Bc 4301300308

9
N. Appa Rao et al Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 4, Issue 3( Version 1), March 2014, pp.300-308 www.ijera.com 300 | Page A Coupled Fixed Point Theorem for Geraghty Contractions in Partially Ordered Metric Spaces K.P.R. Sastry 1 , Ch. Srinivasa Rao 2 , N. Appa Rao 3 and S.S.A. Sastri 4 1 8-28-8/1, Tamil street, Chinna Waltair, Visakhapatnam-530 017, India. 2 Department of Mathematics Mrs. A.V.N. College, Visakhapatnam-530 001, India. 3 Department of Basic Engineering, Chalapathi Institute of Engineering and Technology, Lam, Guntur-530 026, India. 4 Department of Mathematics, GVP College of Engineering, Madhurawada, Visakhapatnam -530048, India. Abstract In this paper we establish results on the existence and uniqueness of coupled fixed points of Geraghty contraction on a partially ordered set with a metric, with the continuity of the altering distance function dropped. Our results are improvements over the results of GVR Babu and P.Subhashini [3]. Key words: Geraghty contraction, altering distance function, fixed point, mixed monotone property, partially ordered set. Mathematical subject classification (2010): 47H10, 54H25 I. Introduction Delbosco [8] and Skof [23] introduced the concept of an altering distance function, which alters the distance between two points in a metric space. This technique is made famous by Khan, Swaleh and Sessa [15]. Afterwards many researchers [2, 6, 9, 10, 15, 22] applied this concept to obtain the existence of fixed points. Also, G.V.R. Babu and P. Subhashini [3] applied this concept to obtain coupled fixed point via Geraghty contraction. Throughout this paper ℝ + denotes the interval 0, ∞. II. Preliminaries Notation: Let Π€ = : ℝ + →ℝ + /Ο† is non decreasing and Ο† =0 ⇔ =0 Definition 2.1: [23] ∈ Π€ is called an altering distance function if is continuous. Definition 2.2: [14] Let (, ≀) be partially ordered set and : Γ— β†’ be a map. We say that has the mixed monotone property if (, ) is non-decreasing in and is non-increasing in. i.e. 1 , 2 ∈, 1 ≀ 2 β‡’( 1 , ) ≀( 2 , ) and 1 , 2 ∈, 1 ≀ 2 β‡’(, 1 ) β‰₯(, 2 ). Definition 2.3: [12] Let (, ≀) be a partially ordered set and : Γ— β†’ be a map. For any, ∈. A point (, ) ∈ Γ— is called a coupled fixed point of if = (, ) and = (, ). Define the partial order ≀ 1 on Γ— as follows: , ≀ 1 , ≀ β‰₯ βˆ€ , , , ∈. We say that (, ) and (, ) are comparable, if either , ≀ 1 , or , ≀ 1 , We denote the class of all altering distance functions : ℝ + →ℝ + by Π€. We use the following notation as mentioned in [11] to define Geraghty contraction. = : ℝ + β†’0,1/ Ξ² β†’ 1 β‡’ β†’ 0 Definition 2.4: [11] Let (, ) be a metric space. A self map : β†’ is said to be a Geraghty contraction if βˆƒ ∈ such that , ≀ , , βˆ€ , ∈ Remark 2.5: It is trivial to see that every contraction map is Geraghty contraction. The following example (GVR Babu and P Subhashini [3]) shows that a Geraghty contraction need not be a contraction. RESEARCH ARTICLE OPEN ACCESS

Transcript of Bc 4301300308

Page 1: Bc 4301300308

N. Appa Rao et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1), March 2014, pp.300-308

www.ijera.com 300 | P a g e

A Coupled Fixed Point Theorem for Geraghty Contractions in

Partially Ordered Metric Spaces

K.P.R. Sastry1, Ch. Srinivasa Rao

2, N. Appa Rao

3 and S.S.A. Sastri

4

1 8-28-8/1, Tamil street, Chinna Waltair, Visakhapatnam-530 017, India.

2 Department of Mathematics Mrs. A.V.N. College, Visakhapatnam-530 001, India.

3 Department of Basic Engineering, Chalapathi Institute of Engineering and Technology, Lam, Guntur-530 026,

India. 4 Department of Mathematics, GVP College of Engineering, Madhurawada, Visakhapatnam -530048, India.

Abstract In this paper we establish results on the existence and uniqueness of coupled fixed points of Geraghty

contraction on a partially ordered set with a metric, with the continuity of the altering distance function dropped.

Our results are improvements over the results of GVR Babu and P.Subhashini [3].

Key words: Geraghty contraction, altering distance function, fixed point, mixed monotone property, partially

ordered set.

Mathematical subject classification (2010): 47H10, 54H25

I. Introduction Delbosco [8] and Skof [23] introduced the concept of an altering distance function, which alters the

distance between two points in a metric space. This technique is made famous by Khan, Swaleh and Sessa [15].

Afterwards many researchers [2, 6, 9, 10, 15, 22] applied this concept to obtain the existence of fixed points.

Also, G.V.R. Babu and P. Subhashini [3] applied this concept to obtain coupled fixed point via Geraghty

contraction.

Throughout this paper ℝ+ denotes the interval 0,∞ .

II. Preliminaries Notation: Let Π€ = πœ‘:ℝ+ β†’ ℝ+/Ο† is non decreasing and Ο† 𝑑 = 0 ⇔ 𝑑 = 0

Definition 2.1: [23] 𝝋 ∈ Π€ is called an altering distance function if πœ‘ is continuous.

Definition 2.2: [14] Let (𝑋,≀) be partially ordered set and 𝐹:𝑋 Γ— 𝑋 β†’ 𝑋 be a map. We say that 𝑓 has the

mixed monotone property if 𝐹(π‘₯, 𝑦) is non-decreasing in π‘₯ and is non-increasing in𝑦.

i.e. π‘₯1 , π‘₯2 ∈ 𝑋, π‘₯1 ≀ π‘₯2 β‡’ 𝐹(π‘₯1 , 𝑦) ≀ 𝐹(π‘₯2 , 𝑦) and 𝑦1 , 𝑦2 ∈ 𝑋, 𝑦1 ≀ 𝑦2 β‡’ 𝐹(π‘₯, 𝑦1) β‰₯ 𝐹(π‘₯, 𝑦2).

Definition 2.3: [12] Let (𝑋,≀) be a partially ordered set and 𝐹:𝑋 Γ— 𝑋 β†’ 𝑋 be a map. For anyπ‘₯, 𝑦 ∈ 𝑋. A point

(π‘₯, 𝑦) ∈ 𝑋 Γ— 𝑋 is called a coupled fixed point of 𝐹 if π‘₯ = 𝐹(π‘₯, 𝑦) and 𝑦 = 𝐹(𝑦, π‘₯).

Define the partial order ≀1 on 𝑋 Γ— 𝑋 as follows:

π‘₯, 𝑦 ≀1 𝑒, 𝑣 𝑖𝑓 π‘₯ ≀ 𝑒 π‘Žπ‘›π‘‘ 𝑦 β‰₯ 𝑣 βˆ€ π‘₯, 𝑦,𝑒, 𝑣 ∈ 𝑋.

We say that (π‘₯, 𝑦) and (𝑒, 𝑣) are comparable, if either π‘₯, 𝑦 ≀1 𝑒, 𝑣 or 𝑒, 𝑣 ≀1 π‘₯, 𝑦 We denote the class of all altering distance functions πœ‘:ℝ+ β†’ ℝ+ by Π€. We use the following notation as

mentioned in [11] to define Geraghty contraction.

𝑆 = 𝛽: ℝ+ β†’ 0,1 / Ξ² 𝑑𝑛 β†’ 1 β‡’ 𝑑𝑛 β†’ 0

Definition 2.4: [11] Let (𝑋,𝑑) be a metric space. A self map 𝑓:𝑋 β†’ 𝑋 is said to be a Geraghty contraction if

βˆƒ 𝛽 ∈ 𝑆 such that 𝑑 𝑓 π‘₯ , 𝑓 𝑦 ≀ 𝛽 𝑑 π‘₯, 𝑦 𝑑 π‘₯, 𝑦 βˆ€ π‘₯, 𝑦 ∈ 𝑋

Remark 2.5: It is trivial to see that every contraction map is Geraghty contraction. The following example

(GVR Babu and P Subhashini [3]) shows that a Geraghty contraction need not be a contraction.

RESEARCH ARTICLE OPEN ACCESS

Page 2: Bc 4301300308

N. Appa Rao et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1), March 2014, pp.300-308

www.ijera.com 301 | P a g e

Example 2.6: [3] Let 𝑋 = ℝ+ with usual metric. We define 𝑓:𝑋 β†’ 𝑋 by 𝑓 π‘₯ =π‘₯

1+π‘₯ βˆ€ π‘₯ ∈ 𝑋 and 𝛽: ℝ+ β†’

0,1 by 𝛽 𝑑 = 2

2+𝑑 𝑖𝑓 𝑑 > 0

0 𝑖𝑓 𝑑 = 0

Then clearly 𝛽 ∈ 𝑆. We observe that 𝑓 is a Geraghty contraction. For,

𝑑 𝑓 π‘₯ , 𝑓 𝑦 = π‘₯

1 + π‘₯βˆ’

𝑦

1 + 𝑦 =

π‘₯ βˆ’ 𝑦

1 + π‘₯ 1 + 𝑦 ≀

2 π‘₯ βˆ’ 𝑦

2 + π‘₯ βˆ’ 𝑦 = 𝛽 𝑑 π‘₯, 𝑦 𝑑 π‘₯, 𝑦 βˆ€π‘₯, 𝑦 ∈ 𝑋

But 𝑓 is not a contraction.

