. De werknemers komen

ofwel te vroeg, ofwel te laat op hun werk. (werd vermeld in 23,7% van de gevallen)

2. De werkplaats is onvoldoende of zelfs niet bereikbaar met het openbaar vervoer. Deze

bereikbaarheid bleek vaak problematisch in stadsranden waar ook veel werkgelegenheid

is, maar het openbaar vervoer minder ontwikkeld is. (23,4%)

3. De reistijd wordt vaak te lang bevonden. (18,9%)

4. De afstand van de bushalte of het treinstation tot de werkplaats blijkt voor werknemers

vaak te groot te zijn om te voet af te leggen. (13,2%)

5. Mensen voelen zich vaak niet veilig, oncomfortabel en vinden de kwaliteit vaak te laag.

(5,4%)

Evolutie van het aantal afgelegde km (referentiejaar: 1997)

y = 0,006x + 0,0155

0,0%

2,0%

4,0%

6,0%

8,0%

10,0%

12,0%

14,0%

16,0%

1997

1999

2001

2003

2005

2007

2009

2011

2013

2015

2017

2019

Spoor

Lineair (Spoor)

Page 20: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 1: Introductie 4 4

1.1.3 De trein als antwoord op de milieuproblematiek

België heeft de verplichting zijn CO2-uitstoot tegen 2012 met 7,5% te verlagen en tegen 2020

met 15% t.o.v. 1990, ten einde te voldoen aan de E.U.-norm. De transportsector draagt

hierbij een grote verantwoordelijkheid aangezien zij een van de grote CO2-emissiebronnen

is. Om het milieu én de economie op lange termijn veilig te stellen, moet de stijgende

mobiliteitsvraag verzoend worden met een dalende CO2-uitstoot. De trein kan hierin een

belangrijke rol spelen. Een treinreiziger veroorzaakt gemiddeld vijf keer minder CO2 dan een

autopassagier en ook voor goederenverkeer is de trein zeer CO2-efficiënt. Een globale

aanpak van de CO2-uitdaging pleit dus voor een modale shift ten voordele van de trein. Voor

grafieken omtrent de CO2-emissie van treinen in vergelijking met andere transportmiddelen,

wordt verwezen naar bijlage 7.4.

Om deze modale shift te stimuleren, heeft de NMBS zich verbonden te investeren in een

capaciteitsverhoging. Bovendien moeten stations in de toekomst vlotter bereikbaar zijn

aangezien het spoor geen deur-tot-deuroplossing is. Dit kan worden verwezenlijkt a.d.h.v.

verbeterde aansluitingen met ander openbaar vervoer en het uitbreiden van parkings.

Het station zelf zou meer kunnen worden dan een vertrek- en eindpunt van een reis. Het kan

zich ontpoppen tot een „stadsplatform‟ met winkels en kleine dienstverleners, zoals

fietsherstelplaatsen, strijkateliers, misschien zelfs crèches,… Voor de pendelaar betekent dit

een belangrijke tijdswinst en een efficiënte vermindering van het aantal verplaatsingen [28].

1.1.4 Operationele performantie

De kwaliteit en tevredenheid van de klanten wordt grotendeels bepaald door de stiptheid. Dit

punt vormt na de slechte resultaten van 2009 een grote uitdaging voor 2010. De

stiptheidsscore voor 2009 bedraagt 88,9%. De hoofdoorzaak van de vertragingen zijn

pannes en defecten aan het rollend materieel. Ter verbetering van de stiptheid stelt de

NMBS ter optimalisering van het onderhoud van het treinmaterieel een breed actieplan op;

van standaardisering, met positieve gevolgen voor de know-how van personeel en het

stockbeheer, tot heel specifieke en gerichte maatregelen, zoals het vroeger opstarten van

locomotieven op koude dagen. Wanneer de stiptheid te wensen overlaat, vindt de NMBS het

heel belangrijk om zijn klanten zo goed mogelijk te informeren. Reizigers worden nu in real-

time en op maat geïnformeerd over het verloop van het treinverkeer.

Verder probeert de NMBS de kwaliteit van het treinverkeer te verbeteren door indien

mogelijk in te spelen op de verwachtingen van (potentiële) klanten. Dit kan door meer treinen

in te leggen, door nieuwe verbindingen aan te bieden (bv. de verbinding Kortrijk-Doornik die

het mogelijk maakt om vanuit Kortrijk naar Rijssel te reizen [31]) of door de dienstregeling

Page 21: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 1: Introductie 5 5

aan te passen [29]. Dit laatste dient om de treinuren beter af te stemmen op school- en

werkuren [30].

Over de landsgrenzen heen positioneert NMBS zich steeds meer als een centrale speler in

het Europese hogesnelheidsverkeer. Vanuit Brussel zijn Frankrijk, Duitsland, Nederland of

Engeland aan boord van een hoge snelheidstrein (HST) in een mum van tijd bereikbaar. In

de loop van 2010 wil NMBS een nieuwe HST lanceren, nl. de „Fyra‟. Deze HST zal het

bestaande HST-aanbod dat bestaat uit de Thalys en de Eurostar, aanvullen [29].

1.1.5 Liberalisering van het Europese spoorverkeer

Op 1 januari 2005 werd het goederenvervoer geliberaliseerd en dit in navolging van E.U.-

beleidslijnen ter verbetering van de concurrentie. Voor de verwezenlijking van deze

liberalisering was een herstructurering van de NMBS noodzakelijk. De NMBS werd gesplitst

in drie delen, nl. Infrabel (infrastructuurbeheerder), NMBS (exploitant van treinen) en NMBS-

holding (overkoepelende holding). Deze drie samen vormen de NMBS-Groep [39]. De

volgende stap in het liberaliseringsplan is het vrijmaken van het internationaal

passagiersvervoer, welke gepland is voor dit jaar. Uiteindelijk zou de markt voor het

binnenlands reizigersvervoer worden opengemaakt in 2017 (gesprek met de heer Vervoort

B., 2 maart 2010, Brussel).

Het grootste knelpunt in deze liberalisering is opnieuw de beperkte beschikbare capaciteit

van de infrastructuur, welke zal moeten worden gedeeld door steeds meer treinoperatoren.

Vandaag de dag gebruiken vier [39] verschillende operatoren de infrastructuur [12].

1.2 Opbouw en relevantie van deze thesis

In de literatuur is veel te vinden rond de planning van een treinsysteem. Deze literatuur is

echter zeer gefragmenteerd en onafgelijnd. Er is geen basiswerkstuk waarop kan woren

verdergebouwd en vele werken behelsen aspecten uit verschillende domeinen van het

treinplanningsprobleem. Het treinplanningsprobleem kan immers gaan over het toewijzen

van rollend materieel, de planning van het personeel, het voorzien van de juiste treinlijnen,

het opvolgen van de vraag en de dienstregeling van treinen. Verder worden duizend en een

methodes aangerijkt om een treinplanningsprobleem op te lossen. Daartegenover staat dat

de praktische waarde van deze werken vaak nogal dubieus is.

In deze thesis zal één aspect van het treinplanningsprobleem uitgebreid worden behandeld,

nl. het dienstregelingsprobleem. De dienstregeling is het meest zichtbare aspect van het

treinplanningsprobleem naar de klant toe. De kwaliteit van de dienstverlening hangt

bovendien grotendeels af van deze dienstregeling. Snelle verbindingen, op tijd reizende

treinen, korte reistijden en vertrekuren aangepast aan werk- en schooluren zijn enkele

Page 22: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 1: Introductie 6 6

voorbeelden die het reizen per trein aangenamer maken. Verder kan een goede

dienstregeling in belangrijke mate bijdragen aan de modale shift van de wagen ten voordele

van de trein. Op die manier kunnen de dagelijkse verkeersperikelen en de daaruitvolgende

Belgische CO2-voetafdruk worden ingeperkt.

Indien dienstregelingen sneller kunnen worden opgemaakt, komt er tijd vrij voor scenario-

analyses. De treinmaatschappij zou dan verschillende criteria kunnen afwegen tegen elkaar

en sneller feedback krijgen van en geven aan andere treinplanningsdiensten. Kortom, dit zou

een kwalitatieve en kwantitatieve verbetering van de dienstverlening kunnen betekenen.

Bovendien zou de infrastructuurbeheerder Infrabel in het licht van de nakende liberalisering

van het nationaal passagiersverkeer, op die manier beter en sneller kunnen oordelen welke

treinmaatschappijen het meest rendabel zijn. Zo zou hij efficiënter zijn infrastructuur kunnen

verdelen over de verschillende maatschappijen. Omwille van deze redenen is het

automatiseren en optimaliseren van het dienstregelingsprobleem zeer belangrijk.

Aangezien een goede dienstregeling een positieve weerslag heeft op de samenleving en de

treinmaatschappij, zal in deze thesis worden gefocust op het verbeteren van de huidige

dienstregeling. Aan de hand van lineaire programmering zal worden aangetoond hoe deze

dienstregeling kan worden geoptimaliseerd. Deze methode zal worden toegepast op een

deel van het Belgisch spoornetwerk. Schematisch gezien is deze thesis als volgt

opgebouwd:

Figuur 3: Opbouw thesis (eigen werk)

Bij het pellen van een ajuin moet je eerst voorbij de buitenste lagen alvorens je de kern kunt

bereiken. Ook bij deze thesis moeten eerst algemene concepten worden behandeld alvorens

Verbeteren van de dienstregeling

Modelleren van de dienstregeling

Planning van de dienstregeling

Page 23: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 1: Introductie 7 7

we kunnen overgaan tot de optimalisatie van de dienstregeling. Figuur 3 geeft de

verschillende lagen van deze thesis weer. De buitenste schil betreft de planning van de

dienstregeling. Het dienstregelingsprobleem wordt gesitueerd in de context van het

treinplanningsprobleem en daarop aansluitend wordt een korte beschrijving gegeven van de

andere treinplanningsprocessen zodanig dat het verschil met het dienstregelingsprobleem

duidelijk wordt. Vervolgens wordt beschreven met welke hulpmiddelen een dienstregeling

kan worden opgesteld. Tot slot wordt een blik geworpen op de planning voor een nieuwe

dienstregeling bij de NMBS. Het betreft een tijdslijn met geplande taken met als doel tegen

het einde van het jaar een vernieuwde dienstregeling in werking te stellen. Dit alles komt aan

bod in hoofdstuk 2.

Na dit algemeen overzicht van het dienstregelingsprobleem komen we bij de volgende laag.

De wijze waarop een dienstregeling kan worden gemodelleerd, komt uitgebreid aan bod in

hoofdstuk 3. Het betreft hier echter een kwalitatieve modellering. De mogelijke objectieven

en restricties van een dienstregeling worden hier opgelijst en uitgebreid uitgelegd aan de

hand van een voorbeeld. Deze objectieven en restricties zijn terug te vinden in de literatuur

en/of bij de NMBS. Aansluitend hierbij wordt een kort literatuursoverzicht gegeven.

Als finale doel van deze thesis wordt in hoofdstuk 4 gepoogd de huidige dienstregeling te

verbeteren. Het vertrekpunt hierbij is het wiskundig modelleren van de dienstregeling in de

vorm van een lineair programmeringsprobleem. Wat betreft de restricties en objectieven

werd een selectie gemaakt uit de lijst voorhanden in hoofdstuk 3. Dit wiskundig model wordt

vervolgens geïmplementeerd in Microsoft Excel en kan worden geoptimaliseerd a.d.h.v. „Risk

Solver Platform‟, een MS Excel add-in aangeboden door Frontline Systems. Ten einde de

parameterwaaren te kunnen bepalen, werd een reeks van gevoeligheidsanalyses uitgevoerd.

De aldus bekomen optimale dienstregeling wordt vervolgens getest op zijn robuustheid

a.d.h.v. Monte Carlo-simulaties. Tot slot werd de dienstregeling geoptimaliseerd naar twee

verschillende objectieven tegelijk.

Deze thesis wordt afgesloten met een kritisch besluit en richtlijnen voor verder onderzoek in

hoofdstuk 5.

Page 24: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

8

Hoofdstuk 2: Plannen van de dienstregeling

In dit hoofdstuk wordt de dienstregeling gesitueerd in het treinplanningsproces. Deze laatste

bestaat uit het schatten van de vraag, de lijnplanning, het plannen van de dienstregeling, het

plannen van het rollend materieel en de personeelsplanning. Deze worden kort uiteengezet

om het verschil met het dienstregelingsprobleem duidelijk te maken. Vervolgens worden de

verschillende tools voor het opstellen van de dienstregeling besproken. Deze tools kunnen

gaan van diagrammen tot computerprogramma‟s. Tot slot wordt een verslag gegeven van

het planningsproces van de dienstregeling bij NMBS. Het betreft een gefaseerd stappenplan

waarin verschillende acties worden ondernomen om elk jaar in december een licht

gewijzigde dienstregeling te implementeren.

2.1 De verschillende fasen in treinplanning

Wegens de grote complexiteit van het treinplanningsprobleem, wordt dit planningsproces

opgedeeld in verschillende fasen, welke worden afgebeeld op onderstaande figuur.

Het dienstregelingsprobleem is een onderdeel van het globale treinplanningsprobleem en

fungeert als interface tussen de service design (schatting van de vraag en lijnplanning) en de

operationele planning (planning van het rollend materieel en personeel). De dienstregeling

verdeelt in feite het tijdsoverschot (i.e. de slack time), dat onvermijdelijk is binnen een

transportsysteem, tussen de service en de operationele zijde. Immers, de wachttijden die

passagiers ondervinden, en die over het algemeen als onaangenaam worden ervaard,

moeten worden afgewogen tegen de onproductieve tijd van personeel en treinen [23].

Eenvoudig gesteld dient de output van de ene stap als input voor de volgende. Het kan

echter ook mogelijk zijn dat de eerste stap feedback incorporeert van de tweede. Zo ontstaat

er een wisselwerking tussen de verschillende processen. Bepaalde stappen kunnen ook voor

een stuk samen worden uitgevoerd. Om het onderscheid tussen de verschillende

planningsstappen beter te begrijpen, worden deze hieronder kort uiteengezet.

Page 25: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 2: Het plannen van de dienstregeling 9 9

Figuur 4: Schematische voorstelling van de verschillende fasen in het treinplanningsproces

(gebaseerd op [35])

2.1.1 Schatting van de vraag

De eerste stap voor het uitbaten van spoorwegen, is het schatten van de vraag naar

treinvervoer. Deze vraag wordt uitgedrukt als het aantal mensen dat wil reizen van en naar

een bepaalde plaats. Door voor elke combinatie van plaatsen het aantal passagiers te

schatten, wordt zo een “origin-destination-matrix” (i.e. “OD-matrix”) opgesteld. Deze

schatting wordt bekomen o.b.v. de ticketverkoop en door passagiers te tellen en te

interviewen [35].

2.1.2 De lijnplanning

Voor de lijnplanning wordt vertrokken van de OD-matrix bekomen uit de vorige fase. Men

zou tussen al deze oorsprongen en bestemmingen een treinlijn (zie definitielijst) kunnen

trekken, maar dit zal echter verre van optimaal zijn. Dan bestaat het lijnplanningsprobleem

erin een optimale set van treinlijnen te vinden en te bepalen met welke frequentie deze lijnen

moeten worden uitgebaat zodanig dat aan de reizigersvraag kan worden voldaan. Het

voorzien van directe verbindingen en een voldoende lijnfrequentie worden in deze fase

afgewogen tegen de kosten. Er wordt ook bepaald welk treintype, i.e. IC, IR, L, CR, P of ICT

(zie definitielijst), wordt gelinkt aan een bepaalde lijn.

2.1.3 Planning van de dienstregeling

De dienstregeling is gebaseerd op het optimale lijnplan. Hier worden de aankomst- en

vertrektijden van de lijnen bepaald. Deze dienstregeling wordt opgesteld in functie van een

doel, bijvoorbeeld het minimaliseren van de transferwachttijd, en moet rekening houden met

een aantal beperkingen.

De dienstregeling kan cyclisch of a-cyclisch zijn. Een cyclische dienstregeling beschrijft de

vertrek- en aankomsttijden van treinen in een bepaalde tijdsspanne die steeds wordt

herhaald. Deze bedraagt meestal een uur. Het grote voordeel van deze cyclische

dienstregeling is dat de reizigers ze gemakkelijk kunnen onthouden. Anderzijds biedt een a-

cyclische dienstregeling meer mogelijkheden om de dienstregeling beter af te stellen op

Page 26: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 2: Het plannen van de dienstregeling 10 10

vraagfluctuaties. Tijdens de piekuren bijvoorbeeld, kan het lijnplan meer treinen inzetten dan

tijdens de daluren, zodat er frequenter treinen rijden. Met een cyclische dienstregeling is het

tijdens de piekuren enkel mogelijk om langere wagons of dubbeldekkers in te zetten. In de

praktijk wordt echter een hybride dienstregeling gehanteerd. De treintypes die het cyclische

basisaanbod vormen zijn de IC-, IR-, L- en CR-treinen, terwijl het a-cyclische aanvullend

aanbod de P- en ICT-treinen betreffen (voor treintypes, zie definitielijst).

In het dienstregelingsprobleem moeten treinconflicten worden opgelost. Treinen kunnen

elkaar niet inhalen of kruisen, tenzij in een station of op een zijspoor. Verder moeten treinen

voor de veiligheid ook steeds een zekere afstand tussenlaten. Dan zijn er nog een reeks

beperkingen die de kwaliteit van de dienstregeling waarborgen, zoals een minimum

overstaptijd, maximum haltetijd, etc.

De dienstregeling werd lange tijd manueel opgesteld via trial en error a.d.h.v. een tijd-

plaatsdiagram (cfr. infra). Pas recentelijk werd het opstellen van de dienstregeling deels

geautomatiseerd. De nakende liberalisering en immer sneller wordende computers zijn twee

grote motieven om te zoeken naar efficiëntere en meer geautomatiseerde

planningstechnieken. Wiskundige modellen en heuristieken zijn hierbij onontbeerlijk [11].

2.1.4 Planning van het rollend materieel

In deze planningsstap wordt het rollend materieel, i.e. wagons en locomotieven, toegewezen

aan treinlijnen in de dienstregeling, rekening houdend met het verwachte aantal passagiers.

Een criterium kan hierbij bijvoorbeeld zijn dat een passagier een zitplaats moet hebben als

zijn reistijd op die trein meer dan een kwartier is. De beschikbaarheid van zitplaatsen is

immers een belangrijk beslissingscriterium van passagiers bij het beslissen over al dan niet

met de trein reizen.

Een treinoperator heeft typisch de keuze tussen verschillende soorten wagons en

locomotieven, bijvoorbeeld enkele wagons of dubbeldekkers, wagons met een eigen motor

of wagons die een locomotief behoeven, etc. Nadat aan elke treinlijn een wagontype is

toegewezen, wordt bepaald hoeveel wagons elke trein moet bevatten. Aangezien wagons

schaarse middelen zijn, wordt in het rolling stockprobleem het gebruik van wagons

geoptimaliseerd. Wagons kunnen immers gebruikt worden door verschillende lijnen, op

andere tijdstippen. Op dalmomenten zijn ook niet alle wagons in gebruik. Een rollend-

materieelplan beschrijft dan vervolgens welke wagon wanneer aan de kant moet worden

gezet, al dan niet voor onderhoud.

De drie conflicterende objectieven in het rollend-materieelprobleem zijn (1) service, het

voorzien van genoeg zitplaatsen, (2) efficiëntie, het minimaliseren van het gebruik van

rollend materieel en (3) robuustheid, het minimaliseren van het aantal keer dat een wagon

Page 27: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 2: Het plannen van de dienstregeling 11 11

moet worden weggezet, aangezien hierbij dezelfde spoorinfrastructuur wordt gebruikt als

voor de normale treinreizen. Er wordt dus gestreefd naar een robuust toewijzingsplan van

het rollend materieel aan de verschillende treinlijnen [15; 21; 35].

2.1.5 Personeelsplanning

Elke trein moet bemand worden door een machinist en een of meerdere conducteurs. Deze

planningsstap is opnieuw een complex probleem aangezien men rekening moet houden met

meerdere complexe arbeidsvoorwaarden. De machinist en de conducteurs moeten op het

einde van de dag opnieuw naar hun thuisbasis reizen. Shifts moeten tenminste een halfuur

lunchpauze bevatten, en de shift mag maximaal vijf opeenvolgende uren bevatten. Een shift

mag ook niet te eentonig zijn; een machinist of conducteur mag niet toegewezen zijn aan

dezelfde trein gedurende de hele werkdag. Maar overstappen op een andere trein is enkel

toegelaten wanneer er een voldoende buffertijd voor de overstap is. Anders zou dit immers

vertraging kunnen veroorzaken. Verder kunnen medewerkers nog individuele wensen

hebben om een bepaalde dag vrijaf te nemen, te werken op een bepaalde lijn, samen te

werken met een bepaalde collega, etc.

In het personeelsplanningsprobleem zijn de drie belangrijke conflicterende objectieven (1)

efficiëntie, het aantal shifts is minimaal, (2) aanvaardbaarheid, nl. voldoen aan

arbeidsvoorwaarden, eerlijke verdeling van de werklast en personeelswensen, en (3)

robuustheid, d.i. het vermijden van vertraging te wijten aan het personeelsschema [21; 35].

Al deze stadia hebben een nauwe relatie. Het ene stadium optimaliseren kan suboptimaal

zijn voor het geheel; het kan immers de zoekruimte van het volgende stadium beperken [15].

Op het strategisch planningsniveau wordt beslist omtrent investeringen in infrastructuur.

Deze beslissingen zijn gericht op de lange termijn en vergen grotere kosten. De

vraaganalyse en het lijnplan behoren tot het strategische planningsniveau. Het tactisch

planningsniveau behelst de middelenallocatie. Tot dit niveau behoort het rollend-

materieelplan en het personeelsplan. Het operationele planningsniveau houdt de dagelijkse

beslissingen in, zoals beslissingen omtrent machinebreuken, zieke machinisten,

treinongevallen, etc. De dienstregelingsfase fungeert als koppelstuk tussen de tactische en

de strategische planningsfase [15].

Page 28: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 2: Het plannen van de dienstregeling 12 12

Figuur 5: Het hiërarchisch treinplanningsproces (aangepast uit [15])

Zoals reeds duidelijk gemaakt door Figuur 4, vormt de output van het ene proces de input

voor het volgende proces, vandaar de getrapte structurering van het treinplanningsprobleem.

Het planningsprobleem is echter niet zo absoluut lineair als het lijkt; er zijn immers

terugkoppelingslussen aanwezig tussen de verschillende stadia. De dienstregeling kan

bijvoorbeeld worden aangepast om het personeelsplan te verbeteren. Deze onderlinge

afhankelijkheid tussen de verschillende planningsstadia toont aan waarom een snelle

methode voor het opstellen van de dienstregeling cruciaal is. Zo kan immers sneller

feedback worden gegeven en geïncorporeerd, waardoor de totale tijdsspanne voor het

volledige treinplanningsprobleem verkort en het plan kwalitatief verbetert [35].

2.2 Tools voor het opstellen van de dienstregeling

De dienstenregeling wordt sinds lange tijd manueel opgesteld m.b.v. een tijd-plaatsdiagram

[9]. Een methode kan zijn om de verschillende treintypes onafhankelijk van de andere in te

plannen. Vaak volgt men hierbij de hiërarchie IC IR L. Bij het inplannen wordt rekening

gehouden met veiligheids- en andere beperkingen. Conflicten, zoals treinen die te dicht op

elkaar volgen, worden manueel opgelost. Hierdoor kan het wel zijn dat andere treinlijnen

opnieuw moeten worden ingepland.

Het voornaamste doel van het opstellen van de dienstregeling is meestal slechts een

uitvoerbare dienstenregeling bekomen, alhoewel men hier en daar wel rekening probeert te

houden met andere objectieven. Tegenwoordig bestaan echter vele middelen om de planner

hierbij te helpen, zoals een grafische display op de computer en een computersimulatie,

Operationeel: day-to-day management

Tactisch: planning van het rollend materieel en personeel

Koppelstuk: dienstregeling

Strategisch:Schatting van de vraag en lijnplanning

Page 29: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 2: Het plannen van de dienstregeling 13 13

maar deze middelen gaan niet op zoek naar uitvoerbare alternatieven, lossen geen

conflicten op en proberen niet te optimaliseren. Het computerprogramma „Viriato‟ dat

gebruikt wordt door de NMBS, is hier een voorbeeld van.

Viriato1, een softwarepakket voor het opstellen van transportdienstregelingen, werd in 2008

door NMBS aangekocht. Alle treinen worden aan het programma toegevoegd, waarmee het

dan een dienstregeling simuleert, zonder te optimaliseren naar een objectief. Het resultaat is

een netwerkkaart met alle vertrek- en aankomsttijden. Het programma geeft aan of er al dan

niet conflicten aanwezig zijn in de dienstregeling. Dit wordt weergegeven op een tijd-

plaatsdiagram in het rood. De planningsdienst moet dan de dienstregeling herzien. Bij het

plannen probeert men een zo goed mogelijke spreiding en aansluitingen te bekomen. Dit

resultaat wordt aan de afdeling NMBS-Technics geleverd welke bestudeert hoe de

dienstregeling zo efficiënt kan worden bereden. Eventueel stelt NMBS-Technics wijzigingen

voor om de dienstregeling efficiënter te maken.

In Figuur 6 wordt een cyclus uit een cyclische dienstregeling voorgesteld in de vorm van een

tijd-plaatsdiagram. De verticale as is de tijdsas, op de horizontale as bevinden zich de

tussenliggende stations. De lijnen in het diagram stellen de locaties voor waar treinen zich op

dat moment bevinden. De nummers corresponderen met bepaalde treinen. Beschouw

bijvoorbeeld trein 21700, voorgesteld door de paarse lijnen. Binnen een tijdsspanne van

bijna anderhalf uur reist deze trein van Rotterdam naar Utrecht en terug. De volledige reis

kan worden afgebeeld in een tijdsvenster van een cyclus, nl. zestig minuten. Om 8 minuten

na het uur verlaat de trein Rotterdam, zoals je kan zien in het linkerdeel van het diagram. De

trein komt aan in Utrecht om 42 minuten na het uur. Hij vertrekt terug uit Utrecht om 49

minuten na het uur en komt terug aan in Rotterdam om 27 minuten na het uur. Dan duurt het

opnieuw tot 8 minuten na het uur vooraleer de volgende trein uit Rotterdam rechtstreeks

naar Utrecht rijdt.

Echter, de hevige competitie tussen verschillende spoorwegmaatschappijen in die landen

waar de spoorwegsector geliberaliseerd is, de almaar sneller werkende computers en de

belangrijker wordende rol van het treinverkeer zijn allen oorzaak van de grote inspanning die

gedaan wordt om efficiëntere en meer geautomatiseerde planningstechnieken te ontwikkelen

en te gebruiken.

1 Viriato werd gecreëerd door het Zwitserse bedrijf PTN (Passenger Transport Networks).

Page 30: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 2: Het plannen van de dienstregeling 14 14

Figuur 6: Tijd-plaatsdiagram van de treinlijnen tussen Rotterdam en Utrecht (overgenomen uit

[17])

2.3 Het opstellen van de dienstregeling bij de NMBS

Uit een gesprek met mevrouw Courtois E. (2 maart 2010, Brussel), werd duidelijk hoe de

NMBS tewerkgaat om de dienstregeling op te stellen. Elk jaar in december wordt een nieuw

spoorboekje gepubliceerd. Het spoorboekje is een brochure met de treinuren die geldig zijn

gedurende het komende jaar. Om dit spoorboekje in december te kunnen uitbrengen, moet

men er reeds aan beginnen in augustus het jaar ervoor. Deze jaarlijkse aanpassingen zijn

incrementele wijzigingen en volgen een vierstappenplan. Om de vijftien jaar echter wordt een

volledig nieuw vervoersplan ontwikkeld en de volgende is voor 2013 (Fase 0). In een nieuw

vervoersplan kunnen bv. aan bestaande treinen een ander treintype worden toegewezen.

Onderstaande figuur geeft de verschillende stappen in het opstellen van de dienstregeling

weer.

Page 31: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 2: Het plannen van de dienstregeling 15 15

Figuur 7: De verschillende stappen in het opstellen van de dienstregeling. (Gebaseerd op

gesprek met mevrouw Courtois E., 2 maart 2010, Brussel)

Elke fase bestaat uit verschillende stappen die hieronder in tabelvorm zijn weergegeven.

Deze tabel vergt echter een woordje uitleg. In de eerste fase worden aanpassingen aan de

dienstregeling ontwikkeld. Om daarmee te kunnen beginnen, moet Infrabel aan de planning

de veranderingen aan de beschikbare infrastructuur doorgeven: zijn er grote werken, zijn

bepaalde treinstellen niet meer beschikbaar, etc.

Vervolgens geeft de planning aan NMBS-Technics door welke lijnen er zullen wijzigen of

zelfs nieuw zijn (de rollen van de verschillende NMBS-diensten in het planningsproces

worden in Tabel 1 weergegeven). NMBS-Technics gaat dan na wat de impact hiervan is op

het rollend materieel: hoeveel en welke treinstellen moeten worden toegewezen, hoeveel

bestuurders zijn er nodig, etc.

Daarna moet de planningsdienst rittijden aanvragen aan Infrabel. Deze controleert dan of de

aangevraagde rittijden al dan niet mogelijk zijn (1) met de beschikbare infrastructuur en (2)

door het voorkomen van eventuele werken. Infrabel past indien nodig de rittijden aan.

Concreet betekent dit dat de planningsdienst berekent dat een trein theoretisch gezien in

bijvoorbeeld 20 minuten van station A naar station B kan rijden. Infrabel gaat dan na of deze

rittijd al dan niet mogelijk is, want door slijtage van het voertuigenpark is het mogelijk dat

bepaalde treinen een lagere maximumsnelheid halen dan theoretisch mogelijk is. Bovendien

is een lagere snelheid soms gewenst wegens het voorkomen van werken op de

desbetreffende lijn en moeten er dus langere rittijden worden toegekend.

Page 32: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 2: Het plannen van de dienstregeling 16 16

In een volgende stap binnen de eerste fase bepaalt de planningsdienst de rijpaden van de

treinen; dit is hetzelfde als de treinlijnen bepalen. Voor deze geplande rijpaden moet Infrabel

opnieuw de haalbaarheid nagaan. Infrabel moet immers de beschikbare infrastructuur

verdelen over het vracht-, nationaal en internationaal reizigersverkeer. Bij dit

haalbaarheidsonderzoek moet ze ook rekening houden met de staat van de

spoorinfrastructuur.

In fase 2 wordt de dienstregeling definitief gemaakt. Dit proces begint met de officiële

aanvraag van de rijpaden aan het adres van Infrabel. Zij geeft dan de goedkeuring over de

aanvraag na een uitvoerig onderzoek. Vervolgens berekent de planningsdienst hoeveel

zitplaatsen er nodig zijn voor elke trein en vraagt ze dit aantal zitplaatsen aan aan NMBS-

Technics. Deze laatste wijst het rollend materieel toe aan de treinlijnen en stelt het

personeelsplan op. Ondertussen is er voortdurend overleg tussen de planning en Infrabel om

een definitieve dienstregeling op te stellen. Ten slotte is de goedkeuring nodig van het

directiecomité en de raad van bestuur.

In een derde fase worden de productiemiddelen toegewezen en het communicatieplan

gelanceerd. De dienst „Marketing en Communicatie‟ is in hoofdzaak verantwoordelijk voor dit

communicatieplan dat de nieuwe dienstregeling vertaalt naar de reiziger. In deze fase maakt

NMBS-Technics ook een definitief plan op voor het personeel en het rollend materieel.

Verder informeert Infrabel de stations over de gewijzigde dienstregeling. Zij moeten dan elk

voor zich de doortocht van treinen door hun station regelen. D.w.z. dat ze moeten vastleggen

aan welk perron een trein moet passeren en op welke sporen treinen met een lange

halteertijd moeten worden weggezet.

De stations worden vrij laat in het proces geïnformeerd. Bij het oplossen van de lokale

problemen brengen zij soms wijzigingen aan in de dienstregeling of hebben ze bemerkingen

en dit zorgt voor problemen. Daardoor komt men vaak in tijdsnood om op tijd de brochure af

te krijgen. Dit probleem zou kunnen worden verholpen: Infrabel zou kunnen rijpad per rijpad

of groepen rijpaden goedkeuren in plaats van alles in een keer te bevestigen. Zo zouden

verschillende goedgekeurde rijpaden reeds vroeger kunnen binnenlopen en zouden de

stations reeds vroeger kunnen worden geïnformeerd. Ze kunnen dan hun opmerkingen

maken voordat de dienstregeling reeds is goedgekeurd (gesprek met mevrouw Courtois E., 2

maart 2010, Brussel).

De vierde en laatste fase bestaat uit het voeren van informatiecampagnes. Het overige

openbaar vervoer nl. De Lijn, zijn Waalse tegenhanger TEC2 en zijn Brusselse tegenhanger

2 TEC: Transport en Commun (bus, tram)

Page 33: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 2: Het plannen van de dienstregeling 17 17

MIVB3 (in het Frans: STIB4), wordt door de planningsdienst geïnformeerd over de nieuwe

dienstregeling, zodat zij hun diensten kunnen aanpassen om nauwere aansluitingen te

verwezenlijken. In december gaan uiteindelijk de nieuwe dienstregelingbrochures ter perse

en worden ze gedistribueerd in de stations. Per definitie treedt ten slotte op 15 december de

nieuwe dienstregeling in werking.

Uit het bovenstaande planningsproces van de NMBS kan worden besloten dat hun

treinplanningsprocessen nogal parallel met elkaar verlopen. Bij NMBS zijn de verschillende

treinplanningsprocessen goed geïntegreerd; er zijn veel terugkoppelingslussen aanwezig die

de integratie van de verschillende deelprocessen bevorderen. Concreet ziet hun

treinplanningsproces eruit als hieronder afgebeeld. Vergelijk dit met het treinplanningsproces

zoals afgebeeld in figuur Figuur 4.

Figuur 8: Het treinplanningsproces bij de NMBS (eigen werk)

Ten opzichte van Infrabel werkt NMBS-Mobility met een service level agreement (SLA)

waarin deadlines zijn opgenomen die moeten worden nageleefd. Het niet nakomen van de

afspraken wordt echter niet beboet. Verder staan in deze SLA ook zaken zoals de minimum

opvolgtijd die ten allen tijde moet worden gerespecteerd.

3 MIVB: Maatschappij voor het Intercommunaal Vervoer te Brussel (bus, tram, metro)

4 STIB: Société des Transports Intercommunaux Bruxellois

Page 34: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 2: Het plannen van de dienstregeling 18 18

Tabel 1: Rollen van verschillende NMBS-diensten bij de planning van de dienstregeling (eigen

werk)

Dienst Taak

Planning (B-MO.3, NMBS Mobility afdeling 3) Planning van de dienstregeling

Technische dienst (B-TC, NMBS Technics) Planning van de treinbestuurders

en rollend materieel

Personeelsdienst (B-MO.1, NMBS Mobility afdeling 1) Planning van de treinbegeleiding

Dienst „Marketing en Communicatie‟ (B-MO.5, NMBS

Mobility afdeling 5)

Opstellen van communicatieplan

Infrabel Beheren van de infrastructuur

Page 35: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 2: Het plannen van de dienstregeling 19

Tabel 2: Schematisch verloop van het opmaken van de dienstregeling bij de NMBS (gebaseerd op gesprek met mevrouw Courtois E., 2 maart 2010,

Brussel)

Fase Procedure Verantwoordelijke Bestemd voor Periode

Fase

1:ontwikkeling

dienstregeling

Veranderingen beschikbare infrastructuur Infrabel Planning Augustus X-1

Impact op materieel van nieuwe of gewijzigde lijnen Planning / B-TC Planning / B-TC September X-1

tot december

X-1

Aanvraag rittijden Planning Infrabel

Levering rittijden en tijd m.b.t. werken Infrabel Planning

Aanvraag haalbaarheid rijpaden Planning Infrabel

Maart X – april

X Antwoord haalbaarheid rijpaden Infrabel Planning

Oriëntatienota dienstregeling Planning DC en RVB

Fase 2:

finalisatie

dienstregeling

Officiële aanvraag rijpaden Planning Infrabel

April X – juni X Aanvraag zitplaatsen Planning B-TC

Planning rollend materieel en personeel B-TC/personeelsdienst NMBS-Mobility

Goedkeuring rijpaden Infrabel Planning

Voortdurend overleg ter opstelling van dienstregeling Infrabel/Planning Planning/Infrabel

Definitieve goedkeuring dienstregeling Planning DC en RVB Juli X

Fase 3:

opstelling

productie-

middelen en

Briefing wijzigingen Planning B-MO.5/ Regionale

maatschappijen /

stakeholders Juli X

Informeren stations Infrabel Stations

Vervolg opstellen rollend materieel- en

personeelsplan

B-TC / personeelsdienst NMBS-Mobility

Page 36: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 2: Het plannen van de dienstregeling 20

lanceren van

de

communicatie

Opstellen communicatieplan B-MO.5 B-MO.5

Bepaling capaciteit infrastructuur Infrabel Planning

Augustus X Finaal rollend materieel- en personeelsplan B-TC / personeelsdienst NMBS-Mobility

Goedkeuring communicatieplan B-MO.5 Directiecomité en raad van

bestuur September X

Fase 4:

Informatie-

campagnes

Informeren van STIB/MIVB en TEC/De Lijn Planning STIB/MIVB, TEC/De Lijn September

Werkoverleg B-TC / personeelsdienst Oktober X

Brochures dienstregeling Planning NMBS-Mobility December X

Inwerkingtreding dienstregeling 15 December X

Legende:

B-TC: NMBS-Technics

B-MO.5: dienst „marketing en communicatie‟

DC: directiecomité

RVB: Raad Van Bestuur

Page 37: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

21

Hoofdstuk 3: Modelleren van de dienstregeling

Vorig hoofdstuk betrof het planningsproces van de dienstregeling. Om echter concreet een

dienstregeling op te stellen, is een modellering van de restricties en objectieven nodig. Het

voornaamste en meest voor de hand liggende doel is een dienstregeling bekomen die

eenvoudigweg uitvoerbaar is. Men kan het doel echter specifieker maken en bijvoorbeeld

vooropstellen dat de transferwachttijden moeten worden geminimaliseerd. Het kan ook

wenselijk zijn om meer dan een specifieke doelstelling tegelijk na te streven. Vaak is het

echter zo dat verschillende objectieven tegenstrijdig zijn, met als gevolg dat het tegelijk

nastreven van die objectieven resulteert in een trade-off. Het komt er dan op aan om

prioriteiten te stellen.

