The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul...

28
The SARAF CW 40 MeV Proton/Deuteron Accelerator A. Nagler, D. Berkovits, I. Gertz, I. Mardor, J. Rodnizki, L. Weissman S NRC Y I l Soreq NRC, Yavne, Israel K. Dunkel, M. Pekeler, F. Kremer, C. Piel, P. vom Stein Accel Instruments, Bergisch Gladbach, Germany LINAC08, MO203, September 29 th , 2008

Transcript of The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul...

Page 1: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

The SARAF CW 40 MeV Proton/Deuteron Accelerator

A. Nagler, D. Berkovits, I. Gertz, I. Mardor, J. Rodnizki, L. WeissmanS NRC Y I lSoreq NRC, Yavne, Israel

K. Dunkel, M. Pekeler, F. Kremer, C. Piel, P. vom SteinAccel Instruments, Bergisch Gladbach, Germany

LINAC08, MO203, September 29th, 2008

Page 2: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

SARAFSARAF – SSoreq AApplied RResearch AAccelerator FFacilityAAccelerator FFacility

To modernize the source of neutrons atTo modernize the source of neutrons at Soreq and extend neutron based research and applicationsresearch and applications. To develop and produce radioisotopes primarily for bio medical applicationsprimarily for bio-medical applications.To enlarge the experimental nuclear

i i f d hscience infrastructure and promote the research in Israel.

A. Nagler et al., LINAC08, MO203 29/29/2008 2

Page 3: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

Accelerator Basic Characteristics

A RF Superconducting Linear Accelerator

ParameterParameter Val eVal e CommentCommentParameterParameter ValueValue CommentCommentIon Species Protons/Deuterons M/q ≤ 2

Energy Range 5 – 40 MeV

Current Range 0.04 – 2 mA Upgradeable to 4 mA

Operation mode CW and Pulsed PW: 0.1-1 ms; rep. rate: 0.1-1000 Hz

Operation 6000 hours/yearOperation 6000 hours/year

Reliability 90%

A. Nagler et al., LINAC08, MO203 39/29/2008 3

Maintenance Hands-On beam loss < 1 nA/m

Page 4: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

SARAF Layout

RF Superconducting Linear Accelerator Target Hallp g g

A. Nagler et al., LINAC08, MO203 49/29/2008 4

A. Nagler et al., LINAC 2006

Page 5: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

SARAF project organization

Construction and Commissioning of a (Beyond-)State-of-the-Art accelerator within an international business collaboration

Accelerator – Accel Instruments (Germany)Cryogenics Linde Kryotechnik (Switzerland)Cryogenics – Linde Kryotechnik (Switzerland)Building and Infrastructure – U. Doron (Israel)Applications - Soreq

Overall Integration Soreq

A. Nagler et al., LINAC08, MO203 59/29/2008

Overall Integration – Soreq

Page 6: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

SARAF Phase I – Upstream View

PSM

EIS

RFQMEBT

S

EISLEBT

A. Nagler et al., LINAC08, MO203 69/29/2008

Page 7: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

SARAF Phase I – Downstream View

PSM

D-Plate

B D 1Beam Dump 1Beam Dump 2

A. Nagler et al., LINAC08, MO203 79/29/2008

Page 8: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

ECR Ion Source (ECRIS)C Pi l EPAC 2006

Plasma chamber

High voltage

extractor

Magnetic solenoid

Focusingl id

C. Piel EPAC 2006

F. Kremer ICIS 2007

K. Dunkel PAC 2007

beam

Vacuum pump

RF Waveguide& DC-breaker

solenoid

magnetic lipump 5x10-6

mbar

RF power

gcoils on ground

cooling water

gas inlet

p800 W

RF power supply

extraction electrodes

20 kV/u

g1 sccm

A. Nagler et al., LINAC08, MO203 89/29/2008 8

20 kV/u

107 mminsulator

Page 9: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

LEBT – emittance measurement

C. Piel EPAC 2006

F. Kremer ICIS 2007

magnetic mass

analyzer

FC

K. Dunkel PAC 2007

P. Forck JUAS 2003ECRaperture

wireslitaperture

2003ECR

5 mA proton beam optics

A. Nagler et al., LINAC08, MO203 99/29/2008 9

beam optics

RFQ entranceECR

Page 10: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

EIS: measured emittance values

ε 100% [π mm mrad]Particles

Beam currentProtons

X / YH2+

X / YDeuterons

X / Y

εrms_norm._100% [π mm mrad]