The following theorem is proved in [11].

Theorem 2.7 (Geraghty, [11]): Let 𝑓:𝑋 β†’ 𝑋 be a self map of a complete metric space 𝑋. If βˆƒ 𝛽 ∈ 𝑆 such

that 𝑑 𝑓 π‘₯ , 𝑓 𝑦 ≀ 𝛽 𝑑 π‘₯, 𝑦 𝑑 π‘₯, 𝑦 βˆ€ π‘₯,𝑦 ∈ 𝑋, then for any choice of initial point π‘₯0, the iteration

π‘₯𝑛 = 𝑓(π‘₯π‘›βˆ’1) for 𝑛 = 1,2,3,… converges to the unique fixed point 𝑧 of 𝑓 in 𝑋.

In 2010 Amini-Harandi and Emami [1] extended Theorem 2.7 to complete metric spaces with partial

order.

Theorem 2.8 [1]: Let 𝑋,≀ be a poset and suppose that there exists a metric 𝑑 on 𝑋 such that 𝑋,𝑑 is a

complete metric space. Let 𝑓:𝑋 β†’ 𝑋 be an increasing mapping and βˆƒ 𝛽 ∈ 𝑆

such that 𝑑 𝑓 π‘₯ , 𝑓 𝑦 ≀ 𝛽 𝑑 π‘₯, 𝑦 𝑑 π‘₯, 𝑦 βˆ€ π‘₯, 𝑦 ∈ 𝑋 with π‘₯ β‰₯ 𝑦.

Assume that either (i) 𝑓 is continuous or (ii) 𝑋 is such that if π‘₯𝑛 an increasing sequence π‘₯𝑛 β†’ π‘₯ in 𝑋, then

π‘₯𝑛 ≀ π‘₯ βˆ€ 𝑛.

Besides suppose thatif for each π‘₯, 𝑦 ∈ 𝑋,βˆƒ 𝑧 ∈ 𝑋 which is comparable to π‘₯ and 𝑦. Then 𝑓 has a unique fixed

point.

Guo and Lakshmikantham [13] introduced the mixed monotone operators. In 2006, Gnana Bhaskar and

Lakshmikantham [12] established the existence of coupled fixed points for mixed monotone operators in metric

spaces with partial order. For more literature on the existence of coupled fixed points of different contraction

conditions in partially ordered metric spaces, we refer [4, 7, 14, 16, 18, 19, 20, 21].

Definition 2.9: [12] Let 𝑋 be a non-empty set and 𝐹:𝑋 Γ— 𝑋 β†’ 𝑋 be a mapping. An element π‘₯, 𝑦 ∈ 𝑋 Γ— 𝑋 is

said to be coupled fixed point of 𝐹 if 𝐹 π‘₯, 𝑦 = π‘₯ and 𝐹 𝑦, π‘₯ = 𝑦.

The following theorem is due to Gnana Bhaskar and Lakshmikantham [12].

Theorem 2.10: [12] Let (𝑋,≀) be a poset and suppose that there exists a metric 𝑑 on 𝑋 such that (𝑋,𝑑) is a

complete metric space. Let 𝐹:𝑋 Γ— 𝑋 β†’ 𝑋 be a mapping having the mixed monotone property on 𝑋. Assume that

there exists π‘˜ ∈ [0,1) such that

𝑑 𝐹 π‘₯, 𝑦 ,𝐹(𝑒, 𝑣) β‰€π‘˜

2 𝑑 π‘₯,𝑒 + 𝑑(𝑦, 𝑣) …… (1)

for all π‘₯, 𝑦,𝑒, 𝑣 ∈ 𝑋 with π‘₯ β‰₯ 𝑒, 𝑦 ≀ 𝑣.

Also suppose that either (i) 𝐹 is continuous or (ii) 𝑋 has the following properties:

(a) If π‘₯𝑛 is a non-decreasing sequence in 𝑋 with π‘₯𝑛 β†’ π‘₯, then π‘₯𝑛 ≀ π‘₯ βˆ€ 𝑛 ∈ 𝕫+

(b) If 𝑦𝑛 is a non- increasing sequence in 𝑋 with 𝑦𝑛 β†’ 𝑦, then 𝑦𝑛 β‰₯ 𝑦 βˆ€ 𝑛 ∈ 𝕫+

If βˆƒ π‘₯0 , 𝑦0 ∈ 𝑋 such that π‘₯0 ≀ 𝐹(π‘₯0 , 𝑦0) and 𝑦0 β‰₯ 𝐹(π‘₯0 , 𝑦0), then βˆƒ π‘₯, 𝑦 ∈ 𝑋 such that π‘₯ = 𝐹 π‘₯, 𝑦 and

𝑦 = 𝐹 𝑦, π‘₯ Recently Choudhury and Kundu [5] extended Theorem 2.7 to Geraghty contractions in the context of

coupled fixed points in metric spaces with partial order.

Theorem 2.11: [5] Let (𝑋,≀) be a poset and suppose that there exists a metric 𝑑 on 𝑋 such that (𝑋,𝑑) is a

complete metric space. Let 𝐹:𝑋 Γ— 𝑋 β†’ 𝑋 be a mapping having the mixed monotone property on 𝑋. Assume that

there exists 𝛽 ∈ 𝑆 such that

𝑑 𝐹 π‘₯, 𝑦 ,𝐹(𝑒, 𝑣) ≀ 𝛽 𝑑 π‘₯ ,𝑒 +𝑑(𝑦 ,𝑣)

2

𝑑 π‘₯ ,𝑒 +𝑑(𝑦 ,𝑣)

2 …… (2)

whenever π‘₯, 𝑦,𝑒, 𝑣 ∈ 𝑋 and π‘₯, 𝑦 and (𝑒, 𝑣) are comparable..

Also suppose that either (i) 𝐹 is continuous or (ii) 𝑋 has the following properties:

(a) If π‘₯𝑛 is a non-decreasing sequence in 𝑋 with π‘₯𝑛 β†’ π‘₯, then π‘₯𝑛 ≀ π‘₯ βˆ€ 𝑛 ∈ 𝕫+

(b) If 𝑦𝑛 is a non- increasing sequence in 𝑋 with 𝑦𝑛 β†’ 𝑦, then 𝑦𝑛 β‰₯ 𝑦 βˆ€ 𝑛 ∈ 𝕫+

If βˆƒ π‘₯0, 𝑦0 ∈ 𝑋 such that π‘₯0 ≀ 𝐹(π‘₯0 , 𝑦0) and 𝑦0 β‰₯ 𝐹(π‘₯0 , 𝑦0), then 𝐹 has a fixed point. That is βˆƒ π‘₯, 𝑦 ∈ 𝑋 such

that π‘₯ = 𝐹 π‘₯, 𝑦 and 𝑦 = 𝐹 𝑦, π‘₯ .

Page 3: Bc 4301300308

N. Appa Rao et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1), March 2014, pp.300-308

www.ijera.com 302 | P a g e

G.V.R. Babu and P. Subhashini [3] proved two theorems which extend the coupled fixed point results

established by Gnana Bhaskar and Lakshmikantham [12] and Choudhury and Kundu [5], to the case of

Geraghty contraction maps by using an altering distance function.

Theorem 2.12 (GVR Babu and P Subhashini, Theorem 2.1, [3]): Let (𝑋,≀) be a poset and suppose that there

exists a metric 𝑑 on 𝑋 such that (𝑋,𝑑) is a complete metric space. Let 𝐹:𝑋 Γ— 𝑋 β†’ 𝑋 be a continuous map

having the mixed monotone property on 𝑋. Suppose there exists an altering distance function πœ‘ and 𝛽 ∈ 𝑆 such

that

πœ‘ 𝑑 𝐹 π‘₯, 𝑦 ,𝐹(𝑒, 𝑣) ≀ 𝛽 𝑑 π‘₯ ,𝑒 +𝑑(𝑦 ,𝑣)

2 πœ‘ max 𝑑 π‘₯,𝑒 ,𝑑(𝑦, 𝑣) …… (3)

βˆ€ π‘₯, 𝑦,𝑒, 𝑣 ∈ 𝑋 whenever π‘₯, 𝑦 and (𝑒, 𝑣) are comparable.

If βˆƒ π‘₯0, 𝑦0 ∈ 𝑋 such that π‘₯0 ≀ 𝐹(π‘₯0 , 𝑦0) and 𝑦0 β‰₯ 𝐹(π‘₯0 , 𝑦0), then 𝐹 has a coupled fixed point. That is βˆƒ π‘₯, 𝑦 βˆˆπ‘‹ such that π‘₯ = 𝐹 π‘₯, 𝑦 and 𝑦 = 𝐹 𝑦, π‘₯ .

Theorem 2.13 (GVR Babu and P Subhashini, Theorem 2.2, [3]): Let (𝑋,≀) be a poset and suppose that there

exists a metric 𝑑 on 𝑋 such that (𝑋,𝑑) is a complete metric space. Let 𝐹:𝑋 Γ— 𝑋 β†’ 𝑋 be a continuous map

having the mixed monotone property on 𝑋. Suppose there exists an altering distance function πœ‘ and 𝛽 ∈ 𝑆 such

that

πœ‘ 𝑑 𝐹 π‘₯, 𝑦 ,𝐹(𝑒, 𝑣) ≀ 𝛽 𝑑 π‘₯ ,𝑒 +𝑑(𝑦 ,𝑣)

2 πœ‘ max 𝑑 π‘₯,𝑒 ,𝑑(𝑦, 𝑣) …… (4)

βˆ€ π‘₯, 𝑦,𝑒, 𝑣 ∈ 𝑋 whenever π‘₯, 𝑦 and (𝑒, 𝑣) are comparable..