Een dienstregeling moet echter ook aan enkele voorwaarden voldoen. Er moet bijvoorbeeld

ten allen tijde voorkomen worden dat treinen botsen. Hoe meer restricties er zijn waaraan het

schema moet voldoen, hoe moeilijker het echter wordt om een uitvoerbaar schema te

bekomen. Restricties zijn echter van groot belang voor de praktische uitvoering van de

dienstregeling, veel meer dan de objectieven. Restricties die noodzakelijk zijn en waaraan de

dienstregeling dus moét voldoen, worden „hard constraints‟ genoemd. Restricties die mogen

worden geschonden, noemt men „soft constraints‟. Het zou mooi zijn als het schema ook aan

die restricties voldeed, maar als het anders niet lukt om een uitvoerbaar schema te

bekomen, mag men deze restricties verlaten.

In wat volgt worden de meest voorkomende doelfuncties in de gelezen literatuur opgelijst en

beschreven. Daarna volgt een overzicht en beschrijving van de meest voorkomende

restricties. Deze objectieven en restricties worden geïllustreerd aan de hand van een

voorbeeldnetwerk dat hieronder wordt uiteengezet. Vervolgens worden deze objectieven en

restricties tabelmatig weergegeven per auteur. Tot slot volgt een overzicht en een korte

bespreking van de modelleertechnieken, oplossingsmethodes, probleemgroottes,

probleemkarakteristieken en eigenaardigheden per auteur.

Page 38: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 22

3.1 Werkvoorbeeld

3.1.1 Probleemgrootte

Voor het werkvoorbeeld wordt ingezoomd op een klein deel van het Belgische

spoorwegnetwerk, dat gebruikt werd in de paper van Vansteenwegen en Van Oudheusden

[36]. Het netwerk bestaat uit zeven stations en vier treinlijnen (nl. A, B, C en D) die enkele

van deze zeven stations aandoen. Het netwerk wordt hieronder afgebeeld. De meeste van

de lijnen hebben hun begin- en eindstation ergens buiten dit miniatuurnetwerk. Lijn A vertrekt

bijvoorbeeld in Antwerpen en betreedt ons netwerk in Heist-op-den-Berg. Elke lijn reist in

twee richtingen, respectievelijk 0 en 1.

De steden in het netwerk zijn:

o Aarschot

o Alken

o Hasselt

o Heist-op-den-Berg

o Landen

o Leuven

o Sint-Truiden

De vier treinlijnen zijn:

o A: tussen Heist-op-den-Berg en Hasselt

o B: tussen Leuven en Hasselt, via Aarschot

o C: tussen Leuven en Hasselt, via Landen

o D: tussen Leuven en Heist-op-den-Berg

Lijnen A en C gebruiken IC-treinen met een gemiddelde snelheid van 76 km/h. Lijn B

gebruikt IR-treinen met een gemiddelde snelheid van 65 km/h. Lijn D gebruikt een L-trein

met een gemiddelde snelheid van 51 km/h.

3.1.2 Netwerkkarakteristieken

Het netwerk wordt gekenmerkt door meersporige baanvakken, d.w.z. dat aan elk spoor een

richting is toegewezen. Treinen die in de tegenovergestelde richting reizen, bevinden zich

dus nooit op hetzelfde spoor. Enkel tussen Landen en Sint-Truiden, en tussen Sint-Truiden

en Alken ligt een enkelsporig baanvak, dus slechts één spoor, waarop treinen in beide

richtingen kunnen rijden. In het station van Sint-Truiden kunnen twee treinen reizend in

tegengestelde richting elkaar kruisen. Bovendien kunnen treinen elkaar slechts inhalen in

Page 39: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 23

een station. Het inhalen en kruisen van andere treinen in een station is namelijk veel veiliger

dan onderweg.

Voor sommige van de mogelijke reizen zijn alternatieve routes beschikbaar. Men kan

bijvoorbeeld vanuit Leuven in Aarschot geraken via lijn B of D. Het is duidelijk dat de kwaliteit

van de dienstregeling voor de reizigers verhoogt wanneer deze lijnen gelijk gespreid worden

over de tijd. In ons voorbeeld is het beschouwde tijdsvenster één uur. De tijd tussen lijn B en

D zou dan idealiter 30 minuten moet bedragen. Als hiervoor geen moeite wordt gedaan, kan

de tijd tussen de twee lijnen oplopen tot bijna een uur.

De meeste van de treinen stoppen in meerdere stations dan aangegeven in het netwerk,

maar aangezien in die stations geen overstappen plaatsvinden, noch het aantal sporen

wijzigt, worden deze tussenstations voor de eenvoud weggelaten.

Er wordt aangenomen dat passagiers een directe reis verkiezen boven een reis met een of

meerdere overstappen.

Uit onderzoek gevoerd door de auteurs blijkt dat Leuven en Hasselt de belangrijkste

overstapstations zijn. Verbindingen moeten in die stations dus gegarandeerd worden. De

belangrijkste overstappen zijn meer bepaald:

o Hasselt:

o C1 A1: van Alken naar Aarschot

o C1 A0: van Alken naar Liège

o C0 A0: van Aarschot naar Alken

o Leuven:

o C0 B0: van Landen naar Aarschot

o C0 D0: van Landen naar Heist-op-den-Berg

o B1 C1: van Aarschot naar Landen

o D1 C1: van Heist-op-den-Berg naar Landen

o D1 C0: van Aarschot naar Brussel

Page 40: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 24

3.1.3 Dienstregeling

De gehanteerde dienstregeling betreft een cyclische dienstregeling. Dit is namelijk de

standaard in het Belgisch spoorverkeer. Het veronderstelde tijdsschema voor dit netwerk

wordt voorgesteld door Tabel 4. In Tabel 3 wordt de tijd tussen twee treinen op elke lijn

weergegeven. Als er 60 minuten tussen twee treinen van dezelfde lijn zit, dan is de

treinfrequentie van die lijn één.

Tabel 3: De frequentie van treinen per lijn (gebaseerd op [36])

Treinlijn Tijd tussen twee treinen van dezelfde lijn (in min)

A0 60

A1 30

B0 60

B1 Niet vermeld

C0 60

C1 30

D0 60

D1 Niet vermeld

A1 A0

B1

B0

C0

C1

D1 D0

Figuur 9: Het netwerkschema (aangepast uit [36])

Page 41: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 25

Tabel 4: Dienstregeling (overgenomen uit [36])

Aankomst Vertrek A V A V A V A V A V A V

Heist-op-den-Berg Aarschot Leuven Landen St-Truiden Alken Hasselt

A0 - 0 9 14 - - - - - - - - 40 46

D1 - 19 31 32 46 - - - - - - - - -

C1 - - - - - 31 58 60 69 71 78 79 85 -

Hasselt Alken St-Truiden Landen Leuven Aarschot Heist-op-

den-Berg

A1 - 20 - - - - - - - - 46 51 60 -

D0 - - - - - - - - - 14 28 29 41 -

C0 - 31 37 38 46 47 56 58 85 87 - - - -

Leuven Aarschot Hasselt

B0 - 11 23 25 50 -

Hasselt Aarschot Leuven

B1 - 10 35 37 49 -

3.1.4 Tijd-plaatsdiagrammen

Hieronder worden de tijd-plaatsdiagrammen weergegeven per link. Hierop wordt visueel

voorgesteld waar een trein zich bevindt op elk moment in de tijd. Op de verticale as wordt de

stationscode (de plaats) genoteerd en op de horizontale as de tijd in minuten. Een

treinconflict ontstaat wanneer twee positief hellende curven elkaar snijden op een link, idem

voor twee negatief hellende curven. Voor lijn C, meer bepaald tussen Landen, Sint-Truiden

en Alken, is het zelfs zo dat geen enkele curve een andere mag snijden, tenzij in een station.

We zien op de figuur dat hieraan is voldaan.

Figuur 10: Het tijd-plaatsdiagram tussen Heist-op-den-Berg en Aarschot (eigen werk)

tijd-plaatsdiagram tussen HOB (0) en Aarschot (1)

0

1

0 3 6 9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

57

60

tijd (in min)

sta

tio

n A0

A1

D0

D1

Page 42: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 26

Figuur 11: Het tijd-plaatsdiagram tussen Hasselt en Aarschot (eigen werk)

Figuur 12: Het tijd-plaatsdiagram tussen Leuven en Aarschot (eigen werk)

tijd-plaatsdiagram tussen Hasselt (0) en Aarschot (1)

0

1

0 3 6 9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

57

60

tijd (in min)

sta

tio

n

A0

A1

B0

B1

tijd-plaatsdiagram tussen Leuven (0) en Aarschot (1)

0

1

0 3 6 9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

57

60

tijd (in min)

sta

tio

n

B0

B1

D0

D1

Page 43: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 27

Figuur 13: Het tijd-plaatsdiagram tussen Leuven en Hasselt via Sint-Truiden, met 0 minuten als

oorsprong (eigen werk)

Figuur 14: Het tijd-plaatsdiagram tussen Leuven en Hasselt via Sint-Truiden, met 30 minuten

als oorsprong (eigen werk)

tijd-plaatsdiagram tussen Leuven (0) en Hasselt (4), via Landen

(1), Sint-Truiden (2) en Alken (3)

0

1

2

3

40 3 6 9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

57

60

tijd (in min)

sta

tio

n

C0

C1

tijd-plaatsdiagram tussen Leuven (0) en Hasselt (4), via Landen (1),

Sint-Truiden (2) en Alken (3) (bis)

0

1

2

3

4

30

33

36

39

42

45

48

51

54

57

60

63

66

69

72

75

78

81

84

87

tijd (in min)

sta

tio

n

C0

C1

Page 44: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 28

3.2 Oplijsting van de meest voorkomende objectieven

Objectieven voor het dienstregelingproces kunnen ruwweg in drie categorieën worden

opgedeeld. Vooreerst zijn er die situaties waarin enkel een uitvoerbare dienstregeling wordt

nagestreefd. Ten tweede kan worden gepoogd de kwaliteit van de dienstregeling te

maximaliseren. Met kwaliteit wordt een aantrekkelijke service voor reizigers bedoeld. Dit kan

een korte reistijd inhouden, voldoende overstaptijd, etc. Ten derde kan er gekozen worden

om de operationele kosten te minimaliseren. Hieronder worden de kosten verstaan die de

spoorwegmaatschappij oploopt door het uitbaten van het spoornetwerk. Hoewel dit op zich

meer aansluit bij de planning van het rollend materieel, d.i. de fase na het

dienstregelingsproces, kan de dienstregeling ook deze kosten beïnvloeden.

3.2.1 Uitvoerbare dienstregeling

1. Een uitvoerbare dienstregeling bekomen: dit objectief wordt niet geëxpliciteerd in een

doelfunctie, maar houdt in dat de dienstregeling aan alle hard constraints voldoet. Dit

betekent voornamelijk dat de dienstregeling als dusdanig is, dat het onmogelijk is dat

treinen kunnen botsen. Een ander voorbeeld van een hard constraint is de

maximumsnelheid die een trein kan rijden. Deze beperking wordt opgelegd door de

technische eigenschappen van de trein in kwestie.

Deze uitvoerbaarheid is als vanzelfsprekend het primaire doel bij het opstellen van een

dienstregeling. In de literatuur echter gaat men vaak hierbovenop nog (een of meerdere)

andere objectieven nastreven. Die objectieven kunnen wel vertaald worden in een

doelfunctie. In de praktijk daarentegen is men reeds tevreden bij het behalen van deze

uitvoerbaarheid. Het opmaken van een dienstregeling vergt immers veel tijd, aangezien

deze vandaag de dag nog grotendeels manueel wordt opgemaakt wegens de grote

complexiteit van het probleem. Bovendien zijn geautomatiseerde optimalisatiemodellen

vaak slechts toepasbaar op kleine instanties en dus niet geschikt voor realistische

probleemgroottes ([2; 5; 8; 33]).

2. Het minimaliseren van het aantal geschonden soft constraints en de mate waarin

ze geschonden worden: deze doelstelling gaat een stap verder dan de vorige. Om

uitvoerbaarheid te garanderen, moet worden voldaan aan de hard constraints. Hier

probeert men bovendien zoveel mogelijk rekening te houden met de soft constraints. Soft

constraints zijn geen voorwaarden voor een uitvoerbare dienstregeling. Deze restricties

mogen, zoals eerder vermeld, geschonden worden. Deze restricties zorgen ervoor dat de

dienstregeling kwaliteitsvoller wordt voor de passagier en/of efficiënter voor de

spoorwegmaatschappij. Een voorbeeld van beide is de beperking op de maximum

Page 45: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 29

haltetijd. Dit maakt het enerzijds kwaliteitsvoller, aangezien passagiers minder tijd op de

trein moeten spenderen. Anderzijds wordt de capaciteit van de treinen beter benut door

meer te rijden, want stilstaande treinen brengen geen geld op. Een beperking die enkel

de kwaliteit voor de passagiers verhoogt, is het verzekeren van treinverbindingen [10;

35].

3. Het minimaliseren van de aanpassing aan het geprefereerde schema om tot een

uitvoerbaar schema te komen: de eerste stap in het dienstregelingsproces is het

opmaken van een ideaal schema. Voor sommige treinen kunnen er immers

voorgeschreven en voor andere treinen geprefereerde vertrek-, aankomst- halte- en

reistijden zijn en dit voor zowel begin-, eind- als tussenstations. Bij de opmaak van dit

ideale schema worden alle restricties buiten beschouwing gelaten. In een tweede stap

wordt dit schema omgevormd tot een uitvoerbaar schema. Hierbij probeert men dan

volgens deze doelstelling zoveel mogelijk het geprefereerde schema te respecteren. Dit

wordt geëxpliciteerd door in de doelfunctie kosten toe te wijzen aan de verschuivingen

van die voorgeschreven en geprefereerde tijden. Het komt er hier dus op aan deze

kostenfunctie te minimaliseren [7; 9].

Kwan en Chang volgen een analoge redenering om de wijziging aan de originele

dienstregeling te minimaliseren met het oog op het bekomen van een gesynchroniseerde

dienstregeling (zie infra) [22].

3.2.2 Kwaliteitsmaximalisatie

4. Minimaliseer de totale (eventueel gewogen) reistijd: Een eerste onderdeel van

kwaliteitsmaximalisatie betreft het minimaliseren van de tijd die een trein nodig heeft om

van zijn beginstation naar zijn eindstation te reizen. De verkorting van deze treinreistijd

heeft een reistijdverkorting van de passagiers als gevolg en verhoogt dus de kwaliteit van

de dienstregeling [3; 14; 16; 25; 41; 42]. Bovendien verhoogt het BNP van een land

indien de gewonnen tijd wordt gebruikt voor productieve activiteiten [16].

Deze totale treinreistijd is afhankelijk van de snelheid van de trein, de haltetijd en de

wachttijd ontstaan door een conflict.

Page 46: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 30

De invloed van wachttijd ontstaan door een conflict, kan verduidelijkt worden a.d.h.v.

onderstaande figuur. Stel trein A heeft een totale treinreistijd van 60min, en trein B

90min. Als A en B elkaar ontmoeten op hetzelfde spoor, maar elk reizend in de

tegenovergestelde richting, dan zijn er twee opties. Ofwel wacht A tot B gepasseerd is

(linkerpaneel), ofwel wacht B (rechterpaneel).

Figuur 15: De invloed van wachttijd ontstaan door een conflict tussen twee treinen (eigen

werk)

Toepassing van deze doelfunctie op het werkvoorbeeld geeft het volgende: de

oorspronkelijke totale treinreistijd uit het werkvoorbeeld bedraagt 328 min. Dit is de som

van de totale treinreistijd van de 8 verschillende treinreizen. Om bijvoorbeeld de totale

treinreistijd van lijn A0 te berekenen, verminderen we 46 (d.i. vertrek uit Hasselt) met 0

(d.i. vertrek uit Heist-op-den-Berg). De totale treinreistijd van lijn A0 bedraagt dan 46 min.

Als we dan voorstellen dat een trein maximaal 3 min mag stoppen, dan wordt de totale

treinreistijd over alle treinreizen heen 318 min. De totale treinreistijd is dus met 10min

ingekort. Enkel bij lijn A was er mogelijkheid tot verkorting van de haltetijd, meer bepaald

in het station van Aarschot en van Hasselt. We zien op de nieuwe tijd-plaatsdiagrammen

in bijlage 7.5 dat deze wijziging geen conflicten veroorzaakt. De wijziging mag aldus

worden behouden.

Een verkorting van de treinreistijd heeft echter ook als gevolg dat de treinen beter worden

benut en hoort dus ook thuis onder de categorie „kostenminimalisatie‟. Het is meer

bepaald een voorbeeld van operationele kostenminimalisatie [14; 16].

In de doelfunctie kunnen gewichten worden toegekend aan de verschillende lijnen. Er

kan worden verondersteld dat reistijdverkorting van lijn A belangrijker is dan van lijn B,

omdat lijn A een drukkere lijn is. Bij lijn A worden dus meer passagiers bevoordeeld door

een reistijdverkorting dan bij lijn B. Aan lijn A wordt dan een groter gewicht toegekend

dan aan B. Zo weegt de reistijd van A meer door in de doelfunctie en zal een

reistijdverkorting in A dus meer aangemoedigd worden dan in het geval van lijn B [18].

tijd

plaats B A

100min tijd

plaats B A

70min

Page 47: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 31

Men kan i.p.v. de treinreistijd, de passagiersreistijd in beschouwing nemen. Men kan dan

voor elke trein in het systeem een verdeling vooropstellen van hoeveel passagiers de

trein verlaten en betreden in elk station [16]. Hierbij is de reistijd afhankelijk van de

snelheid van de trein, de haltetijd, de wachttijd ontstaan door een conflict en de

transferwachttijd.

5. Minimaliseer de totale wachttijd van reizigers: aan de basis van deze benadering ligt

de assumptie dat de tijd voor reizigers sneller gaat wanneer de trein aan het rijden is, dan

wanneer ze stopt of wanneer men moet wachten op een verbinding. Een vermindering in

deze twee laatsgenoemde aspecten wordt aldus meer geapprecieerd dan een

vermindering in de reistijd. Men minimaliseert hier dus enkel de haltetijd en/of de

transferwachttijd. De twee soorten wachttijden hoeven niet samen geminimaliseerd te

worden; men kan ofwel haltetijd [10; 15; 19] ofwel transferwachttijd [22; 40; 36; 37] ofwel

beide [23] minimaliseren. De transferwachttijd kan worden gewijzigd door bv. de

treinreistijd, haltetijden, vertrektijden en opvolgtijden te wijzigen. Aan de verschillende

lijnen kunnen ook hier opnieuw gewichten worden toegekend om de prioriteit van de

lijnen en de verbindingen in de analyse mee te nemen [35].

Voor een voorbeeld van minimalisatie van haltetijden wordt verwezen naar het voorbeeld

onder objectief 4. Hier bekijken we de minimalisatie van de transferwachttijd. Hiervoor

zoomen we in op de verbinding Alken-Aarschot, met een overstap in Hasselt, en laten we

al het overige buiten beschouwing. In Hasselt komt de passagier van lijn C1 en stapt over

op lijn A1. Herinner dat lijn B1 tussen Hasselt en Aarschot hetzelfde spoor gebruikt als

lijn A1. In bijlage 7.6 op Figuur 36 zie je het tijd-plaatsdiagram voor deze verbinding

gevisualiseerd. We zien dat de verbinding net gemist wordt; A1 vertrekt uit Hasselt op 20

min na het uur, terwijl C1 daar pas op 25 min na het uur toekomt. Wanneer we

veronderstellen dat de minimum transfertijd 4 min bedraagt, dan moeten reizigers 51 min

wachten op hun verbinding. Als de transferwachttijd geminimaliseerd wordt, dan zal de

transferwachttijd worden gereduceerd van 51 min naar 4 min, door bijvoorbeeld treinlijn

C1 9 min vroeger te plannen. Hierbij blijft het schema trouwens conflictvrij. De nieuwe

dienstregeling en diagrammen zijn te vinden in bijlage 7.6.

Een derde soort van wachttijd die een passagier kan ondervinden, is de tijd tussen de

aankomst van de passagier in het station om zijn trein te halen en de aankomst van de

trein in het station [41]. Deze wachttijdsoort is naar mijn mening niet relevant, aangezien

men er mag van uitgaan dat passagiers vandaag de dag genoeg mogelijkheden hebben

om reeds op voorhand na te gaan hoe laat hun trein vertrekt.

Page 48: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 32

6. Maximaliseer de betrouwbaarheid (robuustheid) van de dienstregeling: de

betrouwbaarheid kan worden uitgedrukt als het risico op vertraging wegens onverwachte

gebeurtenissen bij elke trein, vermenigvuldigd met het aantal minuten vertraging. Bij het

maximaliseren van de betrouwbaarheid wordt aldus de betrouwbaarheid van de

aankomsttijden gemaximaliseerd [14].

Robuustheid kan bekomen worden op twee verschillende manieren. Een eerste manier is

door de treinreistijd langer te maken dan het minimum en zo een tijdsbuffer in te bouwen.

Wanneer deze tijdsbuffers relatief groot zijn, is het risico op vertraging kleiner. Opgelopen

vertraging kan immers worden ingelopen door de trein sneller te laten rijden en aldus de

tijdsbuffer te consumeren. Het risico op vertraging kan worden getest door te simuleren

[36; 37].

Volgens Vansteenwegen en Van Oudheusden [36] bedraagt de ideale buffertijd voor de

verbinding C1-A1 5 min (afgerond). Ter berekening van deze buffertijd werd rekening

gehouden met een gemiddelde verwachte vertraging van 3 min, het feit dat er 30 min

tussen twee A1-treinen ligt, en het aantal passagiers dat moet overstappen, uitstappen en

blijven zitten. Als we deze buffertijd van 5 min toepassen op ons voorbeeld, zien we in

bijlage 7.7 aan de vlakkere curve in Figuur 38 dat lijn C1 nu trager rijdt.

Een tweede manier is een grotere afstand tussen de treinen onderling te laten; een trein

bevindt zich namelijk niet alleen in het netwerk. Wanneer de ene trein vertraging heeft,

kan deze vertraging zich al gauw voortplanten in het hele netwerk. D.w.z. dat treinen die

na de vertraagde trein op hetzelfde spoor rijden, ook vertraging kunnen oplopen, omdat

men de minimum opvolgtijd moet blijven respecteren. Als men de opvolgtijden tussen de

geplande treinen groter maakt dan minimaal vereist is en men dus een tijdsbuffer inbouwt,

wordt de dienstregeling minder vertragingsgevoelig [35].

Op de link van Hasselt naar Aarschot rijden twee treinlijnen, nl. A1 en B1. De opvolgtijd

tussen de vertrektijden van beide treinen bedraagt 10 min. De opvolgtijd tussen de

aankomsttijden bedraagt 14 min. Lijn B1 rijdt voorop. Als lijn B1 echter vertraging oploopt

ten belope van 7 min, en dus 7 min te laat vertrekt uit Hasselt, en de minimum opvolgtijd

tussen beide treinen bedraagt 4 min, dan wordt lijn A1 verplicht 1 min te wachten in

Hasselt, en loopt ze aldus zelf ook 1 min vertraging op. Dit kan worden voorkomen door

A1 en B1 wat verder uit elkaar te plannen. We kunnen trein B1 bijvoorbeeld 5min vroeger

plannen. Zie bijlage 7.7 Figuur 39 voor de visualisatie van dit concept.

Page 49: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 33

3.2.3 Kostenminimalisatie

7. Minimaliseren van de operationele kosten: door het uitbaten van het treinnetwerk

loopt de spoorwegmaatschappij kosten op. Deze kosten kunnen opgedeeld worden in

vaste kosten en in variabele kosten. Vaste kosten omvatten zaken zoals afschrijvingen

(veroorzaakt door de aankoop van treinen), kapitaalkost, vaste onderhoudskost en de

kost om treinen te laten „overnachten‟. Voorbeelden van variabele kosten zijn de

variabele onderhoudskost, personeelskosten en brandstofverbruik [24].

De dienstregeling heeft een beperkte impact op deze kosten. De vaste kosten kunnen

worden gedrukt door bijvoorbeeld de haltetijd te verkorten en de treinsnelheid te

verhogen. Deze beide zaken zorgen ervoor dat de trein vroeger op zijn eindbestemming

is, het personeel dus minder lang op de trein heeft gezeten en dus minder kost. De trein

kan opnieuw ingezet worden voor een andere rit (i.e. de treinrotatie verhoogt) en zo kan

uiteindelijk het totaal aantal benodigde treinen verminderen, wat leidt tot een verminderde

aankoop van treinen ([23] en gesprek met de heer Vervoort B, 2 maart 2010, Brussel).

Wat betreft de variabele kosten kan men de treinen trager laten rijden, wat de treinreistijd

verlengt. Op die manier wordt minder brandstof verbruikt en verlaagt dit luik van de

variabele kosten [16]. Hierdoor is echter meer personeel nodig, waardoor de variabele

kosten verhogen en de kostenverlaging door het lager brandstofverbruik (deels) wordt

tenietgedaan. Bovendien is er meer rollend materieel nodig wanneer de treinen trager

rijden, wat dan op zijn beurt de vaste kosten verhoogt.

Een andere belangrijke kostencomponent is de vergoeding van de rijpaden. De NMBS

moet de infrastructuurbeheerder Infrabel immers vergoeden voor het spoorgebruik sinds

de opsplitsing van de NMBS in 2005. NMBS moet voor elke trein een vergoeding betalen

op basis van het aantal keer dat het specifieke rijpad werd gebruikt, de snelheid

waarmee over het rijpad werd gereden, het aantal stops, e.d.m. Voor de NMBS maakt

deze kostencomponent ongeveer 40% uit van de totale kosten, welke weinig ruimte voor

verbetering toelaat, want NMBS moet aan de vraag van de klant blijven voldoen en kan

dus geen rijpaden schrappen (gesprek met de heer Vervoort B., 2 maart 2010, Brussel).

Bovenstaande redenering illustreert duidelijk dat het verlagen van de kosten een complex

probleem is met veel tegenstrijdige componenten. Bij kostenminimalisatie moet dan ook

een trade-off gemaakt worden van de verschillende componenten.

Page 50: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 34

3.3 Oplijsting van de meest voorkomende restricties

Een probleem optimaliseren naar een doelfunctie is één ding. Een oplossing die uitvoerbaar

is in realiteit, is echter een ander paar mouwen. Elk realistisch probleem bevat namelijk

belangrijke beperkingen waar men o.w.v. praktische redenen niet omheen kan. Er moet

bijvoorbeeld steeds aan alle veiligheidsrestricties worden voldaan. Bijkomend kunnen nog

andere beperkingen worden opgelegd, alnaargelang de wens van de treinplanner.

In wat volgt worden de gevonden restricties uit de literatuur opgedeeld in vier categorieën: de

restricties m.b.t. de logische gang van zaken, de reistijd, de veiligheid en de beschikbare

infrastructuur.

Voor het oplossen van een dergelijk groot probleem is het interessant om zoveel mogelijk

potentieel bindende restricties voorop te stellen, aangezien deze de zoekruimte (in het

Engels: feasible region) verkleinen en dus de oplossingstijd reduceren [9].

Het treinnetwerk wordt schematisch voorgesteld aan de hand van bogen en knooppunten.

Bogen stellen links voor, terwijl een knooppunt een station, kruising, samenkomst van

sporen, etc. kan zijn (zie onderstaande figuur). In wat volgt zal vooral de terminologie „link‟ en

„knooppunt‟ worden gehanteerd, eerder dan „treinspoor‟ en „station‟, „kruising‟,

„samenkomst‟,…

Figuur 16: Het netwerkschema met aanduiding van een boog en een knooppunt (aangepast uit

[36])

A1 A0

B1 C0

C1

D1 D0

knooppunt

boog

Page 51: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 35

3.3.1 Logische restricties

Deze restricties zorgen ervoor dat er zich geen abnormale gebeurtenissen kunnen voordoen.

1. Continuïteit van de treinbeweging door het netwerk: deze restrictie garandeert de

continue beweging van een trein. Een trein kan slechts een knooppunt betreden als het

via een inkomende link komt. Het uittreden van een knooppunt kan slechts via een

uitgaande link. Een trein kan het knooppunt dus niet betreden of verlaten via een spoor

dat er niet aan gelinkt is en niet via een spoor waaraan de tegengestelde richting is

toegewezen dan de reisrichting van de trein [16].

A.d.h.v. de onderstaande figuur kan dit concept worden verduidelijkt. We zien dat de

inkomende links in Aarschot link d, e en f zijn, terwijl de uitgaande links link a, b en c zijn.

Betreden respectievelijk uitrijden van het station van Aarschot kan enkel gebeuren via

deze links. Alle andere links van het treinnetwerk behoren niet tot de mogelijkheden. Als

een trein via link d Aarschot binnenrijdt, dan kan hij het station uitrijden via link b of c.

Niet via link a, want dat zou betekenen dat de trein in Aarschot omkeert, wat hier niet het

geval is.

Figuur 17: Visuele voorstelling van de restrictie „continuïteit van de treinbeweging door het

netwerk‟ (eigen werk)

2. Continuïteit in bepaalde knooppunten: als een trein de inkomende link verlaat en het

knooppunt betreedt, wordt een aankomsttijd vastgesteld. Het moment dat de trein de

uitgaande link betreedt en dus het knooppunt verlaat, wordt een vertrektijd genoteerd.

Het verschil tussen beide is dan de verblijftijd van die trein in dat knooppunt. In bepaalde

gevallen echter stopt (d.i. discontinuïteit) de trein niet, maar passeert hij bijvoorbeeld een

spoorkruising of is hij in doortocht door een station (d.i. continuïteit). De verblijftijd van

zo‟n actie is dan voldoende klein, zodat ze kan worden verwaarloosd. Deze restrictie

Aarschot a

b

c d

e

f

d b

c

e a

c

f a

b

Page 52: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 36

zorgt er dus voor dat in die gevallen de aankomsttijd in het knooppunt gelijk is aan de

vertrektijd uit datzelfde knooppunt [16].

3. Vroegste vertrektijd: deze restrictie waarborgt dat een trein niet eerder dan zijn

vroegste geplande vertrektijd uit zijn beginstation kan vertrekken [2; 14; 18; 41; 42].

Stel dat deze vroegste geplande vertrektijd 6u is, dan mag de trein pas vanaf 6u

vertrekken.

4. Eerste vertrek uit beginstation: een trein moet voor het eerst uit zijn beginstation

vertrekken tijdens de eerste 60 minuten van de dag [36; 37].

Als de dag begint om 6u ’s morgens, dan mag een trein ten laatste om 6u59 vertrekken

uit zijn beginstation.

5. Laatste aankomsttijd: deze restrictie zorgt ervoor dat een trein niet later kan aankomen

in zijn eindstation dan op zijn laatste geplande aankomsttijd [16].

Stel dat deze laatste geplande aankomsttijd 23u is, dan moet de trein binnen zijn vóór

23u01.

6. Vertrek uit knooppunt: een trein kan niet uit een station vertrekken vóór hij er

toegekomen is. Hetzelfde geldt voor andere soorten knooppunten [25].

Bij wijze van voorbeeld is het rechterpaneel in onderstaande figuur ongeldig.

Figuur 18: Visuele voorstelling van de restrictie „vertrek uit knooppunt‟ (eigen werk)

7. Consistentie van treinen op elke link: als we een set van treinen veronderstellen, die

elk een maal moeten worden ingepland in het netwerk, kunnen we eisen dat elke trein op

elke link minimaal en maximaal 1 onmiddellijke voorganger heeft, en zelf minimaal en

A: 9u50 V: 9u53 A: 9u50 V: 9u48

A = aankomsttijd

V = vertrektijd

Page 53: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 37

maximaal 1 keer voorganger is. Deze redenering gaat enkel niet op voor de eerste trein

en de laatste trein op elke link. Door deze restrictie kan elke trein slechts een keer

voorkomen op elke link. Dit is analoog aan het Traveling Salesman Problem, waar steden

vervangen worden door treinen. Het TSP wordt dan opgelost voor elke link [9].

Stel de link van Hasselt naar Aarschot, waarop lijn A1 en B1 rijden. Lijn A1 vertrekt op 20

min en 50 min na het uur, terwijl lijn B1 vertrekt op 10 min na het uur. De sequentie ziet

er dan uit als volgt: B1 – A1 – A1’ – B1’ – A1’’ – A1’’’ – B1’’ – etc.

Figuur 19: Visuele voorstelling van de restrictie „consistentie van treinen op elke link‟

(eigen werk)

8. Consistentie m.b.t. een cyclische dienstregeling: wanneer de dienstregeling cyclisch

is, hoeft men slechts één zo‟n cyclus te plannen. De dienstregeling voor een volledige

dag bestaat dan uit een bepaald aantal cyclussen. De cyclustijd is meestal 60 minuten.

Als een dag begint om 6u en eindigt om 24u, dan bestaat een dag uit 18 dezelfde

cyclussen. Wanneer men echter berekeningen moet uitvoeren met aankomst- en

vertrektijden, kan het gebeuren dat het resultaat van die bewerking niet meer in het

domein [1 min,59 min] ligt. Om dit te verhelpen, werkt men met een integere variabele die

bij het resultaat een product van 60 min bijtelt totdat het resultaat binnen het geldige

domein ligt [33; 35].

Een voorbeeld kan dit helpen te verduidelijken. Neem lijn C1. Deze trein komt aan in

station Landen op 58 min na het uur, en vertrekt uit Landen op het uur. De haltetijd van

de trein is dan volgens de formule (infra) 0 – 58 = -58. Hier wordt dan één keer 60 min

opeenvolging treinen van Hasselt (1) naar Aarschot (2)

1

2

0 8

16

24

32

40

48

56

64

72

80

88

96

10

4

11

2

12

0

12

8

13

6

14

4

15

2

16

0

16

8

17

6

tijd (in min)

sta

tio

n

A1

B1

A1'

A1''

B1'

A1'''

A1''''

B1''

A1'''''

A1''''''

Page 54: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 38

bijgeteld en zo bekomen we een getal binnen het domein, nl. 2 min. De haltetijd bedraagt

aldus 2 min.

9. Vertrek- en aankomsttijden van volgende treinen in een cyclisch schema: het is

mogelijk dat men een cyclische dienstregeling wil bekomen zonder slechts één cyclus te

plannen. Men plant dus een volledige dag door het gepaste veelvoud van de cyclustijd op

te tellen bij de vertrek- en aankomsttijden van de treinen in de eerste cyclustijd. M.a.w.,

het geplande vertrek van een trein = het geplande vertrek van de vorige trein van de

dezelfde lijn + cyclustijd [36; 37].

Neem lijn C0. Als we als starttijd van de dag 0 veronderstellen, dan vertrekt de eerste

trein van lijn C0 op de 31ste minuut van de dag. Aangezien de frequentie van deze lijn 1 is,

zijn er geen andere vertrektijden binnen de cyclustijd van 60min. De tweede trein vertrekt

dan op de 31 + 60 = 91ste minuut van de dag. De derde trein vertrekt dan op de 31 + 2x60

= 151ste minuut van de dag, etc.

3.3.2 Reistijd

3.3.2.1 Algemeen

10. Totale reistijd (= aankomst in eindstation – vertrek uit beginstation): de totale reistijd van

een trein is de tijd die hij nodig heeft om van zijn beginstation naar zijn eindstation te

reizen. Deze tijd wordt berekend door de vertrektijd uit het beginstation af te trekken van

de aankomsttijd in zijn eindstation.

M.b.t. deze totale reistijd kan er een boven- en onderlimiet vooropgesteld worden [9; 40;

41]. Bovendien is er vaak een boven- en ondergrens op de aanvaardbare vertrek- en

aankomst, respectievelijk uit het vertrek- en in het eindstation. Deze beperkingen zijn

enorm belangrijk voor het versnellen van het vinden van een oplossing, aangezien ze de

zoekruimte enorm kunnen reduceren [9].

De bovenlimiet op de totale reistijd en dus de langst mogelijke reistijd is dan het verschil

tussen de laatste aankomsttijd op zijn bestemming (LAT) en de vroegste vertrektijd uit

zijn beginstation (VVT). Voor de onderlimiet beschouwen we de kortst mogelijke reistijd,

nl. het verschil tussen de vroegste aankomsttijd in het eindstation (VAT) en de laatste

vertrektijd uit het beginstation (LVT).

Page 55: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 39

Figuur 20: Schematische voorstelling van de restrictie „totale reistijd‟ (eigen werk)

Neem nu bij wijze van voorbeeld lijn B0. De geplande vertrektijd uit zijn beginstation

Leuven is vastgesteld op 11 min na het uur. De geplande aankomsttijd in zijn eindstation

is 50 min na het uur. De totale reistijd voor lijn B0 bedraagt dan 50 min – 11 min = 39

min. Stel nu dat we een boven- en ondergrens opleggen aan de vertrek- en aankomsttijd

volgens onderstaande tabel. Dan is de bovenlimiet op de totale reistijd 56 min – 8 min =

48 min, en de onderlimiet 45 min – 15 min = 30 min.