5.0 mA 0.20 / 0.17 0.34 / 0.36 0.13 / 0.12

2 0 mA 0 13 / 0 13 0 30 / 0 34 0 14 / 0 132.0 mA 0.13 / 0.13 0.30 / 0.34 0.14 / 0.13

0.04 mA 0.18 / 0.19 0.05 / 0.05

Specified value = 0.2 / 0.2 [π mm mrad]

A. Nagler et al., LINAC08, MO203 109/29/2008 10

Page 11: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

deuterons emittance resultsπ mm mrad2D plot current scale

1 0

3 0

Elliptical Exclusion

0 2

0.25

0.3

Emit. deuterons

2D plot current scale is enhanced in order to present the tail

- 3 0

- 1 0

1 0 x' [mrad]

0.05

0.1

0.15

0.2

Nor

m. R

MS

E

6.1 mAopen

aperture

SCUBEEx Analysis

- 3 0 - 1 0 1 0 3 0- 5 0

x [ m m ]

00 1400 2800 4200 5600 7000

Exclusion Ellipse SAP

B. Bazak

0 06

0.08

0.1

0.12

RM

S Em

it.aperture

1 0

3 0

x' [mrad

JINST 2008

0

0.02

0.04

0.06

0 1400 2800 4200 5600 7000

Nor

m. R cut to

5.0 mA- 3 0

- 1 0

d]

A. Nagler et al., LINAC08, MO203 119/29/2008 11

0 1400 2800 4200 5600 7000Exclusion Ellipse SAP- 3 0 - 1 0 1 0 3 0

- 5 0

x [ m m ]

emittance analysis with the SCUBEEx code by M. P. Stockli and R.F. Welton, Rev. Sci. Instr. 75 (2004) 1646

Page 12: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

176 MHz Radio Frequency Quadrupole

On site 2006

In factory 2005

P. Fischer EPAC 2006

A. Nagler et al., LINAC08, MO203 129/29/2008 12

Page 13: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

RFQ commissioning resultsSpecifications in parentheses

Protons Parameter 1.5 1.5 (1.5)(1.5)Output energy [MeV/u]4.0 4.0 (4.0)(4.0)Maximal CW current [mA]

Transverse emittance, r.m.s., normalized, 100% [π·mm·mrad]

0.17 0.17 (0.30)(0.30)normalized, 100% [π mm mrad](at 0.5 mA, closed LEBT aperture)

0.25 / 0.29 0.25 / 0.29 (0.30)(0.30)(at 4.0 mA, open LEBT aperture)

30 30 (120)(120)Longitudinal emittance, r.m.s [π·keV·deg/u](at 3.0 mA)

80 80 (90)(90)Transmission [%] (at 0.5 mA) ( )( )[ ] ( )70 70 (90)(90)(at 2.0 mA)65 65 (90)(90)(at 4.0 mA)6262 (55)(55)R i d RF ( ) [kW]

A. Nagler et al., LINAC08, MO203 139/29/2008

62 62 (55)(55)Required RF power (protons) [kW]248 248 (220)(220)(deuterons) [kW]

Page 14: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

Diagnostic plate (D-Plate) for beam commissioningfor beam commissioning

A. Nagler et al., LINAC08, MO203 149/29/2008 14

Page 15: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

Proton energy at RFQ exit by TOFBeam Energy Measurement using TOF

between 2 BPMs sum signals, 145 mm apart, E =E = 11..504504 ±± 00..012012 MeVMeV C. Piel PAC 2007E E 11..504 504 ±± 00..012 012 MeVMeV

Button pickup for 2 mA pulse and

15 mm bore radius gives a

signal high above noise.

Bunch width measured atmeasured at

β=0.056 is larger than the predicted value due to the induced charge

A. Nagler et al., LINAC08, MO203 159/29/2008 15

induced charge broadening.