Further assume that 𝑋 has the following properties:

(a) If π‘₯𝑛 is a non-decreasing sequence in 𝑋 with π‘₯𝑛 β†’ π‘₯, then π‘₯𝑛 ≀ π‘₯ βˆ€ 𝑛 ∈ 𝕫+

(b) If 𝑦𝑛 is a non- increasing sequence in 𝑋 with 𝑦𝑛 β†’ 𝑦, then 𝑦𝑛 β‰₯ 𝑦 βˆ€ 𝑛 ∈ 𝕫+

If βˆƒ π‘₯0, 𝑦0 ∈ 𝑋 such that π‘₯0 ≀ 𝐹(π‘₯0 , 𝑦0) and 𝑦0 β‰₯ 𝐹(𝑦0 , π‘₯0), then 𝐹 has a coupled fixed point. That is, βˆƒ π‘₯, 𝑦 βˆˆπ‘‹ such that π‘₯ = 𝐹 π‘₯, 𝑦 and 𝑦 = 𝐹 𝑦, π‘₯ . In this paper, we establish Theorem 2.12 and Theorem 2.13 without using the continuity of alter

distance function πœ‘.

III. Main results

Theorem 3.1: Let (𝑋,≀) be a poset and suppose that there exists a metric 𝑑 on 𝑋 such that (𝑋,𝑑) is a metric

space. Let 𝐹:𝑋 Γ— 𝑋 β†’ 𝑋 be a mapping having the mixed monotone property on 𝑋 and there exist πœ‘ ∈ Π€ and

𝛽 ∈ 𝑆 such that

πœ‘ 𝑑 𝐹 π‘₯, 𝑦 ,𝐹(𝑒, 𝑣) ≀ 𝛽 𝑑 π‘₯ ,𝑒 +𝑑(𝑦 ,𝑣)

2 πœ‘ max 𝑑 π‘₯,𝑒 ,𝑑(𝑦, 𝑣) … (5)

For all π‘₯, 𝑦,𝑒, 𝑣 ∈ 𝑋 whenever π‘₯, 𝑦 and (𝑒, 𝑣) are comparable..

Suppose βˆƒ π‘₯0, 𝑦0 ∈ 𝑋 such that π‘₯0 ≀ 𝐹(π‘₯0 , 𝑦0) and 𝑦0 β‰₯ 𝐹(𝑦0 , π‘₯0). Define the sequences π‘₯𝑛 and 𝑦𝑛 in 𝑋 by

π‘₯𝑛+1 = 𝐹(π‘₯𝑛 , 𝑦𝑛) and 𝑦𝑛+1 = 𝐹(𝑦𝑛 , π‘₯𝑛) for all 𝑛 = 0, 1, 2,… (6)

Then π‘₯𝑛 is an increasing sequence, 𝑦𝑛 is a decreasing sequence and π‘₯𝑛 and 𝑦𝑛 are Cauchy sequences.

Proof: First we prove that π‘₯𝑛 ≀ π‘₯𝑛+1 and 𝑦𝑛 β‰₯ 𝑦𝑛+1 for all 𝑛 = 0, 1, 2,… (7)

and then we show that π‘₯𝑛 and 𝑦𝑛 are Cauchy sequences.

We have π‘₯0 ≀ 𝐹(π‘₯0 , 𝑦0) and 𝑦0 β‰₯ 𝐹(𝑦0 , π‘₯0) .

Hence π‘₯0 ≀ π‘₯1 and 𝑦0 β‰₯ 𝑦1

∴ (7) is true for 𝑛 = 0.

Assume that (7) is true for some positive integer 𝑛.

By using the mixed monotone property of 𝐹, we have

π‘₯𝑛+2 = 𝐹 π‘₯𝑛+1, 𝑦𝑛+1 β‰₯ 𝐹 π‘₯𝑛 , 𝑦𝑛 = π‘₯𝑛+1 and 𝑦𝑛+2 = 𝐹 𝑦𝑛+1, π‘₯𝑛+1 ≀ 𝐹 𝑦𝑛 , π‘₯𝑛 = 𝑦𝑛+1

∴ (7) is true for 𝑛 + 1.

Therefore by mathematical induction (7) follows.

We now show that limπ‘›β†’βˆž max 𝑑 π‘₯𝑛 , π‘₯𝑛+1 ,𝑑 𝑦𝑛 , 𝑦𝑛+1 = 0.

We have π‘₯𝑛 ≀ π‘₯𝑛+1 and 𝑦𝑛 β‰₯ 𝑦𝑛+1 for all 𝑛 = 0, 1, 2,…

Now πœ‘ 𝑑 π‘₯𝑛+1, π‘₯𝑛 = πœ‘ 𝑑 𝐹 π‘₯𝑛 , 𝑦𝑛 ,𝐹(π‘₯π‘›βˆ’1, π‘¦π‘›βˆ’1)

≀ 𝛽 𝑑𝑛 πœ‘ max 𝑑 π‘₯𝑛 , π‘₯π‘›βˆ’1 ,𝑑 𝑦𝑛 , π‘¦π‘›βˆ’1 …. (8)

≀ πœ‘ max 𝑑 π‘₯𝑛 , π‘₯π‘›βˆ’1 ,𝑑 𝑦𝑛 , π‘¦π‘›βˆ’1

πœ‘ 𝑑 𝑦𝑛 , 𝑦𝑛+1 = πœ‘ 𝑑 𝐹 π‘¦π‘›βˆ’1 , π‘₯π‘›βˆ’1 ,𝐹(𝑦𝑛 , π‘₯𝑛)

≀ 𝛽 𝑑𝑛 πœ‘ max 𝑑 π‘¦π‘›βˆ’1 , 𝑦𝑛 ,𝑑 π‘₯π‘›βˆ’1, π‘₯𝑛 …. (9)

Page 4: Bc 4301300308

N. Appa Rao et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1), March 2014, pp.300-308

www.ijera.com 303 | P a g e

where 𝑑𝑛 =𝑑 π‘¦π‘›βˆ’1 ,𝑦𝑛 +𝑑 π‘₯π‘›βˆ’1 ,π‘₯𝑛

2

≀ πœ‘ max 𝑑 π‘¦π‘›βˆ’1, 𝑦𝑛 ,𝑑 π‘₯π‘›βˆ’1, π‘₯𝑛 From (8) and (9), we have

max Ο† 𝑑 π‘₯𝑛 , π‘₯𝑛+1 ,𝑑 𝑦𝑛 , 𝑦𝑛+1 ≀ 𝛽 𝑑𝑛 πœ‘ max 𝑑 π‘₯𝑛 , π‘₯π‘›βˆ’1 ,𝑑 𝑦𝑛 , π‘¦π‘›βˆ’1 Since πœ‘ is increasing, we get

Ο† max 𝑑 π‘₯𝑛 , π‘₯𝑛+1 ,𝑑 𝑦𝑛 , 𝑦𝑛+1 ≀ 𝛽 𝑑𝑛 πœ‘ max 𝑑 π‘₯𝑛 ,π‘₯π‘›βˆ’1 ,𝑑 𝑦𝑛 , π‘¦π‘›βˆ’1 … (10)

If 𝛽 𝑑𝑛 = 0, for some 𝑛, then Ο† max 𝑑( π‘₯𝑛 , π‘₯𝑛+1 ,𝑑( 𝑦𝑛 , 𝑦𝑛+1 = 0 and hence from (10) we have

Ο† max 𝑑 π‘₯π‘š , π‘₯π‘š+1 ,𝑑 π‘¦π‘š , π‘¦π‘š+1 = 0 π‘“π‘œπ‘Ÿ π‘š β‰₯ 𝑛.

Consequently max 𝑑 π‘₯π‘š , π‘₯π‘š+1 ,𝑑 π‘¦π‘š , π‘¦π‘š+1 = 0 for π‘š β‰₯ 𝑛

So that limπ‘šβ†’βˆž max 𝑑 π‘₯π‘š , π‘₯π‘š+1 ,𝑑 π‘¦π‘š , π‘¦π‘š+1 = 0.

Hence, we may suppose that 𝛽 𝑑𝑛 > 0 βˆ€ 𝑛 ….… (11)

Again from non-decreasing property of πœ‘ and (10), we have

max 𝑑 π‘₯𝑛 , π‘₯𝑛+1 ,𝑑 𝑦𝑛 , 𝑦𝑛+1 ≀ max 𝑑 π‘₯𝑛 , π‘₯π‘›βˆ’1 ,𝑑 𝑦𝑛 , π‘¦π‘›βˆ’1 ∴ max 𝑑 π‘₯𝑛 , π‘₯𝑛+1 ,𝑑 𝑦𝑛 , 𝑦𝑛+1 is a non-negative and decreasing sequence of real and hence it converges to

a real number π‘Ÿ (say) π‘Ÿ β‰₯ 0.

Now, we prove that π‘Ÿ = 0. If possible suppose that π‘Ÿ > 0.

Again from (10), we have

πœ‘ π‘Žπ‘›+1 ≀ 𝛽 𝑑𝑛 πœ‘ π‘Žπ‘› where π‘Žπ‘› = max 𝑑 π‘₯𝑛 , π‘₯π‘›βˆ’1 ,𝑑( 𝑦𝑛 , π‘¦π‘›βˆ’1 β‰₯ π‘Ÿ > 0

i.e πœ‘ π‘Žπ‘›+1

πœ‘ π‘Žπ‘› ≀ 𝛽 𝑑𝑛 < 1 ∡ πœ‘ π‘Žπ‘› > πœ‘ π‘Ÿ > 0

Let πœ‘ π‘Žπ‘› decreases to 𝑠, where limπ‘›β†’βˆž πœ‘ π‘Žπ‘› = 𝑠.

