Container MDF01 Vn

26
Geometrical data L = 9.16 m Ppl= 330 kPa B = 4.86 m hc = 2.60 m b1 = 1.1 m b2 = 0.4 m h1 = 1.1 m h2 = 0.6 m h = 1.7 m g reinforced concrete(RC)  = 25 kN/m 3 g soil(S)  = 19 kN/m 3 M container  = 202.18 kN The design wind pressure is given by Romanian code formula: q p (z) = c e (z) * q b c e (z) = 1.3 z e  = 5.0 m type of soil = III q b  = 1/2 * r * v b 2  = 0.6 kN/m 2 q p (z) = 0.8 kN/m 2 F w  = c s  * c d  * c f  * q p (z) * A ref  = 0,8 (or -0,5) * 1,2 * A ref [kN] c s  * c d  = 1.0 c f  = 0.8 (wind pressure) c f  = -0.5 (wind suction) Wind acting on North direction  A ref,1  = h * L = 23.82 m 2 F w,1  = c s  * c d  * c f  * q p (z) * A ref  = 14.86 kN M w,1  = 19.32 kNm F w,1total  = c s  * c d  * c f  * q p (z) * A ref  = 24.15 kN Wind action on East direction  A ref,2  = h * B = 12.63 m 2 F w,2  = c s  * c d  * c f  * q p (z) * A ref  = 7. 88 kN

Transcript of Container MDF01 Vn

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 1/26

Geometrical dataL = 9.16 m Ppl= 330 kPaB = 4.86 mhc = 2.60 mb1 = 1.1 mb2 = 0.4 mh1 = 1.1 m

h2 = 0.6 mh = 1.7 m

greinforced concrete(RC) = 25 kN/m 3

gsoil(S) = 19 kN/m 3

Mcontainer = 202.18 kN

The design wind pressure is given by Romanian code formula:qp(z) = c e (z) * q b

ce (z) = 1.3ze = 5.0 m

type of soil = III

qb = 1/2 * r * v b2 = 0.6 kN/m 2

qp(z) = 0.8 kN/m 2

Fw = c s * cd * cf * qp(z) * A ref = 0,8 (or -0,5) * 1,2 * A ref [kN]

cs * cd = 1.0

c f = 0.8 (wind pressure)

c f = -0.5 (wind suction)Wind acting on North direction

A ref,1 = h * L = 23.82 m 2

Fw,1 = c s * cd * cf * qp(z) * A ref = 14.86 kN

Mw,1 = 19.32 kNm

Fw,1total = c s * cd * cf * qp(z) * A ref = 24.15 kNWind action on East direction

A ref,2 = h * B = 12.63 m 2

Fw,2 = c s * cd * cf * qp(z) * A ref = 7.88 kN

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 2/26

Mw,2 = 10.24 kNm

Earthquake load (E)The earthquake load is calculated using Equivalent Lateral Force Procedure (see P100-1/2006)Fb = g1 * S d(T1) * m * l = S d(T1) * m

S d(T1) = a*g * b(T1)/q, for T > T B

a*g = 0.35 *gTC = 0.70 s

q = 2.00 (as per Table 6.1)g1 = 1.00 ,- Importance class = III

l = 1.00 (correction factor)

T1 = C t * H3/4

C t = 0.05H = 2.60T1 = 0.10 > TB = 0.10 b(T 1) = 2.75

S d(T1) = 0.35 * g * 2.75 / 2.00 = 0.48125Fb = 1.0 * 0.48125 * g * 202.2 / g *

= 97.29913 kNMb= Fb*(h1+h2)= 165.4085 kNm

Snow Load (S)

s k = m i * ce * c t * s 0,k

m i = 1

Ground snow s 0,k = 2.5 kN/m2

(zone 3)Thermal factor c t = 1.0 (usual thermal roof)

Exposure factor c e = 0.8 (fully exposed)

s k = m i * ce * c t * s 0,k = 2 kN/m 2

S k = s k * L * B = 88.97163 kN

FOUNDATION DESIGN Analitical model

Snow loading shall be calculated in accordance with SR EN 1991-1-3 & SR EN 1991-1-3/NA-Eur

The loads are acting on both directions at the top of foundations, in the center of gravity (CG)

