20120904 150120 Proefschrift Meerman

download 20120904 150120 Proefschrift Meerman

of 312

Transcript of 20120904 150120 Proefschrift Meerman

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    1/312

    Perspectivesongasificationsystemstoproduce

    energycarriersandotherchemicalswithlowCO2

    emissions

    Technoeconomicsystemanalysisoncurrentand

    advancedflexiblethermochemicalconversion

    offossilfuelsandbiomass

    HansMeerman

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    2/312

    Perspectivesongasificationsystemstoproduceenergycarriersandotherchemicalswith

    lowCO2emissions:Technoeconomicsystemanalysisoncurrentandadvancedflexible

    thermochemicalconversionoffossilfuelsandbiomass

    HansMeerman,UtrechtUniversity,FacultyofGeosciences,DepartmentofInnovation,

    EnvironmentalandEnergySciences,CopernicusInstitute,GroupEnergy&Resources.

    ISBN: 9789039358375

    Coverdesign: UitgeverBoxpress

    Printing: UitgeverBoxpress

    Copyright:

    2012,

    Hans

    Meerman

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    3/312

    Perspectivesongasificationsystemstoproduceenergy

    carriersandotherchemicalswithlowCO2emissions

    Technoeconomicsystemanalysisoncurrentandadvancedflexiblethermochemicalconversionoffossilfuelsandbiomass

    Perspectiefopvergassingssystemenvoorhetproducerenvan

    energiedragersenanderechemicalinmetlageCO2emissies

    Technoeconomischesysteemanalysevanhuidigeentoekomstigeflexibelethermochemischeomzettingvanfossielebrandstoffenenbiomassa

    (meteensamenvattinginhetNederlands)

    Proefschrift

    terverkrijgingvandegraadvandoctoraandeUniversiteitUtrecht

    opgezagvanderectormagnificus,prof.dr.G.J.vanderZwaan,

    ingevolgehetbesluitvanhetcollegevoorpromoties

    inhetopenbaarteverdedigenop

    vrijdag7september2012desmiddagste12.45uur

    door

    JohannesCornelisMeerman

    geborenop3augustus1981teHellevoetsluis

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    4/312

    Promotoren: Prof.dr.A.P.C.Faaij

    Prof.dr.W.C.Turkenburg

    Copromotor: Dr.C.A.Ramrez

    Thisthesishasbeenmadepossiblewiththefinancialsupportof

    NWOAgentschapNLandtheEOSresearchprogrammeCapTech.

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    5/312

    Voormijnouders

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    6/312

    WedonotinherittheEarthfromourancestors,weborrowitfromourchildrennativeAmericanproverb

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    7/312

    Contents

    1 Introduction 11

    1.1 Background........................................................................................................12

    Energy........................................................................................................................12

    Climatechange..........................................................................................................13

    CO2emissions............................................................................................................13

    1.2 Mitigationstrategies..........................................................................................14

    Sectors.......................................................................................................................15

    Biomassandbiofuels.................................................................................................16

    Carbondioxidecapture,transportandstorage........................................................16

    1.3 Integratedgasificationpolygenerationfacilities..............................................19

    Processdescription....................................................................................................21

    Performance..............................................................................................................21Flexibility....................................................................................................................22

    1.4 Summarising......................................................................................................23

    1.5 Thesisobjectiveandoutline..............................................................................24

    2 Performanceofsimulatedflexibleintegratedgasification

    polygenerationfacilities.PartA:Atechnicalenergeticassessment 272.1 Introduction.......................................................................................................29

    2.1.1 General......................................................................................................30

    2.1.2 Objectives..................................................................................................31

    2.2 Commodities......................................................................................................322.2.1 Feedstocks.................................................................................................32

    2.2.2 Endproducts.............................................................................................32

    2.2.3 Byproducts...............................................................................................32

    2.3 Processdescription............................................................................................33

    2.3.1 Plantflexibility...........................................................................................33

    2.3.2 Pretreatment...........................................................................................33

    2.3.3 Pressurisingandfeeding...........................................................................35

    2.3.4 Airseparationunit(ASU)..........................................................................36

    2.3.5 Gasifier......................................................................................................36

    2.3.6 Gascleanupandsyngascompositionoptimising......................................382.3.7 Syngasconversion.....................................................................................41

    2.4 Methodology:AspenPlusflowsheetmodel.......................................................45

    2.4.1 Modelledcomponents..............................................................................45

    2.4.2 Parameters................................................................................................47

    2.5 Casestudies.......................................................................................................49

    2.6 Results................................................................................................................51

    2.6.1 Referencecases........................................................................................53

    2.7 Discussion..........................................................................................................66

    2.7.1 Modelvalidation.......................................................................................66

    2.7.2 Fuelflexibility............................................................................................66

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    8/312

    2.7.3 Modelassumptions...................................................................................67

    2.8 Conclusion..........................................................................................................67