Now π‘Ÿ ≀ π‘Žπ‘›+1 β‡’ πœ‘ π‘Ÿ ≀ πœ‘ π‘Žπ‘›+1 βˆ€ 𝑛 β‡’ πœ‘(π‘Ÿ) ≀ 𝑠

Now πœ‘(π‘Ÿ) ≀ 𝑠 ≀ πœ‘(π‘Žπ‘›+1) ≀ 𝛽 𝑑𝑛 πœ‘(π‘Žπ‘›) ….. (12)

Case (i): 𝛽 𝑑𝑛 β†’ 1. Then 𝑑𝑛 β†’ 0 ∡ 𝛽 ∈ 𝑆

β‡’ 𝑑 π‘₯𝑛 ,π‘₯π‘›βˆ’1 +𝑑 𝑦𝑛 ,π‘¦π‘›βˆ’1

2 β†’ 0

β‡’ 𝑑 π‘₯𝑛 , π‘₯π‘›βˆ’1 + 𝑑 𝑦𝑛 , π‘¦π‘›βˆ’1 β†’ 0 β‡’ π‘Žπ‘› ≀ 𝑑 π‘₯𝑛 , π‘₯π‘›βˆ’1 + 𝑑 𝑦𝑛 , π‘¦π‘›βˆ’1 β†’ 0 β‡’ π‘Žπ‘› β†’ 0 β‡’ π‘Ÿ = 0

Case (ii): limπ‘›β†’βˆž 𝛽 𝑑𝑛 β‰  1.

Then βˆƒ νœ€ > 0 such that 𝛽 𝑑𝑛 < 1 βˆ’ νœ€ for infinitely many 𝑛.

Then from (10), we have πœ‘ π‘Ÿ ≀ 𝑠 ≀ πœ‘ π‘Žπ‘›+1 ≀ 𝛽 𝑑𝑛 πœ‘ π‘Žπ‘› ≀ 1 βˆ’ νœ€ πœ‘(π‘Žπ‘›) for infinitely many 𝑛.

On letting 𝑛 β†’ ∞, we get πœ‘ π‘Ÿ ≀ 𝑠 ≀ 1 βˆ’ νœ€ 𝑠 β‡’ 𝑠 = 0 and πœ‘ π‘Ÿ = 0 β‡’ 𝑠 = 0 and π‘Ÿ = 0.

∴ 0 = π‘Ÿ = limπ‘›β†’βˆž max 𝑑( π‘₯𝑛 , π‘₯𝑛+1 ,𝑑( 𝑦𝑛 , 𝑦𝑛+1 …. (13)

Next, we have to prove that π‘₯𝑛 and 𝑦𝑛 are Cauchy sequences.

If possible, assume that either π‘₯𝑛 or 𝑦𝑛 fails to be Cauchy.

Then either limπ‘š ,π‘›β†’βˆž 𝑑 π‘₯π‘š , π‘₯𝑛 β‰  0 or limπ‘š ,π‘›β†’βˆž 𝑑 π‘¦π‘š , 𝑦𝑛 β‰  0

Hence max limπ‘š ,π‘›β†’βˆž 𝑑 π‘₯π‘š , π‘₯𝑛 , limπ‘š ,π‘›β†’βˆž 𝑑 π‘¦π‘š , 𝑦𝑛 β‰  0

i.e. limπ‘š ,π‘›β†’βˆž max limπ‘š ,π‘›β†’βˆž 𝑑 π‘₯π‘š ,π‘₯𝑛 , limπ‘š ,π‘›β†’βˆž 𝑑 π‘¦π‘š , 𝑦𝑛 β‰  0

i.e βˆƒ νœ€ > 0, for which we can find sub sequences π‘š(π‘˜) and 𝑛(π‘˜) of positive integers with 𝑛(π‘˜) > π‘š(π‘˜) >

π‘˜ such that max 𝑑 π‘₯π‘š (π‘˜), π‘₯𝑛(π‘˜) ,𝑑 π‘¦π‘š (π‘˜), 𝑦𝑛(π‘˜) β‰₯ νœ€ ….. (14)

Further, we choose 𝑛(π‘˜) to be the smallest +ve integer such that 𝑛(π‘˜) > π‘š(π‘˜) satisfying (14).

Hence, we have max 𝑑 π‘₯π‘š (π‘˜), π‘₯𝑛(π‘˜) ,𝑑 π‘¦π‘š (π‘˜), 𝑦𝑛(π‘˜) β‰₯ νœ€ and

max 𝑑 π‘₯π‘š (π‘˜), π‘₯𝑛 π‘˜ βˆ’1 ,𝑑 π‘¦π‘š (π‘˜), 𝑦𝑛 π‘˜ βˆ’1 < νœ€ ..….. (15)

Now, we prove that

I: limπ‘˜β†’βˆž max 𝑑 π‘₯𝑛(π‘˜), π‘₯π‘š (π‘˜) ,𝑑 𝑦𝑛(π‘˜), π‘¦π‘š (π‘˜) = νœ€

II: limπ‘˜β†’βˆž max 𝑑 π‘₯𝑛 π‘˜ βˆ’1 ,π‘₯π‘š π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1 = νœ€

III: limπ‘˜β†’βˆž max 𝑑 π‘₯π‘š (π‘˜), π‘₯𝑛 π‘˜ βˆ’1 ,𝑑 π‘¦π‘š (π‘˜), 𝑦𝑛 π‘˜ βˆ’1 = νœ€

First we prove I:-

From the triangular inequality and (11), we have

𝑑 π‘₯𝑛 π‘˜ , π‘₯π‘š π‘˜ ≀ 𝑑 π‘₯𝑛 π‘˜ , π‘₯𝑛 π‘˜ βˆ’1 + 𝑑 π‘₯𝑛 π‘˜ βˆ’1 ,π‘₯π‘š (π‘˜) < 𝑑 π‘₯𝑛 π‘˜ , π‘₯𝑛 π‘˜ βˆ’1 + νœ€ … (16)

𝑑 𝑦𝑛 π‘˜ , π‘¦π‘š π‘˜ ≀ 𝑑 𝑦𝑛 π‘˜ , 𝑦𝑛 π‘˜ βˆ’1 + 𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ < 𝑑 𝑦𝑛 π‘˜ , 𝑦𝑛 π‘˜ βˆ’1 + νœ€ … (17)

From (14), (16) and (17)

νœ€ ≀ max 𝑑 π‘₯𝑛(π‘˜), π‘₯π‘š (π‘˜) ,𝑑 𝑦𝑛(π‘˜), π‘¦π‘š (π‘˜) < max 𝑑 π‘₯𝑛(π‘˜), π‘₯𝑛 π‘˜ βˆ’1 ,𝑑 𝑦𝑛(π‘˜), 𝑦𝑛 π‘˜ βˆ’1 … (18)

On letting π‘˜ β†’ ∞, we get

νœ€ ≀ limπ‘˜β†’βˆž

max 𝑑 π‘₯𝑛(π‘˜), π‘₯π‘š (π‘˜) ,𝑑( 𝑦𝑛(π‘˜), π‘¦π‘š (π‘˜) ≀ νœ€

Page 5: Bc 4301300308

N. Appa Rao et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1), March 2014, pp.300-308

www.ijera.com 304 | P a g e

∴ limπ‘˜β†’βˆž

max 𝑑 π‘₯𝑛(π‘˜), π‘₯π‘š (π‘˜) ,𝑑 𝑦𝑛(π‘˜), π‘¦π‘š (π‘˜) = νœ€

∴ (I) holds.

Now, we prove (II):-

𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ βˆ’1 ≀ 𝑑 π‘₯π‘š π‘˜ βˆ’1 , π‘₯π‘š π‘˜ + 𝑑 π‘₯π‘š π‘˜ , π‘₯𝑛 π‘˜ βˆ’1

< 𝑑 π‘₯π‘š π‘˜ βˆ’1, π‘₯π‘š π‘˜ + νœ€ 𝑏𝑦 (15)

𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1 ≀ 𝑑 π‘¦π‘š π‘˜ βˆ’1, π‘¦π‘š π‘˜ + 𝑑 π‘¦π‘š π‘˜ , 𝑦𝑛 π‘˜ βˆ’1

< 𝑑 π‘¦π‘š π‘˜ βˆ’1, π‘¦π‘š π‘˜ + νœ€ 𝑏𝑦 (15)

∴ max 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1 ≀ max 𝑑 π‘₯π‘š π‘˜ βˆ’1 , π‘₯π‘š π‘˜ ,𝑑 π‘¦π‘š π‘˜ βˆ’1, π‘¦π‘š π‘˜ + νœ€

∴ lim sup max 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1 ≀ νœ€ … (19)

𝑑 π‘₯𝑛 π‘˜ , π‘₯π‘š π‘˜ ≀ 𝑑 π‘₯𝑛 π‘˜ , π‘₯𝑛 π‘˜ βˆ’1 + 𝑑 π‘₯𝑛 π‘˜ βˆ’1 ,π‘₯π‘š π‘˜ βˆ’1 + 𝑑 π‘₯π‘š π‘˜ βˆ’1, π‘₯π‘š π‘˜

𝑑 𝑦𝑛 π‘˜ , π‘¦π‘š π‘˜ ≀ 𝑑 𝑦𝑛 π‘˜ , 𝑦𝑛 π‘˜ βˆ’1 + 𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1 + 𝑑 π‘¦π‘š π‘˜ βˆ’1, π‘¦π‘š π‘˜

∴ max 𝑑 π‘₯𝑛 π‘˜ , π‘₯π‘š π‘˜ ,𝑑 𝑦𝑛 π‘˜ , π‘¦π‘š π‘˜ ≀ max 𝑑 π‘₯𝑛 π‘˜ , π‘₯𝑛 π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ βˆ’1, 𝑦𝑛 π‘˜ +

max 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1 + max 𝑑 π‘₯π‘š π‘˜ βˆ’1, π‘₯π‘š π‘˜ ,𝑑 π‘¦π‘š π‘˜ βˆ’1, π‘¦π‘š π‘˜

Letting π‘˜ β†’ ∞, from (12), we get

0 ≀ lim inf max 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1

≀ lim sup max 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1

≀ νœ€

∴ lim max 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ βˆ’1 , π‘¦π‘š π‘˜ βˆ’1 = νœ€

∴ (II) holds.