Tabel 5: Boven- en ondergrens aan de vertrek- en aankomsttijd voor lijn B0, in minuten

(eigen werk)

Ondergrens Bovengrens

Leuven (vertrektijd) 8 (VVT) 15 (LVT)

Hasselt (aankomsttijd) 45 (VAT) 56 (LAT)

Totale reistijd 30 48

11. Vaste dienstregeling voor sommige treinen : sommige types treinen (bv. Thalys)

kunnen een voorgeschreven dienstregeling hebben die niet mag worden aangepast [33;

35]. De andere treinen worden dan ingepland in functie hiervan. Bij het inplannen van

treinen kan ook een watervalsysteem worden gevolgd, nl. dat eerst de treinen van

hoogste prioriteit moeten worden ingepland, bv. IC-treinen. Nadat deze treinen zijn

ingepland, mag de dienstregeling van deze IC-treinen niet meer worden gewijzigd.

Daarna kan men dan de IR-treinen inplannen, welke een lagere prioriteit hebben dan IC-

treinen. Daaropvolgend kan men dan de L-treinen inplannen, die de laagste prioriteit

hebben. Bij het inplannen van een bepaald niveau, mag men de dienstregeling van de

hogerliggende niveaus niet meer wijzigen [7]. NMBS past een gelijkaardige strategie toe

die gaat als volgt. De Thalys heeft als trein voorrang bij het verdelen van de rijpaden.

Daarna worden de IC‟s bekeken, daarna de IR‟s en uiteindelijk de L-treinen. Wanneer

men echter met de planning van de L-treinen begonnen is, kan het zijn dat de

tijd

beginstation eindstation

LAT VAT VVT LVT

bovenlimiet

onderlimiet

Page 56: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 40

dienstregeling van de IC- of IR-treinen moet worden aangepast. De trage L-treinen

nemen immers veel capaciteit in beslag en het is dan goed mogelijk dat er niet voldoende

capaciteit meer beschikbaar is voor deze L-treinen. Bij het aanpassen van de

dienstregeling wordt dan wel geprobeerd om zo weinig mogelijk aan de reeds ingeplande

treinen te veranderen. Er moet immers blijvend rekening worden gehouden met de

spreiding van treinen en belangrijke aansluitingen (gesprek met de heer Vervoort B, 2

maart 2010, Brussel).

12. Vertraging van de hogere prioriteitstreinen moet kleiner zijn dan van de lagere

prioriteitstreinen: dat een tragere trein (i.e. lagere prioriteitstrein) vertraging heeft, wordt

als minder erg beschouwd dan een snellere trein die evenveel minuten vertraging heeft.

Over alle treinen heen kan worden gestreefd naar minder gemiddelde vertraging bij

snellere treinen dan bij tragere treinen [10].

3.3.2.2 Tussen stations

13. Snelheidsbeperking / reistijd over een link (= aankomst in station – vertrek uit vorig

station): er kan een minimale en maximale (gemiddelde) snelheid worden toegelaten

voor elke trein op elke link. De minimale en maximale reistijd van een trein over een link

wordt hierdoor bepaald. Deze reistijd is de tijd die een trein nodig heeft om van het ene

station naar het andere te reizen ([2; 4; 9; 10; 14; 15; 16; 18; 19; 22; 24; 33; 35; 40; 42]

en gesprek met de heer Vervoort B., 2 maart 2010, Brussel).

Beschouwen we ter verduidelijking lijn A, een IC-lijn. Een trein van deze lijn doet er 26

min over om van Aarschot in Hasselt te geraken en omgekeerd. Aangezien IC-treinen

reizen aan een gemiddelde snelheid van 76 km/h, kunnen we hieruit gemakkelijk afleiden

dat de afstand tussen Aarschot en Hasselt ongeveer 33 km is. Zie onderstaande tabel

voor een eenvoudige gevoeligheidsanalyse. Hierbij veronderstellen we dat de trein niet

sneller mag rijden dan 83 km/h en niet trager dan 69 km/h. De maximum reistijd wordt

dan 33 km / 69 km/h x 60 min = 28,7 min. Afgerond wordt dit 29 min. Analoge redenering

geldt voor de minimale reistijd.

Tabel 6: Effect van snelheidslimieten op de reistijd van lijn A (eigen werk)

Snelst Traagst

Snelheid 83km/h 69km/h

Reistijd 24min 29min

Page 57: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 41

Er kunnen echter nog bijkomende snelheidsbeperkingen worden opgelegd voor

bijvoorbeeld het betreden en uittreden van tunnels, het rijden onder een bepaalde

hellingsgradiënt en in bochten [22].

14. Versnellen en vertragen: als een trein wil vertrekken uit een station waar hij gestopt is,

dan heeft hij tijd nodig om opnieuw op gewenste snelheid te komen. Ook kan een

rijdende trein niet onmiddellijk tot stilstand komen, maar heeft hij tijd nodig om te

vertragen. Meestal echter wordt van dit aspect abstractie gemaakt. De auteurs Zhou en

Zhong [41] daarentegen maken deze vereenvoudiging niet en stellen een versnellings-

en vertragingstijd voorop waarmee de ideale reistijd over een link aldus wordt verlengd.

Deze versnellings- en vertragingstijd bedragen volgens de auteurs 3 en 2 minuten voor

respectievelijk hoge- en mediumsnelheidstreinen.

We weten dat een IC-trein gemiddeld reist aan 76 km/h. Veronderstel dat zo’n trein 3 km

nodig heeft om te versnellen vanuit stilstand tot op topsnelheid, en opnieuw 3 km om

vanuit topsnelheid tot stilstand te komen. Als we veronderstellen dat deze versnelling en

vertraging lineair gebeuren, dan bedraagt de topsnelheid 83,6 km/h. Dan doet de trein er

4,3 min over om te vertragen tot stilstand en even lang om te versnellen tot op

topsnelheid. Aan de ideale reistijd van 23,7 min moeten dan nog 4,3 min bijgeteld worden

om de totale reistijd te bekomen, nl. 28 min.

Tabel 7: Berekening van de ideale reistijd en de reistijd inclusief versnellings- en

vertragingstijd (eigen werk)

Ideale reistijd (33km aan topsnelheid) 33km / 83,6km/h x 60 min = 23,7min

27km aan topsnelheid 27km / 83,6km/h x 60min = 19,4min

Versnellings- en vertragingstijd 3km / (83,6km/h / 2) x 60min = 4,3min

Reistijd incl. versnellings- en vertragingstijd 19,4min + 2x4,3min = 28min

15. Reistijdsupplement: aan de gemiddelde reistijd van een trein over een link kan een

tijdssupplement worden toegevoegd dat fungeert als tijdsbuffer. Opgelopen vertragingen

onderweg kunnen op die manier weer ingelopen worden door de tijdsbuffer te

consumeren. Op die manier wordt een robuustere dienstregeling bekomen, d.w.z. dat de

gepubliceerde vertrek- en aankomsttijden betrouwbaarder worden [36; 37]. De NMBS

hanteert meer concreet een buffer van een minuut om de 35 km. Een buffertijd kan ook

wenselijk zijn in geval van werken, omdat de treinen dan trager moeten rijden in de buurt

van de werken (gesprek met de heer Vervoort B., 2 maart 2010, Brussel).

Page 58: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 42

Voor een cijfervoorbeeld, zie 1ste voorbeeld bij objectief 6: maximaliseer de

betrouwbaarheid (robuustheid) van de dienstregeling). Hieronder wordt deze restrictie

schematisch afgebeeld.

Figuur 21: Schematische voorstelling van de restrictie „reistijdsupplement‟ (eigen werk)

3.3.2.3 In stations

16. Omkeertijd (= vertrek uit het eindstation van de trein die begint aan z‟n omgekeerde

route – aankomst van de trein in het eindstation): wanneer een trein aankomt in zijn

eindstation, dan heeft deze trein een bepaalde tijd nodig om om te keren. Deze tijd is

nodig voor de bestuurder, aangezien deze zich naar de andere kant van de trein moet

verplaatsen. Indien geen bestuurpost aanwezig is aan het ander uiteinde van de trein,

moet de trein zelf omgezet worden. Verder is deze tijd nodig voor het schoonmaken, de

veiligheidscontrole, om bepaalde wagons af te koppelen en uit de weg te ruimen, als

buffertijd om vertraging in te halen,… Na het omkeren vat de trein gewoonlijk de terugreis

aan. Het gebeurt echter ook dat een trein op een andere lijn gaat rijden. De omkeertijd is

gelijk aan het verschil tussen het vertrek van de trein uit en de aankomst in het

eindstation en wordt gewoonlijk begrensd door een minimum en een maximum ([19; 22;

23; 33; 35; 40] en gesprek met de heer Vervoort B., 2 maart 2010, Brussel). De minimum

en maximum omkeertijd gevonden in de literatuur en in de praktijk worden in

onderstaande tabel weergegeven.

Stel dat het eindstation van lijn B0 Hasselt is i.p.v. Luik. De omkeertijd van de trein is dan

10 min – 50 min = -40 min. Dit ligt buiten het domein [0,59] van ons cyclisch rooster.

Daarom doen we volgens restrictie 8 het volgende (consistentie m.b.t. een cyclische

dienstregeling): -40 min + 60 min = 20min. De omkeertijd bedraagt dus 20 min voor lijn

B0.

tijd

Gepland vertrek Geplande aankomst

Gemiddelde

reistijd

Reistijd-

supplement

Station 1 station 2 link

Page 59: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 43

Tabel 8: Vermelde omkeertijden in de literatuur en in de praktijk (eigen werk)

Min (in min) Max (in min)

[40] 3 9

[23] 4 Niet vermeld

[35] (gebruikt in voorbeeld) 15 50

Gesprek met de heer Vervoort

B., 2 maart 2010, Brussel

8 à 10 20

Haltetijd (= vertrektijd uit station – aankomst in datzelfde station): wanneer de tijd tussen

het vertrek uit een station en de aankomst in datzelfde station groter is dan nul, dan wil

dat zeggen dat de trein stopt in dat station. De lengte van het verblijf van de trein in dat

station wordt de haltetijd of verblijftijd genoemd en deze wordt vaak beperkt door een

minimum en een maximum. Een minimum haltetijd is nodig om het op- en afstappen van

passagiers te garanderen e.d. (zie definitielijst). De maximumtijd zorgt ervoor dat de

totale reistijd en de zoekruimte wordt verkleind. Dit laatste heeft een positieve impact op

de snelheid waarmee een oplossing kan worden gegenereerd ([2; 5; 9; 10; 14; 15; 16;

19; 22; 23; 24; 33; 35; 36; 37; 40; 41; 42] en gesprek met de heer Vervoort B., 2 maart

2010, Brussel). De beperkingen op de haltetijden gevonden in de literatuur en

vrijgegeven door de NMBS worden in onderstaande tabel opgelijst.

Beschouwen we lijn C0 in station Landen. De haltetijd berekenen we als volgt: 58 min

(vertrek uit Landen) – 56 min (aankomst in Landen) = 2 min.

Tabel 9: Vermelde haltetijden in de literatuur en in de praktijk (eigen werk)

Min (in min) Max (in min)

[36] 1 7

[37] 1, 2 of 3 8

[9] 1 - 5 niet vermeld

[5] 1 niet vermeld

[23] 0,5 2,5

[33] 2 – 10 5 – 15

[35] 1 (IC-trein) 5 (IC-trein)

[40] 17 sec 0,5

Gesprek met de heer Vervoort B., 2 maart

2010, Brussel

30 sec 6 min

Page 60: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 44

De haltetijden in een station kunnen van trein tot trein sterk variëren. Het kan zowel

vanuit het standpunt van de treinoperator als van de passagiers wenselijk zijn om deze

variatie te beperken en de haltetijden dus in een station voor de verschillende treinen

meer gelijk te maken [40]. Wong, die zijn probleemstelling toepast op een metronetwerk,

stelt voor dat het interval tussen de minimum en maximum haltetijd slechts 6 seconden

bedraagt.

17. Beperkingen op vertrek- en aankomsttijden in tussenstations: soms kan er een

boven- en ondergrens aan de aanvaardbare vertrek- en aankomsttijden in tussenstations

opgelegd worden. Deze beperkingen zijn enorm belangrijk voor het versnellen van het

vinden van een oplossing, aangezien ze de zoekruimte enorm kunnen reduceren [9].

Neem nu de dienstregeling voor lijn A0. Stel dat deze dienstregeling verder wordt

geoptimaliseerd. Er kan dan worden opgelegd dat de nieuwe aankomsttijd in Hasselt in

het domein [35, 42] moet liggen.

18. Symmetrie: voor deze vereiste bekijken we aankomst- en vertrektijden in “aantal

minuten na het uur”. Een symmetrische dienstregeling wil dan zeggen dat de som van de

aankomst van een trein in een station en het vertrek van een trein van dezelfde lijn uit

tegengestelde richting uit datzelfde station gelijk is aan de cyclustijd, meestal 60 min.

Door deze restrictie op te leggen, wordt gegarandeerd dat passagiers voor hun heen- en

terugreis dezelfde aansluiting hebben en dus dezelfde transferwachttijd moeten

ondergaan [37]. Aan deze vereiste wordt binnen de NMBS altijd voldaan, behalve voor P-

treinen (gesprek met de heer Vervoort B., 2 maart 2010, Brussel).

Een voorbeeldje kan dit principe verduidelijken. Stel lijn B waarvan B0 in Hasselt

aankomt om 50min na het uur. Voor B1 vertrekt de trein uit Hasselt om 10min na het uur.

Deze twee opgeteld geeft 60min. (Opmerking: voor lijn C geldt dit principe niet,

aangezien C1 in het voorbeeld werd aangepast om aan de veiligheidsrestricties te

voldoen. Het oorspronkelijke schema uit Vansteenwegen en Van Oudheusden voldeed

hier niet aan, maar was wel volledig symmetrisch).

19. Synchronisatie of spreiding: Het kan voorkomen dat er treinen zijn van een

verschillende lijn, die echter een deel van hun route gemeenschappelijk hebben. Om dan

de treinfrequentie te verhogen op deze gemeenschappelijke route, kunnen de

aankomsttijden van deze treinen in die gemeenschappelijke stations gelijk worden

gespreid over de tijd of m.a.w. worden gesynchroniseerd. D.w.z. dat als we één trein

Page 61: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 45

hebben op een route, dan is de treinfrequentie per uur één. Als we twee treinen hebben

op dezelfde route, dan is de treinfrequentie per uur twee. Als we de aankomsten zo ver

mogelijk uit elkaar leggen, dan wordt deze frequentie één trein per 30 minuten. De tijd

tussen de twee aankomsten is dus 30 minuten, of ligt in een bepaalde range rond 30

minuten. Als breedte van de range kan bijvoorbeeld 4 minuten gekozen worden, en dit

om wat meer planningsvrijheid te laten [35]. Als er drie treinen op dezelfde route zijn, dan

kunnen we eisen dat de tijd tussen twee aankomsten in een range rond 20 ligt ([33; 36;

37] en gesprek met de heer Vervoort B., 2 maart 2010, Brussel).

Beschouwen we bij wijze van voorbeeld lijn D en B, deze hebben nl. een deel van hun

route gemeenschappelijk, meer bepaald tussen Leuven en Aarschot. We zien dat D0 in

Leuven vertrekt om 14 min na het uur, terwijl B0 vertrekt om 11 min na het uur. De

frequentie van een trein uit Leuven naar Aarschot is twee, maar deze zijn duidelijk niet

goed gespreid over de tijd. Ofwel moet een passagier 3 min wachten op de volgende

trein, ofwel 57 min.

Figuur 22: Het tijd-plaatsdiagram van lijn D en B tussen Leuven en Aarschot (eigen werk)

Voor lijn D en A is de situatie beter; de gemeenschappelijke route betreft het traject

tussen Aarschot en Heist-op-den-Berg. Lijn D0 vertrekt in Aarschot om 29 min na het

uur, terwijl A1 vertrekt om 51 min na het uur. Een passagier moet hier ofwel 22 min ofwel

38 min wachten op de volgende trein.

tijd-plaatsdiagram tussen Leuven (0) en Aarschot (1)

0

1

0 3 6 9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

57

60

tijd (in min)

sta

tio

n

B0

D0

Page 62: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 46

Figuur 23: Het tijd-plaatsdiagram van lijn D en A tussen Heist-op-den-Berg en Aarschot

(eigen werk)

20. Verbinding: om de kwaliteit voor de passagiers te verhogen, kan men rekening houden

met enkele belangrijke transfers. In Hasselt overstappen op een trein naar Aarschot is

een voorbeeld van zo‟n belangrijke transfer uit ons werkvoorbeeld. Een belangrijke

verbinding kan worden gegarandeerd als volgt: om het vertrekuur van de trein naar

Aarschot te bepalen, telt men bij de aankomsttijd van de passagier in Hasselt een

transfertijd. Om op zeker te spelen kan men aan deze transfertijd nog een tijdsbuffer

toevoegen, transferwachttijd genaamd. D.w.z. dat de passagier in Hasselt dan nog ten

belope van de transferwachttijd op het perron in Hasselt moet wachten op zijn trein naar

Aarschot. De voorgestelde transfertijden in de literatuur en in de praktijk worden in

onderstaande tabel weergegeven. De NMBS houdt rekening met hoe ver de passagier

moet lopen om zijn overstap te halen. Zij proberen zoveel mogelijk de belangrijkste

aansluiting te laten komen op het perron naast dat waar de passagier is afgestapt. Een

overstap kan dan gemaakt worden in drie minuten. Moeten de passagiers grotere

afstanden overbruggen om hun aansluiting te halen, dan calculeert men langere

transfertijden in. Deze langere transfertijden zijn vaak nodig in grote stations zoals

Antwerpen-Centraal, dat uit drie niveaus bestaat. Verder zijn de P- en L-treinen verplicht

te wachten op vertraagde treinen om de aansluiting te garanderen. IC- en IR-treinen

moeten nooit wachten aangezien het risico op voortplanting van de vertraging hier te

groot is (gesprek met de heer Vervoort B., 2 maart 2010, Brussel).

tijd-plaatsdiagram tussen HOB (0) en Aarschot (1)

0

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

tijd (in min)

sta

tio

n

A1

D0

Page 63: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 47

Tabel 10: Vermelde transfertijden in de literatuur en in de praktijk (eigen werk)

Transfertijd (in min)

[33] 2 – 6

[23] (bemerking: toegepast op metrostelsels) 1,5 – 6,5

[36; 37] 3

[35] 2 – 5

Gesprek met de heer Vervoort B., 2 maart

2010, Brussel

3 – 15

We zien in onderstaande figuur dat de trein uit Alken (C1) iets te laat in Hasselt aankomt

om de verbinding met een trein naar Aarschot te garanderen (A1). Volgens deze

restrictie zouden we nu kunnen de vertrektijd van A1 uit Hasselt bepalen door de

aankomsttijd van C1 in Hasselt te nemen, nl. 25 min na het uur, en daarbij de transfertijd

te tellen, bv. 4 min. De vertrektijd van A1 uit Hasselt is dan 29 min na het uur (A1’). Als

we bovendien ook een transferwachttijd in rekening brengen, bvb. 6 min, dan is de

vertrektijd van A1 uit Hasselt 35 min na het uur (A1’’).

Figuur 24: Het tijd-plaatsdiagram van lijn A, B en C tussen Alken en Aarschot met een

overstap in Hasselt (eigen werk)

21. Bovenlimiet op de transferwachttijd: de transferwachttijd is zoals hierboven uitgelegd

de wachttijd die opgelopen wordt wanneer passagiers op het perron nog moeten wachten

op hun verbinding. Aan de wachttijd moet een bovengrens gesteld worden wegens

verbinding Alken (0) - Aarschot (2) (overstap in Hasselt (1))

0

0,5

1

1,5

2

2,5

0 3 6 9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

57

60

tijd (in min)

sta

tio

n

A1

A1'

A1''

B1

C1

Page 64: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 48

servicedoeleinden, en dit voor elk station waar transfers plaatsvinden. ([23; 33; 35; 36;

37; 40] en gesprek met de heer Vervoort B., 2 maart 2010, Brussel).

22. Voorkomen van „just missed‟-fenomeen: deze restrictie is typisch voor metrosystemen.

Hier is het belangrijk dat passagiers die een verbinding moeten halen, hun

verbindingstrein niet net missen en vlak voor hun neus zien wegrijden. Om dit te

voorkomen, moet de verbindingstrein volledig vertrokken zijn vooraleer de inkomende

trein het station binnenkomt. In een metrostation zijn de verschillende spoorlijnen en de

metro‟s zelf immers goed zichtbaar [22; 23; 40].

23. Koppelen van treinen: een tweede type van een verbinding tussen twee treinen, is een

fysieke verbinding. Dit kan wenselijk zijn wanneer twee treinen een groot deel van hun

route gemeenschappelijk hebben (gesprek met de heer Vervoort B., 2 maart 2010,

Brussel). Deze twee treinen combineren tot één trein heeft twee voordelen. Ten eerste

wordt bespaard op mensen; de trein behoeft slechts één trein crew. Ten tweede komt

capaciteit m.b.t. de infrastructuur vrij; wanneer twee treinen dezelfde sporen nodig

hebben, moeten zij een minimum opvolgtijd tussen laten. Er is dus meer capaciteit nodig

om beide treinen achter elkaar te plannen, dan om de gecombineerde trein te plannen.

Het koppelen van treinen heeft echter ook zijn nadelen. Ten eerste wordt het

dienstregelingsmodel verzwaard met een extra restrictie. Immers, om de koppeling te

kunnen doorvoeren, moeten beide treinen op exact hetzelfde moment aanwezig zijn in

het station waar de koppeling gaat plaatsvinden. Bovendien kan dit proces vertraging

veroorzaken. Enerzijds betreft de koppelingsprocedure het fysiek koppelen van de

treinen en het uitvoeren van meerdere testen, tijdens dewelke fouten kunnen optreden,

waardoor de trein niet op tijd kan vertrekken. Anderzijds loopt het geheel vertraging op

wanneer een van beide treinen vertraging heeft. Als ze niet moesten gekoppeld worden,

kon de ene trein die op tijd was nl. op tijd vertrekken [35].

3.3.3 Veiligheidsrestricties

Deze restricties worden beschouwd als harde restricties (hard constraints). Het moet immers

onmogelijk gemaakt worden dat de veiligheid van treinen en hun passagiers in het gedrang

komt. De veiligheid komt meer bepaald in het gedrang wanneer treinen riskeren te botsen.

Dit kan twee oorzaken hebben: ten eerste kunnen treinen botsen die op hetzelfde spoor

reizen, maar in de tegenovergestelde richting. Ten tweede kunnen ook twee treinen botsen

die in dezelfde richting op hetzelfde spoor rijden wanneer de tweede trein sneller rijdt dan de

eerste. In wat volgt wordt een onderscheid gemaakt tussen situaties waar conflicten opgelost

worden in het station en op de links tussen stations.

Page 65: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 49

3.3.3.1 In stations

24. Minimum opvolgtijd: om te voorkomen dat twee treinen rijdend op hetzelfde spoor

botsen, wordt een tijdsbuffer tussen beide treinen ingepland. D.w.z. dat ze elkaar niet

onmiddellijk mogen opvolgen, maar enige afstand moeten tussenlaten. Die afstand wordt

in tijdseenheden uitgedrukt. De kleinste afstand die moet worden tussengelaten, is de

minimum opvolgtijd. Deze minimum opvolgtijd is volgens Kwan C.M. en Chang C.S. [22]

afhankelijk van de spoorconditie. De NMBS zorgt er zelfs voor dat als er reeds vijf treinen

na elkaar zijn met telkens slechts 3 minuten tussen, de zesde pas na bijvoorbeeld

minstens 6 minuten mag komen. Dit is om wat ademruimte tussen te laten, aangezien

het risico op voortplanting van vertraging anders te groot wordt (gesprek met de heer

Vervoort B., 2 maart 2010, Brussel). Onderstaande tabel geeft een overzicht van de

vooropgestelde minimum opvolgtijden van verschillende auteurs en in de praktijk:

Tabel 11: Vermelde opvolgtijden in de literatuur en in de praktijk (eigen werk)

Minimum opvolgtijd (in min)

[22] 1 – 1,5

[8] 1 – 4

[9] 2 – 5

[14] 3

[4] 2 – 4

[26] 0,5 mijl = 0,8 km

[19] 1

[33] 2 – 29

[5] 1,5

[40] 2 – 2,67

[41; 42] 2 – 4

Gesprek met de heer Vervoort B., 2 maart

2010, Brussel

3

Er worden verschillende minimum opvolgtijden vooropgesteld, afhankelijk van de situatie.

In wat volgt worden de vijf situaties uiteengezet ([4; 7; 10; 19; 22; 23; 24; 33; 35; 36; 37;

40; 41; 42] en gesprek met de heer Vervoort B., 2 maart 2010, Brussel).

a. Vertrektijden: in de eerste situatie hebben we twee treinen die in dezelfde richting

reizen op hetzelfde spoor en na elkaar een link betreden, d.w.z. een station uitrijden.

De tweede trein, die de eerste opvolgt, mag pas het station uitrijden wanneer de

eerste trein reeds zolang weg is als wordt voorgeschreven door de minimum

Page 66: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 50

opvolgtijd. De opvolgtijd tussen twee treinen in deze situatie wordt in onderstaande

figuur geïllustreerd. Om praktische redenen verlaten we hier het werkvoorbeeld, ten

voordele van een meer algemeen voorbeeld. Let wel: de opvolgtijd en niet de

minimum opvolgtijd wordt aangeduid [4; 7; 9; 10; 19; 35; 40; 41; 42].

b. Aankomsttijden: dezelfde redenering geldt voor het binnenrijden van stations, d.w.z.

uittreden van een link. De tweede trein mag pas het station binnenrijden wanneer de

eerste trein reeds zo lang binnen is als de minimum opvolgtijd bedraagt. Het kan dan

voorkomen dat trein 2 trager moet gaan rijden om dit te respecteren [4; 7; 9; 10; 19;

35; 41; 42].

Figuur 25: Schematische voorstelling van de opvolgtijd in situatie a, b, c en d (eigen werk)

c. Aankomst- vs vertrektijd: in derde instantie kan voor twee treinen reizend in

dezelfde richting op hetzelfde spoor worden geëist dat de tweede trein de link pas

mag betreden op het moment dat de eerste trein de link heeft verlaten, of enige tijd

daarna [16].

d. Inhalen: wanneer twee treinen in dezelfde richting reizen op hetzelfde spoor, maar

met een verschillende snelheid, ontstaat een probleem wanneer de eerste trein de

traagste is. Wanneer conflicten enkel mogen worden opgelost in stations, en als blijkt

dat het conflict optreedt tussen station 1 en 2, dan wordt de traagste trein verplicht te

wachten in station 1 tot de snelste gepasseerd is. Zo loopt de snelste trein geen

vertraging op. Er wordt nl. vaak gesteld dat vertraging bij een snelle trein erger is dan

evenveel vertraging bij een trage trein [6; 7; 35]. De NMBS laat liefst inhalen in een

tijd

plaats

link Trein 1 Trein 2

b a

c

Trein 1 casu d

d

link

station 2

station 1

Page 67: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 51

station, aangezien dit veiliger is (gesprek met de heer Vervoort B., 2 maart 2010,

Brussel).

e. Kruisen: De vierde situatie is degene waar twee treinen op hetzelfde spoor rijden,

maar in tegenovergestelde richting. Aangezien in dit geval de treinen elkaar moeten

kruisen tussen station 1 en 2, moet vooraf worden vastgelegd welke trein eerst gaat.

In dit geval is dit trein 2. Er geldt dat trein 1 station 2 pas mag verlaten, wanneer trein

2 er is aangekomen of enige tijd daarna (e1) [16]. Een andere benadering van dit

probleem is dat er een zekere tijdsspanne tussen de aankomst van trein 1 en trein 2

moet zijn (e2), waarbij verondersteld wordt dat de trein die eerst aangekomen is,

wacht met vertrekken tot de tweede gepasseerd is [19; 35]. Opnieuw laat de NMBS

o.w.v. veiligheidsredenen treinen liefst kruisen in een station (gesprek met de heer

Vervoort B., 2 maart 2010, Brussel).

Figuur 26: Schematische voorstelling van de opvolgtijd in situatie e1 en e2 (eigen werk)

25. Maximum opvolgtijd: een bovenlimiet op de opvolgtijd kan wenselijk zijn om te

voorkomen dat het aantal passagiers in de stations zich ophoopt. Er mag dus niet te veel

tijd tussen treinen zitten; ze moeten elkaar vlot kunnen opvolgen. Deze restrictie bleek

enkel in papers met een metronetwerk als toepassingsgebied [22; 40].

26. Meer gelijke opvolgtijden in elk station: deze restrictie is gelijkaardig aan „meer gelijke

haltetijden‟. De geplande opvolgtijd tussen de verschillende treinen in een station kunnen

erg verschillend zijn van elkaar. Volgens Wong kan het nuttig zijn deze variatie in

opvolgtijden te beperken [40]. Deze auteur focust zich echter op een metronetwerk.

tijd

plaats

link Trein 1

Trein 2

e1

link

station 1

station 2

e2

Page 68: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 52

3.3.3.2 Tussen stations

27. Inhalen: wanneer twee treinen in dezelfde richting reizen op hetzelfde spoor maar met

een verschillende snelheid, ontstaat een probleem wanneer de eerste trein de traagste

is. Wanneer conflicten kunnen opgelost worden tussen de stations, dan wordt de traagste

trein verplicht te wachten op het eerstvolgende uitwijkspoor tot de snelste gepasseerd is.

Zo loopt de snelste trein geen vertraging op. Er wordt nl. vaak gesteld dat vertraging bij

een snelle trein erger is dan evenveel vertraging bij een trage trein [2; 4; 7; 10; 14; 15;

18]. Zoals eerder vermeld laat de NMBS treinen liever inhalen in stations. Dit is echter

niet altijd mogelijk, want soms zou het te lang duren eer het station bereikt wordt, of soms

is het gewoon niet mogelijk om op een andere manier rijpaden toe te wijzen. De NMBS

laat de ingehaalde trein dan 6 minuten wachten op een uitwijkspoor. Dat is het dubbele

van de opvolgtijd aangezien treinen ten allen tijde minimum 3 minuten moeten tussen

laten; 3 minuten vóór en 3 minuten nadat die andere trein gepasseerd is (gesprek met de

heer Vervoort B., 2 maart 2010, Brussel).

28. Kruisen: wanneer twee treinen reizen in de tegenovergestelde richting op hetzelfde

spoor, kan het voorkomen dat deze twee elkaar moeten kruisen. Wanneer conflicten

kunnen worden opgelost tussen de stations, wordt de ene trein, meestal de traagste,

afgeleid van het hoofdspoor naar een uitwijkspoor om de andere trein te laten passeren

(zie bovenstaande figuur) [2; 10; 14; 15; 18]. Zoals vermeld laat de NMBS treinen liever

kruisen in stations. Dit is echter niet altijd mogelijk, want soms zou het te lang duren eer

het station wordt bereikt, of soms is het gewoon niet mogelijk om op een andere manier

rijpaden toe te wijzen. De NMBS laat dan, zoals hierboven onder „inhalen‟ vermeld, de

gekruiste trein 6 minuten wachten op een uitwijkspoor (gesprek met de heer Vervoort B.,

2 maart 2010, Brussel).

29. Receptietijd: de receptietijd is de tijd nodig om de tragere trein om te leiden naar het

uitwijkspoor, zodat het inhaal- of kruismanoeuvre veilig kan worden uitgevoerd (zie

onderstaande figuur) [2].

Page 69: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 53

Figuur 27: Visuele voorstelling van de receptie- en expeditietijd (aangepast uit [2])

30. Expeditietijd: de expeditietijd is de tijd nodig om de tragere trein terug naar het

hoofdspoor te leiden, zodat het inhaal- of kruismanoeuvre veilig kan worden uitgevoerd

(zie bovenstaande figuur) [2].

Omgeleide trein

receptie expeditie

Inkomende trein

tijd

receptietijd

expeditietijd

kruising

Page 70: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 54

3.4 Overzicht objectieven en restricties in de literatuur en in de praktijk

De objectieven en restricties besproken in respectievelijk sectie 3.2 en 3.3, worden a.d.h.v. onderstaande tabel schematisch weergegeven per

auteur en voor de situatie van NMBS. Bovendien wordt aangeduidt wanneer expliciet een cyclische dienstregeling aan de orde is . Het valt op

dat dit cyclische aspect in slechts bijna een derde van de gevallen wordt nagestreefd.

Onderaan de tabel wordt weergegeven in hoeveel gevallen van de vijfentwintig de desbetreffende restrictie voorkomt.

Tabel 12: Overzicht van de objectieven en restricties per auteur en in de praktijk, met aanduiding of al dan niet een cyclische dienstregeling wordt

nagestreefd (eigen werk)

auteur cyc objectieven restricties

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

[2] x x x x x x x x

[3] x

[4] x x x x

[5] x x

[7] x x x x

[8] x x x x x x x

[9] x x x x x x x

[10] x x x x x x x x

[14] x x x x x x x x

[15] x x x x x

[16] x x x x x x x x

[18] x x x x x

[19] x x x x x

[22] x x x x x x x x

[23] x x x x x x x x x

Page 71: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 55

auteur cyc objectieven restricties

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

[24] x x x x x

[25] x x x x

[33] x x x x x x x x x x x

[35] x x x x x x x x x x x x x x

[36] x x x x x x x x x x x

[37] x x x x x x x x x x x x

[40] x x x x x x x x x x x

[41] x x x x x x x

[42] x x x x x

NMBS* x x x x x x x x x x x x x x

Totaal 9 4 2 3 7 10 4 4 1 1 6 2 1 2 1 2 2 3 4 1 16 1 3 7 18 1 2 5 7 6 3 2 22 2 1 7 4 1

Legende:

Cycl: cyclische dienstregeling

*: gesprek met de heer Vervoort B., 2 maart 2010, Brussel

Page 72: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 56 56

3.5 Het dienstregelingsprobleem in de literatuur

Na een uitgebreide bespreking van de voorkomende objectieven en restricties in de literatuur

en in de praktijk, is een kort literatuursoverzicht op zijn plaats. Vooreerst wordt meer uitleg

gegeven omtrent de gebruikte modelleringstechnieken voor het dienstregelingsprobleem

door verschillende auteurs. Vervolgens wordt kort uitleg verschaft over de gebruikte

oplossingsmethoden in de literatuur. Daarna word de literatuur ingedeeld naar

probleemgrootte a.d.h.v. eenvoudige beslissingsregels. Vervolgens wordt de literatuur

ingedeeld naar probleemkarakteristieken. Een overzicht van de gehanteerde

modelleringstechnieken, oplossingsmethoden, probleemgroottes- en karakteristieken per

auteur worden weergegeven in Tabel 15. Tot slot worden de eigenaardigheden, indien

voorkomend, per auteur beschreven.

3.5.1 Modelleringstechnieken

In de literatuur wordt als vertrekpunt bijna altijd gekozen voor een eenvoudig lineair model,

zoals LP, IP of MIP. Vooral een LP-formulering is enorm aantrekkelijk, aangezien deze

optimaal kan worden opgelost met eenvoudige wiskundige technieken. Bij een variant van

het LP-model, zoals het IP of MIP wordt de LP-gerelaxeerde oplossing als boven- of

ondergrens vooropgesteld, afhankelijk van respectievelijk een maximalisatie- of

minimalisatieprobleem. Zo kan men dan een inschatting maken van hoe optimaal de

oplossing is door de „optimality gap‟ te berekenen, d.i. het procentuele verschil tussen de LP-

gerelaxeerde oplossing en de (M)IP-oplossing.

Een belangrijke beperking van een lineair model is vaak het onvermogen om de volledige

complexe realiteit in kaart te brengen. Om een lineair model op te stellen moeten vaak

vereenvoudigingen gemaakt worden waardoor het model soms aan realiteitswaarde moet

inboeten. Er bestaan commerciële pakketten om een LP, IP of MIP efficiënt op te lossen,

zoals CPLEX, Gurobi en Risk Solver Platform.

Het JSSP werd door de desbetreffende auteurs tevens lineair geformuleerd. Er werd

gekozen voor deze specifieke formulering om de analogie tussen treinen en jobs duidelijk te

maken.

Het PESP, voor het eerst geformuleerd door Serafini en Ukovich (1989), zoals geciteerd

door Peeters [35], is een vaak verkozen modellering voor auteurs die een cyclische

dienstregeling willen opstellen. De restricties in dit model zijn periodieke tijdsvensters en de

variabelen zijn integer. De periodieke restricties worden opgelegd aan paren van

gebeurtenissen en beperken het tijdsinterval tussen deze twee gebeurtenissen tot een

bepaald tijdsvenster. Het is mogelijk om elke PESP-instantie te transformeren naar een IP-

Page 73: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 57 57

formulering; de PESP en IP zijn aldus gerelateerd. Het oplossen van een PESP kan met

bijvoorbeeld een B&B-algoritme zoals het Serafini & Ukovich-algoritme, een Branch-and-cut

(Hurkens, 1996; Lindner, 2000) of het CADANS-algoritme (Schrijver en Steenbeek, 1993,

1994) zoals geciteerd door Peeters [35].

Het PESP kan worden omgezet in een CPF, een wiskundig meer gevorderde formulering. Dit

model bevat cyclische restricties en zowel cyclische als integere variabelen. Speciale

wiskundige technieken zijn nodig om dit model op te lossen, zoals de cycle-fixationheuristiek

voorgesteld door Peeters [35].

Een „constraint graph‟ wordt gebruikt om een LP-model of een variant daarvan te

beschrijven. De knooppunten van de grafiek stellen de gebeurtenissen voor, zoals

aankomst- en vertrektijden, terwijl de bogen de restricties voorstellen. Deze formulering is

volledig equivalent aan de LP-formulering, maar sommige auteurs vinden de

grafiekvoorstelling duidelijker omdat ze compacter is. Deze CSP kan worden opgelost met

constraint programming technieken [2].