    2.9 Acknowledgements...........................................................................................70

    2.10 Supportinginformation.....................................................................................71

    3 Performanceofsimulatedflexibleintegratedgasification

    polygenerationfacilities.PartB:Economicevaluation. 833.1 Introduction.......................................................................................................84

    3.2 Methodology.....................................................................................................85

    3.2.1 TechnicaldataandAspenPlusprocessmodel..........................................86

    3.2.2 Casestudies...............................................................................................88

    3.2.3 Scenarios...................................................................................................90

    3.2.4 TotalCapitalInvestment...........................................................................92

    3.2.5 Economicmodel........................................................................................93

    3.3

    EconomicData

    ...................................................................................................

    94

    3.3.1 Commodityprices.....................................................................................94

    3.3.2 Capitalcostsdata......................................................................................98

    3.4 Results..............................................................................................................104

    3.4.1 StaticIGPGfacilities...............................................................................104

    3.4.2 Variationoffeedstock.............................................................................107

    3.4.3 Variationofproduction...........................................................................114

    3.4.4 Retrofit....................................................................................................115

    3.4.5 Sensitivityanalysis...................................................................................116

    3.5 Discussion&Conclusions.................................................................................118

    3.6

    Acknowledgement

    ...........................................................................................

    120

    3.7 Supplementarydata........................................................................................121

    3.7.1 Commoditypriceprojectionsinliterature..............................................121

    3.7.2 DetailedtechnicalandeconomicdataofthestaticIGPGfacilities.......123

    4 Technicalandeconomicprospectsofcoal andbiomassfiredIGPG

    facilitiesequippedwithCCSovertime. 1274.1 Introduction.....................................................................................................128

    4.2 Integratedpolygenerationgasificationfacilities............................................129

    4.2.1 Processdescription.................................................................................129

    4.3

    Configurations..................................................................................................

    130

    4.4 Economicanalysis............................................................................................135

    4.5 Results..............................................................................................................138

    4.5.1 Sensitivity................................................................................................142

    4.6 Discussion........................................................................................................142

    4.7 Conclusions......................................................................................................143

    4.8 Acknowledgement...........................................................................................144

    4.9 Supportinginformation...................................................................................145

    4.9.1 ProductionandCO2avoidancecostsformula.........................................145

    4.9.2 Capitalcostbreakdown...........................................................................146

    4.9.3 Detailedmass,energyandeconomicresults..........................................147

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    9/312

    5 FuturetechnologicalandeconomicperformanceofIGCCandFT

    productionfacilitieswithandwithoutCO2capture:combining

    componentbasedlearningcurveandbottomupanalysis. 1555.1 Introduction.....................................................................................................157

    5.2 Methodology...................................................................................................164

    5.2.1 Gasificationtechnology...........................................................................164

    5.2.2 Costandperformanceprojectionswithexperiencecurves...................165

    5.2.3 Costandperformanceprojectionsbymeansofabottomupanalysis..171

    5.2.4 Comparisonofexperiencecurvebasedwiththebottomupanalysis....172

    5.3 Dataforthecurrentsituationandfutureprojections.....................................174

    5.3.1 Currentcostsandefficiencies.................................................................174

    5.3.2 Progressratiosandinstalledcapacities..................................................175

    5.4 Resultsoftheexperiencecurveanalysis.........................................................183

    5.4.1 EfficiencydevelopmentofIGCC..............................................................183

    5.4.2 CapitalcostsofIGCC...............................................................................1845.4.3 TrendsintheCOEandCO2mitigationcostsforIGCC.............................186

    5.4.4 FTliquidsproduction..............................................................................189

    5.5 Discussion........................................................................................................192

    5.6 Conclusion........................................................................................................194

    5.7 Supportinginformation...................................................................................197

    6 TechnoeconomicassessmentofCO2captureatsteammethane

    reformingfacilitiesusingcommerciallyavailabletechnology 2036.1 Introduction.....................................................................................................204

    6.2 Background......................................................................................................2056.2.1 Steammethanereforming......................................................................206

    6.2.2 Carbondioxidecaptureandstorage.......................................................206

    6.3 Approach..........................................................................................................208

    6.3.1 CO2capturelocation...............................................................................208

    6.3.2 Solventselection.....................................................................................209

    6.3.3 CO2captureunitconfiguration...............................................................211

    6.3.4 OptimisationofCO2captureconfigurationconditions...........................212

    6.3.5 Overviewoftechnicalparameters..........................................................215

    6.3.6 TechnoeconomicperformanceofCO2captureatSMR.........................215

    6.4 Technoeconomicresults.................................................................................2176.4.1 CO2captureunitperformancecasestudies............................................217