𝑑 π‘₯𝑛 π‘˜ , π‘₯π‘š π‘˜ ≀ 𝑑 π‘₯𝑛 π‘˜ , π‘₯𝑛 π‘˜ βˆ’1 + 𝑑 π‘₯𝑛 π‘˜ βˆ’1 ,π‘₯π‘š π‘˜

≀ 𝑑 π‘₯𝑛 π‘˜ , π‘₯𝑛 π‘˜ βˆ’1 + 𝑑 π‘₯𝑛 π‘˜ βˆ’1 , π‘₯π‘š π‘˜ βˆ’1 + 𝑑 π‘₯π‘š π‘˜ βˆ’1, π‘₯π‘š π‘˜

𝑑 𝑦𝑛 π‘˜ , π‘¦π‘š π‘˜ ≀ 𝑑 𝑦𝑛 π‘˜ , 𝑦𝑛 π‘˜ βˆ’1 + 𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜

≀ 𝑑 𝑦𝑛 π‘˜ , 𝑦𝑛 π‘˜ βˆ’1 + 𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1 + 𝑑 π‘¦π‘š π‘˜ βˆ’1, π‘¦π‘š π‘˜

∴ max 𝑑 π‘₯𝑛 π‘˜ , π‘₯π‘š π‘˜ ,𝑑 𝑦𝑛 π‘˜ , π‘¦π‘š π‘˜ ≀ max 𝑑 π‘₯𝑛 π‘˜ , π‘₯𝑛 π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ , π‘¦π‘š π‘˜ +

max 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ ,𝑑 𝑦𝑛 π‘˜ βˆ’1 , π‘¦π‘š π‘˜

≀ max 𝑑 π‘₯𝑛 π‘˜ , π‘₯𝑛 π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ , 𝑦𝑛 π‘˜ βˆ’1 + max 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1 +

max 𝑑 π‘₯π‘š π‘˜ βˆ’1, π‘₯π‘š π‘˜ ,𝑑 π‘¦π‘š π‘˜ βˆ’1 , π‘¦π‘š π‘˜

On letting π‘˜ β†’ ∞, from (I), (II), we get (III). ∡ νœ€ ≀ 0 + lim max 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ ,𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ ≀ νœ€

Now, we have νœ€ ≀ lim inf max 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1

≀ lim sup max 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1 = νœ€

∴ lim inf max 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1 = νœ€

Since π‘₯𝑛 π‘˜ βˆ’1 β‰₯ π‘₯π‘š π‘˜ βˆ’1 and 𝑦𝑛 π‘˜ βˆ’1 ≀ π‘¦π‘š π‘˜ βˆ’1, from (5), we get

πœ‘ 𝑑 π‘₯𝑛 π‘˜ , π‘₯π‘š π‘˜ = πœ‘ 𝑑 𝐹 π‘₯𝑛 π‘˜ βˆ’1, 𝑦𝑛 π‘˜ βˆ’1 ,𝐹 π‘₯π‘š π‘˜ βˆ’1 , π‘¦π‘š π‘˜ βˆ’1

≀ 𝛽 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ βˆ’1 + 𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1

2 πœ‘ max 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1

……. (20)

Similarly πœ‘ 𝑑 𝑦𝑛 π‘˜ , π‘¦π‘š π‘˜ = πœ‘ 𝑑 𝐹 𝑦𝑛 π‘˜ βˆ’1 , π‘₯π‘š π‘˜ βˆ’1 ,𝐹 𝑦𝑛 π‘˜ βˆ’1, π‘₯𝑛 π‘˜ βˆ’1

≀ 𝛽 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ βˆ’1 + 𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1

2 πœ‘ max 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1

…….. (21)

From (20) and (21), we get πœ‘ π‘ π‘˜ ≀ 𝛽 π‘žπ‘˜ .πœ‘(π‘π‘˜) where

π‘ π‘˜ = max 𝑑 π‘₯𝑛 π‘˜ , π‘₯π‘š π‘˜ ,𝑑 𝑦𝑛 π‘˜ , π‘¦π‘š π‘˜ and π‘žπ‘˜ =𝑑 π‘₯𝑛 π‘˜ βˆ’1 ,π‘₯π‘š π‘˜ βˆ’1 +𝑑 𝑦𝑛 π‘˜ βˆ’1 ,π‘¦π‘š π‘˜ βˆ’1

2

π‘π‘˜ = max 𝑑 π‘₯𝑛 π‘˜ βˆ’1, π‘₯π‘š π‘˜ βˆ’1 ,𝑑 𝑦𝑛 π‘˜ βˆ’1, π‘¦π‘š π‘˜ βˆ’1

Now, 𝛽 π‘žπ‘˜ β†’ 1 β‡’ π‘žπ‘˜ β†’ 0 (by hypothesis)

β‡’ π‘π‘˜ β†’ 0 π‘Žπ‘  π‘˜ β†’ ∞ β‡’ νœ€ = 0 by (16) , a contradiction.

∴ limπ‘˜β†’βˆž

𝛽(π‘žπ‘˜) β‰  1

∴ βˆƒ a positive integer 𝑁 and 𝛿 ∈ (0,1) such that 𝛽 π‘žπ‘˜ < 𝛿 for π‘˜ β‰₯ 𝑁 …. (22)

∴ πœ‘ νœ€ < πœ‘ π‘ π‘˜ ≀ 𝛽 π‘žπ‘˜ πœ‘(π‘π‘˜) ….. (23)

Page 6: Bc 4301300308

N. Appa Rao et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1), March 2014, pp.300-308

www.ijera.com 305 | P a g e

From (22), we have πœ‘ νœ€ < πœ‘ π‘ π‘˜ < π›Ώπœ‘(π‘π‘˜) < π›Ώπœ‘(νœ€ + πœ‚) for a given πœ‚ > 0 and large π‘˜.

πœ‘ νœ€ ≀ πœ‘ νœ€ + 0 < πœ‘(π‘ π‘˜) < π›Ώπœ‘(νœ€ + πœ‚)

This being true for every πœ‚ > 0 follows that 0 ≀ πœ‘ νœ€ < πœ‘ νœ€ + 0 < π›Ώπœ‘(νœ€ + 0)

∴ 0 ≀ πœ‘ νœ€ < πœ‘ νœ€ + 0 = 0 (∡ 0 < 𝛿 < 1)

∴ πœ‘ νœ€ = 0 β‡’ νœ€ = 0, a contradiction.

Hence both π‘₯𝑛 π‘Žπ‘›π‘‘ 𝑦𝑛 are Cauchy sequences.

Theorem 3.2: In addition to the hypothesis of Theorem 3.1, suppose that (𝑋,𝑑) is complete and either (a) 𝐹 is

continuous or (ii) 𝑋 has the following properties:

(a) If π‘₯𝑛 is a non-decreasing sequence in 𝑋 with π‘₯𝑛 β†’ π‘₯, then π‘₯𝑛 ≀ π‘₯ βˆ€ 𝑛 ∈ 𝕫+

(b) If 𝑦𝑛 is a non- increasing sequence in 𝑋 with 𝑦𝑛 β†’ 𝑦, then 𝑦𝑛 β‰₯ 𝑦 βˆ€ 𝑛 ∈ 𝕫+

Then 𝐹 has a coupled fixed point in 𝑋. i.e. βˆƒ π‘₯, 𝑦 ∈ 𝑋 such that π‘₯ = 𝐹 π‘₯, 𝑦 and 𝑦 = 𝐹 𝑦, π‘₯ .

Proof: Let the sequences π‘₯𝑛 and 𝑦𝑛 be as defined in (6) of Theorem 3.1. Then from Theorem 3.1, both the

sequences π‘₯𝑛 and 𝑦𝑛 are Cauchy. Since (𝑋,𝑑) is complete, βˆƒ π‘₯, 𝑦 ∈ 𝑋 such that

limπ‘›β†’βˆž π‘₯𝑛 = π‘₯ π‘Žπ‘›π‘‘ limπ‘›β†’βˆž 𝑦𝑛 = 𝑦.

(a) Suppose 𝐹 is continuous. Then it follows that

π‘₯ = limπ‘›β†’βˆž

π‘₯𝑛 = limπ‘›β†’βˆž

𝐹 π‘₯π‘›βˆ’1, π‘¦π‘›βˆ’1 = 𝐹 limπ‘›β†’βˆž

π‘₯π‘›βˆ’1 , limπ‘›β†’βˆž

π‘¦π‘›βˆ’1 = 𝐹(π‘₯, 𝑦)

𝑦 = limπ‘›β†’βˆž 𝑦𝑛 = limπ‘›β†’βˆž 𝐹 π‘¦π‘›βˆ’1, π‘₯π‘›βˆ’1 = 𝐹 limπ‘›β†’βˆž π‘¦π‘›βˆ’1 , limπ‘›β†’βˆž π‘₯π‘›βˆ’1 = 𝐹(𝑦, π‘₯)

Thus (π‘₯, 𝑦) is a coupled fixed point of 𝐹 in 𝑋.