Voor een overzicht van de gebruikte modellering per auteur wordt verwezen naar Tabel 15.

Onderstaande tabel geeft de indeling weer van de gebruikte modellering naar lineair, non-

lineair, cyclisch en event-model.

Tabel 13: Indeling van modellering naar lineair, cyclisch en event-model (eigen werk)

Lineair LP: lineair program

IP: integer linear program

MIP: mixed integer program

JSSP: job shop scheduling problem

MCSP: minimum cost scheduling problem

TSP: travelling salesman problem

CSP: constraint satisfaction problem

Non-lineair CSP: constraint satisfaction problem

Cyclisch PESP: periodic event scheduling problem

CPF: cycle periodicity formulation

Event-model DEM: discrete event model

3.5.2 Oplossingsmethode

De gebruikte oplossingsmethode varieert van auteur tot auteur. Een auteur kan kiezen voor

een meer standaard oplossingsmethode, zoals lineaire programmering, of hij kan zelf een op

maat gemaakte heuristiek ontwikkelen.

Page 74: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 58 58

Wanneer men vertrekt van een IP of MIP, gaat men meestal het (M)IP relaxeren tot een LP-

model, aangezien dit oplosbaar is met garantie van optimaliteit. Deze relaxatiestap wordt

meestal gedaan door de methode van Lagrange toe te passen. Deze stap wordt in eerste

instantie gedaan om een lower- of upperbound te berekenen van het minimalisatie-

respectievelijk maximalisatieprobleem. Hieruit kan men de „optimality gap‟ berekenen, het

procentuele verschil tussen de LP-oplossing en de (M)IP-oplossing. De auteur kan dan

evalueren hoe optimaal zijn (M)IP-oplossing is, m.a.w. hoe ver hij ongeveer van de optimale

oplossing verwijderd is (een (M)IP-model is namelijk oplosbaar zonder garantie van

optimaliteit).

Vele auteurs ontwikkelen een eigen heuristiek die conflicten zoekt en oplost van een al dan

niet random gegenereerd initieel schema. Er werd ook bewezen dat er exacte methoden zijn

om het dienstregelingsprobleem optimaal op te lossen, zoals de branch-cut-and-price-

methode van Cacchiani et al. [4]. Voor de geïnteresseerde lezer wordt hiervoor verwezen

naar de desbetreffende literatuur.

Voor een overzicht van de gebruikte oplossingstechniek per auteur wordt verwezen naar

Tabel 15.

3.5.3 Probleemgrootte

De auteurs bewijzen de kracht van hun oplossingsmethode a.d.h.v. een cijfermatig

voorbeeld. Voor een overzicht van de probleemgrootte per auteur wordt verwezen naar

Tabel 15. Om de testinstanties per auteur overzichtelijk in te delen en te kunnen vergelijken,

werd een waardering toegekend van realistisch, groot, middelmatig of klein o.b.v.

onderstaande beslissingsregels. Een voorbeeldje kan dit verduidelijken. Wanneer een

netwerk 120 treinen betreft, wordt het in principe als „groot‟ gewaardeerd. Echter, als er

slechts 7 stations aanwezig zijn in het netwerk, dan zakt het netwerk een niveau en wordt het

als middelmatig gewaardeerd. Voor het exact aantal treinen en stations en de assumpties

die werden gemaakt, wordt verwezen naar bijlage 7.8.

Tabel 14: Beslissingsregels (eigen werk)

Realistisch # treinen > 200

Groot 100 < # treinen <= 200

Middelmatig 30 < # treinen <= 100

Klein # treinen <= 30

1 niveau zakken # stations <= 10

1 niveau stijgen Indien klein en # stations >= 30

Page 75: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 59 59

3.5.4 Probleemkarakteristieken

Alle auteurs hebben in hun werk primair tot doel een dienstregeling te bekomen of te

manipuleren. Deze werken kunnen echter sterk van elkaar verschillen wat betreft hun

aanpak. De beschouwde literatuur is ruwweg in te delen in zes verschillende

probleemkarakteristieken.

Ten eerste beogen sommige auteurs een cyclische dienstregeling op te maken. Dit wordt

vaak geformuleerd door een PESP (Periodic Event Scheduling Program), maar een LP-

model is evengoed mogelijk.

Ten tweede zijn er auteurs die elementen van de lijnplanningsfase meenemen in hun

model. Hierdoor wordt het probleem complexer, maar het voordeel is dat twee stappen

worden gecombineerd in een stap. Dit waarborgt de goede kwaliteit van een treinsysteem,

aangezien op die manier het lijnplan en de dienstregeling beter op elkaar zijn afgestemd.

Ten derde kunnen auteurs bijkomend rekening houden met de perrontoewijzing. Hier wordt

dan niet meer verondersteld dat er voor binnenkomende treinen altijd een perron

beschikbaar zal zijn; er kan namelijk maar een trein tegelijk op een perron aanwezig zijn.

Daarom moeten perrons in de tijd worden toegewezen aan individuele treinen. Er moet als

het ware een „perrondienstregeling‟ worden opgesteld met de vertrek- en aankomsttijd van

elke trein op elk perron.

Ten vierde kan een dienstregeling worden opgemaakt voor metrostelsels in plaats van voor

treinen. Deze modellen hebben enkele typische restricties, zoals het vermijden van het „just-

missed‟-fenomeen (voor meer uitleg, zie restricties). Ook zijn deze metronetwerken typisch

veel kleiner dan een spoornet en zijn ze dus ook makkelijker te optimaliseren. In deze papers

ligt de nadruk op het minimaliseren van de wachttijd van reizigers.

Ten vijfde kunnen auteurs meerdere objectieven nastreven in hun paper. Dit is niet evident,

aangezien vele objectieven tegenstrijdig zijn. In deze papers worden dan alle Pareto-

optimale oplossingen gezocht, d.w.z. dat een objectiefwaarde niet meer kan verbeteren

zonder de andere objectiefwaarden te verslechteren.

Tot slot kunnen auteurs het netwerk vereenvoudigen tot een lineair netwerk, d.w.z. dat men

slechts een spoorlijn beschouwt. Bij deze aanpak ligt de nadruk op het oplossen van inhaal-

en kruisconflicten. Dit is de minst complexe vorm van het dienstregelingsprobleem. Zo‟n

lineair netwerk mag eigenlijk strikt gezien geen netwerk meer worden genoemd.

Voor een overzicht van de probleemkarakteristieken per auteur wordt verwezen naar Tabel

15.

Page 76: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 60

Tabel 15: Overzicht van modelleringtechniek, oplossingsmethode, probleemgrootte en probleemkarakteristieken per auteur (eigen werk)

Auteur Modellering Oplossingsmethode Probleemgrootte Karakteristieken

[2] CSP meta-tree CSP o distributed search

o intra-agent search klein

[3] IP LP Lagrange relaxatie + duale iteratie (standard subgradient, modified

subgradient, modified CFM en bundle method) klein

[4] IP LP

o Oplossen LP: column generation en separation

o Oplossen IP: local search en constructive heuristieken

gebaseerd op de LP-oplossing

o Oplossen IP (direct en exact): branch-cut-and-price-algoritme

groot 1, 6

[5] o Conflict graph model (routing)

o IP (timetabling) fixed-point-iteratieheuristiek medium 1, 2

[7] Constraint graph IP LP Lagrange-relaxatie + Lagrange-heuristiek (maakt gebruik van de

lagrange-multipliers) groot/realistisch

[8] geen Eigen ontwikkelde heuristiek realistisch 2, 3

[9] MIP Eigen ontwikkelde heuristiek klein 2

[10] JSSP Eigen ontwikkelde heuristiek realistisch 5, 6

[14] LP Eigen ontwikkelde B&B-heuristiek medium 5

[15] TSP ant-colony-systemmetaheuristiek klein

[16] LP o -constraint method ter constructie van de Pareto frontier

o distance based method wordt toegepast op de Pareto frontier klein 5, 6

[18] MIP

o local search

o genetisch algoritme

o tabu search

o local search + genetisch algoritme

o tabu search + genetisch algoritme

klein 6

Page 77: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 61

[19] CSP constraint-gebaseerde heuristiek medium

[20] CSP

o constraint-gebaseerde heuristiek

o constraint-gebaseerde heuristiek + simulated annealing

o constraint-gebaseerde heuristiek + tabu search

medium

[22] LP Genetisch algoritme + local search (hill climbing, tubu search en

simulated annealing) medium 4, 5

[23] Max T-PESP

o Approximation algoritme

o Cut-heuristiek (Cut-based improvements)

o IP

realistisch 1, 4, 5

[24] MIP m.b. MCSP B&B-heuristiek realistisch 1, 2

[25] JSSP shifting bottleneck procedure klein

[26] DEM greedy travel advance scheduling klein 6

[33] PESP PESP cut generation algoritme klein 1

[35] MIP constraint graph PESP

CPF

o Cycle-basis-algoritmes

o cycle-fixation-heuristiek

o CADANS-algoritme

realistisch 1

[36] LP LP + simulatie medium 1, 5

[37] LP LP + simulatie realistisch 1, 5

[40] MIP LP Eigen ontwikkelde heuristiek medium 4

[41] JSSP (IP)

o B&B-algoritme voor het creëren van een Pareto-optimale set

van oplossingen

o Beam search heuristiek voor het creëren van lower en upper

bounds

klein 5

[42] JSSP (IP) exacte B&B met beam search en Lagrange-relaxatie voor het

construeren van lower en upper bounds medium

Page 78: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 62

Legende

B&B: branch-and-bound

Modellering:

LP: linear program

IP: integer linear program

MIP: mixed integer program

JSSP: job shop scheduling problem

PESP: periodic event scheduling problem

DEM: discrete event model

CPF: cycle periodicity formulation

MCSP: minimum cost scheduling problem

CSP: constraint satisfaction problem

TSP: travelling salesman problem

Karakteristieken:

1. cyclische dienstregeling

2. lijnplanning

3. perrontoewijzing (platformtoewijzing)

4. metrostelsel

5. multi-objectief

6. lineaire netwerkconfiguratie

Page 79: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 63

3.5.5 Rariteiten

Sommige auteurs doen in hun werk iets vernoemenswaardigs of hebben een ietwat aparte

aanpak. Deze lijst wordt gevolgd door een tabelmatig overzicht van deze rariteiten per

auteur.

o In het model van Cacchiani, Caprara & Toth correspondeert elke variabele met het

volledige tijdsschema van een trein, terwijl in andere benaderingen variabelen

geassocieerd worden met de vertrek- of aankomsttijd van een bepaalde trein in een

bepaald station. Volgens de auteurs is de laatste benadering te complex om via een LP-

relaxatiemodel op te lossen, vandaar hun keuze voor de eerste benadering [4].

o Caimi et al. delen het spoornetwerk op in condensatie- en compensatiezones.

Condensatiezones bevatten de belangrijkere stations, waar capaciteit beperkt is en

treinen vereist worden te reizen op topsnelheid. Deze zones zijn verbonden met

compensatiezones. Dit zijn zones waar het verkeer minder intens is en aldus reservetijd

kan ingebouwd worden om de robuustheid van de dienstregeling te garanderen.

Compensatie- en condensatiezones worden gelinkt d.m.v. grensrestricties. In deze paper

focust men zich op het plannen van de dienstregeling van en de route door de

condensatiezones [5].

o De methode van Caprara werd ontwikkeld binnen de „EU Project PARTNER‟, en werd

veelvuldig getest op het Italiaanse spoornetwerk. Het resultaat bleek zeer positief te zijn

en werd aldus geïmplementeerd als deel van het nieuwe planningssysteem van de

Italiaanse spoorwegen voor het opmaken van de dienstregeling [6; 7].

o Carey & Crawford gaan in hun paper niet uit van een wiskundig model voor het bouwen

van hun heuristiek, maar ze vertrekken van een willekeurig gegenereerde dienstregeling.

Hun zelf ontwikkelde heuristiek zoekt dan conflicten en lost ze op [8].

o Carey en Lockwood gebruiken een B&B-techniek analoog aan de methoden die

treinplanners in de praktijk gebruiken om de complexe, grootschalige dienstregeling

manueel op te lossen [9].

o Chiang et al. delen het planningsproces op in twee niveaus: het globale en het lokale

planningsprobleem. In het globale wordt een initiële dienstregeling opgesteld zonder

rekening te houden met conflicten. In de lokale planningsfase worden de conflicten

opgelost op basis van de informatie uit de „kennisdatabank‟ (in het Engels: knowledge

base). Deze laatste bestaat uit conflictoplossende regels komende van de kennis van

treinplanningsexperten. Hun impliciete kennis werd via deze kennisdatabank

geëxpliciteerd [10].

Page 80: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 64

o Zhou en Zhong, evenals Liu en Kozan, formuleren het dienstregelingsprobleem als een

job-shop-schedulingprobleem. Machines corresponderen met sporen, jobs met treinen en

operaties met treinritten [25; 41; 42].

o Medanic en Dorfman stellen in hun paper een model op zonder concreet objectief [26].

o De doctoraatsthesis van Peeters beschrijft algoritmes die werden toegepast op het

Nederlandse IC- en een deel van het IR-netwerk [35].

o Vansteenwegen en Vanoudheusden berekenen eerst de ideale buffertijden o.b.v. de

verwachte vertraging van treinen en dit om bepaalde aansluitingen te garanderen.

A.d.h.v. lineaire programmering werd een nieuwe dienstregeling bekomen. Vervolgens

simuleren de auteurs die nieuwe dienstregeling om knelpunten bloot te leggen. Met hun

methode bekwamen de auteurs een 40% lagere wachtkost dan de wachtkost van de

toenmalige gehanteerde dienstregeling door de NMBS. Volgens de auteurs is dit niet

louter te danken aan het kleine netwerk dat in de paper werd gehanteerd, maar deze

positieve resultaten zouden kunnen worden behaald voor het hele Belgische netwerk.

Ten slotte bemerken de auteurs dat ze niet kunnen garanderen dat de nieuwe

dienstregeling optimaal is, omdat er enkele benaderingen werden gebruikt om het LP-

model op te stellen [36; 37].

Tabel 16: Rariteiten per auteur (eigen werk)

Auteur Rariteiten

[4] Elke variabele correspondeert met het volledige tijdsschema van een trein.

[5] Netwerk opgedeeld in condensatie- en compensatiezones

[7]

geïmplementeerd als deel van het nieuwe planningssysteem van de Italiaanse

spoorwegen voor het opmaken van de dienstregeling

[8] Heuristiek niet gebaseerd op wiskundig model

[9]

o B&B-techniek analoog aan de methoden gebruikt door treinplanners in de

praktijk.

[10] Globaal en lokaal planningsniveau. Deze laatste gebruikt een „knowledge base‟.

[25] Geformuleerd als job shop scheduling problem

[26] Geen objectief vermeld in paper

[35] Algoritmes toegepast op Nederlandse IC- en deel van IR-netwerk

[36; 37]

o Berekenen ideale buffertijden

o Bekomen een 40% lagere wachtkost t.o.v. de bestaande dienstregeling

o Voeren een simulatie uit om knelpunten bloot te leggen

[41] [42] Geformuleerd als job shop scheduling problem

Page 81: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 65

3.6 Besluit

Over het algemeen werden in de meeste werken ongeveer dezelfde restricties en

objectieven teruggevonden. Het gros van deze restricties werden ook door NMBS gebruikt.

De gelezen literatuur stelde dan ook de praktijk als uitgangspunt. Wat opvalt is dat slechts

drie auteurs op vierentwintig kostenminimalisatie nastreven, terwijl dit het voornaamste doel

is bij NMBS. In de andere eenentwintig werken wordt het kostenaspect zelfs compleet

genegeerd.

Vervolgens is er een substantieel verschil tussen de Europese literatuur, en die uit de rest

van de wereld. In de rest van de wereld zijn enkelsporige baanvakken de regel, terwijl dit in

Europa een uitzondering is. Er wordt daar dan ook vaker ingehaald en gekruist op zijsporen,

terwijl in Europa dit vooral wordt gedaan in stations. In Europa is het sporennet echter

drukker bereden.

Het dienstregelingsprobleem in de literatuur is niet goed afgelijnd en heel erg

gefragmenteerd. De ene auteur betrekt ook lijnplanningsaspecten erbij, de andere past zijn

onderzoek toe op een metrostelsel, nog een andere bekijkt enkel een lineair „netwerk‟, en ga

zo maar door. Niet alleen wat betreft de karakteristieken is de literatuur erg gefragmenteerd,

ook qua oplossingsmethoden bestaat er grote versnippering. Weinig werken bouwen echt

voort op eerder werken en zo brengen veel werken weinig toegevoegde waarde aan het

dienstregelingsprobleem. Veel auteurs brengen een nieuw algoritme aan waarvan de waarde

niet wordt vergeleken met werken van andere auteurs.

Wat anderzijds over het algemeen wel wordt aanvaard, is de lineaire structuur van het

dienstregelingsprobleem. Slechts enkelingen pakken het anders aan en dan nog is het

vertrekpunt vaak lineair, zoals bij een cyclische modellering.

Hoewel het model vaak lineair wordt gemodelleerd, lossen weinigen het probleem op met

lineaire programmeringssoftware. Bijna alle auteurs opteren voor een eigen ontwikkelde

heuristiek.

Het dienstregelingsprobleem in deze thesis zal zich beperken tot een puur

dienstregelingsprobleem en zal m.a.w. geen aspecten uit de lijnplanning en

platformtoewijzing integreren. Verder zal het dienstregelingsproces worden toegepast op het

treinnetwerk en niet het metronetwerk. Het beschouwde treinnetwerk betreft een echt

netwerk en geen lineair „netwerk‟. Aangezien de huidige dienstregeling cyclisch is, zal ook

hier een cyclische dienstregeling worden nagestreefd. Ten slotte zal ook geoptimaliseerd

worden naar meerdere objectieven. Tot zover de karakteristieken van het

dienstregelingsprobleem in deze thesis.

Verder zal worden uitgegaan van een lineaire formulering van het dienstregelingsprobleem

aangezien dit het meest gebruikelijk is en een optimale oplossing mogelijk maakt.

Page 82: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 3: Modelleren van de dienstregeling 66

Tot slot zal worden nagegaan in hoeverre lineaire programmering in staat is het

dienstregelingsprobleem op te lossen. Hiervoor zal er vooral worden gesteund op het

onderzoek van Vansteenwegen en Van Oudheusden [36; 37] die reeds bewezen dat lineaire

programmering in staat is het dienstregelingsprobleem op te lossen. Een bijkomstig voordeel

van deze paper is zijn Belgische oorsprong met als gevolg dat het probleem werd toegepast

op (een deel van) de Belgische spoorwegen.

Page 83: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

67

Hoofdstuk 4: Verbeteren van de dienstregeling (case

study)

4.1 Probleemdefiniëring

Na de uitgebreide kwalitatieve modellering van het dienstregelingsprobleem en de

bestaande oplossingstechnieken, kan worden overgegaan tot de praktijk. In deze case study

zal worden gepoogd de dienstregeling van een deel van het Belgisch spoornetwerk, welk

beschreven wordt in de eerste sectie, te optimaliseren aan de hand van lineaire

programmering, besproken in sectie 3.5. In eerste instantie zal er worden geoptimaliseerd

naar minimale transferwachttijd. Vooraleer er kan worden geoptimaliseerd, moet echter een

wiskundig model worden opgesteld met de beslissingsvariabelen, de variabelen, de

parameters, de doelfunctie en de restricties van het dienstregelingsprobleem. Ook worden

de gemaakte assumpties verduidelijkt. Voor deze modellering wordt een beroep gedaan op

de concepten besproken in vorig hoofdstuk.

Daarna kan het wiskundig model worden geïmplementeerd in MS Excel. Om de gepaste

parameterwaarden te bepalen, moeten een reeks van gevoeligheidsanalyses worden

uitgevoerd. Pas daarna kunnen we de optimale dienstregeling bekomen.

Daaropvolgend zal de performantie van het optimale schema worden getoetst aan de

huidige dienstregeling gehanteerd door de NMBS. Hiervoor worden Monte Carlo-simulaties

uitgevoerd.

Tot slot wordt geoptimaliseerd naar twee verschillende doelen tegelijk. Er wordt kort

besproken hoe dit kan worden gerealiseerd en wat het effect hiervan is voor de

dienstregeling.

4.2 Onderzoeksopzet

Voor deze case study wordt ingezoomd op een kleiner deel van het Belgische spoornetwerk.

De grootte van dit netwerk, de karakteristieken ervan en zijn huidige dienstregeling worden

hieronder besproken. Tot slot wordt de keuze voor dit netwerk uitgebreid verantwoord.

Page 84: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 68

4.2.1 Probleemgrootte

Voor deze case wordt ingezoomd op een klein deel van het Belgische spoorwegnetwerk,

naar analogie met Vansteenwegen en Van Oudheusden [36]. Het netwerk werd

vereenvoudigd tot zeven stations en vijf treinlijnen (nl. G, R, E, C en L) die enkele van deze

zeven stations aandoen. Het netwerk wordt afgebeeld in Figuur 28. Ter vereenvoudiging

werden enkele treinlijnen weggelaten. Het oorspronkelijke netwerkschema is terug te vinden

in bijlage 7.9. Er werd echter zodanig geselecteerd dat het netwerk academisch relevant

blijft.

Figuur 28: Het netwerkschema (eigen werk)

De meeste van de lijnen hebben hun begin- en eindstation ergens buiten dit

miniatuurnetwerk. Lijn R vertrekt bijvoorbeeld in Brussel en betreedt ons netwerk in Lier. Elke

lijn reist in twee richtingen, respectievelijk 0 en 1.

De steden in het netwerk zijn:

o Lier (T)

o Herentals (U)

o Tielen (V)

o Turnhout (W)

o Mol (X)

o Hasselt (Y)

Lier

Herentals

Tielen

Turnhout

Mol

Hasselt Aarschot

Antwerpen

Brussel

Leuven Luik

Neerpelt

G1, R1

G0, R0

E1

E0

C1

C0

L0

L1

L0

C1

C0

R0

R1

C1,E1,G1

C0,E0,G0

Page 85: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 69

o Aarschot (Z)

De vijf treinlijnen zijn:

o G: tussen Antwerpen en Turnhout

o R: tussen Brussel en Turnhout

o E: tussen Antwerpen en Hasselt via Mol

o C: tussen Antwerpen en Luik via Aarschot

o L: tussen Hasselt en Leuven

Lijn R gebruikt een IC-trein met een gemiddelde snelheid van 73 km/h. Lijnen G, E en C

gebruiken IR-treinen met een gemiddelde snelheid van 60 km/h. Lijn L gebruikt een L-trein

met een gemiddelde snelheid van 51 km/h (gesprek met de heer Vervoort B., 2 maart 2010,

Brussel).

4.2.2 Probleemkarakteristieken

Het netwerk wordt gekenmerkt door dubbelsporige baanvakken, d.w.z. dat aan elk spoor

een richting is toegewezen. Treinen die in de tegenovergestelde richting reizen, bevinden

zich dus nooit op hetzelfde spoor. Enkel tussen Herentals en Turnhout ligt een enkelsporig

baanvak, dus slechts één spoor, waarop treinen in beide richtingen moeten rijden. In het

station van Tielen kunnen twee treinen reizend in tegengestelde richting elkaar kruisen of

twee treinen reizend in dezelfde richting elkaar inhalen.

Lijn E is een samengestelde lijn; de trein komende uit Neerpelt wordt in Mol gekoppeld aan

de trein komende uit Hasselt. Deze twee treinen rijden vanuit Mol samen verder richting

Herentals. Omgekeerd, wordt de trein afkomstig uit Herentals gesplitst in Mol. De ene trein

rijdt verder naar Hasselt, terwijl de andere naar Neerpelt reist.

Voor sommige van de mogelijke reizen zijn alternatieve routes beschikbaar. Men kan

bijvoorbeeld vanuit Lier in Hasselt geraken via lijn C of E. Het is duidelijk dat de kwaliteit van

de dienstregeling voor de reizigers verhoogt wanneer deze lijnen gelijk gespreid worden

over de tijd. Bij de NMBS is het beschouwde tijdsvenster één uur. De tijd tussen lijn C en E

zou dan idealiter 30 minuten moeten bedragen. Als hiervoor geen moeite wordt gedaan, kan

de tijd tussen de twee lijnen oplopen tot bijna een uur. In de huidige situatie bedraagt de

tussentijd ofwel 18 ofwel 42 minuten.

Sommige treinen stoppen in meerdere stations dan aangegeven in het netwerk, maar

aangezien in die stations geen overstappen plaatsvinden, noch het aantal sporen wijzigt,

worden deze tussenstations weggelaten om het beeld niet nodeloos te verzwaren.

Er wordt aangenomen dat passagiers een directe reis verkiezen boven een reis met een of

meerdere overstappen (gesprek met de heer Vervoort B., 2 maart 2010, Brussel).

Page 86: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 70

De mogelijke transfers die passagiers dan kunnen maken zijn als volgt:

o Aarschot:

o C0 L1: van Lier naar Leuven

o L0 C1: van Leuven naar Lier

o Hasselt:

o C0 E1: van Aarschot naar Mol

o E0 C1: van Mol naar Aarschot

o L0 E1: van Leuven naar Mol

o E0 L1: van Mol naar Leuven

o C1 E1: van Luik naar Mol

o E0 C0: van Mol naar Luik

o Herentals:

o E1 R0: van Mol naar Turnhout

o R1 E0: van Turnhout naar Mol

o E1 R1: van Mol naar Brussel

o R0 E0: van Brussel naar Mol

o Lier:

o E0 R1: van Antwerpen naar Brussel

o R0 E1: van Brussel naar Antwerpen

o R0 C0: van Brussel naar Aarschot

o C1 R1: van Aarschot naar Brussel

o R0 E0: van Brussel naar Mol

o E1 R1: van Mol naar Brussel

o C1 E0: van Aarschot naar Mol

o E1 C0: van Mol naar Aarschot

o C1 R0: van Aarschot naar Turnhout

o R1 C0: van Turnhout naar Aarschot

Door de NMBS worden geen verbindingen gegarandeerd omdat dit nadelige gevolgen zou

kunnen hebben voor de rest van de dienstregeling. Wanneer bijvoorbeeld de verbinding

tussen trein E0 en R1 in Lier zou worden gegarandeerd en trein E0 is in vertraging en komt

te laat aan, dan moet trein R1 wachten om te vertrekken vooraleer de passagiers van trein

E0 hebben kunnen instappen. Hierdoor loopt trein R1 ook vertraging op en dit wil NMBS

vermijden want zo plant vertraging zich voort in het netwerk. NMBS is van oordeel dat de

klant genoeg andere mogelijkheden heeft om op zijn bestemming te geraken en dat

verbindingen dus niet moeten worden gegarandeerd (e-mailverkeer met mevrouw Courtois

E., 15 maart 2010). In mijn studie wordt deze filosofie gerespecteerd.

Page 87: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 71

4.2.3 Huidige dienstregeling

De gehanteerde dienstregeling betreft een cyclische dienstregeling. Dit is namelijk de

standaard in het Belgisch spoorverkeer. De huidige dienstregeling voor dit netwerk wordt

voorgesteld door onderstaande tabel. De frequentie van alle treinen in het Belgische

spoornetwerk bedraagt één per uur. Dat wil zeggen dat de tijdsspanne tussen twee

opeenvolgende treinen van dezelfde lijn 60 minuten bevat (gesprek met de heer Vervoort B.,

2 maart 2010, Brussel).

Tabel 17: De dienstregeling (eigen werk)

Aankomst Vertrek A V A V A V A V A V A V

Lier Herentals Tielen Turnhout Mol Aarschot Hasselt

G0 49 50 3 4 11 13 20 - - - - - - -

R0 21 22 39 40 47 49 56 - - - - - - -

E0 28 29 44 45 - - - - 11 11 - - 48 -

C0 46 47 - - - - - - - - 8 13 38 44

L0 - - - - - - - - - - 48 49 22 -

Hasselt Aarschot Mol Turnhout Tielen Herentals Lier

G1 - - - - - - - 40 47 49 56 57 10 11

R1 - - - - - - - 4 11 13 20 21 38 39

E1 - 12 - - 49 49 - - - - 15 17 31 32

C1 16 22 47 52 - - - - - - - - 13 14

L1 - 38 11 12 - - - - - - - - - -

4.2.4 Motivatie voor netwerkkeuze

Het specifieke netwerk werd gekozen omdat het eerst en vooral enige complexere

eigenschappen heeft. Ten eerste komt er een lijn voor die in Mol wordt gekoppeld of

ontkoppeld. Ten tweede zijn de baanvakken tussen Herentals en Turnhout enkelsporig.

Beide fenomenen zijn zeldzaam in het Belgische spoornetwerk en stellen extra eisen aan het

plannen van de dienstregeling waardoor dit stukje netwerk voor mijn studie academisch

gezien interessanter wordt. Bovendien bevat het netwerk twee lijnen waarvan hun oorsprong

binnen het netwerk ligt, welke een leuke verruiming vormt van de soorten gebruikte

restricties. Ook rijden o.a. tussen Lier en Herentals drie lijnen wat de mogelijkheid biedt een

concept toe te passen waaraan de NMBS veel belang aan hecht, nl. spreiding. Vervolgens

ligt dit netwerk net buiten de geconcentreerde zones rond Brussel en Antwerpen waardoor in

dit netwerk toch nog voldoende treinverkeer aanwezig is om de case academisch relevant te

houden.

Page 88: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 72

Het bestuderen van de drukste zones waaronder Brussel, lijkt op dit moment weinig relevant

wegens het GEN-project5 dat vandaag de dag wordt geïmplementeerd. In dit project worden

de snelle treinen van de trage gescheiden door ze op verschillende sporen te laten reizen.

Het betreft de lijnen tussen Brussel en respectievelijk Leuven, Halle, Ottignies, Nijvel en

Denderleeuw. Zo wordt het mogelijk gemaakt minstens één trein om het kwartier in te zetten

tijdens de spits. Door dit project wordt het treinverkeer rond deze drukke zones

geoptimaliseerd en zo druk mogelijk bezet. Hier lijkt aldus weinig ruimte tot verbetering en

vernieuwing. Tussen Brussel en Antwerpen is dit concept reeds lang geïnstalleerd. Rond de

luchthaven Brussel-Nationaal is vandaag de dag ook een project op til, het Diabolo-project,

waarbij extra aansluitingen naar de luchthaven worden gecreëerd (gesprek met de heer

Vervoort B., 2 maart 2010, Brussel).

4.3 Modellering

Nu het netwerk wat van dichterbij werd bekeken, kan worden overgegaan naar het

modelleren van dit netwerk. Bedoeling is het netwerk te optimaliseren a.d.h.v. lineaire

programmering. Hiervoor moeten alle objectieven en restricties in een lineaire vorm worden

opgemaakt. Eerst en vooral wordt de gehanteerde methode voor het modelleren van het

netwerk uitgelegd. Vervolgens worden de gemaakte assumpties uitvoerig beschreven.

Vervolgens kan worden overgegaan tot de wiskundige beschrijving van het LP-model. Eerst

worden de beslissingvariabelen behandeld, daarna de gewone variabelen, vervolgens de

parameters, dan de doelfuncties en tenslotte de modelrestricties.

4.3.1 Methodiek

Onder andere Vansteenwegen en Van Oudheusden [36; 37] bewezen dat het

dienstregelingsprobleem kan worden opgelost door middel van lineaire programmering.

Het LP-model bevat echter een belangrijke relaxatie ten opzichte van het IP-model, namelijk

dat de bekomen aankomst- en vertrektijden geen gehele, maar reële getallen zijn. Aangezien

de aankomst- en vertrektijden in een dienstregeling worden weergegeven met de precisie

van 1 minuut, worden deze reële getallen teruggerekend naar minuten en afgerond tot de

dichtstbijzijnde gehele minuut; vb. 0,0567h wordt dan 0,0567*60min = 3,4min ≈ 3 minuten.

Hierdoor ontstaat er een kleine fout, die echter weinig tot geen nadelige impact heeft op de

resultaten. Het voordeel van het toelaten van deze fout is dat het model wordt gerelaxeerd

van IP- tot LP-model en dus gemakkelijker oplosbaar is.

5 GEN: Gewestelijk ExpresNet: loopt sinds 2004 en moet tegen 2012 operationeel zijn. Het GEN-

project gaat concreet om het verdubbelen van de capaciteit van de sporen, nl. van één dubbelsporig

baanvak naar twee dubbelsporige baanvakken.

Page 89: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 73

Het domein van alle variabelen is [0,1]; er wordt enkel gerekend met getallen binnen dit

domein en ook de beslissingsvariabelen behoren tot dit domein. Om de volledige

dienstregeling binnen dit domein te doen vallen, worden minuten omgerekend naar minuten

per uur; 3 minuten wordt dan 3/60 uur = 0,05h. Wegens de beperkte grootte van het

beschouwde netwerk komt het niet voor dat een berekende tijd, zoals bijvoorbeeld de

gereden rittijd, meer dan één uur zou bedragen.

Het gebruikte tijdsvenster bedraagt één uur. Aangezien een cyclische dienstregeling wordt

beoogd, bestaat de dienstregeling van een volledige dag uit het herhalen van deze

bouwsteen.

Het wiskundig model dat hieronder wordt geformuleerd, werd geïmplementeerd in Excel. Het

model was met zijn 604 restricties, 414 limieten6, 207 continue variabelen en 145 integere

variabelen echter te groot voor de standaard Solver-functie in Microsoft Excel. Vandaar werd

de add-in “Risk Solver Platform” van de ontwikkelaar Frontline Systems gedownload en

geïnstalleerd7. Deze add-in bevat een “Gurobi Engine” welke een oneindig aantal restricties

en variabelen kan verwerken.

De gegevens omtrent dit netwerk werden verzameld voor de spitsuren, meer bepaald tussen

7u en 9 ‟s morgens. Een kwalitatief goede dienstregeling is als vanzelfsprekend nuttiger

tijdens de spitsuren dan daarbuiten. Daarom is het belangrijk dat de dienstregeling zodanig

wordt geoptimaliseerd dat het spitsmoment kan worden verwerkt.

4.3.2 Assumpties

1. Wat er in het station gebeurt, wordt beschouwd als een zwarte doos. Hierbij wordt de

filosofie gevolgd van de NMBS Mobility, die de planning van de treinen in de stations

overlaat aan de stationchefs. Verder zou dit geen grote problemen mogen vormen

aangezien de minimum opvolgtijd tussen twee treinen in dezelfde richting minimaal 3

minuten bedraagt. Als hieraan steeds wordt voldaan, dan is de stationscapaciteit ten

allen tijde voldoende.

2. Bij het bepalen van de verschillende transfermogelijkheden werd geconstateerd dat

dezelfde verbinding kan worden aangeboden door verschillende treinen. In principe zou

de oplossing van de beslissingsvariabelen moeten worden gebruikt om te bepalen welke

trein de kortste transferwachttijd heeft om dan aan de juiste trein de juiste

transfertijdlimiet op te leggen. Deze transfertijdlimiet zou dan echter niet meer lineair zijn

6 Een limiet beperkt één variabele, zoals bv. x < 1, terwijl een restrictie meerdere variabelen tegelijk

beperkt, zoals bv. x + y < 1.

7 Risk Solver Platform werd gedownload van de officiële site (http://www.solver.com/platform/risk-

solver-platform.htm) voor een gratis proefperiode van 15 dagen.

Page 90: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 74

aangezien ze afhangt van de beslissingsvariabelen. Daarom moet de verbinding reeds

op voorhand worden vastgesteld. Door deze assumptie moet het model echter niet aan

realiteitswaarde inbinden. De gekozen verbinding zal immers gegarandeerd voldoen aan

de voorwaarden die geldig zijn voor zijn prioriteitsklasse. Indien een andere trein betere

voorwaarden biedt, zal deze natuurlijk in de praktijk verkozen worden door de

passagiers. Dit wordt dan beschouwd als een toevallige winst voor het schema. In

onderstaande tabel worden de gekozen verbindingen weergegeven in het vet terwijl de

niet verkozen verbindingen cursief staan.

Tabel 18: Gekozen verbinding (eigen werk)

Station Verbinding

U E1-R0

E1-G0

T

E0-R1

C0-R1

G0-R1

R0-E1

R0-C1

R0-G1

C1-R0

C1-G0

3. Het is niet geweten hoeveel mensen exact een overstap doen. Wat wel geteld wordt

door NMBS is het aantal mensen dat afstapt, hoeveel mensen opstappen en hoeveel er

op een trein blijven zitten. Op basis van deze gegevens werd een assumptie gemaakt

over het aantal overstappende passagiers. Hiervoor werd “het aantal opstappende

passagiers” gedeeld door “het aantal mogelijke transfers +1”. Deze +1 is nodig om

rekening te houden met het deel van de passagiers dat geen transfer maakt, maar voor

het eerst opstapt. Het bekomen aantal passagiers moet echter altijd kleiner blijven dan

het aantal afstappende passagiers van de binnenkomende trein. Wanneer dit niet het

geval is, gebruiken we een andere formule, nl. “het aantal afstappende passagiers”

gedeeld door “het aantal mogelijke transfers +1”. Het aantal mogelijke transfers is hier

echter niet gelijk aan die van de eerste formule. Het gaat hier immers om het aantal

mogelijke transfers dat de afstappende passagiers kunnen maken, terwijl het bij de

eerste formule om het aantal transfers dat de opstappende passagiers konden maken.