    6.4.2 EffectloadfactoronCO2captureunitperformance..............................220

    6.4.3 Sensitivityanalysis...................................................................................221

    6.4.4 Utilityimport...........................................................................................222

    6.4.5 Conclusion...............................................................................................223

    6.4.6 Acknowledgements.................................................................................225

    7 Summary,conclusionsandrecommendations 2277.1 Background......................................................................................................228

    7.2 Objectiveandresearchquestions...................................................................229

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    10/312

    7.3 Methodology...................................................................................................230

    7.4 Summaryoftheresults....................................................................................232

    7.5 Mainfindingsandconclusions.........................................................................238

    7.6 Finalremarksandrecommendationsforfurtherresearch.............................241

    Samenvatting,conclusiesenaanbevelingen 245

    Appendix:TechnicaldescriptionofIGPGfacilities 2679.1 Feedstock.........................................................................................................268

    9.2 Feedstockpretreatment.................................................................................268

    9.2.1 Feedstockprocessingandfeeding..........................................................269

    9.3 Airseparation..................................................................................................270

    9.3.1 Iontransportmembraneseparation......................................................271

    9.3.2 Chemicallooping.....................................................................................272

    9.3.3 (Vacuum)pressureswingabsorption.....................................................2729.4 Gasifier.............................................................................................................272

    9.4.1 Supercriticalwatergasifier(SCWG)........................................................273

    9.4.2 Highpressuregasification.......................................................................273

    9.5 GasCleaning....................................................................................................274

    9.5.1 Hotgascleaning......................................................................................275

    9.6 Watergasshift.................................................................................................278

    9.6.1 Sorptionenhancedwatergasshift.........................................................278

    9.6.2 Advancedwatergasshift........................................................................279

    9.7 CO2compressor...............................................................................................279

    9.7.1 Shockwavecompression........................................................................2809.7.2 Electrolyticcompression.........................................................................281

    9.8 Electricityproduction.......................................................................................281

    9.8.1 Syngascombustion.................................................................................281

    9.8.2 Steamturbinesandheatrecoverysteamgenerators.............................283

    9.9 FTsynthesis.....................................................................................................284

    9.10 Availability........................................................................................................284

    References 287

    Dankwoord 305

    CurriculumVitae 307

    Nomenclature 309

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    11/312

    11

    1 Introduction

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    12/312

    Chapter1

    12

    1.1 BackgroundEnergyOurmodernsocietyrequiresaccesstoabundant,affordable,reliableandenvironmentally

    sound sources of energy. As population and living standards are increasing, so is ourenergydemand(seeFigure1.1).In2009,globalprimaryenergydemandexceeded500EJ,

    representingadoublinginabout35years.About80%ofthisdemandiscoveredbyfossil

    fuels.[1,2,3]

    In its Energy Technology Perspectives 2010 report, the International Energy

    Agency (IEA) presented a business as usual scenario projecting an increase of the global

    energy demand to over 750 EJ in 2035.[2]

    Similar trends are forecasted by other

    studies.[1,2,4,5,6,7,8]

    Most of these studies indicate that fossil fuels will continue to play an

    importantroleformanydecadestocome.

    Figure1.1GlobalhistoricenergydemandandfutureprojectionoftheIEAbusinessasusual

    scenario.[2,3]

    Unfortunately,theuseoffossilfuelshasseveral importantdrawbacks.First,mostofthe

    conventionaloilandgasreservesarelocatedinafewworldregions.Consequently,many

    countriesaredependentonfewothercountriesfortheir energysupplies.

    [2,4,9,10]

    Second,keeping up extraction from easily recoverable fossil fuel sources to the everincreasing

    demandforfossilfuelsprovesdifficult,causingimpactsonthepriceoffossilfuels.[2]

    Third,

    the combustion of fossil fuels is responsible for the largest share of anthropogenic

    greenhousegas(GHG)emissionsintotheatmosphere.[11]

    Andlastbutnotleast,duetothe

    depletionofeasilyrecoverablefossilfuelsources,extractionofunconventionalfossilfuel

    sources,suchastarsandsandshalegas,andextractioninenvironmentallysensitiveareas

    areexpectedtoincrease,resultinginhigherGHGemissionsandincreasedrisksofsevere

    environmentaldamage.[5,12]

    0

    100

    200

    300

    400

    500

    600

    700

    800

    1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035

    G

    lobalenergydemand(EJ/yr)

    Year

    Otherrenewables Hydro Nuclear NG Oil Coal

    Historicdemand Projecteddemand

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    13/312

    Introduction

    13

    ClimatechangeEmissionsofGHGarelinkedtoglobalwarming

    1,withCO2beingresponsibleformorethan

    50% of the direct radiative forcing ofGHG.[11]