(b) Suppose that 𝑋 has the properties (i) and (ii). Let νœ€ > 0. Since limπ‘›β†’βˆž π‘₯𝑛 = π‘₯ and limπ‘›β†’βˆž 𝑦𝑛 = 𝑦,βˆƒ a

positive integer 𝑁 such that 𝑑(π‘₯, π‘₯𝑛) < νœ€ and 𝑑 𝑦, 𝑦𝑛 < νœ€ βˆ€ 𝑛 β‰₯ 𝑁.

Since π‘₯𝑛 ≀ π‘₯ and 𝑦𝑛 β‰₯ 𝑦, βˆ€ 𝑛, from (5), we have

πœ‘ 𝑑 𝐹 π‘₯, 𝑦 ,𝐹(π‘₯𝑛 , 𝑦𝑛) ≀ 𝛽 𝑑 π‘₯, π‘₯𝑛 + 𝑑(𝑦, 𝑦𝑛)

2 πœ‘ max 𝑑 π‘₯, π‘₯𝑛 ,𝑑(𝑦, 𝑦𝑛)

= 0 𝑖𝑓 𝛽 𝑑 π‘₯ ,π‘₯𝑛 +𝑑(𝑦 ,𝑦𝑛 )

2 = 0 π‘œπ‘Ÿ πœ‘ max 𝑑 π‘₯, π‘₯𝑛 ,𝑑(𝑦, 𝑦𝑛) = 0

< πœ‘ max 𝑑 π‘₯, π‘₯𝑛 ,𝑑(𝑦, 𝑦𝑛) π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’

≀ πœ‘ νœ€ π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑛 β‰₯ 𝑁

∴ 𝑑 𝐹 π‘₯, 𝑦 ,𝐹(π‘₯𝑛 , 𝑦𝑛) < νœ€ for all 𝑛 β‰₯ 𝑁 (∡ πœ‘ is increasing)

∴ 𝐹(π‘₯𝑛 , 𝑦𝑛) β†’ 𝐹(π‘₯, 𝑦). But 𝐹 π‘₯𝑛 , 𝑦𝑛 = π‘₯𝑛+1 β†’ π‘₯ π‘Žπ‘  𝑛 β†’ ∞

∴ π‘₯ = 𝐹(π‘₯, 𝑦) ….. (24)

Again from (5), we have

πœ‘ 𝑑 𝐹 𝑦, π‘₯ ,𝐹 𝑦𝑛 , π‘₯𝑛 = πœ‘ 𝑑 𝐹 𝑦𝑛 , π‘₯𝑛 ,𝐹(𝑦, π‘₯)

≀ 𝛽 𝑑 𝑦𝑛 , 𝑦 + 𝑑(π‘₯𝑛 , π‘₯)

2 πœ‘ max 𝑑 𝑦𝑛 , 𝑦 ,𝑑(π‘₯𝑛 , π‘₯)

= 0 𝑖𝑓 𝛽 𝑑 𝑦𝑛 ,𝑦 +𝑑(π‘₯𝑛 ,π‘₯)

2 = 0 π‘œπ‘Ÿ πœ‘ max 𝑑 𝑦𝑛 , 𝑦 ,𝑑(π‘₯𝑛 , π‘₯) = 0

< πœ‘ max 𝑑 𝑦𝑛 , 𝑦 ,𝑑(π‘₯𝑛 , π‘₯) π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’

< πœ‘ νœ€ π‘“π‘œπ‘Ÿ π‘Žπ‘™π‘™ 𝑛 β‰₯ 𝑁

∴ 𝑑 𝐹 𝑦, π‘₯ ,𝐹 𝑦𝑛 , π‘₯𝑛 < νœ€ βˆ€ 𝑛 β‰₯ 𝑁 (∡ πœ‘ is increasing)

∴ 𝐹 𝑦𝑛 , π‘₯𝑛 β†’ 𝐹(π‘₯, 𝑦). But 𝐹 𝑦𝑛 , π‘₯𝑛 = 𝑦𝑛+1 β†’ 𝑦 π‘Žπ‘  𝑛 β†’ ∞

∴ 𝑦 = 𝐹 𝑦, π‘₯ ….. (25)

∴ (24) and (25) shows that (π‘₯, 𝑦) is a coupled fixed point for 𝐹 in 𝑋.

Lemma 3.3: Let (𝑋,≀) be a poset and suppose that there exists a metric 𝑑 on 𝑋 such that (𝑋,𝑑) is a complete

metric space. Let 𝐹:𝑋 Γ— 𝑋 β†’ 𝑋 be a mapping having the mixed monotone property on 𝑋. Suppose there exists

an altering distance function πœ‘ ∈ Π€ and 𝛽 ∈ 𝑆 such that

πœ‘ 𝑑 𝐹 π‘₯, 𝑦 ,𝐹(𝑒, 𝑣) ≀ 𝛽 𝑑 π‘₯ ,𝑒 +𝑑(𝑦 ,𝑣)

2 πœ‘ max 𝑑 π‘₯,𝑒 ,𝑑(𝑦, 𝑣) … (5)

for π‘₯, 𝑦,𝑒, 𝑣 ∈ 𝑋 whenever π‘₯, 𝑦 and (𝑒, 𝑣) are comparable.

Suppose (π‘₯, 𝑦) is a coupled fixed point of 𝐹. i.e. π‘₯ = 𝐹(π‘₯, 𝑦) or 𝑦 = 𝐹(𝑦, π‘₯). Let (𝑒, 𝑣) ∈ 𝑋 Γ— 𝑋 such that

𝑒,𝑣 ≀1 (π‘₯, 𝑦) … (26)

Construct the sequences 𝑒𝑛 and 𝑣𝑛 by 𝑒0 = 𝑒, 𝑣0 = 𝑣,𝑒𝑛+1 = 𝐹 𝑒𝑛 , 𝑣𝑛 , 𝑣𝑛+1 = 𝐹(𝑣𝑛 ,𝑒𝑛).

Then 𝑒𝑛 β†’ π‘₯ and 𝑣𝑛 β†’ 𝑦 as 𝑛 β†’ ∞.

Page 7: Bc 4301300308

N. Appa Rao et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1), March 2014, pp.300-308

www.ijera.com 306 | P a g e

Proof: First we prove that 𝑒𝑛 , 𝑣𝑛 ≀1 (π‘₯, 𝑦) for all 𝑛 = 0, 1, 2,…. i.e π‘₯ β‰₯ 𝑒𝑛 and 𝑦 β‰₯ 𝑣𝑛 for all 𝑛 = 1, 2,… (27)

From (26), π‘₯ β‰₯ 𝑒 = 𝑒0 and 𝑦 ≀ 𝑣 = π‘£π‘œ

∴ (27) is true for 𝑛 = 0.

Assume that (27) is true for some positive integer 𝑛.

Hence 𝑒𝑛+1 = 𝐹 𝑒𝑛 , 𝑣𝑛 ≀ 𝐹 π‘₯, 𝑦 = π‘₯ and 𝑣𝑛+1 = 𝐹 𝑣𝑛 ,𝑒𝑛 β‰₯ 𝐹 𝑦,π‘₯ = 𝑦

Therefore by mathematical induction (27) is true for all 𝑛 = 1, 2,…

Since π‘₯ β‰₯ π‘’π‘›βˆ’1 and 𝑦 ≀ π‘£π‘›βˆ’1 and from (5), we have,

πœ‘ 𝑑 π‘₯,𝑒𝑛 = πœ‘ 𝑑(𝐹 π‘₯, 𝑦 ,𝐹(π‘’π‘›βˆ’1, π‘£π‘›βˆ’1 ≀ 𝛽 𝑑 π‘₯ ,π‘’π‘›βˆ’1 +𝑑(𝑦 ,π‘£π‘›βˆ’1)

2 πœ‘ max 𝑑 π‘₯,π‘’π‘›βˆ’1 ,𝑑(𝑦, π‘£π‘›βˆ’1)

and πœ‘ 𝑑 𝑦, 𝑣𝑛 = πœ‘ 𝑑(𝐹 𝑦, π‘₯ ,𝐹(π‘£π‘›βˆ’1,π‘’π‘›βˆ’1 )

≀ 𝛽 𝑑 𝑦 ,π‘£π‘›βˆ’1 +𝑑 π‘₯ ,π‘’π‘›βˆ’1

2 πœ‘ max 𝑑 𝑦, π‘£π‘›βˆ’1 + 𝑑 π‘₯,π‘’π‘›βˆ’1

∴ max πœ‘ 𝑑 π‘₯,𝑒𝑛 ,πœ‘ 𝑑 𝑦, 𝑣𝑛 ≀

𝛽 𝑑 𝑦 ,π‘£π‘›βˆ’1 +𝑑 π‘₯ ,π‘’π‘›βˆ’1

2 πœ‘ max 𝑑 𝑦, π‘£π‘›βˆ’1 ,𝑑 π‘₯,π‘’π‘›βˆ’1 …. (28)

Case (i): πœ‘ max 𝑑 π‘₯,π‘’π‘βˆ’1 ,𝑑 𝑦, π‘£π‘βˆ’1 = 0 for some 𝑁

Then π‘₯ = π‘’π‘βˆ’1 and 𝑦 = π‘£π‘βˆ’1 and from (28), we get π‘₯ = 𝑒𝑁 and 𝑦 = 𝑣𝑁 . Similarly π‘₯ = 𝑒𝑛 or 𝑦 = 𝑣𝑛 for 𝑛 β‰₯ 𝑁.

∴ 𝑒𝑛 β†’ π‘₯ and 𝑣𝑛 β†’ 𝑦 as 𝑛 β†’ ∞.