Page 16: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

Current downstream RFQ vs. RFQ forward power for 3 mA injectionforward power for 3 mA injection

sum of 4 BPM2.5

D-Plate MPCT [mA]

Optimum power for p = 61.5 kW

sum of 4 BPM current signals

2.0

D-Plate_MPCT [mA]

A_MBPM1 [V_p]

A_MBPM2 [V_p]

4D-WB simulation [mA]

MPCT current1.5

m c

urre

nt

4D WB simulation [mA]

0.5

1.0

Bea

m

0.0

0.5

45 50 55 60 65 70 75

A. Nagler et al., LINAC08, MO203 169/29/2008 16

45 50 55 60 65 70 75

RFQ power (PS forward) [kW]J. Rodnizki et al. EPAC 2008

Page 17: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

RFQ: Bunch profiles measurements

Wire scan profiles0.8

1meanm 0.00 cmFWHMs 0.40 cmFWHMm 0.46 cm

meanm 0.00 cmFWHMs 3.70 cmFWHMm 3.57 cm

M t

C. Piel PAC 2007

0.2

0.4

0.6

coun

ts

32.0 kV

61.5 kW

MEBT Entrance

D-PlateMeasurement

results are backed up by simulations

(TRACK)

-4 -2 0 2 40

position (cm)4 -2 0 2 4

position (cm)1.2

gauss fitsimulated

gauss fitmeasurementFFC1 FFC1

Entrance

(TRACK)

FFC time profiles0.6

0.8

1.0

nt (a

rb.)

simulatedgauss fit

measurement

32.5 kV 63.5 kWSimulation Measured

Rodnizki et al. EPAC 2008

p

0.2

0.4curr

en

A. Nagler et al., LINAC08, MO203 179/29/2008 17

EPAC 20080.0

0 100 200 300proton relative phase (deg)

0 100 200 300proton relative phase (deg)

Page 18: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

Approximated rms εZ extracted from bunch width measurementsfrom bunch width measurements

75

90ez (RFQ) [pi deg keV]1s at FFC1 [deg]1s at FFC2 [deg]

C. Piel EPAC 2008

60

75 1s at FFC2 [deg]s_f at RFQ [deg]s_E at RFQ [keV]

30

45 Optimum power for p = 61.5 kW

15

30

055 60 65 70 75

power RFQ [kW]

A. Nagler et al., LINAC08, MO203 189/29/2008 18

p Q [ ]

Specified rms εZ = 120 120 ππ deg keVdeg keV Value for simulations = 74 74 ππ deg keVdeg keV

Page 19: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

RFQ voltage squared vs. forward power

250

3004-Jul9July10J l

080808

200

^2(k

W)

10JulyLinear

08

100

150

Pick

up V

^

0

50

00 50 100 150 200 250 300

FPower (kV)Forward power (kW)

A. Nagler et al., LINAC08, MO203 199/29/2008 19

Parting from the linear relation indicates onset of dark current due to poor conditioning

Page 20: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

RFQ Conditioning – current statusA few hundred conditioning hours for two yearsA few hundred conditioning hours for two yearsConditioning schemes

Set ma im m po er and increase d t c cleSet maximum power and increase duty cycleSet CW duty cycle and increase power

Special actions to improve conditioning rate:Special actions to improve conditioning rate:Rounding off sharp edges of rods bottom partCleaning of rodsCleaning of rodsInstallation of circuit for fast recovery after sparks

Maximal power reached so far:p195 195 kW CWkW CW280 280 kWkW with duty cycle of 1515%%

A. Nagler et al., LINAC08, MO203 209/29/2008 20

75°C baking performed recently for 3 days. Effect on conditioning tp be measured soon

Page 21: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

Prototype SC Module (PSM)General Design:• Houses 6 HWR and 3

superconducting solenoids• Accelerates protons and

deuterons from 1.5 MeV/u on• Very compact design in

longitudinal direction• Cavity vacuum and

insulation vacuum separated

A. Nagler et al., LINAC08, MO203 219/29/2008 21M. Peiniger, LINAC 2004 M. Pekeler, SRF 2003 M. Pekeler, LINAC 2006

Page 22: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

HWR – Basic parameters

• f = 176 MHz & bandwidth ~ 130 Hz

height 85 cm high• height ~ 85 cm high

• Optimized forβ=0 09 @ first 12 cavities (2 modules)β=0.09 @ first 12 cavities (2 modules)

β=0.15 @ 32 cavities (4 modules)

B lk Nb 3 @ 4 45 K• Bulk Nb 3 mm @ 4.45 K

• Epeak, max = 25 MV/m & Epeak / Eacc ~ 2.5

• Q0 ~ 109

• Designed cryogenic Load < 10 W (@Emax)