    In 1992, theUnitedNations Framework

    Convention on Climate Change (UNFCCC) was established with the goal of achieving

    stabilisationof

    atmospheric

    greenhouse

    gas

    concentrations

    at

    alevel

    that

    would

    prevent

    dangerousanthropogenicinterferencewiththeclimatesystem.[13]

    By2005,averageglobal

    temperatures were already about 0.8C higher than preindustrial levels (see Figure

    1.2).[11]

    The4th

    AssessmentReportof the InternationalPanelonClimateChange (IPCC)

    projects thatascenario focussingoneconomicdevelopmentand relianceon fossil fuels

    (A1fossilintensive:A1FI)couldresultinanincreaseintheaveragetemperatureonEarth

    of 2.96.9C above preindustrial values (with a best estimate of 4.5C) by 2100.[2]

    A

    temperature change of thismagnitudewould be unprecedented in human history and

    probablyresult indetrimental impactsonclimate,biodiversity, foodproductionandsea

    levelrise.Thesamereportalsoprojectsthat inascenariowhichassumesstrongpolicies

    to mitigate GHG emissions, the increase in average temperatures could be limited to

    1.63.4C, with a best estimate of 2.3C.[11]

    In 2009 and 2010, the Conference of the

    Parties(COP)totheUNFCCCagreedthattheincreaseinglobalmeantemperatureshould

    bekeptbelow2C,comparedtopreindustriallevels.[14,15]

    Figure1.2Historicclimatechangeandprojectedclimatechangeunder

    differentGHGmitigationpolicies.[11]

    CO2emissionsKeeping the increase in global mean temperature to less than 2C means that the

    atmosphericCO2concentrationneeds tostabilisemostprobablyat350400ppm(v)CO2

    (445490

    ppm(v)

    CO2

    equivalent).

    11]

    The

    current

    proven

    reserves

    of

    fossil

    fuels

    contain

    around800Gtcarbon,[1]

    whichcouldresultinalmost3000GtofCO2emissions.Thisvalue

    isroughlythesameamountofCO2currentlypresentintheatmosphere.Maintainingthe

    increaseinglobalmeantemperaturebelow2Cimpliesthatonly10001625GtCO2canbe

    emittedbetween20002100,thesocalledcarbonbudget.[16,17]

    Between2000and2010,

    already330GtCO2wereemitted,leavingroomforonly6701295GtofanthropogenicCO2

    emissionsinthecomingdecades.WithoutadditionalCO2abatementpolicies,thisvalueis

    expectedtobereachedwithinafewdecades.[2,4,6,16]

    Keepingwithintheindicatedcarbon

    1Formore informationonclimatechangeand itseffectswerefertothe4

    thassessment

    reportof

    the

    IPCC.[11]

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    14/312

    Chapter1

    14

    budgetwillrequirereductionsinCO2emissionsofmostlikely5080%in2050comparedto

    the2000level.[11,15,18]

    1.2 MitigationstrategiesThere

    are

    several

    routes

    to

    reduce

    global

    CO2

    emissions.

    The

    most

    obvious

    one

    is

    to

    consume less primary energy. This, however, has proved to be difficult in the past.

    Keepingtheglobalenergydemandconstantwithanincreasingpopulationandincreasing

    average standard of living is already a daunting challenge, as indicated by several

    studies.[2,4,5,6,7]

    Nevertheless,thereisalargepotentialtoincreasetheefficiencyofenergy

    conversionprocessesthatneedstobetargeted.Thesecondoptionistousefossilenergy

    sourceswhichare less carbonintensiveor to switch to renewableenergy sources.This

    includes switching from fossil fuels to renewable and nuclear energy sources, but also

    fromcoaltonaturalgas.Inthescenariosfrome.g.,theIEA,IPCC,BP,Greenpeace,WWF,

    and in the Global Energy Assessment (GEA), an increased utilisation of renewables is

    projected

    but

    at

    various

    degrees

    depending

    on,

    among

    others,

    assumptions

    related

    to

    technologicalimprovementsintheenergysystemandclimatepolicies.Athirdoptionisto

    reduce the CO2 emitted by the use of fossil fuels (and biomass) using carbon dioxide

    capture,transportandstorage(CCS)technologies.Allstudiesjustmentionedprojectthat

    noneofthethreeoptionsbythemselvescanreachthe2Ctarget,andthataportfolioof

    mitigationoptionshastobe implemented inordertomeettheGHGemissionmitigation

    targets(seee.g.,Figure1.3).[2,4,5,6,7,8,19]

    Figure1.3ContributionofdifferentCO2mitigationstrategiesintheIEABluemapscenario,aiming

    atstabilisingatmosphericGHGemissionsat450ppm(v)CO2eq.[4]

    CCS(19%)

    Renewables(17%)