Case (ii): πœ‘ max 𝑑 π‘₯,π‘’π‘›βˆ’1 ,𝑑 𝑦, π‘£π‘›βˆ’1 = 0 for all 𝑛 β‰₯ 1.

Then from (28), we have max Ο† 𝑑 π‘₯,𝑒𝑛 πœ‘ 𝑑 𝑦, 𝑣𝑛 ≀ Ο† π‘šπ‘Žπ‘₯ 𝑑 π‘₯,π‘’π‘›βˆ’1 ,𝑑 𝑦, π‘£π‘›βˆ’1

Since πœ‘ is increasing, we get max 𝑑 π‘₯,𝑒𝑛 ,𝑑 𝑦, 𝑣𝑛 ≀ max 𝑑 π‘₯,π‘’π‘›βˆ’1 ,𝑑 𝑦, π‘£π‘›βˆ’1

i.e. max 𝑑 π‘₯,𝑒𝑛 ,𝑑 𝑦, 𝑣𝑛 is a deceasing sequence of reals and hence deceases to π‘Ÿ (say), π‘Ÿ β‰₯ 0.

i.e. limπ‘›β†’βˆž max 𝑑 π‘₯,𝑒𝑛 ,𝑑 𝑦, 𝑣𝑛 = π‘Ÿ.

Again from (28), we have

πœ‘ π‘Ÿ ≀ πœ‘ max 𝑑 π‘₯,𝑒𝑛 ,𝑑 𝑦, 𝑣𝑛 ≀

𝛽 𝑑 π‘₯ ,π‘’π‘›βˆ’1 +𝑑 𝑦 ,π‘£π‘›βˆ’1

2 πœ‘ max 𝑑 π‘₯,π‘’π‘›βˆ’1 ,𝑑 𝑦, π‘£π‘›βˆ’1 … (29)

Let 𝑠𝑛 = max 𝑑 π‘₯,𝑒𝑛 ,𝑑 𝑦, 𝑣𝑛 , π‘žπ‘› =𝑑 π‘₯ ,π‘’π‘›βˆ’1 +𝑑 𝑦 ,π‘£π‘›βˆ’1

2

Then max 𝑑 π‘₯,π‘’π‘›βˆ’1 ,𝑑 𝑦,π‘£π‘›βˆ’1 = π‘ π‘›βˆ’1

∴ πœ‘ π‘Ÿ ≀ πœ‘ 𝑠𝑛 ≀ 𝛽 π‘žπ‘› πœ‘(π‘ π‘›βˆ’1)

Suppose π‘Ÿ > 0. Now, 𝛽 π‘žπ‘˜ β†’ 1 β‡’ π‘žπ‘› β†’ 0 (by hypothesis)

β‡’ 𝑠𝑛 β†’ 0 π‘Žπ‘  𝑛 β†’ ∞ β‡’ π‘Ÿ = 0, ∡ π‘ π‘›βˆ’1 β†’ 𝑠 , a contradiction.

∴ limπ‘˜β†’βˆž

𝛽(π‘žπ‘›) β‰  1

∴ βˆƒ a positive integer 𝑁 and 𝛿 ∈ (0,1) such that 𝛽 π‘žπ‘› < 𝛿 for 𝑛 β‰₯ 𝑁

∴ 0 < πœ‘ π‘Ÿ ≀ πœ‘ 𝑠𝑛 < π›Ώπœ‘ π‘ π‘›βˆ’1 ≀ π›Ώπœ‘(π‘Ÿ + πœ‚) for a given πœ‚ > 0 and large 𝑛.

∴ πœ‘ π‘Ÿ ≀ πœ‘ π‘Ÿ + 0 ≀ πœ‘ 𝑠𝑛 < π›Ώπœ‘(π‘Ÿ + πœ‚)

∴ 0 < πœ‘ π‘Ÿ ≀ πœ‘ π‘Ÿ + 0 ≀ π›Ώπœ‘ π‘Ÿ + 0 < πœ‘ π‘Ÿ + 0 ∡ 0 < 𝛿 < 1 , a contradiction.

∴ π‘Ÿ = 0. Therefore 𝑑(π‘₯,𝑒𝑛) β†’ 0 and 𝑑(𝑦, 𝑣𝑛) β†’ 0 as 𝑛 β†’ ∞.

∴ 𝑒𝑛 β†’ π‘₯ and 𝑣𝑛 β†’ 𝑦 as 𝑛 β†’ ∞.

Lemma 3.4: Let (𝑋,≀) be a poset and suppose that there exists a metric 𝑑 on 𝑋 such that (𝑋,𝑑) is a complete

metric space. Let 𝐹:𝑋 Γ— 𝑋 β†’ 𝑋 be a mapping having the mixed monotone property on 𝑋. Suppose there exists

an altering distance function πœ‘ ∈ Π€ and 𝛽 ∈ 𝑆 such that

πœ‘ 𝑑 𝐹 π‘₯, 𝑦 ,𝐹(𝑒, 𝑣) ≀ 𝛽 𝑑 π‘₯ ,𝑒 +𝑑(𝑦 ,𝑣)

2 πœ‘ max 𝑑 π‘₯,𝑒 ,𝑑(𝑦, 𝑣) … (5) for π‘₯, 𝑦,𝑒, 𝑣 ∈ 𝑋 whenever π‘₯, 𝑦

and (𝑒, 𝑣) are comparable.

Suppose (π‘₯, 𝑦) is a coupled fixed point of 𝐹. i.e. π‘₯ = 𝐹(π‘₯, 𝑦) or 𝑦 = 𝐹(𝑦, π‘₯). Let (𝑒, 𝑣) ∈ 𝑋 Γ— 𝑋 such that

π‘₯, 𝑦 ≀1 (𝑒, 𝑣) … (30)

Construct the sequences 𝑒𝑛 and 𝑣𝑛 by 𝑒0 = 𝑒, 𝑣0 = 𝑣,𝑒𝑛+1 = 𝐹 𝑒𝑛 , 𝑣𝑛 , 𝑣𝑛+1 = 𝐹(𝑣𝑛 ,𝑒𝑛).

Then 𝑒𝑛 β†’ π‘₯ and 𝑣𝑛 β†’ 𝑦 as 𝑛 β†’ ∞.

The proof is similar to that of Lemma 3.3.

Definition 3.5: Let (𝑒, 𝑣) ∈ 𝑋 Γ— 𝑋. Define the sequences π‘₯𝑛 π‘Žπ‘›π‘‘ 𝑦𝑛 as follows:

𝑒0 = 𝑒,𝑣0 = 𝑣,𝑒1 = 𝐹 𝑒0, 𝑣0 and 𝑒𝑛+1 = 𝐹(𝑒𝑛 , 𝑣𝑛) for all 𝑛 β‰₯ 1

𝑣1 = 𝐹 𝑣0 ,𝑒0 and 𝑣𝑛+1 = 𝐹(𝑣𝑛 ,𝑒𝑛) for all 𝑛 β‰₯ 1

Page 8: Bc 4301300308

N. Appa Rao et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1), March 2014, pp.300-308

www.ijera.com 307 | P a g e

Then the sequence 𝑒𝑛 , 𝑣𝑛 is called the coupled iterative sequence of 𝑒, 𝑣 .

Theorem 3.6: Let (𝑋,≀) be a poset and suppose that there exists a metric 𝑑 on 𝑋 such that (𝑋,𝑑) is a metric

space. Let 𝐹:𝑋 Γ— 𝑋 β†’ 𝑋 be a continuous map having the mixed monotone property on 𝑋. Suppose there exists

an altering distance function πœ‘ ∈ Π€ and 𝛽 ∈ 𝑆 such that

πœ‘ 𝑑 𝐹 π‘₯, 𝑦 ,𝐹(𝑒, 𝑣) ≀ 𝛽 𝑑 π‘₯ ,𝑒 +𝑑(𝑦 ,𝑣)

2 πœ‘ max 𝑑 π‘₯,𝑒 ,𝑑(𝑦, 𝑣) … (5)

for π‘₯, 𝑦,𝑒, 𝑣 ∈ 𝑋 whenever π‘₯, 𝑦 and (𝑒, 𝑣) are comparable.

Suppose (π‘₯, 𝑦) is a coupled fixed point of 𝐹. i.e. π‘₯ = 𝐹(π‘₯, 𝑦) or 𝑦 = 𝐹(𝑦, π‘₯). Let (𝑒, 𝑣) ∈ 𝑋 Γ— 𝑋 such that

𝑒,𝑣 π‘Žπ‘›π‘‘ (π‘₯, 𝑦) are comparable. Let 𝑒𝑛 , 𝑣𝑛 be the coupled iterative sequence of 𝑒, 𝑣 . Then 𝑒𝑛 β†’ π‘₯ π‘Žπ‘›π‘‘ 𝑣𝑛 β†’ 𝑦.

Proof: Case(i): If 𝑒, 𝑣 ≀ (π‘₯, 𝑦), then result follows from Lemma 3.3.

Case(ii): If π‘₯, 𝑦) ≀ (𝑒, 𝑣), then the result follows from Lemma 3.4.

Theorem 3.7: Suppose the hypothesis of Theorem 3.2 holds. Then there does not exists a pair (𝑒, 𝑣) ∈ 𝑋 Γ— 𝑋

such that (𝑒, 𝑣) is comparable to two distinct coupled fixed points of 𝐹.

Proof: Suppose (π‘₯, 𝑦) and (π‘₯ β€² , 𝑦′) are two coupled fixed points of 𝐹. Let (𝑒, 𝑣) be comparable with (π‘₯, 𝑦) and

(π‘₯ β€² , 𝑦′). Let 𝑒𝑛 , 𝑣𝑛 be the coupled iterative sequence of (𝑒, 𝑣).