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 3/26

Loads on foundationsWeight of structure (assumption) = 202.18 kNWStr = 202.18 kN

Weight of foundation = (2 * (B+L) * (b 2 * h2 )+4*b1*b1*h1) * gRC = 301.30 kN

WRC = 301.3 kN

Weight of soil = 2*(B + L) * (b1-b2) * h2 * gS = 0.00 kN

WS = 0 kN

D = W Str + W RC + W S = 503.5 kNWind loads:FW,1 = 14.86 kN

MW,1 = 19.32 kNm

FW,2 = 7.88 kN

MW,2 = 10.24 kNmSnow load = 88.97163 kN

Load combinations:Maximum pressure on soilULSUw = 1,35 * D 1,5 * W + 1,05 * L + 1,05 * SUvw = 1,35 * (W str + W RC +W S ) + 1,05 * S k = 773.12 kN

UH,1w = 1,5 * F W,1 = 22.29 kN

UH,2w = 1,5 * F W,2 = 11.82 kNSEISMIC ULSUE= 1,0 * D 1,0 * E + 0.4 * SUE = 1,0 * (W str + W RC +W S ) + 0.4 * S k = 596.90 kN

ME = 1,0 * Mb = 165.41 kN

Maximum uplift on soilULSU = 0,9 * D 1,5 * W + 1,05 * S = 546.56 kNUv = 0,9 * (Wstr + WRC +WS) + 1,05 * Sk = 546.56 kN

UH,1 = 1,5 * F w,1 = 22.29 kN

UH,2 = 1,5 * F w,2 = 11.82 kN

SEISMIC ULSU = 0,9 * D 1,0 * E+ 0.4 * S = 488.72 kNUE = 0,9 * (Wstr + WRC +WS) + 0.4 * Sk = 488.72 kN

Check pressure on soil Af = b1*b 1 = 1.21 m 2

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 4/26

I1 = (b 1)3 * b1 / 12 = 0.12 m 4 I1=I2

W1 = 0.22 m 3

I2 = b 1 *(b1)3 / 12 = 0.12 m 4

W2 = 0.22 m 3

Maximum pressure on soilULSp = (Uv / 4)/A f ±(1.5*Mw1) / W 1 ± (1.5*Mw2 ) / W 2 =

p = 159.74 130.65 69.25pmax = 159.74 + 130.65 + 69.25 = 359.64

Maximum uplift on soilULSp = (UE / 4)/A f ±(Mb1/4) / W 1 ± (Mb2/4 ) / W 2 =

p = 159.74 130.65 69.25pmin = 159.74 - 130.65 - 69.25 = -40.17

Maximum pressure on soilSEISMIC ULSp = (UE / 4)/A f ±(Mb1/4) / W 1 ± (Mb2/4 ) / W 2 =

p = 123.33 186.41 186.41pmax = 123.33 + 186.41 + 186.41 = 496.15

Maximum uplift on soilSEISMIC ULSp = (UE / 4)/A f ±(Mb1/4) / W 1 ± (Mb2/4 ) / W 2 =

p = 123.33 130.65 69.25

pmin = 123.33 - 130.65 - 69.25 = -76.58

Check overturning stablity and slidingCheck overturningResisting moment (RM) = Uv * (B+b 1)/2 = 1627.64 kNm

Overturning moment (OM) = Fw, 1total * (hc/2+h1+h2) = 72.46 kNm

FS = RM / OVM = 22.5 > 1.5

Check sliding Fv = 546.56 kN

m = 0.4

F H = 24.15

m * F v = 218.62 kN

FS = * Fv / FH = 9.1 > 1.5

Reinforcing designNOTE: This foundation calculation will be finalized during Detail Design phase in accordancewith available vendor's data.

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 5/26

A1= 16.06 m 2

A2= 5.69 m 2

ULSSwcontainer= 1.42 KN/m2 *1.35= 1.91 KN/m2Swequipment= 0.79 KN/m2 *1.35= 1.06 KN/m2Livefloor= 2.00 KN/m2 *1.5 3.00 KN/m2Snow= 2.00 KN/m2 *1.5= 3.00 KN/m2

T= 8.97 KN/m2Swfdbeam(qfb)= 6.00 KN/m *1.35= 8.10 KN/m

q1max= T*A1/L+qfb= 23.83 KN/mq2max= T*A2/B+qfb= 18.62 KN/m

M=(q*L2)/10

M1= 200.01 KNmM2= 43.90 KNm

Wind Effect:

Fw,1 14.86 KNFw,2 7.88 KNMw,1 = 19.32 KNm

Mw,2 = 10.24 KNm

M1cw=M1+1.05*Mw,2

/2 205.39 KNm

M2cw=M2+1.05*M w,1 /2 54.04 KNm

SEISMIC ULS

Swcontainer= 1.42 KN/m2 *1.0= 1.42 KN/m2Swequipment= 0.79 KN/m2 *1.0= 0.79 KN/m2Livefloor= 2.00 KN/m2 *1.0= 2.00 KN/m2Snow= 2.00 KN/m2 *0.4= 0.80 KN/m2

The beam reinforcement has been calculated taking into account the gravitational loads andalso the influence of the wind loads.

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 6/26

T= 5.00 KN/m2Swfdbeam(qfb)= 6.00 KN/m *1.0= 6.00 KN/m

q1max= T*A1/L+qfb= 14.77 KN/mq2max= T*A2/B+qfb= 11.86 KN/m

M1= 123.96 KNm

M2= 27.97 KNm

Earthquake effect:Mbf= 58.38 KN

M1ce=M1+M bf /2 153.15 KNm

M2ce=M2+M bf /2 57.16 KNm

Maximum Resisting Moment:Mmax=max(Mcw, Mce)= 205.39 KNm

cnom

=50

mm

dy = h2-c nom - /2 = 540 mm

f cd = a cc * f ck / gc = 16.67 N//mm 2

a cc = 1.0

f ck = 25 N//mm 2

f yd = 309 N//mm 2

gc = 1.5

my = (M max * 10 6) / (b2 * d y2 * f cd ) = 105.651

AS,y = my *b2* d y * f cd / f yd = 1232.1 mm 2 > 648 =

AS,min = 0,3% * b2 * d y = 648 mm 2

Use: 4 20 = 1256 mm 2

Settlement checkS = q eff / Ks [mm]Where:

pmax = 496.15 kN/m 2

Ks = 2.7 daN/cm2

D = p max / Ks = 0.018 m18 mm

Area units

8 50.3 mm 2

10 78.5 mm 2

diam.

Ks is the averrage value (existing soil, compacted soil and filling) of modulus of verticalsubgrade reactions.

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 7/26

12 113.1 mm 2

14 153.9 mm 2

16 201.1 mm 2

18 254.5 mm 2

20 314.1 mm 2

22 380.1 mm 2

25 490.9 mm 2

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 8/26

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 9/26

1.0

ocod 1.

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 10/26

including pedestals under fd

neglected, worst case scenario

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 11/26

kPa <1,4 x Ppl 462 kPa OK

kPa

kPa <1,6 x Ppl 528 kPa OK

kPa

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 12/26

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 13/26

AS,min

OK

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 14/26

Geometrical dataL = 6.14 m Ppl= 330 kPaB = 4.86 mhc = 2.60 m Self weight container=b1 = 1.1 m Self weight manifold=b2 = 0.3 m Live load floor=h1 = 1.2 mh2 = 0.5 mh = 1.7 m

greinforced concrete(RC) = 25 kN/m 3

gsoil(S) = 19 kN/m 3

Weightcontainer = 143.76 kN

The design wind pressure is given by Romanian code formula:qp(z) = c e (z) * q b

ce (z) = 1.3ze = 5.0 m

type of soil = III

qb = 1/2 * r * v b2 = 0.6 kN/m 2

qp(z) = 0.8 kN/m 2

Fw = c s * cd * cf * qp(z) * A ref = 0,8 (or -0,5) * 1,2 * A ref [kN]

cs * cd = 1.0

c f = 0.8 (wind pressure)

c f = -0.5 (wind suction)

Wind acting on North direction A ref,1 = hc * L = 15.95 m 2

Fw,1 = c s * cd * cf * qp(z) * A ref = 9.96 kN

Mw,1 = 12.94 kNm

Fw,1total = c s * cd * cf * qp(z) * A ref = 16.18 kNWind action on East direction

A ref,2 = hc * B = 12.63 m 2

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 15/26

Fw,2 = c s * cd * cf * qp(z) * A ref = 7.88 kN

Mw,2 = 10.24 kNm

Earthquake load (E)The earthquake load is calculated using Equivalent Lateral Force Procedure (see P100-1/2013)Fb = g1 * S d(T1) * m * l = S d(T1) * m