    Nuclear(6%)

    Powergenerationefficiency

    andfuelswitching(5%)

    Endusefuelswitching

    (15%)

    Endusefuelandelectricity

    efficiency(38%)0

    10

    20

    30

    40

    50

    60

    2010 2015 2020 2025 2030 2035 2040 2045 2050

    GlobalCO2emissions(GtCO2/yr)

    Year

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    15/312

    Introduction

    15

    SectorsAlmost 85% of the 29 Gt CO2 emitted by the combustion of fossil fuels in 2009, were

    producedbythepower,transportandindustrysectorscombined(seeFigure1.4).[20]

    Each

    sector has its own unique characteristics and challenges and, therefore, needs specific

    strategiestomitigateGHGemissions.

    Figure1.4GlobaldirectannualCO2emissionsbysectorin2009.[20]

    Thepowersectorconsumed190EJofprimaryenergyin2009ofwhichalmost50%came

    from coal and another 25% from natural gas and oil.[2]

    Most CO2 emissions from this

    sector stem from large, stationary sources, making this sector suitable for endofpipe

    solutions, such as CCS. Literature studies indicate that the most costeffective CO2

    mitigation options for the short to mid term are fuel switching (cofiring biomass in

    coalfired power plants or replacing coalfired power plants by natural gasfired power

    plants)andapplyingCCS.[2,4,5,6,7]

    Thetransportsector consumed almost100 EJ of primary energy in 2009, of which more

    than 90% came from oil.[2]

    The CO2 emissions from this sector originate from numerous

    small, mobile sources, making endofpipe solutions unattractive.[34]

    Therefore,

    decarbonisingthissectorisonlyrealisticviadecarbonisingthefuel.Amainobstacleinany

    transition towards a new transportation fuel is the large interdependence between car,

    fuel and infrastructure, making any transition difficult and expensive if the currentinfrastructure and car park cannot be used.

    [21] The current infrastructure is designed for

    liquidswithahighenergydensity,likeliquefiedpetroleumgas(LPG),gasoline,dieseland

    FischerTropsch liquids (FTliquids are a mixture of linear hydrocarbons of different

    length).LiteratureindicatesthatapromisingCO2mitigationoptionfortheshortertomid

    term is replacing conventional diesel and gasoline with liquid 2nd

    generation biofuels.

    When producing these fuels, CCS can be applied to reduce GHG emissions even

    further.[21,22,23,24,25]

    Theindustrysectorconsumedalmost90EJofprimaryenergyin2009ofwhich40%came

    fromcoal,28%fromnaturalgasand20%fromoil.Almost75%ofthedirectCO2emissions

    Other

    2.9GtCO210%

    Industry

    5.9GtCO220%

    Electiricty

    andheat

    11.8GtCO241%

    Transport

    6.5GtCO222%

    Residential

    1.9GtCO27%

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    16/312

    Chapter1

    16

    from this sector originate mainly from the production of iron and steel, cement and

    chemicals.[4]

    These emissions come from large, stationary sources, making the industry

    sectorsuitableforCCS.FormoreinformationonCO2mitigationstrategiesintheindustry

    sector,werefertoKuramochi.[26]

    BiomassandbiofuelsSustainable biomass is an attractive CO2 mitigation strategy as it can be converted into

    carbonneutralbuildingblocksforthechemicalindustryorintohighenergydensityliquids

    forthetransportsector.[7]

    Biomass istheonlyrenewablecarbonsourceforthechemical

    industryandisconsideredakeyalternativeforthetransportsectorintheshortterm.[2,4,7]

    In2009,10%oftheglobalprimaryenergydemand(about50EJ)wassuppliedbybiomass,

    ofwhich1112EJwasbeingused inmodernapplications, likepowerplantsandbiofuels

    facilities.[7,27,28]

    For comparison, in the same year the total energy demand of the power

    and transport sectors combined was almost 300 EJ.[2]

    The deployment potential for

    sustainablebiomass isuncertain,butconsiderable.Scenarioandmodelanalyses indicatethatthetechnicalpotentialofbiomassenergyresourcesmayrangebetween50500EJ/yr

    in 2050[7,28,29,30]

    and the deployment potential could be in the order of 100300 EJ/yr in

    2050, depending on policies and market conditions.[7]

    These high deployment levels of

    biomass require the implementation of sustainability criteria to prevent, among others,

    competitionwithfoodorfeedsupplies,depletionofwatersources,lossofbiodiversityor

    excessiveGHGemissionsdueto(indirect)landusechange.[7,28]