Page 91: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 75

Het verschil lijkt triviaal maar is wezenlijk. Stel bijvoorbeeld volgende mogelijke

verbindingen in het station van Lier:

Tabel 19: Aantal uit- en opstappende passagiers voor verbinding x-y, uitgedrukt in aantal

passagiers (eigen werk)

Verbinding x-y # uitstappers uit x # opstappers op y

C1-R0 34,5 27

R0-E0(a+b) 32 61,5

E0(a+b)-R1 17,5 210,5

R0-E1(a+b) 32 92,5

E1(a+b)-R1 14,5 210,5

R1-C0 40,5 26

R0-C0 32 26

C1-R1 34,5 210,5

C1-E0(a+b) 34,5 61,5

E1(a+b)-C0 14,5 26

De passagiers die opstappen op C0 kunnen van twee verschillende treinen komen, nl. de

R1 en de R0. Dan is het aantal overstappende passagiers 26/(2+1) = 6,5. Voor de

passagiers die afstappen van trein R0 zijn echter drie verschillende overstappen

mogelijk, namelijk overstappen naar trein E0(a+b), naar E1(a+b) of naar C0. De

verbinding R0-E1(a+b) is een voorbeeld van een situatie waarin het aantal

overstappende passagiers volgens de eerste formule (nl. 46,25) groter is dan hetgeen

mogelijk is als we het aantal afstappende passagiers van trein R0 bekijken, nl. 32. Hier

moeten we dus het aantal overstappers berekenen als volgt: 32/(3+1) = 8. De volledige

berekening van het aantal overstappers kan worden teruggevonden in bijlage 7.10.

4. Het bekomen aantal overstappende passagiers blijkt echter nogal weinig te zijn. Men zou

kunnen denken dat deze oefening daarom minder relevant wordt. Deze opmerking kan

worden weerlegd wanneer wordt gemotiveerd dat dit een voorbeeld is van een rustiger

netwerk, waarin de transfers als vanzelfsprekend geen topprioriteit hebben. Wanneer we

echter de oefening willen uitvoeren voor academisch nut, kunnen we het aantal

overstappende passagiers op bepaalde punten kunstmatig optrekken . Daarvoor

werd volgende redenering gevolgd: voor de verbindingen met het aantal overstappende

passagiers kleiner dan of gelijk aan 10 werd het aantal behouden. Wanneer het aantal

groter is dan 10 maar kleiner dan of gelijk aan 20 dan werd het aantal overstappers

vermenigvuldigd met 1,5. Wanneer het aantal tenslotte groter is dan 20 dan werd het

Page 92: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 76

aantal overstappers vermenigvuldigd met 3. Deze beslissingsregels worden in

onderstaande tabel samengevat:

Tabel 20: Beslissingsregels voor corrigeren van het aantal overstappende passagiers

(eigen werk)

# overstappers Factor

<= 10 1

> 10 en <= 20 1,5

> 20 3

Het bekomen aantal overstappers wordt weergegeven in onderstaande tabel. Op basis

van deze aantallen werd aan elke mogelijke verbinding een prioriteit A, B of C toegekend.

Deze categorisering is nodig om een verschillende minimum- en maximumlimiet voor de

transfertijden te kunnen opleggen. De beslissingsregels voor deze prioriteitentoekenning

worden hieronder weergegeven:

Tabel 21: Beslissingsregels voor het toekennen van prioriteiten aan verbindingen (eigen

werk)

Categorie Beslissingsregel

A ≤ 20 overstappers

B > 20 en ≤ 40 overstappers

C > 40 overstappers

Het gecorrigeerd aantal passagiers, waarmee zal worden verder gerekend, en de

prioriteit van elke verbinding wordt in onderstaande tabel weergegeven.

Tabel 22: Finaal aantal overstappende passagiers (eigen werk)

Station Verbinding # overstappers Toegepaste

factor

# overstappers

gecorrigeerd Prioriteit

T

C1-R0 13,5 1,5 20,25 B

R0-E0(a+b) 20,5 3 61,5 A

E0(a+b)-R1 8,75 1 8,75 C

R0-E1(a+b) 8 1 8 C

E1(a+b)-R1 4,83333 1 4,83333333 C

R1-C0 6,5 1 6,5 C

R0-C0 6,5 1 6,5 C

C1-R1 8,625 1 8,625 C

Page 93: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 77

C1-E0(a+b) 20,5 3 61,5 A

E1(a+b)-C0 6,5 1 6,5 C

U

E1(a+b)-R1 15,8333 1,5 23,75 B

R0-E0(a+b) 7 1 7 C

E1(a+b)-R0 16 1,5 24 B

R1-E0(a+b) 18,1667 1,5 27,25 B

Y

C0-E1(b) 3,25 1 3,25 C

E0(b)-C1 23,5 3 70,5 A

L0-E1(b) 3,25 1 3,25 C

E0(b)-L1 18,5 1,5 27,75 B

C1-E1(b) 3,25 1 3,25 C

E0(b)-C0 6 1 6 C

Z C0-L1 22,5 3 67,5 A

L0-C1 15,25 1,5 22,875 B

5. Indien een verbinding wordt gemist, dan bedraagt de transferwachttijd een uur min de

tijd die hij tekort had om de verbinding te halen. Wanneer de trein waarop de passagier

wil overstappen bijvoorbeeld vertrekt om 11 minuten na het uur, maar de passagier komt

maar om 8 minuten na het uur aan, dan wordt de transferwachttijd 60min – (5min – 3min)

= 58 minuten. De passagier doet er immers 5 minuten om over te stappen terwijl hij

slechts 3 minuten beschikbaar had. Hij kwam dus 2 minuten tekort. Bij sommige treinen,

nl. deze van Tabel 18, kan de passagier dan een andere lijn pakken, zodanig dat zijn

transferwachttijd wordt ingekort en de waarde van de doelfunctie verhoogt. Aangezien

het niet mogelijk is om deze mogelijkheid in te bedden in het lineair model om wille van

dezelfde lineariteitsreden als in assumptie 2, wordt hiermee geen rekening gehouden bij

het berekenen van de doelfunctie.

6. Overstappen duurt gemiddeld 5 minuten. Deze waarde wordt ook gebruikt door de

NMBS (gesprek met de heer Vervoort B., 2 maart 2010, Brussel).

7. De meeste gegevens komen uit de database „Oktobertellingen 2007‟ van NMBS

Mobility. Voor twee lijnen echter moesten de gegevens uit de „Oktobertellingen 2009‟

komen aangezien deze lijnen nog niet bestonden in 2007 (e-mailverkeer met mevrouw

Courtois E., 15 maart 2010). Er wordt echter aangenomen dat deze extra lijnen extra

vraag gecreëerd hebben, en dus de bestaande vraag naar andere treinen niet of toch

niet wezenlijk hebben gekannibaliseerd. Er wordt dus van uitgegaan dat het halen van de

gegevens uit twee databases geen afbreuk doet aan de praktische waarde van deze

studie.

Page 94: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 78

8. Voor de treinen die de enkelsporige baanvakken gebruiken, is de minimale opvolgtijd

gebaseerd op de ideale rijtijd van die treinen. Indien deze rijtijd zou afhangen van de

beslissingsvariabelen en dus variabel zou zijn, dan zou de restrictie voor de opvolgtijd

voor deze treinen ook variabel worden. Dit voldoet echter niet aan de voorwaarden van

lineariteit en om die reden werd de rijtijd van deze treinen vastgezet op hun ideale rijtijd.

Deze extra restrictie maakt het model echter strenger en verkleint dus de

optimaliseringsmogelijkheden.

4.3.3 Beslissingsvariabelen

Nu de methodiek en de assumpties duidelijk zijn, kan worden overgegaan tot het wiskundig

modelleren van het dienstregelingsprobleem. Eerst en vooral bevat het LP-model drie

soorten beslissingsvariabelen, nl. de aankomsttijden, de vertrektijden en de hulpvariabelen.

Dit zijn de variabelen die worden gewijzigd om tot een optimale oplossing te komen. Een

overzicht van de gebruikte verzamelingen voor het definiëren van deze variabelen, kan

worden teruggevonden in bijlage 7.12.

𝑉𝑥𝑦= de vertrektijd van trein x in station y met:

𝑉𝑥𝑦

∈ 0,1 ⊂ ℝ , ∀ 𝑥, 𝑦 ∈ 𝑅1 ⊂ 𝒳 × 𝒴,

𝒳 = 𝐶0,𝐶1,𝐸0 𝑎 + 𝑏 ,𝐸0 𝑎 ,𝐸0 𝑏 ,𝐸1 𝑎 + 𝑏 ,𝐸1 𝑎 ,𝐸1 𝑏 ,𝐺0,𝐺1, 𝐿0,𝐿1,𝑅0,𝑅1 ,

𝒴 = {𝑇, 𝑈, 𝑉,𝑊,𝑋,𝑌,𝑍}, waarbij T = Lier, U = Herentals, V = Tielen, W = Turnhout,

X = Mol, Y = Hasselt en Z = Aarschot,

𝑅1 = { 𝐶0,𝑇 , 𝐶1,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝑇 , 𝐸1 𝑎 + 𝑏 ,𝑇 , 𝐺0,𝑇 , 𝐺1,𝑇 , 𝑅0,𝑇 , 𝑅1,𝑇 ,

𝐸0 𝑎 + 𝑏 ,𝑈 , 𝐸1 𝑎 + 𝑏 ,𝑈 , 𝐺0,𝑈 , 𝐺1,𝑈 , 𝑅0,𝑈 , 𝑅1,𝑈 , 𝐺0,𝑉 , 𝐺1,𝑉 , 𝑅0,𝑉 ,

𝑅1,𝑉 , 𝐺1, 𝑊 , 𝑅1,𝑊 , 𝐸1 𝑎 + 𝑏 ,𝑋 , 𝐸0 𝑎 ,𝑋 , 𝐸0 𝑏 ,𝑋 , 𝐸1 𝑏 ,𝑌 , 𝐶0,𝑌 ,

𝐶1,𝑌 , 𝐿1,𝑌 , 𝐶0,𝑍 , 𝐶1,𝑍 , 𝐿0,𝑍 , (𝐿1,𝑍)}.

𝐴𝑥𝑦 = de aankomsttijd van trein x in station y

𝐴𝑥𝑦

∈ 0,1 ⊂ ℝ ,∀ 𝑥, 𝑦 ∈ 𝑅2 ⊂ 𝒳 × 𝒴,

𝑅2 = { 𝐶0,𝑇 , 𝐶1,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝑇 , 𝐸1 𝑎 + 𝑏 ,𝑇 , 𝐺0,𝑇 , 𝐺1,𝑇 , 𝑅0,𝑇 , 𝑅1,𝑇 ,

𝐸0 𝑎 + 𝑏 ,𝑈 , 𝐸1 𝑎 + 𝑏 ,𝑈 , 𝐺0,𝑈 , 𝐺1,𝑈 , 𝑅0,𝑈 , 𝑅1,𝑈 , 𝐺0,𝑉 , 𝐺1,𝑉 , 𝑅0,𝑉 ,

𝑅1,𝑉 , 𝐺0, 𝑊 , 𝑅0,𝑊 , 𝐸0 𝑎 + 𝑏 ,𝑋 , 𝐸1 𝑎 ,𝑋 , 𝐸1 𝑏 ,𝑋 , 𝐸0 𝑏 ,𝑌 , 𝐶0,𝑌 ,

𝐶1,𝑌 , 𝐿0,𝑌 , 𝐶0,𝑍 , 𝐶1,𝑍 , 𝐿0,𝑍 , (𝐿1,𝑍)}.

Page 95: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 79

𝐾𝑖= de hulpvariabele K horende bij de i-de restrictie van het model:

𝑖 ∈ ℐ ⊂ ℕ, ℐ = {1,… ,123}.

𝐺𝑔 = de hulpvariabele 𝐺 horende bij de g-de restrictie van het model:

𝑔 ∈ 𝒢 ⊂ ℕ, 𝒢 = {1,… ,22}.

4.3.4 Variabelen

De gewone modelvariabelen worden in deze sectie gedefinieerd. Dit zijn de variabelen die

berekend worden op basis van de beslissingsvariabelen. Een overzicht van de gebruikte

verzamelingen voor het definiëren van deze variabelen, kan worden teruggevonden in bijlage

7.12.

𝑇𝑥1,𝑥2𝑦

= de beschikbare tijd om een transfer te maken, uitgedrukt in uur,

= 𝑉𝑥1𝑦− 𝐴𝑥2

𝑦+ 𝐾𝑖 ,

𝑥1,𝑥2,𝑦 ∈ 𝑅3 ,

𝑖 = 49,… , 70 ∈ ℐ.

𝑇𝑊𝑥1,𝑥2𝑦

= de transferwachttijd, d.i. de tijd die een passagier nog moet staan wachten op de

verbinding, uitgedrukt in uur

= 𝑇𝑥1,𝑥2𝑦

+ 𝐺𝑔 ,

𝑥1,𝑥2,𝑦 ∈ 𝑅3 ,

𝑔 ∈ 𝒢.

𝑅𝑥𝑦1,𝑦2

= de berekende duurtijd van de trip door trein x van station y1 naar station y2, in uur,

= 𝐴𝑥𝑦2

− 𝑉𝑥𝑦1

+ 𝐾𝑖.

𝑖 = 1,… , 24 ∈ ℐ,

𝑥,𝑦1,𝑦2 ∈ 𝑅4 ⊂ 𝒳 × 𝒴 × 𝒴.

De rest van de variabelen werden in de restricties zelf gedefinieerd. Deze tijdvariabelen

kunnen echter worden samengenomen onder de algemene notering:

𝑡𝑥1,𝑥2𝑦1,𝑦2

= een berekende tijd, zoals de transfertijd 𝑇𝑥1,𝑥2𝑦

of de haltetijd.

𝑝𝑖 = een hulpvariabele nodig om het maximum van twee rijtijden te kunnen berekenen

= 1 𝑎𝑙𝑠 max(𝑉𝑥1

𝑦1− 𝑉𝑥2

𝑦2) = 𝑉𝑥2

𝑦2

0 𝑎𝑙𝑠 max(𝑉𝑥1𝑦1

− 𝑉𝑥2𝑦2

) = 𝑉𝑥1𝑦1

Page 96: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 80

𝑖 = 71,… , 78 ∈ ℐ,

∀ 𝑥1,𝑥2, 𝑦1,𝑦2 ∈ 𝑅6 ⊂ 𝒳 × 𝒳 × 𝒴 × 𝒴,

𝑍𝑖 = een hulpvariabele om te garanderen dat met de juiste rijtijd wordt gewerkt

= 𝑟𝑥2𝑦1,𝑦2

𝑎𝑙𝑠 𝑝𝑖 = 1

𝑟𝑥1𝑦1,𝑦2

𝑎𝑙𝑠 𝑝𝑖 = 0

𝑖 = 71,… , 78 ∈ ℐ,

∀ 𝑥1,𝑥2, 𝑦1,𝑦2 ∈ 𝑅6 ⊂ 𝒳 × 𝒳 × 𝒴 × 𝒴,

𝑅6 = { 𝐺0,𝐺1, 𝑉, 𝑊 , 𝐺0,𝑅1,𝑉, 𝑊 , 𝑅0,𝐺1,𝑉, 𝑊 , 𝑅0,𝑅1,𝑉,𝑊 , 𝐺0,𝐺1, 𝑈, 𝑉 ,

𝐺0, 𝑅1,𝑈,𝑉 , 𝐺1,𝑅0,𝑈, 𝑉 , (𝑅0,𝑅1,𝑈, 𝑉)}.

4.3.5 Parameters

De modelparameters worden in deze sectie opgelijst. Deze parameters dienen om de

modelrestricties en de doelfunctie te kunnen opbouwen. Over de waarden die worden

toegekend aan deze parameters wordt uitgebreid gehandeld in sectie 4.4. Een overzicht van

de gebruikte verzamelingen voor het definiëren van deze variabelen, kan worden

teruggevonden in bijlage 7.12.

𝑤𝑥1,𝑥2𝑦

= het gewicht horende bij de verbinding tussen trein x1 en trein x2 in station y, waarbij

x2 de trein is waarop de reizigers van trein x1 willen overstappen, uitgedrukt in

aantal passagiers:

𝑥1,𝑥2,𝑦 ∈ 𝑅3 ⊂ 𝒳 x 𝒳 x 𝒴 ,

met 𝑅3 = {(C1, R0, T), (R0, E0(a+b), T), (E0(a+b), R1, T), (R0, E1(a+b), T), (E1(a+b),

R1, T), (R1, C0, T), (R0, C0, T), (C1, R1, T), (C1, E0(a+b), T), (E1(a+b), C0, T), (E1(a+b),

R1, U), (R0, E0(a+b), U), (E1(a+b), R0, U), (R1, E0(a+b), U), (C0, E1(b), Y), (E0(b), C1,

Y), (L0, E1(b), Y), (E0(b), L1, Y), (C1, E1(b), Y), (E0(b), C0, Y), (C0, L1, Z), (L0, C1, Z)}.

𝑇(𝑛 = 𝐴) = de maximum toegelaten transfertijd voor een belangrijke verbinding, in uur .

𝑇(𝑛 = 𝐴) = de minimum toegelaten transfertijd voor een belangrijke verbinding, in uur

𝑇(𝑛 = 𝐵) = de maximum toegelaten transfertijd voor een niet-belangrijke verbinding, in uur

𝑇(𝑛 = 𝐵) = de minimum toegelaten transfertijd voor een niet-belangrijke verbinding, in uur

𝑇(𝑛 = 𝐶) = de maximum toegelaten transfertijd voor een totaal-niet-belangrijke verbinding,

uitgedrukt in uur

𝑇(𝑛 = 𝐶) = de minimum toegelaten transfertijd voor een totaal-niet-belangrijke verbinding, in

uur

Page 97: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 81

𝑣𝑥𝑦1,𝑦2

= gewicht horende bij de trip van station y1 naar y2 gereden door trein x, uitgedrukt in

aantal passagiers,

𝑥,𝑦1,𝑦2 ∈ 𝑅4 ⊂ 𝒳 × 𝒴 × 𝒴,

𝑅4 = { 𝐶0,𝑇,𝑍 , 𝐶0,𝑍, 𝑇 , 𝐶1,𝑇, 𝑍 , 𝐶1,𝑍,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝑇,𝑈 , 𝐸0 𝑎 + 𝑏 ,𝑈,𝑋 ,

𝐸0 𝑏 ,𝑋,𝑌 , 𝐸1 𝑏 ,𝑌,𝑋 , 𝐸1 𝑎 + 𝑏 ,𝑋,𝑈 , 𝐸1 𝑎 + 𝑏 ,𝑈, 𝑇 , 𝐺0,𝑇, 𝑈 , 𝐺0,𝑈, 𝑉 ,

𝐺0,𝑉,𝑊 , 𝐺1,𝑊,𝑉 , 𝐺1, 𝑉,𝑈 , 𝐺1, 𝑈,𝑇 , 𝐿0,𝑍, 𝑌 , 𝐿1,𝑌,𝑍 , 𝑅0,𝑇,𝑈 , 𝑅0,𝑈, 𝑉 ,

𝑅0,𝑉,𝑊 , 𝑅1,𝑊, 𝑉 , 𝑅1,𝑉, 𝑈 , (𝑅1,𝑈, 𝑇)}.

𝑟𝑥𝑦1,𝑦2

= de ideale reistijd van station y1 naar station y2 door trein x, uitgedrukt in uur.

𝑥,𝑦1,𝑦2 ∈ 𝑅4 ⊂ 𝒳 × 𝒴 × 𝒴.

Tabel 23: De mogelijke 𝒓𝒙𝒚𝟏,𝒚𝟐

-waarden (gebaseerd op e-mailverkeer met mevrouw Courtois E.,

15 maart, 2010)

𝒓𝒙𝒚𝟏,𝒚𝟐

𝒙

𝒚𝟏,𝒚𝟐 R0; R1 C0; C1 E0;E1 G0;G1 L0; L1

W, V 0,131 0,1592

V, U 0,114 0,1387

U, X 0,3558

U, T 0,271 0,3293 0,3293

X, Y 0,72

Y, Z 0,6406 0,7536

Z, T 0,4618

M = een getal groter dan de grootst mogelijke waarde in het model, nl. 1.

= 1,1

M = een getal kleiner dan de kleinste waarde die een variabele in het model kan aannemen,

nl. 0,0001,

= 0,00001

𝐾(𝑖) = de maximumwaarde die de hulpvariabele K kan aannemen, zodanig opgesteld dat K

op 1 wordt geschakeld als de berekende tijd negatief is en 0 wanneer ze positief is,

= 𝑀− 𝑡𝑥1,𝑥2

𝑦1,𝑦2

𝑀 + 𝑚 .

𝐾(𝑖) = de minimumwaarde die de hulpvariabele K kan aannemen, zodanig opgesteld dat K

op 1 wordt geschakeld als de berekende tijd negatief is en 0 wanneer ze positief is.

= −𝑡𝑥1,𝑥2

𝑦1,𝑦2

𝑀 .

Page 98: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 82

𝐺(𝑔) = de maximumwaarde die de hulpvariabele G kan aannemen, zodanig opgesteld dat G

op 1 wordt geschakeld als de transfer wordt gemist en 0 wanneer ze wordt gehaald,

= 𝑀 + 𝑇 𝑛 − 𝑇𝑥1,𝑥2

𝑦 𝑀 + 𝑚

.

𝐺(𝑔) = de minimumwaarde die de hulpvariabele G kan aannemen, zodanig opgesteld dat G

op 1 wordt geschakeld als de transfer wordt gemist en 0 wanneer ze wordt gehaald.

= 𝑇 𝑛 − 𝑇𝑥1,𝑥2

𝑦

𝑀 .

𝛿 = de rijtijdtolerantie, d.i. de toegelaten procentuele afwijking van de ideale reistijd voor een

trip.

𝐻 = de maximum haltetijd, uitgedrukt in uur

𝐻 = de minimum haltetijd, uitgedrukt in uur

HW = de minimum opvolgtijd tussen treinen, uitgedrukt in uur

𝑂 = de maximum omkeertijd, in uur

𝑂 = de minimum omkeertijd, in uur

𝐾𝑇 = de maximum koppeltijd, in uur

𝐾𝑇 = de minimum koppeltijd, in uur

휀 = de synchronisatietolerantie, d.i. de toegelaten afwijking van de ideale synchronisatietijd,

uitgedrukt in uur

𝛾 = aantal treinen die moeten worden gesynchroniseerd = {2, 3}.

4.3.6 Doelfuncties

In de case study wordt het model opgelost naar drie verschillende doelfuncties. De eerste

doelfunctie minimaliseert de gewogen som van de transferwachttijden, zoals voorgesteld

door Vansteenwegen en Vanoudheusden [36; 37]. Als gewicht wordt het aantal

overstappende passagiers gebruikt. De berekening hiervan werd beschreven onder sectie

4.3.2: Assumpties. Dit aantal overstappende passagiers wordt dan vermenigvuldigd met de

transferwachttijd. Deze transferwachttijd is niet gelijk aan de transfertijd. Wanneer passagiers

5 minuten nodig hebben om een transfer te maken, en men heeft 6 minuten beschikbaar, d.i.

de transfertijd, dan bedraagt de transferwachttijd 6min – 5min = 1 minuut. Het resultaat van

deze doelfunctie wordt uitgedrukt in passagiersuren (pu).

𝑀𝑖𝑛𝑖𝑚𝑎𝑙𝑖𝑠𝑒𝑒𝑟 : (𝑤𝑥1,𝑥2𝑦

× 𝑇𝑊𝑥1,𝑥2𝑦

) 𝑥1,𝑥2,𝑦 ∈𝑅3

.

Page 99: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 83

De tweede doelfunctie minimaliseert de gewogen reistijd, zoals voorgesteld door Ghoseiri et

al. [16]. Het aantal passagiers dat de rit maakt werd als gewicht genomen. Voor de concrete

berekening van het aantal passagiers per rit wordt verwezen naar bijlage 7.11.

𝑀𝑖𝑛𝑖𝑚𝑎𝑙𝑖𝑠𝑒𝑒𝑟 : 𝑣𝑥𝑦1,𝑦2

× 𝑅𝑥𝑦1,𝑦2

. 𝑥 ,𝑦1,𝑦2 ∈𝑅4

De derde doelfunctie is de gewogen som van de eerste en tweede doelfunctie waarbij de

gewichten werden overgenomen uit Vansteenwegen en Van Oudheusden [36]. Passagiers

waarderen hun tijd terwijl ze overstappen hoger dan wanneer ze op de trein zitten.

Overstappen is immers onaangenamer dan op de trein zitten. Het gewicht voor de

transferwachttijd bedraagt 2 euro per uur, terwijl de reistijd 1,5 euro per uur bedraagt. Het

resultaat van deze doelfunctie wordt uitgedrukt in passagierseuro.

𝑀𝑖𝑛𝑖𝑚𝑎𝑙𝑖𝑠𝑒𝑒𝑟 : 2 × (𝑤𝑥1,𝑥2𝑦

× 𝑇𝑊𝑥1,𝑥2𝑦

) 𝑥1,𝑥2,𝑦 ∈𝑅3

+ 1,5 × 𝑣𝑥𝑦1,𝑦2

× 𝑅𝑥𝑦1,𝑦2

. 𝑥,𝑦1,𝑦2 ∈𝑅4

Een overzicht van de gebruikte verzamelingen voor het definiëren van deze variabelen, kan

worden teruggevonden in bijlage 7.12.

4.3.7 Restricties

Voor de selectie van de restricties van het dienstregelingsprobleem, werd geopteerd voor de

restricties die gebruikt worden door de NMBS. In een gesprek met de heer Vervoort B. (2

maart 2010, Brussel) werd overlopen welke restricties NMBS hanteert bij het opstellen van

de dienstregeling. Deze restricties werden ook aangeduid in Tabel 12 in sectie 3.4. Bepaalde

restricties waren echter niet van toepassing. Restrictie 11 beschreven in sectie 3.3 betreft de

vaste dienstregeling voor sommige treinen. Voor de NMBS is dit van toepassing op de

Thalystreinen, maar aangezien deze geen gebruik maken van het geselecteerde netwerk,

wordt deze restrictie uit het model geweerd. Vervolgens is restrictie 15: reistijdsupplement

niet van toepassing. Er werd vertrokken van de huidige gemiddelde snelheid van de treinen,

dus de buffertijd is hier impliciet al bijgerekend. Verder zijn restrictie 28 en 29: inhalen resp.

kruisen van treinen tussen stations geweerd uit het model, aangezien uit het gesprek met de

heer Vervoort B. (2 maart 2010, Brussel) bleek dat dit zoveel mogelijk wordt vermeden

aangezien dit onveiliger is dan kruisen en inhalen in een station.

Sommige restricties echter werden nadien aangevuld om de implementatie in MS Excel

mogelijk te maken. In het totaal bevat het LP-model zeventien verschillende soorten

restricties. Een overzicht van de gebruikte verzamelingen voor het definiëren van deze

variabelen, kan worden teruggevonden in bijlage 7.12.

Page 100: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 84

1. De aankomsttijden zijn reële getallen tussen 0 en 1.

𝐴𝑥𝑦

∈ 0,1 ⊂ ℝ , ∀ 𝑥, 𝑦 ∈ 𝑅1 .

2. Ook de vertrektijden zijn reële getallen tussen 0 en 1:

𝑉𝑥𝑦

∈ 0,1 ⊂ ℝ ,∀ 𝑥, 𝑦 ∈ 𝑅2 .

3. Om het model te doen kloppen, moest een extra beslissingsvariabele worden ingevoegd.

Deze zorgt ervoor dat de waarden in de restricties steeds in het tijdsvenster [0,1] liggen.

Het kan namelijk voorkomen dat een berekende tijdswaarde hierbuiten ligt. Een

voorbeeld kan dit verduidelijken. Wanneer een trein aankomt in station y om 58/60 uur na

het uur en ze vertrekt uit station y om 2/60 uur na het uur, dan is de haltetijd 4 minuten.

Maar als we (2–58)/60 uur doen, dan bekomen we –56/60 uur. Als we nu een

hulpvariabele invoeren die moet worden opgeteld bij de berekende tijdsduur en welke 1

is als de berekende tijdsduur negatief is en 0 als die positief is, bekomen we hetzelfde

resultaat, maar binnen het juiste tijdsvenster, nl. [0,1]. De K-variabelen zijn aldus binaire

getallen:

𝐾𝑖 = 0 𝑎𝑙𝑠 0 ≤ 𝑡𝑥1,𝑥2

𝑦1,𝑦2 ≤ 1

1 𝑎𝑙𝑠 − 1 ≤ 𝑡𝑥1,𝑥2𝑦1,𝑦2

≤ 0 , ∀𝑖 ∈ ℐ .

4. Vervolgens is een restrictie nodig om deze K-variabele op 1 te schakelen als de uitkomst

negatief is en op 0 wanneer de uitkomst positief is:

𝐾 𝑖 ≤ 𝐾𝑖 ≤ 𝐾 𝑖 , ∀𝑖 ∈ ℐ.

5. Om het model te doen kloppen, moest een extra beslissingsvariabele worden ingevoegd,

nl. de G-variabele. Deze zorgt voor de juiste berekening van de transferwachttijd.

Immers, wanneer de beschikbare transfertijd 𝑇𝑥1,𝑥2𝑦

kleiner is dan de minimum transfertijd

𝑇(𝑛), dan wordt de transfer gemist, en vergroot de transferwachttijd met een uur min de

tijd die hij tekort had om de overstap te kunnen maken. De G-variabele wordt dan op 1

geschakeld. Indien de transfer niet wordt gemist, is de G-variabele gelijk aan 0.

𝐺𝑔 = 0 𝑎𝑙𝑠 0 ≤ 𝑇𝑥1,𝑥2

𝑦− 𝑇(𝑛) ≤ 1

1 𝑎𝑙𝑠 − 1 ≤ 𝑇𝑥1,𝑥2𝑦

− 𝑇(𝑛) ≤ 0 , ∀𝑔 ∈ 𝒢 .

6. Vervolgens is opnieuw, zoals bij de K-variabele een restrictie nodig om deze G-variabele

op 1 te schakelen wanneer de uitkomst negatief is en op 0 wanneer de uitkomst positief

is:

𝐺 𝑔 ≤ 𝐺𝑔 ≤ 𝐺 𝑔 , ∀𝑔 ∈ 𝒢.

Page 101: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 85

7. Aan de transfertijd wordt zowel een boven- als onderlimiet opgelegd.

𝑇 𝑛 ≤ 𝑇𝑥1,𝑥2𝑦

≤ 𝑇(𝑛)

𝑛 ∈ 𝒩 = 𝐴,𝐵, 𝐶 ,

𝑖 = 49,… , 70 ∈ ℐ,

∀ 𝑥1,𝑥2,𝑦 ∈ 𝑅3 ,

𝑛 = 𝐴 𝑎𝑙𝑠 𝑥1,𝑥2,𝑦 ∈ 𝒯 𝐴 ,

𝒯 𝐴 = { 𝑅0,𝐸0 𝑎 + 𝑏 ,𝑇 , 𝐶1,𝐸0 𝑎 + 𝑏 ,𝑇 , 𝐸0 𝑏 ,𝐶1,𝑌 , 𝐶0,𝐿1,𝑍 },

𝑛 = 𝐵 𝑎𝑙𝑠 𝑥1,𝑥2,𝑦 ∈ 𝒯 𝐵 ,

𝒯 𝐵 = { 𝐶1,𝑅0,𝑇 , 𝐸1 𝑎 + 𝑏 ,𝑅1,𝑈 , 𝐸1 𝑎 + 𝑏 ,𝑅0,𝑈 , 𝑅1,𝐸0 𝑎 + 𝑏 ,𝑈 ,

𝐸0 𝑏 ,𝐿1,𝑌 , (𝐿𝑂,𝐶1,𝑍)},

𝑛 = 𝐶 𝑎𝑙𝑠 𝑥1,𝑥2,𝑦 ∈ 𝒯 𝐶 ,

𝒯 𝐶 = { 𝑅0,𝐸1 𝑎 + 𝑏 ,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝑅1,𝑇 , 𝐸1 𝑎 + 𝑏 ,𝑅1,𝑇 , 𝑅1,𝐶0,𝑇 , 𝑅0,𝐶0,𝑇 ,

𝐸1 𝑎 + 𝑏 ,𝐶0,𝑇 , 𝐶1,𝑅1,𝑇 , 𝐶0,𝐸1 𝑏 ,𝑌 , 𝐿0,𝐸1 𝑏 ,𝑌 , 𝐶1,𝐸1 𝑏 ,𝑌 ,

𝐸0 𝑏 ,𝐶0,𝑌 , 𝑅0,𝐸0 𝑎 + 𝑏 ,𝑈 }.

𝒯 𝐴 ,𝒯 𝐵 𝑒𝑛 𝒯 𝐶 vormen samen een partitie van 𝑅3,

8. Aan alle rijtijden, uitgezonderd deze die horen bij de enkelspoortrajecten, wordt zowel

een boven- als onderlimiet opgelegd.

𝑟𝑥𝑦1,𝑦2

× 1 − 𝛿 ≤ 𝑅𝑥𝑦1,𝑦2

≤ 𝑟𝑥𝑦1,𝑦2

× 1 + 𝛿

𝑖 = 1,… , 24 ∈ ℐ,

∀ 𝑥, 𝑦1,𝑦2 ∈ 𝑅4 \ 𝑅4𝐸 ⊂ 𝒳 × 𝒴 × 𝒴,

𝑅4𝐸 = { 𝐺0,𝑈, 𝑉 , 𝐺1,𝑈, 𝑉 , 𝑅0,𝑈,𝑉 , 𝑅1,𝑈,𝑉 , 𝐺0,𝑉 ,𝑊 , 𝐺1,𝑉,𝑊 ,

𝑅0,𝑉 ,𝑊 , (𝑅1,𝑉, 𝑊)}.

9. De rijtijden horend bij de enkelspoortrajecten worden vastgesteld op hun ideale rijtijd.

Deze beperking is nodig om het model lineair te houden. Immers, de rijtijd van de treinen

over een enkelspoor wordt op haar beurt gebruikt in de restrictie voor treinen die moeten

kruisen op een enkelspoor. Een restrictie die een variabele gebruikt in het beperkende lid

is niet langer lineair. Vandaar wordt de rijtijdbeperking voor deze trajecten een gelijkheid:

𝑅𝑥𝑦1,𝑦2

= 𝑟𝑥𝑦1,𝑦2

𝑖 = 1,… , 24 ∈ ℐ,

∀ 𝑥, 𝑦1,𝑦2 ∈ 𝑅4𝐸 ⊂ 𝒳 × 𝒴 × 𝒴.

10. Aan de haltetijd wordt zowel een boven- als onderlimiet opgelegd.

Page 102: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 86

𝐻 ≤ 𝑉𝑥𝑦− 𝐴𝑥

𝑦+ 𝐾𝑖 ≤ 𝐻

𝑖 = 25,… , 48 ∈ ℐ,

∀ 𝑥,𝑦 ∈ 𝑅5 ⊂ 𝒳 × 𝒴,

𝑅5 = { 𝐶0,𝑇 , 𝐶1,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝑇 , 𝐸1 𝑎 + 𝑏 ,𝑇 , 𝐺0, 𝑇 , 𝐺1,𝑇 , 𝑅0,𝑇 , 𝑅1,𝑇 ,

𝐸0,𝑈 , 𝐸1, 𝑈 , 𝐺0,𝑈 , 𝐺1,𝑈 , 𝑅0,𝑈 , 𝑅1,𝑈 , 𝐺0,𝑉 , 𝐺1,𝑉 , 𝑅0,𝑉 , 𝑅1,𝑉 ,

𝐶0,𝑌 , 𝐶1,𝑌 , 𝐶0,𝑍 , 𝐶1,𝑍 , 𝐿0,𝑍 , (𝐿1,𝑍)}.

11. De opvolgtijd tussen treinen in tegengestelde richting op een enkelspoor moet minimaal

de reistijd van de traagste trein bedragen. De restrictie zou er kunnen uitzien als volgt:

𝑉𝑥1𝑦1

− 𝑉𝑥2𝑦2

+ 𝐾𝑖 ≥ max(𝑅𝑥1𝑦1,𝑦2

,𝑅𝑥2𝑦1,𝑦2

) + 𝐻𝑊

Bovenstaande vergelijking is echter niet lineair. Ze moet worden omgebouwd tot een set

van vier lineaire vergelijkingen:

𝑉𝑥1𝑦1

− 𝑉𝑥2𝑦2

+ 𝐾𝑖 ≥ 𝑍𝑖 + 𝐻𝑊

𝑍𝑖 = 𝑟𝑥2𝑦1,𝑦2

𝑝𝑖 + 𝑟𝑥1𝑦1,𝑦2

(1 − 𝑝𝑖)

𝑟𝑥1𝑦1,𝑦2

− 𝑟𝑥2𝑦1,𝑦2

> −𝑀𝑝𝑖

𝑟𝑥1𝑦1,𝑦2

− 𝑟𝑥2𝑦1,𝑦2

≤ 𝑀(1 − 𝑝𝑖)

𝑖 = 71,… , 78 ∈ ℐ,

∀ 𝑥1,𝑥2, 𝑦1,𝑦2 ∈ 𝑅6 ⊂ 𝒳 × 𝒳 × 𝒴 × 𝒴,

In de laatste twee vergelijkingen van de vergelijkingenset wordt de hulpvariabele 𝑝𝑖 op 1

geschakeld wanneer trein 𝑥2 de traagste rittijd heeft. In het geval van twee treinen met

dezelfde snelheid, bedraagt het verschil tussen beide 0. De hulpvariabele 𝑝𝑖 wordt dan

op 1 geschakeld dankzij het “strikt groter dan”-teken in plaats van een “groter of gelijk

aan”-teken. In de tweede vergelijking wordt dan die specifieke rittijd toegewezen aan de

hulpvariabele 𝑍𝑖. In de eerste vergelijking wordt dan gerekend met de traagste rittijd.