S d(T1) = a*g * b(T1)/q, for T > T B

a*g = 0.35 *gTC = 0.70 s

q = 2.00 (as per Table 6.1)g1 = 1.00 ,- Importance class = III

l = 1.00 (correction factor)

T1 = C t * H3/4

C t = 0.05H = 2.60

T1 = 0.10 > TB = 0.10 b(T 1) = 2.75S d(T1) = 0.35 * g * 2.75 / 2.00 = 0.48125

Fb = 1.0 * 0.48125 * g * 143.8 / g *= 69.1845 kN

Mb= Fb*(h1+h2)= 117.6137 kNm

Snow Load (S)

s k = m i * ce * c t * s 0,k

m i = 1Ground snow s 0,k = 2 kN/m 2 (zone 3)

Thermal factor c t = 1.0 (usual thermal roof)

Exposure factor c e = 0.8 (fully exposed)

s k = m i * ce * c t * s 0,k = 1.6 kN/m 2

S k = s k * L * B = 47.67427 kN

FOUNDATION DESIGN Analitical model

Snow loading shall be calculated in accordance with SR EN 1991-1-3 & SR EN 1991-1-3/NA-Eur

The loads are acting on both directions at the top of foundations, in the center of gravity (CG)

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 16/26

Loads on foundations

Weight of structure (assumption) = 143.76 kNWStr = 143.76 kN

Weight of foundation = (2 * (B+L) * (b 2 * h2 )+4*b1*b1*h1) * gRC = 227.64 kN

WRC = 227.6 kN

Weight of soil = 2*(B + L) * (b1-b2) * h2 * gS = 0.00 kN

WS = 0 kN

D = W Str + W RC + W S = 371.4 kNWind loads:FW,1 = 9.96 kN

MW,1 = 12.94 kNm

FW,2 = 7.88 kN

MW,2 = 10.24 kNmSnow load = 47.67427 kN

Load combinations:Maximum pressure on soilULSUw = 1,35 * D 1,5 * W + 1,05 * L + 1,05 * SUvw = 1,35 * (W str + W RC +W S ) + 1,05 * S k = 551.45 kN

UH,1w = 1,5 * F W,1 = 14.93 kN

UH,2w = 1,5 * F W,2 = 11.82 kNSEISMIC ULSUE= 1,0 * D 1,0 * E + 0.4 * SUE = 1,0 * (W str + W RC +W S ) + 0.4 * S k = 421.46 kN

ME = 1,0 * Mb = 117.61 kN

Maximum uplift on soilULSU = 0,9 * D 1,5 * W + 1,05 * S = 384.32 kNUv = 0,9 * (Wstr + WRC +WS) + 1,05 * Sk = 384.32 kN

UH,1 = 1,5 * F w,1 = 14.93 kN

UH,2 = 1,5 * F w,2 = 11.82 kN

SEISMIC ULSU = 0,9 * D 1,0 * E+ 0.4 * S = 353.33 kNUE = 0,9 * (Wstr + WRC +WS) + 0.4 * Sk = 353.33 kN

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 17/26

Check pressure on soil Af = b1*b 1 = 1.21 m 2

I1 = (b 1)3 * b1 / 12 = 0.12 m 4 I1=I2

W1 = 0.22 m 3

I2 = b 1 *(b1)3 / 12 = 0.12 m 4

W2 = 0.22 m 3

Maximum pressure on soilULSp = (Uv / 4)/A f ±(1.5*Mw1) / W 1 ± (1.5*Mw2 ) / W 2 =

p = 113.94 87.51 69.25pmax = 113.94 + 87.51 + 69.25 = 270.70SEISMIC ULSp = (UE / 4)/A f ±(Mb1/4) / W 1 ± (Mb2/4 ) / W 2 =

p = 87.08 132.55 132.55pmax = 87.08 + 132.55 + 132.55 = 352.17

Maximum uplift on soilSEISMIC ULSp = (UE / 4)/A f ±(Mb1/4) / W 1 ± (Mb2/4 ) / W 2 =

p = 87.08 87.51 69.25pmin = 87.08 - 87.51 - 69.25 = -69.68

Check overturning stablity and slidingCheck overturningResisting moment (RM) = Uv * (B+b 1)/2 = 1144.50 kNm

Overturning moment (OM) = max Fw, 1total * (hc/2+h1+h2) = 48.53 kNmMb= 117.61 kNm

FS = RM / OVM = 9.7 > 1.5

Check sliding Fv = 384.32 kN

m = 0.4 F H = 16.18

m * F v = 153.73 kN

FS = * Fv / FH = 9.5 > 1.5

Reinforcing designNOTE: This foundation calculation will be finalized during Detail Design phase in accordancewith available vendor's data.