    In general, a distinction is made between 1st

    and 2nd

    generation biofuels. Examples of

    1st

    generation biofuels are vegetable oils, ethanol from corn and sugarcane and biogas

    fromorganicwaste,while2nd

    generationbiofuelsincludeFTliquidsorethanolfromwood,

    grassesorresiduesfromtheforestandagriculturalsectors.[7]FTdieselhastheadvantage

    that it is almost similar to conventional diesel, allowing the use of the existing

    infrastructure and car park. Advantages of 2nd

    generation biofuels over 1st

    generation

    biofuelsaretheuseofnonfood/feedsourcesasfeedstockandhigherenergyyieldsand

    (potential) savings in GHG emissions on a hectare basis.[28,31]

    Finally, biomass crops

    (including trees) for 2nd

    generation biofuels can be cultivated on marginal or degraded

    land, not only further reducing the competition with food supplies, but also offering an

    opportunitytorestoredegradedland.[32,33]

    Carbondioxidecapture,transportandstorageCarbondioxidecapture,transportandstorage(CCS)isthegeneraltermforprocessesthat

    preventtheemissionofCO2bylongtermisolationoftheCO2fromtheatmosphere.[34,35]

    It

    allowstheuseoffossilfuelsbutwithsignificantlylowerCO2emissions.ForthisreasonCCS

    canbeseenasatransitionalmitigationoption.Itincreasestheavailabletimetotransform

    thecurrentfossilfuelbasedenergy infrastructure intoan infrastructurebasedmainlyon

    renewable sources. Moreover, when CCS is applied in combination with conversion of

    sustainably produced biomass, it can result in negative emissions, i.e., extracting and

    isolating CO2fromtheatmosphere andthusextending thecarbon budget.Thepotential

    deploymentofCCSdependsheavilyontechnological improvementsandclimatepolicies.

    The IPCC special report on CCS indicates that the economic potential of CCS could be

    2202200 Gt CO2 avoided cumulative by 2100, while the IEA Energy Technology

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    17/312

    Introduction

    17

    Perspectivesprojectsashareofabout19% in2050,equivalentto18GtCO2emissionsa

    year.[4,34]

    TheEuropeanCommissionsEnergyRoadmap2050estimatesthat,dependingon

    the scenario, CCS could account for 1932% of the total mitigated CO2 emissions in the

    powersector.[36]

    Althoughtotalmitigationcostsareuncertain, ithasbeenprojectedthat

    largescaledeploymentofCCScouldreduceglobalmitigationcostsbyupto40%asmoreexpensive CO2 mitigation options can be postponed or even avoided.[34,37,38,39,40]

    FurthermoreapplyingCCSatbiomassfeedstockscouldresultinanadditionalreductionin

    globalmitigationcostsofabout40%relativetotheoptionofusingCCSatfossilfeedstocks

    only.[38,39]

    However,tofullyrealisethispotentialrequiresthatdeploymentofCCStakesoff

    this decade. In 2011, there were only 8 operational integrated commercial scale CCS

    demonstrationprojectsintheworld[41]

    and,accordingtotheIEATechnologyroadmapon

    CCS, the number of projects needs to increase to around 100 projects by 2020 and to

    almost3500by2050ifthefullcontributionofCCStoprojectedmitigationeffortsistobe

    realised(seeFigure1.5).[37]

    Figure1.5RoadmapforglobaldeploymentofCCSuptill2050accordingtotheIEATechnology

    roadmaponcarboncaptureandstorage.[37]

    TheCCSchainiscomposedofthreesteps:capture,transportandstorage.DuringtheCO2

    capturestep,CO2isextractedfromindustrialandenergyrelatedsourcese.g.,naturalgas,

    fluegasandsyngas.ThisCO2issubsequentlypurified,driedandcompressed.Thisstepis

    generally the most expensive part of the CCS chain due to the high capital costs of the

    equipmentandtheenergyuseinvolved.Exceptionsaresomespecificindustrialprocesses,likeammoniaorethyleneoxideproduction,whichalreadyproduceahighlyconcentrated

    CO2gasstream.ThisreducestheCO2capturesteptodryingandcompressionoftheCO2.

    Inthetransportstep,theCO2ismovedfromtheemissionsourcetothestoragelocation.

    CO2 transport by pipeline is already applied in various settings, including enhanced oil

    recovery (EOR) and enhanced natural gas recovery (EGR). CO2 is transported in

    supercritical phase to improve economics. In this phase CO2 behaves like a liquid with a

    liquidlikedensity,whiletheviscosityandcompressibilityshowagasphasebehaviour.The

    storage phase consists of the longterm isolation of CO2 from the atmosphere via

    0

    2

    4

    6

    8

    10

    12

    0

    1000

    2000

    3000

    4000

    2010 2015 2020 2025 2030 2035 2040 2045 2050

    CO2captured(GtCO2

    /yr)

    Numberofprojects

    Year

    OECDNorthAmerica

    OECDEurope

    OECDPacific

    China&India

    Other

    CO2captured (world)

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    18/312

    Chapter1

    18

    mineralisation or by injection of the CO2 into underground geological locations, such as

    depletedgasoroilfieldsorsalineaquifers.[5]

    CO2 capture is often divided into four categories: postcombustion capture,

    precombustioncapture,oxyfuelcombustioncaptureandcaptureatindustrialprocesses.