A. Nagler et al., LINAC08, MO203 229/29/2008 22

Page 23: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

HWR measured fields and dissipated power

Closed loop operation with a voltage

At Accel (single cavity) At Soreq (inside PSM)max field limit Q at Q at losses at losses at

Closed loop operation with a voltage controlled oscillator (VCO)

20 MV/m 25 MV/m 20 MV/m 25 MV/m[MV/m] [W] [W]

30 8,0E+08 7,0E+08 3,5 6,3

28 l 2 0E 08 1 4E 08 14 1 31 428 coupler temp. 2,0E+08 1,4E+08 14,1 31,4

32 4,0E+08 2,0E+08 7,0 22,0

29 4,0E+08 2,0E+08 7,0 22,0

31 7,0E+08 4,0E+08 4,0 11,0

29 coupler temp. 7,0E+08 3,0E+08 4,0 14,7

Σ 39,7 107,3 , ,

Target values 25 4.7E+08 25 4.7E+08 72

A. Nagler et al., LINAC08, MO203 239/29/2008 23

C. Piel et al. EPAC 2008

Page 24: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

Phase and amplitude stability results

SARAF LLRF:Generator driven resonator (GDR)resonator (GDR) cavity tuning loop

• Above results are for operation of one cavity at a time• Stability measurement period was a few minutes for each cavity

A. Nagler et al., LINAC08, MO203 249/29/2008

• Stability values are peak-to-peak and are limited by ADC least significant bit Recent commissioning: simultaneous operation of 6 HWRs at ~20 MV/m for several hours

Page 25: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

Residual activation from beam loss

A beam loss value of 00 44 nA/mnA/m at 40 MeVA beam loss value of 00..4 4 nA/mnA/m at 40 MeV generates 2 mRem/hr after a 1 year irradiation

30 cm from beam line4 hours after h td

Conditions

shutdownEffects of 40 MeV applied for entire linacAccelerator isAccelerator is operating 365 days per year (~65%)Run deuterons at 40Run deuterons at 40 MeV all the time (25-50%)Accelerator made

A. Nagler et al., LINAC08, MO203 259/29/2008 25

entirely of stainless steel (~50% Nb)40 MeV Linac (22 m) Beam line (10 m)

Page 26: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

SARAF Phase II simulations with error analysiswith error analysis

Si l i h iSimulations shown in next slides:• 4 mA deuterons at RFQ entrance.entrance. • Last macro-particle=1 nA

B. Bazak et al., Submitted for Publication

A. Nagler et al., LINAC08, MO203 269/29/2008 26

Errors are double than in: J. Rodnizki et al. LINAC 2006, M. Pekeler HPSL 2005

J. Rodnizki et al., HB2008

Page 27: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

Deuteron beam envelope radius at SARAF SC Linacradius at SARAF SC Linac

200 realizations 70 realizationsSolenoids 19 Tail emphasis simulationsTail emphasis simulations

Bore

rmax

rRM

S

nominal

RFQ exit3.4 mA deuterons

32k/193k particles in core/tailLast macro-particle = 1 nA

S

A. Nagler et al., LINAC08, MO203 279/29/2008 27

pGeneral Particle Tracer 2.80 2006, Pulsar Physics S.B. van der Geer, M.J. de Loos http://www.pulsar.nl/

B. Bazak et al., Submitted for PublicationJ. Rodnizki et al., HB2008

Page 28: The SARAF CW 40 MeV Proton/Deuteron AcceleratorRFQ voltage squared vs. forward power 250 300 4-Jul 9July 10J l 08 08 08 200 ^ 2(kW) 10July Linear 100 Pickup V 150 0 50 0 50 100 150

Summary and OutlookSARAF Phase I Commissioning status:SARAF Phase I Commissioning status:

Extensive proton beam commissioning through RFQ performedperformedFirst deuteron and H2

+ beams accelerated in RFQOn-going RFQ RF conditioning to enable CW deuteron andOn going RFQ RF conditioning to enable CW deuteron and H2

+ beamsRF commissioning of the PSM to enable beam acceleration through it

Simulations of Phase IIBeam loss criterion for hands-on maintenance is 0.4 nA/m at 40 MeVTail emphasis sim lations indicate beam loss belo 1 nA/m

A. Nagler et al., LINAC08, MO203 289/29/2008

Tail emphasis simulations indicate beam loss below 1 nA/m