The beam reinforcement has been calculated taking into account the gravitational loads andalso the influence of the wind loads.

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 18/26

Legend: Sw - self weight loadL - live loadSwfd - self weight foun

A1= 8.75 m 2

A2= 5.69 m 2

ULSSwcontainer= 1.71 KN/m2 *1.35= 2.31 KN/m2Swequipment= 1.17 KN/m2 *1.35= 1.59 KN/m2Lfloor= 2.00 KN/m2 *1.5 3.00 KN/m2

Snow= 1.60 KN/m2 *1.5= 2.40 KN/m2T= 9.30 KN/m2Swfdbeam(qfb)= 3.75 KN/m *1.35= 5.06 KN/m

q1max= T*A1/L+qfb= 18.32 KN/mq2max= T*A2/B+qfb= 15.96 KN/m

M= *L2 /10

M1= 68.97 KNmM2= 37.62 KNm

Wind Effect:

Fw,1= 9.96 KNFw,2= 7.88 KNMw,1 = 12.94 KNm

Mw,2 = 10.24 KNm

M1cw=M1+1.05*M w,2 /2 74.35 KNm

M2cw=M2+1.05*M w,1 /2 44.42 KNm

SEISMIC ULS

Swcontainer= 1.71 KN/m2 *1.0= 1.71 KN/m2Swequipment= 1.17 KN/m2 *1.0= 1.17 KN/m2Lfloor= 2.00 KN/m2 *1.0= 2.00 KN/m2Snow= 1.60 KN/m2 *0.4= 0.64 KN/m2

T= 5.53 KN/m2Swfdbeam(qfb)= 3.75 KN/m *1.0= 3.75 KN/m

q1max= T*A1/L+qfb= 11.63 KN/m

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 19/26

q2max= T*A2/B+qfb= 10.23 KN/m

M1= 43.79 KNmM2= 24.11 KNm

Earthquake effect:Mbf= 34.59 KN

M1ce=M1+M bf /2 61.09 KNm

M2ce=M2+M bf /2 41.41 KNm

Maximum Resisting Moment:Mmax=max(Mcw, Mce)= 74.35 KNm

cnom = 50 mm

dy = h2-c nom - /2 = 440 mm

f cd = a cc * f ck / gc = 16.67 N//mm 2

a cc = 1.0f ck = 25 N//mm 2

f yd = 309 N//mm 2

gc = 1.5

my = (M max * 10 6) / (b2 * d y2 * f cd ) = 76.808

AS,y = my *b2* d y * f cd / f yd = 547.4 mm 2 > 396 =

AS,min = 0,3% * b2 * d y = 396 mm 2

Use: 3 20 = 942 mm 2

Settlement checkS = q eff / Ks [mm]Where:

pmax = 352.17 kN/m 2

Ks = 2.7 daN/cm 2

D = p max / Ks = 0.013 m13 mm

Area units

8 50.3 mm 2

10 78.5 mm 2

12 113.1 mm 2

14 153.9 mm 2

16 201.1 mm 2

diam.

Ks is the averrage value (existing soil, compacted soil and filling) of modulus of verticalsubgrade reactions.

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 20/26

18 254.5 mm 2

20 314.1 mm 2

22 380.1 mm 2

25 490.9 mm 2

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 21/26

51 kN35 kN2 kN/m 2

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 22/26

1.0

ocod 1.

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 23/26

including pedestals under foundation

neglected, worst case scenario

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 24/26

kPa <1,4 x Ppl 462 kPa OK

kPa <1,6 x Ppl 528 kPa OK

kPa

wind loadsearthquake loads

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 25/26

dation beam load

8/12/2019 Container MDF01 Vn

http://slidepdf.com/reader/full/container-mdf01-vn 26/26

AS,min

OK