    PostcombustioncaptureinvolvestheextractionofCO2fromfluegaseswhichareproduced by combusting fossil fuels or biomass with air. The flue gas is at

    atmospheric pressure and has a low CO2 concentration, resulting in a low CO2

    partialpressure.Duetothislowpartialpressure,captureiscurrentlyachievedby

    chemicalabsorptionusingsolvents.Theregenerationofthesesolventsinvolvesa

    temperatureswing,whichrequireslargeamountsofenergy.Anadvantageisthat

    it can be applied at existing power plants (retrofit). Moreover, the CO2 capture

    processdoesnot interferewithnormaloperations,meaningthattheavailability

    ofthefacilityisnotaffected.

    Precombustioncapture isthe extraction of CO2 from anenergyrichgas streamprior to combustion. This prevents N2 dilution and, if the facility operates at

    elevated pressure, allows the removal of the CO2 at this elevated pressure.

    BecauseofthehighpartialpressureofCO2,physicalsolventscanbeusedinstead

    ofchemicalsolventstocapturetheCO2.Asregenerationofphysicalsolventscan

    be achieved by pressure swing instead of temperature swing, this results in a

    lower energy consumption in the capture process and thus (in principle) lower

    CO2capturecosts.

    OxyfuelcombustioncaptureentailstheextractionofCO2fromfluegasconsistingmainlyofCO2andsteamasthefossilfuelorbiomassiscombustedwith(almost)

    pure O2. Removal of the steam by condensation results in a CO2 purity of

    8098%.[34]

    In this process high temperatures in the combustion process can be

    reached resulting, in principle, in more efficient Brayton (for gas turbines) or

    Carnot (for boilers) cycles. Currently, metallurgical constrains prevent the

    utilisation of these high temperatures. Therefore, CO2 or steam needs to be

    recycledtoreducetheoperatingtemperature.Amaindrawbackofthisoptionis

    theneedfor(currentlyexpensive)pureO2.

    For capture from industrial processes generally one of the above describedoptions is applied, depending on the process conditions. In some industrial

    processes (e.g., ammonia production and natural gas processing) CO2 is already

    extracted as part of the industrial process. Applying CCS at these sources,therefore,significantlyreducestheadditionalcostsforCO2separation.Formore

    information on the possibilities and potential of CO2 capture at industrial

    processes,werefertoKuramochi.[26]

    There are three main approaches to separate CO2 from other gases, namely using

    sorbents,membranesorcryogenics.[34,35]

    SeparationbysorptionmeansbringingthegasstreamcontainingCO2inclosecontactwith

    asorbent(orsolventwheninliquidphase).TheCO2isabsorbedintooradsorbedontothe

    sorbent. To release the CO2, the sorbent is regenerated. This is commonly done by

    increasingthetemperatureforchemicalsorbentsordecreasingthepressureforphysical

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    19/312

    Introduction

    19

    sorbents. The main disadvantage of this process is the high energy consumption in the

    regenerationstep,especiallywhenchemicalsolventsareused.[34,35]

    Cryogenic separation involves cooling the gas stream containing the CO2 to below the

    boilingtemperatureofCO2.ImpuritiescaneasilyberemovedfromtheliquidCO2.Priortocooling, the gas stream is dried to prevent ice formation in the heat exchangers. After

    compression,theCO2isreadyfortransport.Anadvantageofthistechniqueisthataliquid

    CO2streamisproduced,whichisbeneficialforcertaintransportoptions,suchastransport

    by ship. The main disadvantage is that the entire gas stream needs to be cooled down,

    resulting in bulky equipment and a high energy consumption when separating CO2 from

    dilutedstreams.[34,35]

    MembraneseparationinvolvespassingthegasstreamcontainingCO2alonga(polymeric,

    metallicorceramic)materialwhichisselectivelypermeableforonlyCO2orpermeablefor

    all other relevant gases except CO2. As only the permeable gases pass through the

    membrane,thisresultsinapureCO2stream.Thedrivingforceisthedifferenceinpartial

    pressure across the membrane, making high pressure streams more suitable than low

    pressure streams for membrane separation. The advantage of this technique is the low

    energyconsumptionwhenapressurisedgasstreamisavailable.Althoughthisprocesscan

    also be applied at low pressure streams, it requires creating a vacuum,which drastically

    increases energy consumption. Furthermore, reliable and affordable CO2 selective

    membranes are currently not commercially available and CO2 removal by membrane

    separationhasnotyetbeentestedinlargescaleindustrialfacilities.[34,35]