Aangezien trein 1 niet per se als eerste moet vertrekken, kan de eerste vergelijking in de

bovenstaande set ook als volgt zijn:

𝑉𝑥2𝑦1

− 𝑉𝑥1𝑦2

+ 𝐾𝑖 ≥ 𝑍𝑖 + 𝐻𝑊

De twee mogelijkheden kunnen dan samengevoegd worden tot de volgende vergelijking:

𝑍𝑖 + 𝐻𝑊 ≤ 𝑉𝑥1𝑦1

− 𝑉𝑥2𝑦2

+ 𝐾𝑖 ≤ 1 − (𝑍𝑖 + 𝐻𝑊)

Page 103: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 87

De volledige restrictie ziet er dan uit als volgt:

𝑍𝑖 + 𝐻𝑊 ≤ 𝑉𝑥1𝑦1

− 𝑉𝑥2𝑦2

+ 𝐾𝑖 ≤ 1 − (𝑍𝑖 + 𝐻𝑊)

𝑍𝑖 = 𝑟𝑥2𝑦1,𝑦2

× 𝑝𝑖 + 𝑟𝑥1𝑦1,𝑦2

× (1 − 𝑝𝑖)

𝑟𝑥1𝑦1,𝑦2

− 𝑟𝑥2𝑦1,𝑦2

≥ −𝑀𝑝𝑖

𝑟𝑥1𝑦1,𝑦2

− 𝑟𝑥2𝑦1,𝑦2

≤ 𝑀(1 − 𝑝𝑖)

𝑖 = 71,… , 78 ∈ ℐ,

∀ 𝑥1,𝑥2, 𝑦1,𝑦2 ∈ 𝑅6 ⊂ 𝒳 × 𝒳 × 𝒴 × 𝒴,

12. De opvolgtijd tussen de vertrektijden van treinen die elkaar opvolgen op een enkel- of

dubbelspoor moet minimaal 𝐻𝑊 bedragen. Aangezien het opnieuw om het even is welke

trein eerst gaat, ziet de restrictie eruit als volgt:

𝐻𝑊 ≤ 𝑉𝑥1𝑦− 𝑉𝑥2

𝑦+ 𝐾𝑖 ≤ 1 −𝐻𝑊

𝑖 = 79,… , 82 ∪ {87,… ,97} ∈ ℐ ,

∀ 𝑥1,𝑥2,𝑦 ∈ 𝑅7 ⊂ 𝒳 × 𝒳 × 𝒴,

𝑅7 = { 𝐺1,𝑅1,𝑊 , 𝐺0,𝑅0,𝑉 , 𝐺1,𝑅1,𝑉 , 𝐺0,𝑅0,𝑈 , 𝐸1 𝑎 + 𝑏 ,𝐺1,𝑈 , 𝐸1 𝑎 + 𝑏 ,𝑅1,𝑈 ,

𝐺1, 𝑅1,𝑈 , 𝐶0,𝐿0,𝑍 , 𝐶1,𝐿1,𝑌 , 𝐺0,𝑅0,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝐺0,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝑅0,𝑇 ,

𝐶1,𝐸1 𝑎 + 𝑏 ,𝑇 , 𝐶1,𝐺1,𝑇 , (𝐸1 𝑎 + 𝑏 ,𝐺1, 𝑇)}.

13. Hetzelfde geldt voor de aankomsttijden tussen twee elkaar opvolgende treinen op een

dubbel- of enkelspoor:

𝐻𝑊 ≤ 𝐴𝑥1𝑦

− 𝐴𝑥2𝑦

+ 𝐾𝑖 ≤ 1 −𝐻𝑊

𝑖 = 83,… ,86 ∪ {98,… ,108} ⊂ ℐ,

∀ 𝑥1,𝑥2,𝑦 ∈ 𝑅8 ⊂ 𝒳 × 𝒳 × 𝒴,

𝑅8 = { 𝐺0,𝑅0,𝑊 , 𝐺0,𝑅0,𝑉 , 𝐺1,𝑅1,𝑉 , 𝐺1,𝑅1,𝑈 , 𝐸0 𝑎 + 𝑏 ,𝐺0,𝑈 , (𝐸0 𝑎 + 𝑏),𝑅0,𝑈 ,

𝐺0,𝑅0,𝑈 , 𝐸1 𝑎 + 𝑏 ,𝐺1,𝑇 , 𝐸1 𝑎 + 𝑏 ,𝑅1,𝑇 , 𝐺1,𝑅1,𝑇 , 𝐶0,𝐿0, 𝑌 , 𝐶1,𝐿1,𝑍 ,

𝐶0,𝐸0 𝑎 + 𝑏 ,𝑇 , 𝐶0,𝐺0, 𝑇 , 𝐸0 𝑎 + 𝑏 ,𝐺0,𝑇 .

14. Aan de omkeertijd wordt zowel een boven- als ondergrens gelegd, respectievelijk 𝑂 en 𝑂:

𝑂 ≤ 𝑉𝑥2𝑦− 𝐴𝑥1

𝑦+ 𝐾𝑖 ≤ 𝑂

𝑖 = 109,… , 112 ∈ ℐ,

∀ 𝑥1,𝑥2,𝑦 ∈ 𝑅9 ⊂ 𝒳 × 𝒳 × 𝒴,

Page 104: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 88

𝑅9 = 𝐺0,𝐺1, 𝑊 , 𝑅0,𝑅1,𝑊 , 𝐸0 𝑏 ,𝐸1 𝑏 ,𝑌 , 𝐿0,𝐿1,𝑌 .

15. Ook aan de koppeltijd wordt zowel een boven- als ondergrens gelegd. Aangezien het

koppelen van treinen in feite betrekking heeft op 3 treinen, moet aan twee restricties

worden voldaan. In het geval van koppelen geldt

𝐾𝑇 ≤ 𝑉𝑥1𝑦− 𝐴𝑥2

𝑦+ 𝐾𝑖 ≤ 𝐾𝑇

𝐾𝑇 ≤ 𝑉𝑥1𝑦− 𝐴𝑥3

𝑦+ 𝐾𝑖 ≤ 𝐾𝑇

𝑖 = 113,… , 116 ∈ ℐ,

∀ 𝑥1,𝑥2,𝑦 ∈ 𝑅10 ⊂ 𝒳 × 𝒳 × 𝒴, 𝑅10 = 𝐸1 𝑎 + 𝑏 ,𝐸1 𝑎 ,𝑋 ,

∀ 𝑥1,𝑥3, 𝑦 ∈ 𝑅11 ⊂ 𝒳 × 𝒳 × 𝒴, 𝑅11 = 𝐸1 𝑎 + 𝑏 ,𝐸1 𝑏 ,𝑋 .

In het geval van ontkoppelen geldt

𝐾𝑇 ≤ 𝑉𝑥2𝑦− 𝐴𝑥1

𝑦+ 𝐾𝑖 ≤ 𝐾𝑇

𝐾𝑇 ≤ 𝑉𝑥3𝑦− 𝐴𝑥1

𝑦+ 𝐾𝑖 ≤ 𝐾𝑇

𝑖 = 113,… , 116 ∈ ℐ,

∀ 𝑥1,𝑥2,𝑦 ∈ 𝑅12 ⊂ 𝒳 × 𝒳 × 𝒴, 𝑅12 = 𝐸0 𝑎 + 𝑏 ,𝐸0 𝑎 ,𝑋 ,

∀ 𝑥1,𝑥3, 𝑦 ∈ 𝑅13 ⊂ 𝒳 × 𝒳 × 𝒴, 𝑅13 = 𝐸0 𝑎 + 𝑏 ,𝐸0 𝑏 ,𝑋 .

16. Wanneer meerdere treinlijnen (een deel van) hun route gemeenschappelijk hebben, dan

is het interessant voor de klant om deze treinlijnen te synchroniseren. D.w.z. dat men zal

proberen om de treinlijnen gelijk te spreiden in de tijd. Als het om twee treinen gaat, dan

zal men dus een trein (proberen te) doen rijden om het halfuur. Gaat het om 3 treinlijnen,

dan zal men een trein laten komen om de 20 minuten. Aangezien het exact voldoen aan

deze restrictie nogal beperkend is voor de optimaliteit van het schema, kan een zekere

tolerantie 휀 op deze synchronisatie worden toegelaten. De restrictie ziet er dan uit als

volgt:

1

𝛾− 휀 ≤ 𝑉𝑥1

𝑦− 𝑉𝑥2

𝑦+ 𝐾𝑖 ≤

1

𝛾+ 휀

𝑖 = {117,… ,123} ⊂ ℐ,

∀(𝑥1,𝑥2 ,𝑦) ∈ 𝑅14 ⊂ 𝒳 × 𝒳 × 𝒴,

𝑅14 = { 𝐺0,𝑅0,𝑇 , 𝐶1,𝐸1 𝑎 + 𝑏 ,𝑇 , 𝐶1,𝐺1,𝑇 , 𝐸1 𝑎 + 𝑏 ,𝐺1,𝑇 , 𝐺1,𝑅1,𝑊 , 𝐶0,𝐿0,𝑍 ,

(𝐶1,𝐿1,𝑌)}.

Page 105: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 89

17. Een laatste belangrijke restrictie die de kwaliteit van de dienstregeling ten goede komt, is

de symmetrievereiste. Deze wordt gemodelleerd als volgt:

𝑉𝑥1𝑦

+ 𝐴𝑥2𝑦

= 1

∀ 𝑥1,𝑥2, 𝑦 ∈ 𝑅15 ⊂ 𝒳 × 𝒳 × 𝒴,

𝑅15 = { 𝐶0,𝐶1,𝑇 , 𝐶1,𝐶0,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝐸1 𝑎 + 𝑏 ,𝑇 , 𝐸1 𝑎 + 𝑏 ,𝐸0 𝑎 + 𝑏 ,𝑇 ,

𝐺0,𝐺1, 𝑇 , 𝐺1,𝐺0, 𝑇 , 𝑅0,𝑅1,𝑇 , 𝑅1,𝑅0,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝐸1 𝑎 + 𝑏 ,𝑈 ,

𝐸1 𝑎 + 𝑏 ,𝐸0 𝑎 + 𝑏 ,𝑈 , 𝐺0,𝐺1, 𝑈 , 𝐺1,𝐺0, 𝑈 , 𝑅0,𝑅1,𝑈 , 𝑅1,𝑅0,𝑈 ,

𝐺0,𝐺1, 𝑉 , 𝐺1,𝐺0, 𝑉 , 𝑅0,𝑅1,𝑉 , 𝑅1,𝑅0,𝑉 , 𝐺0,𝐺1, 𝑊 , 𝑅0,𝑅1,𝑊

𝐸0 𝑎 + 𝑏 ,𝐸1 𝑎 + 𝑏 ,𝑋 , 𝐸1 𝑎 ,𝐸0 𝑎 ,𝑋 , 𝐸1 𝑏 ,𝐸0 𝑏 ,𝑋 , 𝐸0 𝑏 ,𝐸1 𝑏 ,𝑌 ,

𝐶0,𝐶1,𝑌 , 𝐶1,𝐶0,𝑌 , 𝐿0,𝐿1, 𝑌 , 𝐶0,𝐶1,𝑍 , 𝐶1,𝐶0,𝑍 , 𝐿0,𝐿1,𝑍 , (𝐿1,𝐿0, 𝑍)}.

4.4 Optimalisatie

Nu het model een wiskundige vorm gekregen heeft, kan worden overgegaan tot de

implementatie in MS Excel. In dit deel zal de dienstregeling worden geoptimaliseerd naar

minimale transferwachttijd. Hiervoor wordt eerst de huidige dienstregeling geanalyseerd

m.b.t. de gebruikte parameters en gemiste verbindingen. Vervolgens wordt beschreven hoe

de initiële modelparameterwaarden werden bepaald. Hiervoor werd vooral uitgegaan van de

gebruikelijke praktijken bij de NMBS. Het model werd vervolgens onderworpen aan een

reeks van gevoeligheidsanalyses om de finale parameterwaarden te bepalen. Aan de hand

van die finale parameterwaarden kunnen de transferwachttijden worden geminimaliseerd en

bekomen we de optimale dienstregeling.

4.4.1 Analyse van de huidige dienstregeling

De huidige dienstregeling die wordt gehanteerd door de NMBS werd in het model ingebracht.

Hierbij werd duidelijk dat in de huidige dienstregeling twee verbindingen worden gemist,

namelijk een verbinding met A- en één met B-prioriteit. Daardoor ligt de waarde van de

gewogen som van de transferwachttijden nogal hoog, nl. 196,6 passagiersuren (pu). Beide

gemiste verbindingen vinden plaats in het station van Aarschot. Het betreft de transfer van

C0 naar L1, en van L0 naar C1. Passagiers hebben hier slechts 4 minuten om over te

stappen.

Vervolgens zijn er in de huidige dienstregeling veertien gevallen waar de rijtijd tot slechts

65% van zijn ideale rijtijd bedraagt. Deze rijtijdtolerantie van 35% is naar mijn mening te

hoog aangezien veel sneller rijden dan de ideale rijtijd vlugger slijtage teweegbrengt.

Daarenboven wordt de buffer om vertraging op te vangen te klein en wordt de dienstregeling

minder robuust.

Page 106: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 90

De rijtijden over de enkelsporen werden allemaal gelijkgesteld aan 7 min. Er wordt hier dus

over deze links geen onderscheid gemaakt tussen IC- en IR-treinen. Echter, voor deze kleine

afstanden is dit wel te verantwoorden. Verder bedraagt de minimum opvolgtijd voor

kruisende treinen op deze enkelsporen voor vier van de acht gevallen slechts 2 minuten.

Deze marge is kleiner dan de algemeen aanvaarde 3 minuten. Men moet dus steeds met de

nodige omzichtigheid de desbetreffende treinen in de gaten houden.

Tenslotte is de symmetrie niet perfect voldaan in het station van Herentals voor lijn E. Daar is

de som van de vertrek- en aankomsttijd van respectievelijk E1 en E0 gelijk aan 61 min i.p.v.

60 min.

Een overzicht van de parameterwaarden die gelden voor de huidige dienstregeling, wordt

hieronder weergegeven.

Tabel 24: Parameterwaarden in de huidige dienstregeling (eigen werk)

Parameter NMBS

Minimum transfertijd prioriteit A Nvt

Maximum transfertijd prioriteit A Nvt

Minimum transfertijd prioriteit B Nvt

Maximum transfertijd prioriteit B Nvt

Minimum transfertijd prioriteit C Nvt

Maximum transfertijd prioriteit C Nvt

Rijtijdtolerantie voor de minimumwaarde van de reistijd 35%

Rijtijdtolerantie voor de maximumwaarde van de reistijd 5%

Minimum haltetijd 1 min

Maximum haltetijd 6 min

Opvolgtijd voor kruisende treinen op een enkelspoor 2 min

Opvolgtijd voor opvolgende treinen op een enkelspoor 3 min

Opvolgtijd voor opvolgende treinen op een dubbelspoor 3 min

Minimum omkeertijd 8 min

Maximum omkeertijd 24 min

Minimum koppeltijd 5 min

Maximum koppeltijd 8 min

Synchronisatietolerantie 17 min

Symmetrie 60 min

Legende:

Nvt: niet van toepassing. Deze parameterwaarden kunnen niet worden bepaald aangezien de

NMBS op een andere manier prioriteiten heeft opgelegd aan verbindingen.

4.4.2 Bepaling van de initiële parameterwaarden

De huidige dienstregeling lijkt dus ruimte te laten voor verbetering. Aan alle

modelparameters werd een zinvolle initiële waarde toegewezen zodanig dat het model

oplosbaar is. Voor deze waarden werd rekening gehouden met de eigen voorkeur en die van

de NMBS. Deze waarden zijn terug te vinden in Tabel 25 in de middelste kolom.

Page 107: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 91

Ten eerste bedraagt de minimum transfertijd voor alle verbindingen 5 min. Alhoewel de

NMBS soms slechts 3 of 4 minuten voorziet, werd er hier voor gekozen om op zeker te

spelen. De kortere transfertijden zijn immers pas haalbaar in die situaties waar de aansluiting

zich bevindt op het perron naast datgene waar de passagier is afgestapt.

Ten tweede mag de transfertijd voor prioriteit A-verbindingen niet meer dan 15 min

bedragen. Deze bovenlimiet wordt ook door de NMBS gebruikt. Voor de maximum

toegestane transfertijd voor prioriteit B-verbindingen werd 40 minuten vooropgesteld. Deze

waarde werd zo gekozen om het model voldoende vrijheid te laten en omdat deze

verbindingen minder belangrijk zijn. Indien mogelijk wordt deze waarde nog verlaagd. De

maximum toegelaten transfertijd voor prioriteit C-verbindingen, werd op 50 minuten gezet.

Deze maximumwaarde moet logischerwijze hoger zijn dan bij de prioriteit B-verbindingen,

maar indien mogelijk wordt deze waarde later nog verlaagd.

Vervolgens werd de rijtijdtolerantie voor zowel onder- als bovenlimiet op 8% gezet. De

motivatie hiervoor is dat op die manier het verschil tussen de verschillende treintypes

relevant blijft. Wanneer een IR-trein immers een 8%-kortere rijtijd heeft dan volgens de

ideale rijtijd, dan rijdt hij aan (60 km/h)/(1-0,08) = 65 km/h. Wanneer een IC-trein een 8%

langere rijtijd heeft dan de ideale rijtijd, dan heeft hij aan (73km/h)/(1+0,08) = 68 km/h

gereden. In deze extreme situaties liggen de snelheden van de IC- en IR-trein reeds heel

dicht bij elkaar. Voor een trage IR- en een snelle L-trein gelden dezelfde conclusies: hier rijdt

de IR-trein aan 56 km/h en de L-trein aan 55 km/h. Omwille van deze bevindingen werd een

rijtijdtolerantie van 8% ruim voldoende bevonden. Deze tolerantie werd ook niet lager gezet

om de oplossingsruimte in het model groot genoeg te houden.

De haltetijd bedraagt ten minste 1 minuut in elk station. Dit is nodig om de passagiers

voldoende tijd te geven om af- en op te stappen. In heel kleine stations is een haltetijd van

30 seconden reeds voldoende (gesprek met de heer Vervoort B., 2 maart 2010, Brussel),

maar deze kleinere stations werden uit het netwerk geweerd, vandaar de voorkeur voor 1

minuut. De maximale haltetijd werd op 6 minuten gezet omdat het LP-model in eerste

instantie niet oplosbaar was voor een lagere waarde dan 6 min. In een latere analyse zal

worden nagegaan of deze waarde kan worden verlaagd. Uit analyse van de huidige

dienstregeling blijkt ook dat er twee situaties voorkomen waarin de haltetijd 6 minuten

bedraagt.

Voor de omkeertijd werd het minimum op 7 minuten gezet omdat het model in eerste

instantie niet oplosbaar was bij een hogere waarde. Later zal worden nagegaan of deze

waarde kan worden verhoogd. Uit gesprek met de heer Vervoort B. (2 maart 2010, Brussel)

bleek immers dat een omkeertijd van 8 minuten reeds vrij idealistisch is. Voor NMBS is 8 min

een streefwaarde want hoe kleiner de omkeertijd, hoe groter de treinrotatie en dus hoe hoger

de efficiëntie. Vandaar ook dat men ook probeert de maximumwaarde te beperken. Idealiter

Page 108: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 92

bedraagt deze 20 minuten, maar situaties waar dit langer is, vormen geen uitzondering.

Vandaar dat deze waarde hier initieel op 40 wordt gezet. Het model bleek immers

onoplosbaar te zijn met een lagere waarde. Later zal worden geprobeerd deze

maximumwaarde te verlagen.

De minimum koppeltijd bedraagt bij de NMBS 5 minuten. Tijdens het koppelingsproces

moeten immers veiligheidstesten uitgevoerd worden e.d. (supra, p.42). Vandaar dat deze

koppeltijd best niet minder bedraagt. Aan de andere kant is het voor de passagiers die op de

trein blijven zitten niet aangenaam om lang stil te staan. Vandaar dat deze koppeltijd ook niet

te hoog mag oplopen. In de huidige dienstregeling bleek deze waarde maximaal 8 minuten te

bedragen. Met deze waarde zal ook in het LP-model worden gerekend. Er zal echter

nagegaan worden of deze waarden moeten worden gewijzigd.

De NMBS maakte reeds duidelijk dat de spreiding van de treinen heel belangrijk is voor de

kwaliteit van de dienstregeling. Vandaar dat er zal worden gestreefd naar een zo klein

mogelijke synchronisatietolerantie. Voorlopig werd deze tolerantie op 10 minuten gezet,

maar analyse moet uitwijzen of een verlaging mogelijk is.

Verder is ook de symmetrie van de dienstregeling een belangrijke vereiste. De waarde

hiervoor is eenduidig, nl. 60 minuten.

Tot slot zijn er de heel belangrijke opvolgtijden. Uit interview met de heer Vervoort B. (2

maart 2010, Brussel) bleek dat deze te allen tijde op zijn minst 3 minuten moeten bedragen.

Uit analyse van de huidige dienstregeling bleek reeds (supra, p.87) dat deze voorwaarde op

de enkelspoorsegmenten slechts 2 minuten was. In het LP-model zal er echter steeds

minimaal 3 minuten worden afgedwongen.

Een samenvatting van deze parameterwaarden is te vinden in onderstaande tabel in de

middelste kolom.

Tabel 25: Parameterwaarden en –intervallen in het LP-model (eigen werk)

Parameter Waarde (in min) Optimalisatieinterval (in min)

Minimum transfertijd prioriteit A 5 /

Maximum transfertijd prioriteit A 15 [15,20]

Minimum transfertijd prioriteit B 5 /

Maximum transfertijd prioriteit B 40 [25,40]

Minimum transfertijd prioriteit C 5 /

Maximum transfertijd prioriteit C 50 [45,59]

Rijtijdtolerantie voor de minimumwaarde van de reistijd

8% 8%-12%

Rijtijdtolerantie voor de

maximumwaarde van de reistijd

8% 8%-12%

Minimum haltetijd 1 /

Maximum haltetijd 6 [3,6]

Minimum omkeertijd 7 [7,20]

Maximum omkeertijd 40 [25,40]

Minimum koppeltijd 5 [3,8]

Page 109: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 93

Maximum koppeltijd 8 [8,12]

Synchronisatietolerantie 10 [0,15]

Opvolgtijd voor kruisende

treinen op een enkelspoor

3 /

Opvolgtijd voor opvolgende

treinen op een enkelspoor

3 /

Opvolgtijd voor opvolgende treinen op een dubbelspoor

3 /

Symmetrie 60 /

4.4.3 Gevoeligheidsanalyses

Om na te gaan hoe goed de initieel gekozen parameterwaarden zijn, worden verschillende

gevoeligheidsanalyses uitgevoerd. Voor bepaalde parameters wordt een interval

gespecificeerd waarin de parameterwaarde kan variëren. Deze intervals worden in

bovenstaande tabel opgelijst in de laatste kolom. Wanneer geen interval vermeld staat, dan

is het volgens bepaalde kwaliteits- en veiligheidsvereisten niet mogelijk om de

parameterwaarde aan te passen. De doelfunctie van het model is de minimalisatie van de

transferwachttijden.

M.b.v. „Risk Solver Platform‟ kan een gevoeligheidsanalyse worden uitgevoerd met maximaal

twee parameters tegelijk. Ten eerste werd nagegaan hoe het variëren van de boven- en

onderlimiet (resp. R(UB) en R(LB)) van de rijtijdtolerantie de doelfunctie wijzigt. Het

resultaat is te vinden in onderstaande tabel. Uit de tabel kunnen we opmaken dat de waarde

van de doelfunctie pas substantieel verandert bij een bovenlimiet van 12%. De doelfunctie is

hier met 16% verbeterd t.o.v. de situatie van 8% rijtijdtolerantie. Zoals eerder vermeld echter,

is 12% een nogal grote tolerantiewaarde. De variatie in onderlimiet blijkt slechts een miniem

effect te hebben op de doelfunctie. Omwille van deze redenen wordt besloten om de

rijtijdtolerantie in beide gevallen op 8% te houden. De doelfunctiewaarde bij deze gekozen

combinatie wordt in het vet weergegeven.

Tabel 26: Gevoeligheidsanalyse van de onder- vs. bovenlimiet voor de rijtijtolerantie (resp.

R(LB) en R(UB)) (eigen werk)

R(LB)/R(UB) 8% 9% 10% 11% 12%

8% 40,67 40,67 40,67 40,67 35,27

9% 40,46 40,46 40,46 40,46 34,91

10% 40,25 40,25 40,25 40,25 34,56

11% 40,04 40,04 40,04 40,04 34,21

12% 39,83 39,83 39,83 39,83 33,85

Vervolgens werd gecontroleerd hoe de doelfunctie verandert bij het variëren van de

maximum transfertijd voor een prioriteit A-verbinding (Ta) en de

rijtijdtolerantieonderlimiet (R). De NMBS stelt dat de transfertijd voor zo‟n verbinding

maximaal 15 min mag bedragen. Als de rijtijdtolerantie dan 8% bedraagt, bedraagt de

Page 110: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 94

doelfunctiewaarde 40,67 pu. Er kan snel worden afgeleid dat het verlossen van beide

restricties geen noemenswaardige verbetering oplevert. Bij een transfertijd van 20 min en

een tolerantie van 12% is de verbetering slechts 2,1%. De resultaten hiervan zijn terug te

vinden in Tabel 27. Uit de gevoeligheidsanalyse van de maximum prioriteit A-transfertijd

t.o.v. de bovenlimietwaarde van de rijtijdtolerantie, kunnen dezelfde conclusies worden

getrokken. Er wordt aldus besloten om de combinatie 15min en 8% te behouden (in vet).

Tabel 27: Gevoeligheidsanalyse van de rijtijdtolerantieonderlimiet (R(LB)) en de maximum

transfertijd voor een A-prioriteitverbinding (Ta) (eigen werk)

Ta/R(LB) 8% 9% 10% 11% 12%

15 40,67 40,46 40,25 40,04 39,83

16 40,67 40,46 40,25 40,04 39,83

17 40,67 40,46 40,25 40,04 39,83

18 40,67 40,46 40,25 40,04 39,83

19 40,67 40,46 40,25 40,04 39,83

20 40,67 40,46 40,25 40,04 39,83

De analyse van de maximum B-transfertijd (Tb) en de rijtijdtolerantieonderlimiet leert ons

dat het model voor een groot aantal combinaties niet oplosbaar is (i.e. infeasible). Dit is te

zien in Tabel 28. Voor de geprefereerde tolerantie van 8% zijn enkel de transfertijden vanaf

37 min mogelijk. Wanneer we de tolerantie zouden verhogen naar 10%, wordt een maximum

transfertijd van 28 min mogelijk. Dit verslecht de objectiefwaarde echter met 112% t.o.v. de

combinatie 8% en 40 min. Aangezien prioriteit B inhoudt dat de desbetreffende verbindingen

minder belangrijk zijn, weegt de verslechtering van de doelfunctie met 45 passagiersuren

niet op tegen de 9 min kortere maximale transfertijd.

Bij de minst strenge combinatie, nl. 40 minuten transfertijd en 12% tolerantie, is de

doelfunctie slechts met 2,1% verbeterd. Het vergroten van de tolerantie levert dus geen

significante winst op.

Ten slotte blijkt bij een tolerantie van 8% de objectiefwaarde niet te verslechteren wanneer

de transferlimiet op 37 min wordt gesteld in plaats van 40 min. Daarom wordt besloten om

deze transfertijdverlaging door te voeren (in vet).

De analyse met de rijtijdtolerantiebovenlimiet i.p.v. –onderlimiet levert gelijkaardige

resultaten op. Het enige verschil is dat daar een lagere transferlimiet dan 37 minuten pas

mogelijk wordt vanaf 12% tolerantie.

Tabel 28: De gevoeligheidsanalyse van de maximum transfertijd voor prioriteit B-verbindingen

(Tb) en de onderlimiet van de rijtijdtolerantie (R(LB)) (eigen werk)

Tb/R(LB) 8% 9% 10% 11% 12%

25 Infeasible Infeasible Infeasible Infeasible Infeasible

26 Infeasible Infeasible Infeasible Infeasible Infeasible

27 Infeasible Infeasible Infeasible Infeasible Infeasible

Page 111: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 95

28 Infeasible Infeasible 86,07 58,62 57,30

29 Infeasible Infeasible 86,07 58,62 57,30

30 Infeasible Infeasible 86,07 58,62 57,30

31 Infeasible Infeasible 86,07 58,62 57,30

32 Infeasible Infeasible 86,07 58,62 57,30

33 Infeasible Infeasible 86,07 58,62 57,30

34 Infeasible Infeasible 86,07 58,62 57,30

35 Infeasible Infeasible 86,07 58,62 57,30

36 Infeasible Infeasible 86,07 58,62 57,30

37 40,67 40,46 40,25 40,04 39,83

38 40,67 40,46 40,25 40,04 39,83

39 40,67 40,46 40,25 40,04 39,83

40 40,67 40,46 40,25 40,04 39,83

Uit de analyse van de rijtijdtolerantieonderlimiet en de maximum transfertijd voor

prioriteit C-verbindingen kunnen dezelfde conclusies worden getrokken als hierboven

(resultaten zijn te vinden in Tabel 29). De objectiefwaarde is bij de minst strenge combinatie,

nl. 59 min en 12%, opnieuw slechts 2,1% beter. Wanneer de rijtijdtolerantiebovenlimiet in

beschouwing wordt genomen, is de verbetering iets beter, namelijk 13,3%. Aangezien het

hier om een C-prioriteit verbinding gaat, is het verantwoord om voor de maximum

transferlimiet 50 minuten voorop te stellen (in vet). Hiervoor werd de gulden middenweg

gevolgd om voldoende vrijheid in het model te laten en de slechte verbindingen toch wat in te

perken.

Tabel 29: De gevoeligheidsanalyse van de maximum transfertijd voor prioriteit C-verbindingen

(Tc) en de onderlimiet van de rijtijdtolerantie (R(LB)) (eigen werk)

Tc/R(LB) 8% 9% 10% 11% 12%

45 40,67 40,46 40,25 40,04 39,83

46 40,67 40,46 40,25 40,04 39,83

47 40,67 40,46 40,25 40,04 39,83

48 40,67 40,46 40,25 40,04 39,83

49 40,67 40,46 40,25 40,04 39,83

50 40,67 40,46 40,25 40,04 39,83

51 40,67 40,46 40,25 40,04 39,83

52 40,67 40,46 40,25 40,04 39,83

53 40,67 40,46 40,25 40,04 39,83

54 40,67 40,46 40,25 40,04 39,83

55 40,67 40,46 40,25 40,04 39,83

56 40,67 40,46 40,25 40,04 39,83

57 40,67 40,46 40,25 40,04 39,83

58 40,67 40,46 40,25 40,04 39,83

59 40,67 40,46 40,25 40,04 39,83

Wat betreft de maximum haltetijden blijkt het model onoplosbaar te zijn bij tijden lager dan 5

minuten (Tabel 30). Een vergroting van de rijtijdtolerantie brengt hier geen verbetering in. Het

verhogen van de maximum transfertijd van prioriteit A-verbindingen tot 19 minuten maakt

een maximum haltetijd van 4 minuten mogelijk. Dit is te zien in Tabel 30. Deze actie

Page 112: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 96

verslechtert de objectiefwaarde echter enorm, nl. met 248%. De tijdswinst uit de verkleining

van de maximum haltetijd weegt dus absoluut niet op tegen het verhogen van de maximum

transfertijd voor prioriteit A-verbindingen. Er wordt bijgevolg gekozen voor een maximum

haltetijd van 5 minuten (in vet).

Tabel 30: De gevoeligheidsanalyse van de maximum transfertijd voor prioriteit A-verbindingen

(Ta) en maximum haltetijden (H) (eigen werk)

Ta/H 3 4 5 6

15 Infeasible Infeasible 41,32 40,67

16 Infeasible Infeasible 41,32 40,67

17 Infeasible Infeasible 41,32 40,67

18 Infeasible Infeasible 41,32 40,67

19 Infeasible 141,52 41,32 40,67

20 Infeasible 132,88 41,32 40,67

Wat betreft de omkeertijd blijkt een minimum van 8 minuten pas mogelijk te zijn bij een

maximum omkeertijd van 38 minuten. Dit brengt weliswaar een verslechtering van de

objectiefwaarde teweeg van 45% t.o.v. alle situaties met een minimum van 7 minuten. De

objectiefwaarde bedraagt dan 58,84 pu. Ook een minimumtijd van 10 min wordt mogelijk bij

een maximumtijd van 38 min, waarbij de objectiefwaarde dan 61,86 bedraagt. Dit kan

worden geconcludeerd uit Tabel 31. Wanneer de rijtijdtolerantiebovenlimiet echter op 11%

wordt gezet, zijn minimum omkeertijden tot 20 min mogelijk. De objectiefwaarde verslecht

hier echter tot 67,10 pu. Dit is te zien in Tabel 32. Aangezien 11% nogal hoog is en een korte

omkeertijd de efficiëntie verhoogt, zoals eerder gemotiveerd, wordt hier dus geen inspanning

gedaan om de minimum omkeertijd op hoger dan 10 min vast te leggen. Aangezien het

verhogen van de rijtijdtolerantie bij een vaste omkeertijd niet zoveel verbetering

teweegbrengt, en zeker niet beneden de 11%, wordt besloten om de tolerantie op 8% te

houden. Verder wordt besloten de minimum omkeertijd op 8 minuten te zetten en de

maximum omkeertijd op 38 minuten (in vet).

Tabel 31: Gevoeligheidsanalyse van de minimum en maximum omkeertijd (resp. O(LB) en

O(UB)) (eigen werk)

O(LB)/O(UB) 37 38 39 40

7 40,67 40,67 40,67 40,67

8 Infeasible 58,84 57,61 56,37

9 Infeasible 60,28 59,04 57,80

10 Infeasible 61,86 60,62 59,39

11 Infeasible Infeasible Infeasible Infeasible

12 Infeasible Infeasible Infeasible Infeasible

Tabel 32: Gevoeligheidsanalyse van de minimum omkeertijd (O(LB)) en de

rijtijdtolerantiebovenlimiet (R(UB)) (eigen werk)

Page 113: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 97

O(LB)/R(UB) 8% 9% 10% 11% 12%

7 40,67 40,67 40,67 40,67 35,27

8 56,37 55,61 54,85 54,14 46,13

9 57,80 57,04 56,29 55,53 46,13

10 59,39 58,63 57,87 56,99 46,13

11 Infeasible Infeasible Infeasible 58,00 47,08

12 Infeasible Infeasible Infeasible 59,01 48,03

13 Infeasible Infeasible Infeasible 60,02 48,98

14 Infeasible Infeasible Infeasible 61,03 49,93

15 Infeasible Infeasible Infeasible 62,05 50,88

16 Infeasible Infeasible Infeasible 63,06 51,83

17 Infeasible Infeasible Infeasible 64,07 52,78

18 Infeasible Infeasible Infeasible 65,08 53,73

19 Infeasible Infeasible Infeasible 66,09 65,29

20 Infeasible Infeasible Infeasible 67,10 66,30

Bij het uitzetten van de minimum en maximum koppeltijden t.o.v. elkaar in Tabel 33, blijkt

de objectiefwaarde over alle combinaties gelijk te blijven, nl. 40,67. De geprefereerde

combinatie van minimum 5 en maximaal 8 minuten mag dus worden behouden (in vet).

Tabel 33: Gevoeligheidsanalyse van de minimum en maximum koppeltijd (resp. K(LB) en

K(UB)) (eigen werk)

K(LB)/K(UB) 8 9 10 11 12

3 40,67 40,67 40,67 40,67 40,67

4 40,67 40,67 40,67 40,67 40,67

5 40,67 40,67 40,67 40,67 40,67

6 40,67 40,67 40,67 40,67 40,67

7 40,67 40,67 40,67 40,67 40,67

8 40,67 40,67 40,67 40,67 40,67

Wanneer de synchronisatietolerantie t.o.v. de rijtijdtolerantie wordt bekeken in Tabel 34,

blijkt dat het LP-model pas oplosbaar is vanaf een synchronisatietolerantie van 3 minuten.

Onderstaande tabel geldt voor de rijtijdtolerantieonderlimiet, maar de tabel met de

bovenlimiet geeft bijna exact dezelfde resultaten weer. De synchronisatietolerantie kan dus

worden verlaagd, maar om voldoende vrijheid in het model te behouden, wordt deze slechts

verlaagd tot 7 minuten. Aangezien de variatie in de rijtijdtolerantie bij een

synchronisatietolerantie van 7 minuten een miniem effect heeft, wordt de rijtijdtolerantie van

8% behouden (in vet).

Tabel 34: Gevoeligheidsanalyse van de synchronisatietolerantie (S) en de

rijtijdtolerantieonderlimiet (R(LB)) (eigen werk)

S/R(LB) 8% 9% 10% 11% 12%

0 Infeasible Infeasible Infeasible Infeasible Infeasible

1 Infeasible Infeasible Infeasible Infeasible Infeasible

Page 114: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 98

2 Infeasible Infeasible Infeasible Infeasible Infeasible

3 56,25 55,99 55,99 55,99 45,67

4 43,50 43,35 43,24 43,24 43,24

5 42,06 42,05 42,04 42,04 42,03

6 41,14 41,07 41,01 41,00 41,00

7 40,67 40,46 40,28 40,22 40,15

8 40,67 40,46 40,25 40,04 39,83

9 40,67 40,46 40,25 40,04 39,83

10 40,67 40,46 40,25 40,04 39,83

11 40,67 40,46 40,25 40,04 39,83

12 40,67 40,46 40,25 40,04 39,83

13 36,89 36,38 35,88 35,37 34,89

14 36,89 36,38 35,88 35,37 34,89

15 36,89 36,38 35,88 35,37 34,89

4.4.4 Conclusies

Na deze reeks van gevoeligheidsanalyses, waarvan enkel de meest relevante werden

weergegeven en besproken, worden de parameters aangepast o.b.v. bovenstaande

redeneringen. De aangepaste parameterwaarden worden in onderstaande tabel in vet

weergegeven.