Case(i): Suppose 𝑒, 𝑣 ≀1 (π‘₯, 𝑦) and 𝑒, 𝑣 ≀1 (π‘₯ β€² , 𝑦′).

Then by Lemma 3.3, 𝑒𝑛 β†’ π‘₯ π‘Žπ‘›π‘‘ 𝑣𝑛 β†’ 𝑦 and also 𝑒𝑛 β†’ π‘₯β€² π‘Žπ‘›π‘‘ 𝑣𝑛 β†’ 𝑦′. ∴ π‘₯ = π‘₯β€² and 𝑦 = 𝑦′. Consequently π‘₯, 𝑦 = (π‘₯ β€² , 𝑦′).

Case(ii): Suppose π‘₯, 𝑦 ≀1 (𝑒, 𝑣) and π‘₯ β€² , 𝑦′ ≀1 (𝑒, 𝑣).

Then by Lemma 3.4, 𝑒𝑛 β†’ π‘₯ π‘Žπ‘›π‘‘ 𝑣𝑛 β†’ 𝑦 and also 𝑒𝑛 β†’ π‘₯β€² π‘Žπ‘›π‘‘ 𝑣𝑛 β†’ 𝑦′. ∴ π‘₯ = π‘₯β€² and 𝑦 = 𝑦′. Consequently π‘₯, 𝑦 = (π‘₯ β€² , 𝑦′).

Case(iii): Suppose (π‘₯, 𝑦) ≀1 𝑒, 𝑣 ≀1 (π‘₯ β€² , 𝑦′).

Then by Lemma 3.4, 𝑒𝑛 β†’ π‘₯ π‘Žπ‘›π‘‘ 𝑣𝑛 β†’ 𝑦 and also 𝑒𝑛 β†’ π‘₯β€² π‘Žπ‘›π‘‘ 𝑣𝑛 β†’ 𝑦′. ∴ π‘₯ = π‘₯β€² and 𝑦 = 𝑦′. Consequently π‘₯, 𝑦 = (π‘₯ β€² , 𝑦′).

Case(iv): Suppose (π‘₯ β€² , 𝑦′) ≀1 𝑒, 𝑣 ≀1 (π‘₯, 𝑦).

In this case also π‘₯, 𝑦 = (π‘₯ β€² , 𝑦′) as in Case (iii).

Hence π‘₯, 𝑦 and (π‘₯ β€² , 𝑦′) cannot be distinct, a contradiction.

Theorem 3.8: Suppose the hypothesis of Theorem 3.2 holds. Further assume that

(H): For π‘₯, 𝑦 , (𝑧, 𝑑) ∈ 𝑋 Γ— 𝑋 there exists (𝑒, 𝑣) ∈ 𝑋 Γ— 𝑋 which is comparable to (π‘₯, 𝑦) and (𝑧, 𝑑). Then 𝐹 has

unique coupled fixed point.

Proof: By Theorem 3.2, 𝐹 has a coupled fixed point (π‘₯, 𝑦).

Suppose (π‘₯ β€² , 𝑦′) is also a coupled fixed point of 𝐹.

Then by (H) there exists (𝑒, 𝑣) ∈ 𝑋 Γ— 𝑋 which is comparable to (π‘₯, 𝑦) and (π‘₯ β€² , 𝑦′).

Then by Theorem 3.7, π‘₯, 𝑦 = (π‘₯ β€² , 𝑦′).

Thus 𝐹 has unique coupled fixed point.

Corollary 3.9: Suppose the hypothesis of Theorem 3.2 holds. Further assume that (𝑋,≀) is a lattice. Then 𝐹 has

a unique coupled fixed point.

Proof: Since (𝑋,≀) is a lattice, condition (H) holds.

Consequently by Theorem 3.8, 𝐹 has a unique coupled fixed point.

Note: If we replace the argument 𝑑 π‘₯ ,𝑒 +𝑑(𝑦 ,𝑣)

2 in 𝛽 by max 𝑑 π‘₯,𝑒 ,𝑑(𝑦, 𝑣) still the results hold good.

Conclusion: Under the hypothesis of Theorem 3.2, the fixed point set 𝔉 of 𝐹 decomposes the set 𝑋 into

pointwise disjoint sets 𝑆𝑝 /𝑝 ∈ 𝔉 in the following way:

For 𝑝 ∈ 𝔉, write 𝑆𝑝 = π‘Ž ∈ 𝑋: 𝑝 𝑖𝑠 π‘π‘œπ‘šπ‘π‘Žπ‘Ÿπ‘Žπ‘π‘™π‘’ π‘€π‘–π‘‘β„Ž π‘Ž

Then (i) 𝑆𝑝 β‰  βˆ…, since 𝑝 ∈ 𝑆𝑝

(ii) 𝑆𝑝 and π‘†π‘ž are disjoint whenever 𝑝, π‘ž ∈ 𝔉 and 𝑝 β‰  π‘ž

Page 9: Bc 4301300308

N. Appa Rao et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3( Version 1), March 2014, pp.300-308

www.ijera.com 308 | P a g e

(iii) 𝑆 = π‘†π‘π‘βˆˆπ”‰ may be a proper sub set of 𝑋

in which case 𝑋 βˆ’ 𝑆 does not contain any fixed point of 𝐹.

References [1] Amini Harandi .A and Emami. H: A fixed point theorem for contraction type maps in partially

ordered metric spaces and applications to ordinary differential equations. Non-linear Analysis, 2010,

72, 2238-2242

[2] Babu. G.V.R: Generalization of fixed point theorems relating to the diameter of orbits by using a

control function. Tamkang Journal of Mathematics, 2004, 35(2), 159-168.

[3] Babu G.V.R and Subhashini. P: Coupled fixed point theorems in partially ordered metric spaces by

altering distances via Geraghty’s contraction. Journal of Advanced Research in Applied Mathematics,

2012, 4(4):78-95, doi:10:5373/jaram.1383.040212.

[4] Choudhury B.S and Amaresh Kundu: A coupled coincidence point result in partially ordered metric

spaces for compatible mappings. Non-linear Analysis, 2010, 73, 2524-2531.

[5] Choudhury B.S and Amaresh Kundu: On coupled generalized Banach and Kannan type

contractions. Journal Non linear Sci. Appl., 2012,5, 259-270.

[6] Choudhury B.S and Dutta P.N: A unique fixed point result in metric space involving a two variable

function. Filomat, 2000, 14, 43-48.

[7] Choudhury B.S, Metiya. N and Amaresh Kundu: Coupled coincidence point theorems in ordered

metric spaces. Anna.Univ. Ferrara, 2011, 57, 1-16.

[8] Delbosco. D: On estensione di un teorema sul punto fisso di S. Reich Rend. Sem.Mat.Univers Politecn.

Torino, 1976-1977, 35, 233-238.

[9] Doric. D: Common fixed point for generalized (ψ, Ο†)-weak contraction. Applied Mathematics Letters,

2009, 22, 1896-1900.

[10] Dutta. P.N, and Choudhury. B. S: A generalization of contraction principle in metric spaces. Fixed

point theory and Applications, 2008, 2008:ID406368,doi:10.1155/2008

[11] Geraghty. M.A: On contractive maps. Proc. Of Amer. Math. Soc,. 1973, 40, 604-608.

[12] Gnana Bhaskar. T and Lakshmikantham. V: Fixed point theorems in partially ordered metric spaces

and applications. Non-linear Analysis, 2006, 65: 1379-1393.

[13] Guo. D and Lakshmikantham. V: Coupled fixed points of non-linear operators with applications.

Non-Linear Analysis, 1987,11, 623-632.

[14] Harjani. J, Lopez. B, Sadarangani. K: Fixed point theorems for mixed monotone operators and

applications to integral equations. Non-Linear Analysis, 2011, 74, 1749-1760.

[15] Khan. M.S, Swaleh. M and Sessa. S: Fixed point theorems by altering distance between the points.

Bull. Aust. Math. Soc., 1984, 30, 205-212.

[16] Lakshmikantham. V, Ljubomir Ciric: Coupled fixed point theorems for non-linear contractions in

partially ordered metric spaces. Non-linear Analysis, 2009, 70:4341-4349.

[17] Nguven Van Luong, Nguven Xuan Thuan: Coupled fixed point theorems in partially ordered metric

spaces. Bulletin of Mathematical Analysis and Applications, 2010, 2 (4), 16-24.

[18] Nguven VanLuong, Nguven Xuan Thuan, Trinh Thi Hai: Coupled fixed point theorems in partially

ordered metric spaces depended on another function. Bulletin of Mathematical Analysis and

Applications, 2011, 3(3), 129-140.

[19] Nieto. J.J, Rodriguez Lopez. R: Contractive mapping theorems in partially ordered spaces and

applications to ordinary differential equations. Order. 2005, 22 (3), 223-239.

[20] Ran. A.C.M, Reurings. B.C.B: A fixed point theorem in partially ordered sets and some applications

to matrix equations. Proc. Amer. Math. Soc., 2003,132, 1435-1443.

[21] Sabetghadam. F, Mmasiha. H.P: A coupled fixed point theorem for contraction type maps in Quasi-

ordered metric spaces. Int. J. of Math. Analysis, 2011, 5, 2041-2050.

[22] Sastry. K.P.R, Babu. G.V.R: Some fixed point theorems by altering distances between the points.

Indian Journal Pure and Appl. Math., 1999, 30 (6), 641-647.

[23] Skof. F: Theorema di punti fisso per applicazioni negli spazi metrici. Atti. Accad. Sci., Torino,

1977,111, 323-329