Tabel 35: Finale parameterwaarden en hun aanpasbaarheid (eigen werk)

Parameter Waarde Aanpasbaarheid

Minimum transfertijd prioriteit A 5 2

Maximum transfertijd prioriteit A 15 3

Minimum transfertijd prioriteit B 5 2

Maximum transfertijd prioriteit B 38 3

Minimum transfertijd prioriteit C 5 2

Maximum transfertijd prioriteit C 50 2

Rijtijdtolerantie voor de minimumwaarde van

de reistijd

8% 2

Rijtijdtolerantie voor de maximumwaarde van de reistijd

8% 2

Minimum haltetijd 1 niet

Maximum haltetijd 5 6 1

Minimum omkeertijd 8 1

Maximum omkeertijd 38 40 1

Minimum koppeltijd 5 2

Maximum koppeltijd 8 2

Synchronisatietolerantie 7 2

Opvolgtijd voor kruisende treinen op een enkelspoor

3 niet

Opvolgtijd voor opvolgende treinen op een

enkelspoor

3 niet

Opvolgtijd voor opvolgende treinen op een dubbelspoor

3 niet

Symmetrie 60 3

Legende:

Page 115: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 99

1: deze parameter moet eerst worden aangepast ingeval van onoplosbaarheid. 2: deze parameter mag pas in tweede instantie worden aangepast ingeval van

onoplosbaarheid. 3: deze parameter mag pas in noodgeval worden aangepast ingeval van onoplosbaarheid. Niet: deze parameter mag nooit worden aangepast.

Het model met deze nieuwe parameters bleek niet oplosbaar te zijn. Om deze

onoplosbaarheid aan te pakken, werd een prioriteitslijst opgesteld van de aan te passen

parameters. De toegekende prioriteiten zijn terug te vinden in bovenstaande tabel in de

laatste kolom. Volgens de prioriteitsvolgorde moesten de maximum haltetijd en de minimum

en maximum omkeertijd eerst worden aangepast. Enkel het aanpassen van de maximum

haltetijd en maximum omkeertijd bleek heil te brengen, waardoor deze werden verhoogd tot

respectievelijk 6 en 40 minuten. Deze getallen zijn te vinden na de pijl in de tweede kolom.

De objectiefwaarde bedraagt nu 56,43 pu, wat een verslechtering is van 38,8% t.o.v. de

eerste optimalisatie met de waarden van Tabel 25. Deze verslechtering is verantwoord

wegens de verhoogde efficiëntie en kwaliteit elders dan bij de transfertijden. De finale

dienstregeling is terug te vinden in Tabel 36. Het optimaliseren kon gebeuren in minder dan

3 sec d.m.v. een Pentium M processor van 1,73 GHz.

Tabel 36: Optimale dienstregeling (eigen werk)

Aankomst Vertrek A V A V A V A V A V A V

Lier Herentals Tielen Turnhout Mol Aarschot Hasselt

G0 54 55 16 20 29 32 41 - - - - - - -

R0 24 26 43 49 56 2 10 - - - - - - -

E0 28 29 47 48 - - - - 11 16 - - 56 -

C0 41 42 - - - - - - - - 11 17 59 1

L0 - - - - - - - - - - 43 44 26 -

Hasselt Aarschot Mol Turnhout Tielen Herentals Lier

G1 - - - - - - - 19 29 32 40 44 5 6

R1 - - - - - - - 50 58 4 11 17 34 36

E1 - 4 - - 44 49 - - - - 12 13 31 32

C1 59 1 43 49 - - - - - - - - 18 19

L1 - 34 16 17 - - - - - - - - - -

4.5 Simulatie

De dienstregeling bekomen in sectie 4.4 wordt in dit onderdeel gesimuleerd om het effect na

te gaan van mogelijks optredende vertragingen. Deze stap is belangrijk om de kwaliteit van

de dienstregeling te kunnen evalueren. Deze evaluatie wordt gedaan a.d.h.v.

performantiemaatstaven.

Page 116: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 100

4.5.1 Opzet

De NMBS verwacht vertragingen rond Herentals en Turnhout wegens de werken die daar

momenteel worden ondernomen8. Deze gegevens zijn terug te vinden in Tabel 37. In andere

stations worden geen vertragingen verwacht omdat men er bij de planning vanuit gaat dat

vertragingen de uitzondering zijn en niet de regel.

Tabel 37: Verwachte vertragingen vrijgegeven door NMBS (gebaseerd op e-mailverkeer met

mevrouw Courtois E., 15 maart 2010)

Station Lijn Verwachte

vertraging (in min)

Herentals E0(a+b) 1,5

E1(a+b) 1,5

Turnhout G0 1,2

R0 2,53

Omdat de werkelijkheid toch niet altijd loopt zoals gepland wegens onvoorziene

omstandigheden, wordt een kleine variabiliteit in aankomst- en vertrektijden beschouwd.

Voor alle treinen wordt een gemiddelde vertraging van 18 seconden verondersteld, behalve

voor de bovenvermelde treinen en de treinen afkomstig zijn drukke stations, meer bepaald

Antwerpen, Brussel, Luik en Leuven. Voor deze laatste treinen wordt verondersteld dat zij

gemiddeld genomen 1 minuut en 6 seconden vertraging oplopen. Tabel 38 vat deze

assumpties samen. Deze verwachte vertraging wordt zowel aan de aankomsttijd als aan de

vertrektijd toegevoegd. We veronderstellen immers dat de toegewezen haltetijd moet worden

gewaarborgd want door het verkleinen van de haltetijden zouden bepaalde restricties worden

geschonden. Op die manier echter plant de vertraging zich in het netwerk voort, maar er

werd vanuit gegaan dat vertraagde treinen tijdens hun volgende rit iets sneller kunnen gaan

rijden om de vertraging in te lopen. Daardoor is de kans op een bepaalde vertraging in elk

station even groot.

Er wordt eveneens aangenomen dat er geen negatieve vertraging kan zijn. Dit houdt in een

trein trager zal gaan rijden wanneer hij blijkt te vroeg te zijn.

Tabel 38: Assumpties i.v.m. verwachte vertraging (eigen werk)

Station Lijn Verwachte

vertraging (in sec)

Lier C0, E0(a+b), G0, R0 66

C1, E1(a+b), G1, R1 18

Herentals G0, G1, R0, R1 18

Tielen G0, G1, R0, R1 18

8 In augustus 2009 ontstond een brand in het station van Herentals. Momenteel worden daar door

Infrabel werken verricht om de infrastructuur te herstellen.

Page 117: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 101

Mol E0(a+b), E1(a), E1(b) 18

Hasselt C1 66

E0(b), C0, L0 18

Aarschot L0 66

C0, C1, L1 18

O.b.v. Vansteenwegen en Van Oudheusden wordt aangenomen dat de kans op vertraging

de volgende exponentiële verdeling volgt:

𝑓 𝑑 = 𝜆𝑒−𝜆𝑑 𝑑 ≥ 0 .

In deze formulering is 1 𝜆 de verwachte vertraging. Deze formulering wordt vaak gebruikt om

de kans op vertraging bij spoorwegen te modelleren. De data i.v.m. de historische

vertragingen bevestigt de veronderstelling van deze exponentiële verdeling [36; 37].

Om de kwaliteit van de dienstregeling te kunnen evalueren, moeten performantiemaatstaven

worden gedefinieerd. Deze worden dan in de simulatie berekend. De gedefinieerde

performantiemaatstaven zijn de volgende:

o Transferwachtkost: dit is de waarde van de doelfunctie.

o % van de transfertijden > 15 min: deze maatstaf geeft weer welk percentage van alle

mogelijke overstappen een langere overstaptijd dan 15 min heeft. Het totale aantal

mogelijke overstappen bedraagt 22.

o Aantal gemiste A-transfers: deze maatstaf geeft weer hoeveel transfers met prioriteit A

worden gemist. Een trein wordt gemist wanneer de transfertijd minder dan 5 minuten

bedraagt. Het totale aantal transfers met prioriteit A bedraagt 4.

o Aantal onaangename A-transfers: dit zijn het aantal prioriteit A-transfers die langer

duren dan 15 minuten. Wanneer een trein wordt gemist, wordt deze hier niet bijgerekend

maar is die terug te vinden onder de vorige maatstaf. Het totale aantal transfers met

prioriteit A bedraagt 4.

o Aantal gemiste B-transfers: deze maatstaf geeft weer hoeveel transfers met prioriteit B

worden gemist. Een trein wordt gemist wanneer de transfertijd minder dan 5 minuten

bedraagt. Het totale aantal transfers met prioriteit B bedraagt 6.

o Aantal onaangename B-transfers: dit zijn het aantal prioriteit B-transfers die langer

duren dan 15 minuten. Wanneer een trein wordt gemist, wordt deze hier niet bijgerekend

maar is die terug te vinden onder de vorige maatstaf. Het totale aantal transfers met

prioriteit B bedraagt 6.

o Totale vertraging: dit is de totale vertraging, uitgedrukt in minuten, die wordt opgelopen

in de hele dienstregeling.

Page 118: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 102

o Aantal te kleine opvolgtijden: deze maatstaf is heel belangrijk voor de veiligheid van de

treinen. Ze geeft aan in hoeveel gevallen de opvolgtijd te klein is.

De gebruikte simulatietechniek is Monte Carlo. Volgens Vansteenwegen en Vanoudheusden

[36; 37] worden reeds vrij precieze resultaten verkregen bij het voeren van 1000 simulaties.

Uit eigen ondervinding bleek het verschil tussen 1000 en 10.000 Monte Carlo-simulaties

nagenoeg nihil. Vandaar dat wordt verdergewerkt met de resultaten van de 1000 Monte

Carlo-simulaties.

4.5.2 Conclusies

In elk van de 1000 simulaties van de optimale dienstregeling werden de

performantiemaatstaven berekend in minder dan 5 seconden d.m.v. een Pentium M

processor van 1,73 GHz. De gemiddelden hiervan worden weergegeven in Tabel 39 in de

tweede kolom. De laatste kolom betreft de simulatieresultaten van de huidige dienstregeling,

gehanteerd door de NMBS. De standaard deviatie wordt weergegeven tussen haakjes.

Tabel 39: De performantie van de optimale dienstregeling en de huidige dienstregeling (eigen

werk)

Performantiemaatstaf LP NMBS

Transferwachtkost (in pu) 176,88 (53,50) 209,65 (14,54)

% van de transfertijden > 15 min 50,1 (5,3) 65,7 (15,3)

# gemiste A-transfers 1,1 (0,8) 1,0 (0,2)

# onaangename A-transfers 0,005 (0,07) 1,0 (0,2)

# gemiste B-transfers 1,5 (0,6) 1,4 (0,5)

# onaangename B-transfers 3,0 (0,2) 3,0 (0,2)

Totale vertraging (in min) 19,82 (4,97) 19,69 (4,90)

# te kleine opvolgtijden 3,30 (1,22) 5,45 (0,90)

Ten eerste is de objectiefwaarde voor de optimale dienstregeling hier veel groter dan in de

situatie zonder vertragingen, deze bedragen respectievelijk 176,88 pu en 56,43 pu. Voor de

NMBS is de verslechtering niet zo groot, namelijk 209,65 pu t.o.v. 197,76 pu. Deze enorme

verslechtering voor de geoptimaliseerde dienstregeling is te wijten aan de gemiste

verbindingen. Deze bedragen hier samen 2,6 terwijl dit in de geoptimaliseerde dienstregeling

0 was. De objectiefwaarde wordt dan verslechtert met de tijd die men moet wachten op de

volgende verbinding maal het aantal passagiers die de desbetreffende verbinding hebben

gemist.

Ten tweede komt de veiligheid van het systeem in het gedrang als gevolg van de

vertragingen. Er zijn namelijk 3,3 opvolgtijden te klein. Hier blijkt dus duidelijk dat het real-

time opvolgen van de treinen van cruciaal belang blijft. Er moet steeds worden nagegaan

hoeveel te klein de opvolgtijd is en of er al dan niet een trein moet wachten. We zien dat de

Page 119: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 103

situatie voor de huidige dienstregeling nog slechter is: hier zijn gemiddeld 5,45 opvolgtijden

te klein.

Ten slotte kunnen we concluderen dat de geoptimaliseerde dienstregeling op alle vlakken

beter of gelijk presteert in vergelijking met de huidige dienstregeling. Dit pleit dus duidelijk in

het voordeel van de LP-geoptimaliseerde dienstregeling.

4.6 Optimalisatie naar meerdere objectieven

Eerder werd de dienstregeling geoptimaliseerd naar één doel. Dit bleek uiteindelijk een

verbeterde dienstregeling op te leveren in vergelijking met de huidige dienstregeling. Een

spoorwegmaatschappij kan echter de behoefte hebben om verschillende doelen tegelijk na

te streven. Daarom wordt in deze sectie kort nagegaan in hoeverre dit optimaliseren naar

meerdere doelen mogelijk is.

4.6.1 Opzet

Meer concreet zal hier worden geoptimaliseerd naar twee doelen, namelijk minimale

transferwachttijd en minimale reistijd. Dit laatste doel is te verantwoorden wegens het feit

dat reizigers graag zo snel mogelijk op hun bestemming willen zijn. Daarbij komt dat het

reizen per trein snel genoeg moet gaan, zodat reizigers de trein verkiezen boven de wagen.

Bovendien betaalt NMBS Mobility een huurprijs aan Infrabel voor het gebruiken van de

infrastructuur. Als treinen sneller rijden en dus netto gezien de infrastructuur minder lang

nodig hebben, dan komt dit NMBS Mobility ten goede.

De gebruikte gewichten voor deze doelfunctie werden reeds eerder vermeld in de sectie

4.3.6: Doelfuncties. Het gebruik van gewichten is belangrijk aangezien optimaliseren naar

twee objectieven resulteert in een set van pareto-optimale oplossingen9. De keuze van een

pareto-optimale oplossing resulteert dus in een trade-off. De gewichtenkeuze expliciteert

deze trade-off. Beide doelfuncties wegen dus niet even zwaar door. De kost per tijdseenheid

voor de transferwachttijd is gelijk aan 2, terwijl deze voor de reistijd gelijk is aan 1,5. Het is

immers als vanzelfsprekend dat reizigers het minder erg vinden om een bepaalde tijd op de

trein te zitten, dan om even lang op een verbinding te staan wachten. Hierbij werd de

redenering van Vansteenwegen en Vanoudheusden gevolgd [36; 37]. Dit is ook terug te

vinden onder sectie 4.3.6: Doelfuncties.

Om de toegevoegde waarde van deze multi-objectiefoptimalisatie na te gaan, werd het

model op drie verschillende wijzen geoptimaliseerd. Ten eerste werden enkel de

transferwachttijden geminimaliseerd, in tweede instantie enkel de reistijden en ten derde

9 Pareto-optimale oplossing: de waarde van het ene objectief niet kan worden verbeterd zonder dat

het andere verslecht.

Page 120: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 104

werden de transferwachttijden en de reistijden tegelijk geminimaliseerd. Om de resultaten

van deze drie verschillende optimalisaties vergelijkbaar te maken, wordt van de twee single-

objectiefoptimalisaties ook de totale gewogen kost berekend.

4.6.2 Conclusies

Het optimaliseren kon gebeuren in minder dan 3 sec d.m.v. een Pentium M processor van

1,73 GHz. De resultaten van de verschillende optimalisaties worden in Tabel 40

weergegeven. De tweede rij geeft de resultaten weer van de minimalisatie naar

transferwachttijden, de derde rij die van de minimalisatie van de reistijden en de vierde rij die

van de multiobjectiefoptimalisatie. De eerste rij beschrijft de resultaten van de huidige

dienstregeling.

Tabel 40: Analyse van de totale kost voor de huidige dienstregeling en drie optimale

dienstregelingen (eigen werk)

Transferwachttijdkost

(in pu) Reistijdkost

(in pu) Totale gewogen kost (in

passagierseuro)

Huidige dienstregeling 197 1216 2217

Minimale transferwachttijd 56 1535 2416

Minimale reistijd 95 1417 2315

Multiobjectief 70 1426 2279

Wat betreft de single-objectiefoptimalisaties, zien we dat de totale kost kleiner is bij het

minimaliseren van de reistijd dan bij het minimaliseren van de transfertijd. Dit is te

verwachten aangezien er meer verbeteringsruimte is bij het minimaliseren van de reistijd.

Deze reistijdkost is immers een veel groter getal in vergelijking met de transferwachttijdkost.

We zien echter dat minimaliseren naar beide objectieven afzonderlijk suboptimaal is.

Wanneer we immers minimaliseren naar beide objectieven tegeli jk, geeft dit een kost van

2279 passagierseuro. Dit is 5,7% beter dan het minimaliseren naar transferwachttijd, en

1,6% beter dan minimaliseren naar reistijd. De verbetering is niet groot, maar het is in elk

geval zinvoller om twee doelen tegelijk na te streven wanneer die er zijn. Op die manier

wordt een correcte afweging tussen beide doelen verwezenlijkt. Voorwaarde hiervoor is

echter dat de toegekende gewichten aan de verschillende doelen zinvol zijn.

Wanneer de huidige dienstregeling wordt beschouwd, zien we dat deze een veel betere

reistijdwaarde uitkomt dan in de geoptimaliseerde dienstregelingen en daardoor ook een

betere totale kost heeft. Dit komt echter door de veel grotere rijtijdtolerantie, die namelijk wat

betreft de onderlimiet 35% bedraagt. De treinen in het huidige schema worden dus

toegelaten om veel sneller te rijden dan in het geoptimaliseerde schema, en dit is zo in 14

van de 24 gevallen. Vandaar dat deze cijfers niet onmiddellijk vergelijkbaar zijn. We moeten

echter ook vermelden dat de minimale opvolgtijd in de huidige dienstregeling in vier gevallen

Page 121: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 105

slechts 2 minuten bedraagt. Verder zijn er twee gemiste verbindingen, bedraagt de

synchronisatietolerantie 17 min en is de symmetrie in 1 geval niet voldaan. Wanneer we

echter met dezelfde restricties optimaliseren als diegene die gehanteerd worden in de

huidige dienstregeling, bekomen we voor de optimale dienstregelingen een betere totale kost

dan voor de huidige dienstregeling.

4.7 Conclusies van de case study

Het minimaliseren van de transfertijd lijkt voor dit netwerk eerder triviaal, gezien het kleine

aantal overstappers. Het grootste aantal overstappende passagiers bedraagt meer bepaald

28,5. In vergelijking met grote stations en zeer drukke lijnen zoals deze rond Brussel, lijkt het

dus niet meteen opportuun om in dit specifieke netwerk de transfertijden te minimaliseren.

Door het kunstmatig optrekken van deze transferaantallen werd echter wel bewezen dat de

dienstregeling kan worden geoptimaliseerd naar minimale transfertijd a.d.h.v. eenvoudige

lineaire programmering. Het opgestelde LP-model lijkt dan ook uitbreidbaar te zijn naar een

drukker netwerk met aldus meer overstappers.

Daarentegen kan het voor rustigere netwerken interessant zijn om de reistijd te

minimaliseren, aangezien NMBS Infrabel betaalt voor het infrastructuurgebruik. Deze

kostprijs hangt onder meer af van hoe lang een trein op een spoor rijdt. Vandaar dat het

interessant kan zijn om de reistijd te minimaliseren, aangezien dit de enige manier is om de

kosten te drukken. Kostenminimalisatie is voor NMBS, naast symmetrie en spreiding, zeer

belangrijk. Een goede spreiding van lijnen kan bovendien het probleem van gemiste

transfers voor een deel opvangen.

Naast optimaliseren blijkt simuleren een heel belangrijke stap te zijn. Een dienstregeling kan

optimaal zijn op papier, maar in werkelijkheid slecht presteren. Daarom is het belangrijk een

zinvolle simulatie uit te voeren om de performantie van de dienstregeling na te gaan. In deze

stap bleek dat de dienstregeling op bepaalde punten faalt. Er worden gemiddeld genomen

2,6 transfers gemist en in 3,3 situaties is de opvolgtijd tussen treinen te klein. De optimale

dienstregeling presteert echter op alle vlakken beter of hetzelfde in vergelijking met de huidig

geïmplementeerde dienstregeling. Daar worden gemiddeld 2,5 transfers gemist , maar zijn er

5,45 situaties waarin de opvolgtijd tussen treinen te klein is. We kunnen dus besluiten dat het

optimaliseren van de dienstregeling zinvol is. Er dient echter te worden opgemerkt dat een

verder onderzoek naar verwachte vertragingen moet worden gevoerd om de

simulatieresultaten betrouwbaarder te maken.

Tot slot kan worden besloten dat het LP-model uitbreidbaar is naar een situatie met twee

objectieven. Hiervoor dienen op een zinvolle manier gewichten te worden toegekend aan de

verschillende doelen. Het multi-objectiefoptimaliseren is in dit voorbeeld niet significant beter

dan de single-objectiefsituaties, maar deze bevinding kan niet worden veralgemeend.

Page 122: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 106

Wanneer er twee doelen zijn, is het in ieder geval zinvoller om deze tegelijk na te streven

aangezien op die manier een gepaste afweging wordt gemaakt tussen de twee doelen.

Page 123: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

107

Hoofdstuk 5: Algemeen besluit

Een kwaliteitsvolle dienstregeling kan reizigers doen kiezen voor de trein als vervoersmiddel

en zo de modale shift van auto naar trein bevorderen. Deze modale shift is belangrijk om de

groeiende mobiliteit van de Belg duurzaam te kunnen opvangen. Bovendien kan het efficiënt

opstellen van dienstregelingen een strategisch voordeel vormen voor treinmaatschappijen en

infrastructuurbeheerders in het licht van een liberalisering.

In deze thesis werd bijgevolg onderzocht hoe een dienstregeling kan worden

geoptimaliseerd. Daarvoor werd eerst het algemeen dienstregelingsprobleem beschouwd,

waar dit gesitueerd wordt in het treinplanningsproces en hoe het opstellen van de

dienstregeling wordt gepland bij NMBS, de Belgische spoorwegmaatschappij. Vervolgens

werd conceptueel besproken hoe een dienstregeling kan worden gemodelleerd. Daarop

aansluitend werd een literatuursoverzicht gegeven i.v.m. modelleringstechnieken,

probleemkarakteristieken en oplossingsmethodes. Ten slotte werd de dienstregeling

wiskundig gemodelleerd en geïmplementeerd in MS Excel.

5.1 Het plannen van de dienstregeling

Het treinplanningsproces bestaat uit verschillende fasen, zijnde eerst de vraaganalyse,

daarna de lijnplanning, dan de dienstregeling, daarna de planning van het rollend materieel

en uiteindelijk de personeelsplanning, zoals beschreven in hoofdstuk 2. Deze fasen hoeven

elkaar echter niet netjes op te volgen. Een parallel treinplanningsproces is evengoed

mogelijk en wordt zelfs aangeraden aangezien dit het totale treinplanningsproces verkort.

Feedback kan immers sneller worden geïncorporeerd. Uit het planningsproces bij NMBS

blijkt dat het treinplanningsproces hier voor een groot deel parallel verloopt.

Verder wordt beschreven dat het plannen van de dienstregeling bij NMBS onder meer het

aanvragen van rijpaden door NMBS aan Infrabel omvat. Infrabel moet immers controleren of

de aangevraagde rijpaden mogelijk zijn gegeven de infrastructuur en de andere

treinmaatschappijen die gebruik maken van het spoornetwerk. Ongeveer vier maanden later

keurt Infrabel de rijpadaanvraag goed. Daarna kunnen echter problemen ontstaan wanneer

de stationchefs hun stationsplanning moeten uitvoeren. Tegen dan begint de deadline voor

Page 124: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 108

de nieuwe dienstregelingbrochure gevaarlijk dichterbij te komen. Om deze rijpadgoedkeuring

vlotter te laten verlopen, werd vanuit NMBS geopperd dat Infrabel zou kunnen rijpad per

rijpad of groepen van rijpaden goedkeuren i.p.v. alle rijpaden tegelijk. Hierdoor zouden

problemen voor de stationchefs vroeger aan het licht kunnen komen.

Ten slotte gebeurt het opstellen van een dienstregeling bij NMBS voor een groot deel

geautomatiseerd a.d.h.v. het softwarepakket Viriato. Het programma lost echter zelf geen

conflicten op maar duidt deze aan op tijd-plaatsdiagrammen. De treinplanner moet dan deze

conflicten oplossen. Het programma tracht echter niet te optimaliseren.

5.2 Het modelleren van de dienstregeling

De conceptuele modellering van een dienstregeling werd uiteengezet in hoofdstuk 3. Zeven

soorten objectieven en maar liefst eenendertig restricties konden worden gedestilleerd uit de

literatuur en de praktijk. Deze objectieven betreffen het eenvoudigweg bekomen van een

dienstregeling, het maximaliseren van de kwaliteit en het minimaliseren van de kost. De

restricties zijn in te delen in logische restricties, restricties m.b.t. de reistijd en

veiligheidsrestricties. Wat opvalt uit een vergelijkende studie van literatuur versus praktijk is

dat NMBS geen andere restricties of objectieven hanteert dan deze reeds beschreven in de

literatuur. De reden hiervoor is dat bij de meeste onderzoeken de praktijk als vertrekpunt

wordt genomen. Deze restricties en objectieven zijn ook niet noemenswaardig verschillend

naargelang de nationaliteit van de auteurs. Er is enkel een verschil wat betreft infrastructuur

tussen Europa en de rest van de wereld. In de rest van de wereld zijn enkelsporige

baanvakken de regel, terwijl deze in Europa de uitzondering zijn.

Het dienstregelingprobleem is in de literatuur niet altijd op dezelfde manier afgelijnd. Vandaar

dat de literatuur in deze thesis werd opgedeeld in zes verschillende categorieën. Ten eerste

kan een cyclische dienstregeling worden nagestreefd. Ten tweede kunnen elementen van

het lijnplanningsprobleem worden geïntegreerd. Ten derde kunnen auteurs reeds rekening

houden met platformtoewijzing. Vervolgens kan het onderzoek worden toegepast op

metrostelsels. Ten vijfde kunnen meerdere doelen worden nagestreefd en tot slot kan het

beschouwde netwerk lineair zijn.

Wat betreft de modellering van het dienstregelingsprobleem kan worden besloten dat de

lineaire voorstelling algemeen wordt aanvaard.

Ten slotte wordt het dienstregelingsprobleem opgelost o.b.v. lineaire programmering, ofwel

worden aangepaste heuristieken ontwikkeld. Voor deze oplossingsmethoden wordt zelden

verdergewerkt op een reeds bestaande heuristiek. Bovendien worden de resultaten niet

vergeleken met die van andere oplossingsmethoden.

Page 125: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 109

Algemene conclusie omtrent deze literatuur is dat ze heel erg gefragmenteerd is, dat het

probleemgebied niet goed is afgelijnd en dat er geen algemeen basiswerk is waarop verder

onderzoek wordt gebaseerd.

5.3 Het verbeteren van de dienstregeling (case study)

Voor de case study in hoofdstuk 4 werd het dienstregelingsprobleem lineair gemodelleerd,

overeenkomstig de literatuur. Voor deze case study werd een deel van het Belgische

netwerk beschouwd, meer bepaald het netwerk tussen de vierhoek Lier, Mol, Hasselt en

Aarschot. In hoofdstuk 4 wordt de wiskundige voorstelling van het dienstregelingsprobleem

uitvoerig beschreven. Na een studie bij NMBS werd bepaald welke restricties in het model

moeten worden meegenomen. Dit model werd vervolgens geoptimaliseerd a.d.h.v. „Risk

Solver Platform‟, een uitgebreide oplosserfunctie ontwikkeld voor Microsoft Excel. Met deze

oplosserfunctie werden resultaten bekomen in steeds minder dan 5 seconden.

In eerste instantie werd de totale gewogen transferwachttijd geminimaliseerd. Het

minimaliseren van de transfertijd lijkt voor dit netwerk eerder triviaal, gezien het kleine aantal

overstappers. In vergelijking met grote stations en zeer drukke lijnen zoals deze rond

Brussel, lijkt het dus niet meteen opportuun om in dit specifieke netwerk de transfertijden te

minimaliseren. Door het kunstmatig optrekken van deze transferaantallen werd echter wel

bewezen dat de dienstregeling kan worden geoptimaliseerd naar minimale transfertijd

a.d.h.v. eenvoudige lineaire programmering. Het opgestelde LP-model lijkt dan ook

uitbreidbaar te zijn naar een drukker netwerk met aldus meer overstappers.

Naast optimaliseren blijkt simuleren een heel belangrijke stap te zijn. Een dienstregeling kan

optimaal zijn op papier, maar in werkelijkheid slecht presteren. Daarom is het belangrijk een

zinvolle simulatie uit te voeren om de performantie van de dienstregeling na te gaan. In deze

stap bleek dat de dienstregeling op bepaalde punten faalt. Er worden gemiddeld genomen

2,6 transfers gemist en in 3,3 situaties is de opvolgtijd tussen treinen te klein. De optimale

dienstregeling presteert echter op alle vlakken beter of hetzelfde in vergelijking met de huidig

geïmplementeerde dienstregeling. Daar worden gemiddeld 2,5 transfers gemist , maar zijn er

5,45 situaties waarin de opvolgtijd tussen treinen te klein is. We kunnen dus besluiten dat het

optimaliseren van de dienstregeling zinvol is. Er dient echter te worden opgemerkt dat een

verder onderzoek naar verwachte vertragingen moet worden gevoerd om de

simulatieresultaten betrouwbaarder te maken.

Tot slot kan worden besloten dat het LP-model uitbreidbaar is naar een situatie met twee

objectieven. Hiervoor dienen op een zinvolle manier gewichten te worden toegekend aan de

verschillende doelen. Het multi-objectiefoptimaliseren is in dit voorbeeld niet significant beter

dan de single-objectiefsituaties, maar deze bevinding kan niet worden veralgemeend.

Wanneer er twee doelen zijn, is het in ieder geval zinvoller om deze tegelijk na te streven

Page 126: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Hoofdstuk 4: Case NMBS 110

aangezien op die manier een gepaste afweging wordt gemaakt tussen de twee na te streven

doelen.

5.4 Beperkingen van deze thesis en richtlijnen voor verder

onderzoek

Aangezien het beschouwde netwerk een eerder rustig netwerk betreft, moet verder

onderzoek worden gevoerd naar de uitbreidbaarheid van deze LP-minimalisatie van

transferwachttijden naar drukkere regio‟s zoals zone Brussel. Daarentegen kan het voor

rustigere regio‟s interessant zijn om de reistijd te minimaliseren, aangezien NMBS Infrabel

betaalt voor het infrastructuurgebruik. Deze kostprijs hangt onder meer af van hoe lang een

trein een spoor gebruikt. Vandaar dat het interessant kan zijn om in die regio‟s de reistijd te

minimaliseren, aangezien dit de enige manier is om de kosten te drukken.

Kostenminimalisatie is voor NMBS, naast symmetrie en spreiding, zeer belangrijk. Een

goede spreiding van lijnen kan bovendien het probleem van gemiste transfers voor een deel

opvangen.

De in deze thesis gebruikte waarden voor de kans op vertraging zijn vooral gebaseerd op

assumpties. Om de simulatieresultaten betrouwbaarder te maken, zouden deze waarden

moeten worden onderzocht.

Het netwerk in deze thesis bestaat uit vijf treinlijnen en zeven stations. Er dient te worden

onderzocht in welke mate de methode in deze thesis uitbreidbaar is naar een groter en

eventueel het volledige Belgische treinennetwerk.

Het planningsproces van de dienstregeling werd kort aangeraakt in hoofdstuk 2. Verder

onderzoek zou kunnen worden gevoerd naar het optimaliseren van de samenwerking tussen

NMBS en Infrabel bij het opstellen van de dienstregeling.

Verder is er nood aan een algemeen naslagwerk over het dienstregelingsprobleem. Het

aanbod van literatuur omtrent dienstregelingproblemen en meer algemeen

treinplanningsproblemen is immers groot en al vlug wordt door de bomen het bos niet meer

gezien. Een indeling van de literatuur hieromtrent zou kunnen zijn naar

probleemkarakteristiek, zoals voorgesteld in hoofdstuk 3.

In een volgende stap zouden vrachttreinen kunnen worden geïntegreerd, waarvan hier

abstractie werd gemaakt. Infrabel integreert de aanvraag van de dienstregeling voor

passagierstreinen met de vraag naar vrachtverkeer. Er dient te worden onderzocht of beide

vragen snel kunnen worden geïntegreerd en geoptimaliseerd. Ook piekuurtreinen dienen nog

te worden geïntegreerd.

Page 127: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

111

Hoofdstuk 6: Lijst van de geraadpleegde werken

[1] (2009). "Hoeveel bespaart u door niet in de file te staan?" De Tijd.

(http://netto.tijd.be/budget_en_vrije_tijd/budget/Hoeveel_bespaart_u_door_niet_in_de_file_te_staan-.8223152-2214.art).

[2] Abril, M., Salido, M. A. and Barber, F. (2008). "Distributed search in railway scheduling problems." Engineering Applications of Artificial Intelligence, 21: 744-755.

[3] Brännlund, U., Lindberg, P., Nou, A. and Nilsson, J.-E. (1998). "Railway timetabling using lagrangian relaxation." Transportation Science, 32(4): 358-369.

[4] Cacchiani, V., Caprara, A. and Toth, P. (2008). "A column generation approach to train timetabling on a corridor." 4OR A Quarterly Journal of Operations Research, 6(2): 125-142.

[5] Caimi, G., Burkolter, D., Herrmann, T., Chudak, F. and Laumanns, M. (2009). "Design of a railway scheduling model for dense services." Netw. Spat. Econ.,(9): 25-46.

[6] Caprara, A., Fischetti, M. and Toth, P. (2002). "Modeling and solving the train timetabling problem." Operations Research, 50(5): 851-861

[7] Caprara, A., Monaci, M., Toth, P. and Guida, P. L. (2006). "A lagrangian heuristic algorithm for a real-world train timetabling problem." Discrete Applied Mathematics, 154: 738-

753. [8] Carey, M. and Crawford, I. (2007). "Scheduling trains on a network of busy complex

stations." Transportation Research Part B, 41: 159-178. [9] Carey, M. and Lockwood, D. (1995). "A model, algorithms and strategy for train pathing."

Journal of the Opeartional Research Society, 42: 988-1005. [10] Chiang, T.-W., Hau, H.-Y., Chiang, H.-M., Ko, S.-Y. and Hsieh, C.-H. (1998).

"Knowledge-based system for railway scheduling." Data and Knowledge Engineering, 27: 289-312.

[11] Cordeau, J.-F., Toth, P. and Vigo, D. (1998). "A survey of optimization models for train routing and scheduling." Transportation Science, 32(4): 380-404.

[12] De Ceuster, G. (2007). "De liberalisering van de Belgische spoorwegmarkt." Transport & Mobility Leuven. (www.tmleuven.be).

[13] Federale.Overheidsdienst.Mobiliteit.en.Vervoer (2008). "Diagnostiek woon-werkverkeer 2008: eindverslag." (www.mobilit.fgov.be/nl/mobil/mobaccn/diagnosn.htm).

Page 128: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Lijst van de geraadpleegde werken 112

[14] Ferreira, L. and Higgins, A. (1996). "Modeling reliability of train arrival times." Journal of Transportation Engineering, 122(6): 414-420.

[15] Ghoseiri, K. and Morshedsolouk, F. (2006). "Acs-ts: Train scheduling using ant colony system." Journal of Applied Mathematics and Decision Sciences: 1-28.

[16] Ghoseiri, K., Szidarovszky, F. and Asgharpour, M. (2004). "A multi-objective train scheduling model and solution." Transportation Research Part B, 38: 927-952.

[17] Goossens, J.-W. (2004). Models and algorithms for railway line planning problems. Ph.D thesis. The Netherlands, Universiteit Maastricht.

[18] Higgins, A., Kozan, E. and Ferreira, L. (1997). "Heuristic techniques for single line train scheduling." Journal of Heuristics,(3): 43-62.

[19] Isaai, M. and Singh, M. (2000). "An object-oriented, constraint-based heuristic for a class of passenger-train scheduling problems." IEEE Transactions on Systems, Man and

Cybernetics - Part C: Applications and Reviews, 30(1): 12-21. [20] Isaai, M. and Singh, M. (2001). "Hybrid applications of constraint satisfaction and meta-

heuristics to railway timetabling: A comparative study." IEEE Transactions on Systems, Man and Cybernetics - Part C: Applications and Reviews, 31(1): 87-95.

[21] Kroon, L., Huisman, D., Abbink, E., Fioole, P.-J., Fischetti, M., Maróti, G., Schrijver, A., Steenbeek, A. and Ybema, R. (2009). "The new dutch timetable: the OR revolution."

Interfaces, 396(1): 6-17. [22] Kwan, C. M. and Chang, C. (2008). "Timetable synchronization of mass rapid transit

system using multiobjective evolutionary approach." IEEE Transactions on Systems, Man and Cybernetics - Part C: Applications and Reviews, 38(5): 636-648.

[23] Liebchen, C. (2008). "The first optimized railway timetable in practice." Transportation Science, 42(4): 420-435.

[24] Lindner, T. and Zimmermann, T. (2005). "Cost optimal periodic train scheduling." Math. Meth. Oper. Res.,(62): 281-295.

[25] Liu, S. and Kozan, E. (2009). "Scheduling trains as a blocking parallel-machine job shop scheduling problem." Computer and Operations Research, 36: 2840-2852.

[26] Medanic, J. and Dorfman, M. (2002). "Efficient scheduling of traffic on a railway line." Journal of Optimization Theory and Applications, 115(3): 587-602.

[27] Nationaal.Instituut.voor.de.Statistiek (2009). "Statistieken en Cijfers: Vervoer per Spoor." (http:/statbel.fgov.be).

[28] NMBS (2008). "Het CO2-antwoord. De trein als oplossing voor het milieuprobleem." (www.b-rail.be).

[29] NMBS (2009). "5 jaar NMBS, partner in de mobiliteit." Persberichten. (www.b-rail.be).

[30] NMBS (2009). "NMBS stuurt dienstregeling bij voor nog betere service." Persberichten. (www.b-rail.be).

Page 129: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Lijst van de geraadpleegde werken 113

[31] NMBS (2009). "NMBS wijdt nieuwe verbinding Kortrijk-Doornik in." Persberichten. (www.b-rail.be).

[32] NMBS (2010). "NMBS: Aantal reizigers stijgt nog in 2009." Persberichten. (www.b-rail.be).

[33] Odijk, M. (1996). "A constraint generation algorithm for the construction of periodic railway timetables." Transportation Research Part B, 30(6): 455-464.

[34] Omey, E. (2008). Arbeid en Tewerkstelling. Faculteit Economie en Bedrijfskunde. België, Universiteit Gent.

[35] Peeters, L. (2003). Cyclic railway timetable optimization. Ph.D thesis. The Netherlands, Erasmus Universiteit Rotterdam.

[36] Vansteenwegen, P. and Van Oudheusden, D. (2006). "Developing railway timetables which guarantee a better service." European Journal of Operational Research, 173: 337-350.

[37] Vansteenwegen, P. and Van Oudheusden, D. (2007). "Decreasing the passenger waiting time for an intercity rail network." Transportation Research Part B, 41: 478-492.

[38] Vermeulen, T. (2007). "Vlaanderen slibt dicht: dagelijks gemiddeld 140 kilometer file." Vlaams Europees Verbindingsagentschap. (http://www.vleva.eu/node/566).

[39] Wikipedia (2010). "Nationale Maatschappij der Belgische Spoorwegen."

(http://nl.wikipedia.org/wiki/Nationale_Maatschappij_der_Belgische_Spoorwegen). [40] Wong, R., Yuen, T., Fung, K. and Leung, J. (2008). "Optimizing timetable

synchronization for rail mass transit." Transportation Science, 42(1): 57-69. [41] Zhou, X. and Zhong, M. (2005). "Bicriteria train scheduling for high-speed passenger

railroad planning applications." European Journal of Operational Research, 167: 752-771. [42] Zhou, X. and Zhong, M. (2007). "Single-track train timetabling with guaranteed

optimality: Branch-and-bound algorithms with enhanced lower bounds." Transportation Research Part B, 41: 320-341.

Page 130: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

114

Hoofdstuk 7: Bijlagen

7.1 Percentage van de beroepsbevolking werkend buiten

woonplaats (provincie)

Tabel 41: Percentage van de beroepsbevolking dat werkt buiten zijn eigen provincie

(gebaseerd op [34])

Woonplaats (provincie) % werkend buiten woonplaats (provincie)

Antwerpen 28,7

Limburg 25,5

Oost-Vlaanderen 31,7

Vlaams-Brabant 48,9

West-Vlaanderen 16,8

Brussels H. Gewest 22,6

Henegouwen 30,2

Luik 20,1

Luxemburg 43,9

Namen 57,7

Waals-Brabant 57,3

Gewogen gemiddelde 28,8

Bovenstaande tabel geeft het percentage van de beroepsbevolking weer dat tewerkgesteld

is in een andere provincie dan waar deze woonachtig is. Als kengetal werd hier gekozen

voor een gewogen gemiddelde, om op die manier rekening te houden met de grote variatie

in beroepsbevolking per provincie.

Page 131: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 115

7.2 Modale verdeling van transportmogelijkheden

Figuur 29: Evolutie van de procentuele verdeling van de primaire transportkeuze om naar het

werk te gaan tussen 2005 en 2008 (gebaseerd op [13])

Figuur 30: Procentuele verdeling van de primaire transportkeuze van Belgen om naar het werk

te gaan in 2008 (gebaseerd op [13])

0

10

20

30

40

50

60

70

Auto (1

inzittende)

Auto (>1)Collectief

vervoer

georganiseerd

door de

werkgever

TreinMetro / tram /

bus

Fiets Bromfiets /

motor

Te voet Andere

2005 (in %)

2008 (in %)

6441

10,3

6,3

8,21,6

2,2

2,4auto (1)

auto (>1)

collectief

trein

MTB

fiets

Page 132: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 116

Figuur 31: Invloed van de gemiddelde afstand op de gekozen verplaatsingsmodus

(overgenomen uit [13])

Page 133: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 117

7.3 Kostenvergelijking auto vs. openbaar vervoer

Hoeveel bespaart u door niet in de file te staan? (overgenomen uit [1])

De Belg gebruikt de auto steeds minder vaak om naar het werk te pendelen en kiest

vaker voor het openbaar vervoer. Maar is dat ook goedkoper?

Wie in Brussel werkt, laat de auto steeds vaker links liggen. Dat blijkt uit een analyse van het

pendelgedrag door de FOD Economie. In de hoofdstad daalt het autoverbruik zo‟n 4,4

procent. In Wallonië is de daling goed voor 2,7 procent en in Vlaanderen is dat 1,2 procent.

Toch neemt 68 procent van de Belgen nog steeds de auto naar het werk. De andere

vervoermiddelen winnen een beetje veld. De trein gaat er met 1 procent op vooruit, het

andere openbare vervoer en de fiets met een halve procent.

Een belangrijk argument voor veel pendelaars om de auto links te laten liggen, is

ongetwijfeld het toegenomen fileleed. Ook het kostenplaatje speelt een rol. Hoe groot het

prijsverschil is tussen het nemen van de auto en het kiezen voor openbaar vervoer, hangt af

van tal van factoren. Daarom werken we een typevoorbeeld uit: een gezin van

tweeverdieners waarvan de ene 26 kilometer van het werk woont en de andere 58 kilometer.

Een ritje met de auto

Wat kost voor ons voorbeeldgezin een ritje naar het werk? Om de kostprijs per kilometer te

berekenen maakten we gebruik van de calculator op Autogids.be. Die houdt onder meer

rekening met het type auto, het aantal kilometer per jaar, het gemiddelde verbruik, de

verzekeringspremie (burgerlijke aansprakelijkheid) en de verkeersbelasting. De rit van 26

kilometer wordt afgelegd door een Ford Fiesta, een Citroën C4 doet het traject van 58

kilometer.

Op basis van die gegevens komt de kostprijs per kilometer van de Ford Fiesta uit op 0,22

euro. Daarbij gaan we ervan uit dat die wagen elk jaar in totaal 20.000 kilometer aflegt (dus

niet enkel woon-werkverkeer). Op basis van de kostprijs per kilometer kost een rit van en

naar het werk 11,44 euro. Als we uitgaan van 225 werkdagen, brengt dat de kostprijs van het

woon-werkverkeer met de Ford Fiesta op 2.547 euro. Als we dezelfde berekening maken

voor de Citroën C4 (kostprijs per kilometer is 0,21 euro op basis van een totaal van 35.000

kilometer per jaar), dan kost de rit van en naar het werk op jaarbasis 5.481 euro.

Page 134: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 118

Als bovenstaand gezin ervoor kiest om met de auto naar het werk te gaan, dan kost hen dat

jaarlijks 8.028 euro. Uiteraard horen daar enkele kanttekeningen bij. We gaan er in dit

voorbeeld van uit dat geen van beide auto‟s een bedrijfswagen is. We maken ook abstractie

van een tussenkomst van de werkgever voor het woon-werkverkeer met de wagen, wettelijk

is dat immers niet verplicht.

Een ritje met het openbaar vervoer

Om de kostprijs van het openbaar vervoer te berekenen, gaan we ervan uit dat bovenstaand

gezin voor zijn verplaatsing zowel gebruik maakt van De Lijn (trein, tram of bus) en de NMBS

(trein). Om de kostprijs daarvan te berekenen gaan we uit van de kostprijs van de

abonnementen.

Voor De Lijn is de berekening snel gemaakt. Zo kost een Omnipas voor 1 jaar 211 euro.

Daarmee reist u onbeperkt met alle vervoer van De Lijn. Wie dat abonnement gebruikt voor

woon-werkverplaatsingen, heeft ook recht op een korting in de vorm van een

werkgeversbijdrage. "De normale werkgeversbijdrage bedraagt 72 procent van de

abonnementsprijs. Sommige werkgevers betalen zelfs een groter deel van de

abonnementsprijs terug", staat te lezen op de website van De Lijn. De kostprijs van beide

abonnementen (na betaling van de werkgeversbijdrage) is zo‟n 118 euro.

Voor het traject met de NMBS hanteren we de prijzen van een Trajecttreinkaart. Rekening

houdend met de werkgeversbijdrage kost dat voor een traject van 26 kilometer 365 euro,

voor een traject van 58 kilometer is dat 550 euro. De totaalprijs van het openbaar vervoer

voor 1 jaar komt daarmee uit op 1.033 euro voor de beide gezinsleden samen.

AUTO FORS DUURDER

Het voorbeeld maakt duidelijk dat het gebruik van de auto voor het woon-werkverkeer hier

fors duurder uitvalt. Voor dit voorbeeld is het gebruik van de auto maar liefst 6.995 euro

duurder in vergelijking met het openbaar vervoer. Uiteraard hangt de kostpri js van de auto

af van tal van factoren: type wagen, soort verzekering, aantal gereden kilometer,… Wie die

berekening voor zichzelf wil maken, kan daarvoor terecht op de calculator van Autogids.be.

Voor de verschillende tarieven van trein, tram en bus kan u terecht op de websites van De

Lijn en de NMBS.

Page 135: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 119

7.4 De trein als antwoord op de milieuproblematiek

Figuur 32: Specifieke CO2-emissie van reizigers- en goederenverkeer (overgenomen uit [28])

Figuur 33: Evolutie van de totale CO2-emissie van spoor- vs. wegverkeer sinds 1990

(overgenomen uit [28])

Page 136: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 120

7.5 Nieuwe dienstregeling en tijd-plaatsdiagrammen horende bij

voorbeeld objectief 4

Tabel 42: Nieuwe dienstregeling horende bij het voorbeeld van objectief 4 (eigen werk)

Aankomst Vertrek A V A V A V A V A V A V

Heist-op-den-Berg Aarschot Leuven Landen St-

Truiden Alken Hasselt

A0 - 0 9 11 - - - - - - - - 37 39

D1 - 19 31 32 46 - - - - - - - - -

C1 - - - - - 31 58 60 69 71 78 79 85 -

Hasselt Alken St-

Truiden Landen Leuven Aarschot

Heist-op-

den-

Berg

A1 - 20 - - - - - - - - 46 48 57 -

D0 - - - - - - - - - 14 28 29 41 -

C0 - 31 37 38 46 47 56 58 85 87 - - - -

Leuven Aarschot Hasselt

B0 - 11 23 25 50 -

Hasselt Aarschot Leuven

B1 - 10 35 37 49 -

Page 137: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 121

Figuur 34: Nieuw tijd-plaatsdiagram tussen Heist-op-den-Berg en Aarschot, horende bij het

voorbeeld van objectief 4 (eigen werk)

Figuur 35: Nieuw tijd-plaatsdiagram tussen Hasselt en Aarschot, horende bij het voorbeeld

van objectief 4 (eigen werk)

tijd-plaatsdiagram tussen HOB (0) en Aarschot (1)

0

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

tijd (in min)

sta

tio

n

A0

A0'

A1

A1'

D0

D1

tijd-plaatsdiagram tussen Hasselt (0) en Aarschot (1)

0

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61

tijd (in min)

sta

tio

n

A0

A0'

A1

A1'

B0

B1

Page 138: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 122

7.6 Dienstregeling en tijd-plaatsdiagrammen horende bij

voorbeeld objectief 5

Tabel 43: Nieuwe dienstregeling horende bij het voorbeeld van objectief 5 (eigen werk)

Aankomst Vertrek A V A V A V A V A V A V

Heist-op-den-Berg Aarschot Leuven Landen St-

Truiden Alken Hasselt

A0 - 0 9 14 - - - - - - - - 40 46

D1 - 19 31 32 46 - - - - - - - - -

C1 - - - - - 22 49 51 60 62 69 70 76 -

Hasselt Alken St-

Truiden Landen Leuven Aarschot

Heist-op-

den-Berg

A1 - 20 - - - - - - - - 46 51 60 -

D0 - - - - - - - - - 14 28 29 41 -

C0 - 31 37 38 46 47 56 58 85 87 - - - -

Leuven Aarschot Hasselt

B0 - 11 23 25 50 -

Hasselt Aarschot Leuven

B1 - 10 35 37 49 -

Page 139: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 123

Figuur 36: Oorspronkelijk tijd-plaatsdiagram tussen Alken en Aarschot met een overstap in

Hasselt, horende bij het voorbeeld van objectief 5 (eigen werk)

Figuur 37: Tijd-plaatsdiagram van de optimale verbinding tussen Alken en Aarschot met een

overstap in Hasselt, horende bij het voorbeeld van objectief 5 (eigen werk)

verbinding Alken (0) - Aarschot (2) (overstap in Hasselt (1))

0

1

20 3 6 9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

57

60

tijd (in min)

sta

tio

n A1

B1

C1

optimale verbinding Alken (0) - Aarschot (2) (overstap in Hasselt

(1))

0

1

2

0 3 6 9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

57

60

tijd (in min)

sta

tio

n A1

B1

C1

Page 140: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 124

7.7 Tijd-plaatsdiagrammen horende bij voorbeeld objectief 6

Figuur 38: Nieuw tijd-plaatsdiagram van lijn C en A horende bij het voorbeeld van objectief 6

(eigen werk)

C1‟ = lijn C1 inclusief de buffer.

A1‟ = de tweede trein van lijn A1

Figuur 39: Nieuw tijd-plaatsdiagram van lijn B en A horende bij het voorbeeld van objectief 6

(eigen werk)

B1‟ = B1 werd 5min vroeger gepland

verbinding C1-A1 via Hasselt (4)

0

1

2

3

4

5

6

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89

tijd (in min)

sta

tio

n

C1

C1'

A1

A1'

link tussen Hasselt (1) en Aarschot (2)

1

2

0 3 6 9

12

15

18

21

24

27

30

33

36

39

42

45

48

51

54

57

60

tijd (in min)

sta

tio

n A1

B1

B1'

Page 141: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 125

7.8 Overzicht aantal stations en treinen in testinstantie, per auteur

In tabel Tabel 44 wordt een overzicht gegeven per auteur van de grootte van het netwerk

waarop het onderzoek van de desbetreffende auteur werd toegepast. Om deze testinstanties

vergelijkbaar te maken, moesten enkele assumpties worden gemaakt, welke hieronder

worden beschreven. De waardering werd gebaseerd op het aantal treinen in het netwerk en

het aantal stations. Soms werden treinlijnen beschreven i.p.v. treinen, of sporen i.p.v.

stations. Deze treinlijnen en sporen werden dan o.b.v. onderstaande assumpties herleid tot

respectievelijk treinen en stations. De testinstanties werden dan opgedeeld naar grootte

volgens de beslissingsregels beschreven in sectie 3.5.3.

Assumpties

1. In het geval van een cyclische dienstregeling werd verondersteld dat een dag 18u telt. Bij

een cyclische dienstregeling waar bijvoorbeeld een cyclus van 1u werd gepland, werden

de getallen vermenigvuldigd met 18.

2. Treinlijnen werden omgerekend naar treinen. Hierbij werd verondersteld dat de frequentie

van een treinlijn 1 trein per uur is.

3. Bij het omrekenen van treinlijnen naar treinen, werd verondersteld dat de helft van de

treinlijnen 2x per uur rijden.

4. Bij het omrekenen van treinlijnen naar treinen, werd verondersteld dat gemiddeld

genomen om de 10 min een trein komt, d.w.z. dat de frequentie van een treinlijn 6 treinen

per uur is.

5. Wanneer het aantal stations niet werd vermeld, wordt het aantal sporen als benaderende

waarde voor het aantal stations aangenomen. Deze assumptie is te verantwoorden,

aangezien een spoor twee knooppunten van het netwerk verbindt. Men kan

logischerwijze aannemen dat het aantal knooppunten grotendeels uit stations bestaat.

6. Uit de paper van Wong et al. [40] halen we dat er 134 treinen / 4 treinlijnen = 33,5 treinen

per treinlijn rijden, gedurende 1u van de ochtendspits.

7. Aangezien Higgins et al. [18] een lineair netwerk hanteert, werd geopteerd om deze

paper onder „klein‟ te klasseren i.p.v. „middelmatig‟.

Page 142: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen

126

Tabel 44: Overzicht van het aantal stations en treinen in de testinstantie, per auteur (eigen werk)

auteur probleemgrootte

waardering treinen treinlijnen stations sporen assumptie

[36] medium 108 4 7 1, 3

[37] realistisch 378 14 32 1, 3

[8] klein 10 10 5

[9] realistisch 464 25

[14] medium 31 14

[10] realistisch 350 120

[16] klein 5 19

[40] medium 134 4 8 6

[42] medium 30 18

[41] klein 6 (exact) of 24 (beam search) 17

[24] realistisch IC/IR-netwerk Duitsland/Nederland

[5] medium 32 NV >100 5

[23] realistisch 972 9 19 1, 4

[33] klein 1

[2] klein 4 10

[22] medium 100,5 3 5 6

[19] medium 22 51

[20] medium 22 51

[3] klein 18 (passagiers) + 8 (vracht) 17

[7] groot/realistisch 54 resp 221 49 resp 17

[26] klein 60 4

Page 143: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen

127

auteur probleemgrootte

waardering treinen treinlijnen stations sporen assumptie

[4] groot 41 resp 221 (heur) / 93, 60 en 16 (exact) 102 resp 17 (heur) / 17, 17 en 54 (exact)

[15] klein 30 4

[25] klein 10 19

[18] klein 15 à 50 7

[35] realistisch 468 26 74 1, 2

Page 144: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 128

7.9 Oorspronkelijk netwerk

Figuur 40: Deel van het Belgische spoornetwerk anno 2010

Page 145: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 129

7.10 Berekening van de gewichten horende bij de transfertijden

Tabel 45: Aantal overstappers per verbinding (eigen werk)

𝒚 𝒙𝟏,𝒙𝟐 # opstappenden = A # 𝒙𝟐 per 𝒚 = B 𝒘𝒙𝟏,𝒙𝟐𝒚

= A/(B+1)

T

C1,R0 27 1 13,50

R0,E0(a+b) 61,5 2 20,50

E0(a+b),R1 210,5 3 52,63

R0,E1(a+b) 92,5 1 46,25

E1(a+b),R1 210,5 3 52,63

R1,C0 26 3 6,50

R0,C0 26 3 6,50

C1,R1 210,5 3 52,63

C1,E0(a+b) 61,5 2 20,50

E1(A+B),C0 26 3 6,50

U

E1(a+b),R1 184,5 1 92,25

R0,E0(a+b) 54,5 2 18,17

E1(a+b),R0 32 1 16,00

R1,E0(a+b) 54,5 2 18,17

Y

C0,E1(b) 13 3 3,25

E0(b),C1 47 1 23,50

L0,E1(b) 13 3 3,25

E0(b),L1 57 1 28,50

C1,E1(b) 13 3 3,25

E0(b),C0 12 1 6,00

Z C0,L1 163,5 1 81,75

L0,C1 68,5 1 34,25

Opmerking: deze tabel is gebaseerd op de gegevens uit de oktobertellingen van 2007 (e-

mailverkeer met mevrouw Courtois E., 15 maart 2010). De ruwe gegevens waarop deze

berekeningen zijn gebaseerd zijn te vinden in Tabel 46. De gegevens werden opgevraagd

voor alle treinen van 7u t.e.m. 9u, m.a.w. in volle spits. Voor dezelfde trein in een bepaald

station werd dan het gemiddelde over deze tijdsspanne genomen. Er werd verder gerekend

met de gemiddelde waarden. De getallen i.v.m. “uitstappen” en “zitten blijven” slaan op de

toekomende trein in het station. De getallen bij “opstappen” slaan op de trein waar mogelijks

wordt op overgestapt.

Page 146: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 130

Tabel 46: Gegevens uit de oktobertellingen 2007 m.b.t. transfers (e-mailverkeer met mevrouw

Courtois E., 15 maart 2010)

Uur Treinen Uitstappen zitten

blijven

Opstappen

T 7u-8u C1-R0 32 395 20

R0-E0 12 17 99

E0-R1 19 92 344

R0-E1 12 17 129

E1-R1 11 558 344

R1-C0 56 601 41

R0-C0 12 17 41

C1-R1 32 395 344

C1-E0 32 395 99

E1-C0 11 558 41

8u-9u C1-R0 37 396 34

R0-E0 52 26 24

E0-R1 16 42 77

R0-E1 52 26 56

E1-R1 18 474 77

R1-C0 25 181 11

R0-C0 52 26 11

C1-R1 37 396 77

C1-E0 37 396 24

E1-C0 18 474 11

U 7u-8u E1-R1 90 234 308

R0-E0 11 56 83

E1-R0 90 234 35

R1-E0 43 348 83

8u-9u E1-R1 5 430 61

R0-E0 17 42 26

E1-R0 5 430 29

R1-E0 14 144 26

Y 7u-9u C0-E1 36 104 13

E0-C1 375 0 47

L0-E1 75 0 13

E0-L1 375 0 57

C1-E1 23 18 13

E0-C0 375 0 12

Z 7u-8u C0-L1 49 53 193

L0-C1 42 88 90

8u-9u C0-L1 41 91 134

L0-C1 19 27 47

Page 147: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 131

7.11 Berekening van de gewichten horende bij de reistijden

Tabel 47: Gewichten geldend voor de reistijden (gebaseerd op e-mailverkeer met mevrouw

Courtois E., 2 maart en 21 april 2010)

𝒙 𝒚𝟏,𝒚𝟐 # opstappenden # uitstappers # blijvers Totaal # passagiers

= 𝑣𝑥𝑦1,𝑦2

C0 T,Z n.v.t. 45 72 117

Z,Y n.v.t. 36 104 140

C1 Y,Z 47 n.v.t. 18 65

Z,T n.v.t. 34,5 395,5 430

E0(a+b) T,U 61,5 n.v.t. 65 128,5

U,X * * * *

E0(b) X,Y n.v.t. 375 0 375

E1(b) Y,X 13 n.v.t. 0 13

E1(a+b) X,U n.v.t. 47,5 332 379,5

U,T n.v.t. 14,5 516 530,5

G0 T,U * * * 63

U,V * * * 61

V,W * * * 52,5

G1 W,V * * * 94,5

V,U * * * 140,5

U,T * * * 158

L0 Z,Y n.v.t. 75 0 75

L1 Y,Z 57 n.v.t. 0 57

R0 T,U 27 n.v.t. 21,5 48,5

U,V n.v.t. 32 49 81

V,W n.v.t. 52 0 52

R1 W,V 164 n.v.t. 0 164

V,U n.v.t. 28,5 246 274,5

U,T n.v.t. 40,5 391 431,5

Legende:

*: deze gegevens komen uit de oktobertellingen van 2009 (e-mailverkeer met mevrouw

Courtois E., 21 april 2010) en zijn nog niet officieel bekendgemaakt door NMBS. Deze

gegevens werden mij verstrekt met als doel ze te verwerken in mijn LP-model, maar mogen

in geen geval worden gepubliceerd. De rest van de gegevens komen uit de oktobertellingen

van 2007 (e-mailverkeer met mevrouw Courtois E., 2 maart 2010), welke worden

weergegeven in onderstaande tabel. In 2007 bestonden lijnen G0 en G1 nog niet, vandaar

dat de gegevens hierover uit een latere databank komen. De gegevens over lijn E0(a+b)

over link U,X werden ook uit de oktobertelling van 2009 gehaald, wegens onvoorziene

omstandigheden.

Page 148: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 132

Tabel 48: Oktobertellingen 2007 m.b.t. treinritten (e-mailverkeer met mevrouw Courtois E., 2

maart 2010)

Uur Treinen Uitstappen zitten blijven

Opstappen

T 7u-8u C1-R0 32 395 20

R0-E0 12 17 99

E0-R1 19 92 344

E1-R1 11 558 344

R1-C0 56 601 41

8u-9u C1-R0 37 396 34

R0-E0 52 26 24

E0-R1 16 42 77

E1-R1 18 474 77

R1-C0 25 181 11

U 7u-8u E1-R1 90 234 308

R0-E0 11 56 83

E1-R0 90 234 35

R1-E0 43 348 83

8u-9u E1-R1 5 430 61

R0-E0 17 42 26

E1-R0 5 430 29

R1-E0 14 144 26

W 7u-8u R0 65 0 0

R1 0 0 223

8u-9u R0 39 0 0

R1 0 0 105

Y 7u-9u C0-E1 36 104 13

E0-C1 375 0 47

L0-E1 75 0 13

E0-L1 375 0 57

C1-E1 23 18 13

E0-C0 375 0 12

Z 7u-8u C0-L1 49 53 193

8u-9u C0-L1 41 91 134

Page 149: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 133

7.12 Overzicht van de gedefinieerde verzamelingen

Verzameling van alle vertrekmogelijkheden:

𝑅1 = { 𝐶0,𝑇 , 𝐶1,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝑇 , 𝐸1 𝑎 + 𝑏 ,𝑇 , 𝐺0,𝑇 , 𝐺1,𝑇 , 𝑅0,𝑇 , 𝑅1,𝑇 ,

𝐸0 𝑎 + 𝑏 ,𝑈 , 𝐸1 𝑎 + 𝑏 ,𝑈 , 𝐺0,𝑈 , 𝐺1,𝑈 , 𝑅0,𝑈 , 𝑅1,𝑈 , 𝐺0,𝑉 , 𝐺1,𝑉 , 𝑅0,𝑉 ,

𝑅1,𝑉 , 𝐺1, 𝑊 , 𝑅1,𝑊 , 𝐸1 𝑎 + 𝑏 ,𝑋 , 𝐸0 𝑎 ,𝑋 , 𝐸0 𝑏 ,𝑋 , 𝐸1 𝑏 ,𝑌 , 𝐶0,𝑌 ,

𝐶1,𝑌 , 𝐿1,𝑌 , 𝐶0,𝑍 , 𝐶1,𝑍 , 𝐿0,𝑍 , (𝐿1,𝑍)}.

Verzameling van alle aankomstmogelijkheden:

𝑅2 = { 𝐶0,𝑇 , 𝐶1,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝑇 , 𝐸1 𝑎 + 𝑏 ,𝑇 , 𝐺0,𝑇 , 𝐺1,𝑇 , 𝑅0,𝑇 , 𝑅1,𝑇 ,

𝐸0 𝑎 + 𝑏 ,𝑈 , 𝐸1 𝑎 + 𝑏 ,𝑈 , 𝐺0,𝑈 , 𝐺1,𝑈 , 𝑅0,𝑈 , 𝑅1,𝑈 , 𝐺0,𝑉 , 𝐺1,𝑉 , 𝑅0,𝑉 ,

𝑅1,𝑉 , 𝐺0, 𝑊 , 𝑅0,𝑊 , 𝐸0 𝑎 + 𝑏 ,𝑋 , 𝐸1 𝑎 ,𝑋 , 𝐸1 𝑏 ,𝑋 , 𝐸0 𝑏 ,𝑌 , 𝐶0,𝑌 ,

𝐶1,𝑌 , 𝐿0,𝑌 , 𝐶0,𝑍 , 𝐶1,𝑍 , 𝐿0,𝑍 , (𝐿1,𝑍)}.

Verzameling van alle mogelijke verbindingen

𝑅3 = {(C1, R0, T), (R0, E0(a+b), T), (E0(a+b), R1, T), (R0, E1(a+b), T), (E1(a+b), R1, T),

(R1, C0, T), (R0, C0, T), (C1, R1, T), (C1, E0(a+b), T), (E1(a+b), C0, T), (E1(a+b), R1, U),

(R0, E0(a+b), U), (E1(a+b), R0, U), (R1, E0(a+b), U), (C0, E1(b), Y), (E0(b), C1, Y), (L0,

E1(b), Y), (E0(b), L1, Y), (C1, E1(b), Y), (E0(b), C0, Y), (C0, L1, Z), (L0, C1, Z)}.

Verzameling van respectievelijk de prioriteit A-, B- en C-verbindingen

𝒯 𝐴 = { 𝑅0,𝐸0 𝑎 + 𝑏 ,𝑇 , 𝐶1,𝐸0 𝑎 + 𝑏 ,𝑇 , 𝐸0 𝑏 ,𝐶1,𝑌 , 𝐶0,𝐿1,𝑍 },

𝒯 𝐵 = { 𝐶1,𝑅0,𝑇 , 𝐸1 𝑎 + 𝑏 ,𝑅1,𝑈 , 𝐸1 𝑎 + 𝑏 ,𝑅0,𝑈 , 𝑅1,𝐸0 𝑎 + 𝑏 ,𝑈 ,

𝐸0 𝑏 ,𝐿1,𝑌 , (𝐿𝑂,𝐶1,𝑍)},

𝒯 𝐶 = { 𝑅0,𝐸1 𝑎 + 𝑏 ,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝑅1,𝑇 , 𝐸1 𝑎 + 𝑏 ,𝑅1,𝑇 , 𝑅1,𝐶0,𝑇 , 𝑅0,𝐶0,𝑇 ,

𝐸1 𝑎 + 𝑏 ,𝐶0,𝑇 , 𝐶1,𝑅1,𝑇 , 𝐶0,𝐸1 𝑏 ,𝑌 , 𝐿0,𝐸1 𝑏 ,𝑌 , 𝐶1,𝐸1 𝑏 ,𝑌 ,

𝐸0 𝑏 ,𝐶0,𝑌 , 𝑅0,𝐸0 𝑎 + 𝑏 ,𝑈 }.

𝒯 𝐴 ,𝒯 𝐵 𝑒𝑛 𝒯 𝐶 vormen samen een partitie van 𝑅3,

Verzameling van alle mogelijk trips:

𝑅4 = { 𝐶0,𝑇,𝑍 , 𝐶0,𝑍, 𝑇 , 𝐶1,𝑇, 𝑍 , 𝐶1,𝑍,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝑇,𝑈 , 𝐸0 𝑎 + 𝑏 ,𝑈,𝑋 ,

𝐸0 𝑏 ,𝑋,𝑌 , 𝐸1 𝑏 ,𝑌,𝑋 , 𝐸1 𝑎 + 𝑏 ,𝑋,𝑈 , 𝐸1 𝑎 + 𝑏 ,𝑈, 𝑇 , 𝐺0,𝑇, 𝑈 , 𝐺0,𝑈, 𝑉 ,

𝐺0,𝑉,𝑊 , 𝐺1,𝑊,𝑉 , 𝐺1, 𝑉,𝑈 , 𝐺1, 𝑈,𝑇 , 𝐿0,𝑍, 𝑌 , 𝐿1,𝑌,𝑍 , 𝑅0,𝑇,𝑈 , 𝑅0,𝑈, 𝑉 ,

𝑅0,𝑉,𝑊 , 𝑅1,𝑊, 𝑉 , 𝑅1,𝑉, 𝑈 , (𝑅1,𝑈, 𝑇)}.

Page 150: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 134

Verzameling van alle mogelijke trips op de enkelsporen U-V en V-W:

𝑅4𝐸 = { 𝐺0,𝑈, 𝑉 , 𝐺1,𝑈, 𝑉 , 𝑅0,𝑈,𝑉 , 𝑅1,𝑈,𝑉 , 𝐺0,𝑉 ,𝑊 , 𝐺1,𝑉,𝑊 ,

𝑅0,𝑉 ,𝑊 , (𝑅1,𝑉, 𝑊)}.

Verzameling van alle mogelijke haltes gemaakt door treinen:

𝑅5 = { 𝐶0,𝑇 , 𝐶1,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝑇 , 𝐸1 𝑎 + 𝑏 ,𝑇 , 𝐺0, 𝑇 , 𝐺1,𝑇 , 𝑅0,𝑇 , 𝑅1,𝑇 ,

𝐸0,𝑈 , 𝐸1, 𝑈 , 𝐺0,𝑈 , 𝐺1,𝑈 , 𝑅0,𝑈 , 𝑅1,𝑈 , 𝐺0,𝑉 , 𝐺1,𝑉 , 𝑅0,𝑉 , 𝑅1,𝑉 ,

𝐶0,𝑌 , 𝐶1,𝑌 , 𝐶0,𝑍 , 𝐶1,𝑍 , 𝐿0,𝑍 , (𝐿1,𝑍)}.

Verzameling van alle mogelijke kruiscombinaties op de enkelsporen U-V en V-W:

𝑅6 = { 𝐺0,𝐺1, 𝑉, 𝑊 , 𝐺0,𝑅1,𝑉, 𝑊 , 𝑅0,𝐺1,𝑉, 𝑊 , 𝑅0,𝑅1,𝑉,𝑊 , 𝐺0,𝐺1, 𝑈, 𝑉 ,

𝐺0, 𝑅1,𝑈,𝑉 , 𝐺1,𝑅0,𝑈, 𝑉 , (𝑅0,𝑅1,𝑈, 𝑉)}.

Verzameling van alle mogelijke opvolgcombinaties wat betreft vertrektijden:

𝑅7 = { 𝐺1,𝑅1,𝑊 , 𝐺0,𝑅0,𝑉 , 𝐺1,𝑅1,𝑉 , 𝐺0,𝑅0,𝑈 , 𝐸1 𝑎 + 𝑏 ,𝐺1,𝑈 , 𝐸1 𝑎 + 𝑏 ,𝑅1,𝑈 ,

𝐺1, 𝑅1,𝑈 , 𝐶0,𝐿0,𝑍 , 𝐶1,𝐿1,𝑌 , 𝐺0,𝑅0,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝐺0,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝑅0,𝑇 ,

𝐶1,𝐸1 𝑎 + 𝑏 ,𝑇 , 𝐶1,𝐺1,𝑇 , (𝐸1 𝑎 + 𝑏 ,𝐺1, 𝑇)}.

Verzameling van alle mogelijke opvolgcombinaties wat betreft aankomsttijden:

𝑅8 = { 𝐺0,𝑅0,𝑊 , 𝐺0,𝑅0,𝑉 , 𝐺1,𝑅1,𝑉 , 𝐺1,𝑅1,𝑈 , 𝐸0 𝑎 + 𝑏 ,𝐺0,𝑈 , (𝐸0 𝑎 + 𝑏),𝑅0,𝑈 ,

𝐺0,𝑅0,𝑈 , 𝐸1 𝑎 + 𝑏 ,𝐺1,𝑇 , 𝐸1 𝑎 + 𝑏 ,𝑅1,𝑇 , 𝐺1,𝑅1,𝑇 , 𝐶0,𝐿0, 𝑌 , 𝐶1,𝐿1,𝑍 ,

𝐶0,𝐸0 𝑎 + 𝑏 ,𝑇 , 𝐶0,𝐺0, 𝑇 , 𝐸0 𝑎 + 𝑏 ,𝐺0,𝑇 .

Verzameling van alle omkeringen:

𝑅9 = 𝐺0,𝐺1, 𝑊 , 𝑅0,𝑅1,𝑊 , 𝐸0 𝑏 ,𝐸1 𝑏 ,𝑌 , 𝐿0,𝐿1,𝑌 .

Verzamelingen van alle koppelmogelijkheden:

𝑅10 = 𝐸1 𝑎 + 𝑏 ,𝐸1 𝑎 ,𝑋 ,

𝑅11 = 𝐸1 𝑎 + 𝑏 ,𝐸1 𝑏 ,𝑋 .

Verzamelingen van alle ontkoppelmogelijkheden:

𝑅12 = 𝐸0 𝑎 + 𝑏 ,𝐸0 𝑎 ,𝑋 ,

𝑅13 = 𝐸0 𝑎 + 𝑏 ,𝐸0 𝑏 ,𝑋 .

Page 151: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM

Bijlagen 135

Verzameling van alle synchronisatiemogelijkheden:

𝑅14 = { 𝐺0,𝑅0,𝑇 , 𝐶1,𝐸1 𝑎 + 𝑏 ,𝑇 , 𝐶1,𝐺1,𝑇 , 𝐸1 𝑎 + 𝑏 ,𝐺1,𝑇 , 𝐺1,𝑅1,𝑊 , 𝐶0,𝐿0,𝑍 ,

(𝐶1,𝐿1,𝑌)}.

Verzameling van alle symmetriemogelijkheden:

𝑅15 = { 𝐶0,𝐶1,𝑇 , 𝐶1,𝐶0,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝐸1 𝑎 + 𝑏 ,𝑇 , 𝐸1 𝑎 + 𝑏 ,𝐸0 𝑎 + 𝑏 ,𝑇 ,

𝐺0,𝐺1, 𝑇 , 𝐺1,𝐺0, 𝑇 , 𝑅0,𝑅1,𝑇 , 𝑅1,𝑅0,𝑇 , 𝐸0 𝑎 + 𝑏 ,𝐸1 𝑎 + 𝑏 ,𝑈 ,

𝐸1 𝑎 + 𝑏 ,𝐸0 𝑎 + 𝑏 ,𝑈 , 𝐺0,𝐺1, 𝑈 , 𝐺1,𝐺0, 𝑈 , 𝑅0,𝑅1,𝑈 , 𝑅1,𝑅0,𝑈 ,

𝐺0,𝐺1, 𝑉 , 𝐺1,𝐺0, 𝑉 , 𝑅0,𝑅1,𝑉 , 𝑅1,𝑅0,𝑉 , 𝐺0,𝐺1, 𝑊 , 𝑅0,𝑅1,𝑊

𝐸0 𝑎 + 𝑏 ,𝐸1 𝑎 + 𝑏 ,𝑋 , 𝐸1 𝑎 ,𝐸0 𝑎 ,𝑋 , 𝐸1 𝑏 ,𝐸0 𝑏 ,𝑋 , 𝐸0 𝑏 ,𝐸1 𝑏 ,𝑌 ,

𝐶0,𝐶1,𝑌 , 𝐶1,𝐶0,𝑌 , 𝐿0,𝐿1, 𝑌 , 𝐶0,𝐶1,𝑍 , 𝐶1,𝐶0,𝑍 , 𝐿0,𝐿1,𝑍 , (𝐿1,𝐿0, 𝑍)}.

Page 152: TRAIN SCHEDULING PROBLEMlib.ugent.be/fulltxt/RUG01/001/459/643/RUG01... · UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 TRAIN SCHEDULING PROBLEM