    1.3 Integratedgasificationpoly-generationfacilitiesA key technology which can play a role in the development of a sustainable energy

    infrastructure is the production of fuels and other chemicals via gasification. Interest in

    gasification has increased significantly in the last few decades, resulting in an installed

    syngascapacityofaround70GWthin2010.Projectionsfromtheindustryindicatethatthis

    capacity could almost double by 2016 (Figure 1.6).[42]

    Gasification technology (partly

    combinedwithCCS)isseenasaninterestingoptionforCO2mitigation.IntheBlueenergy

    scenariooftheIEA,forinstance,installedgasificationcapacityisprojectedtoexceed1500

    GWth syngas in 2050[27]

    and the World Energy Technology Outlook 2050 H2case scenario

    projectsthatmorethan900GWthsyngasisneededforhydrogenproductionalone.[43]

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    20/312

    Chapter1

    20

    Figure1.6Worldwideinstalledsyngascapacity(GWth)accordingtoChildress.

    [42,44,45,46]

    The main reason behind the increasing interest in gasification is its ability to convert

    carbonaceous feedstocks, like coal, stranded natural gas and biomass, into high value

    products, e.g., electricity, transportation fuels and other chemicals.[42]

    Gasification offers

    additional benefits over the conventional production of energy carriers and chemicals,

    namely:

    Theabilitytouseavarietyofcarbonaceousfeedstockswithoutbeingdependentonaspecificfeedstock;

    [47]

    Theabilitytoproduceavarietyofproducts(electricity,fuels,fertilizersandotherchemicals)fromthesyngas,allowingflexibleproductionandoutput;[47]

    Lowerspecificemissionsof,amongothers,NOx,sulphurcompounds,particulatematter and heavy metals compared to conventional PC power plants and

    refineries;[47]

    Facilitating the more energy efficient precombustion CO2 capture instead ofpostcombustion CO2 capture, as the syngas has a high pressure and a high

    concentrationofCO2;

    The conversion of sustainable biomass feedstocks into carbon neutraltransportationfuelswhichcanbeusedinthecurrenttransportinfrastructure;

    [2]

    The conversion of sustainable biomass feedstocks into carbon neutral rawmaterialsforthechemicalindustry.[48]

    Gasificationfacilitiesalsohavesomedisadvantages.Forelectricityproduction,integrated

    gasification combined cycle (IGCC) facilities are more complex and expensive than

    conventional natural gas combined cycle (NGCC) and pulverised coal (PC) power plants.

    Whenconsideringproductionoftransportationfuelsandotherchemicals,theuseofcoal

    as feedstock in the absence of CCS can double specific CO2 emissions compared to

    producing the chemical in conventional refineries using natural gas or crude oil.[22,23,24]

    Lastly,thecommercialexperiencewithgasificationfacilitiesisstilllimited.This,combined

    withthecomplexoperationofthefacilities,hindersitsdeployment.

    0

    20

    40

    60

    80

    100

    120

    140

    1970 1980 1990 2000 2010

    Installedsyngascapcity(GWth)

    Year

    1999forecast 2004forecast

    2007forecast 2010forecastOperationalcapacity

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    21/312

    Introduction

    21

    ProcessdescriptionAn integrated gasification polygeneration (IGPG) facility consists of various key

    processes. A schematic overview is given in Figure 1.7. First, a solid carbonaceous

    feedstock is fed into an entrained flow (EF) gasifier. The high operating temperature

    (>1500C)ofthistypeofgasifierbreaksthefeedstockdownintosyngas,consistingmainlyofCO,CO2,H2andH2O.Therequiredtemperatureisobtainedbycombustingpartofthe

    feedstock insidethegasifier.Asubstoichiometricamountof(almost)pureO2,produced

    inanairseparationunit(ASU)functionsasoxidant.PureO2isusedtopreventN2dilution

    of the syngas, increasing the overall conversion efficiency and reducing the size of

    downstream equipment.[47,49,50]

    Prior to the gas cleaning, the syngas is quenched to

    prevent fouling of the cooling equipment. In the gas cleaning sector, impurities like

    halogen gases and solid particles are removed using filters and wet scrubbers. Acidic

    compoundsareremovedintheacidgasremovalsection(AGR).

    Dependingonthedesiredproduction,theH2:COrationeedstobeadjusted.Thisisdoneina watergas shift (WGS)reactorwhich canbe locatedupstream or downstream theAGR

    unit. After cleaning, the syngas can be converted into the final product. To improve

    economics and the overall conversion efficiency, steam is generated at various locations

    throughoutthefacilityandusedforelectricityproduction.

    KeycharacteristicofanIGPGfacilityisthatCO2needstobeextractedfromthesyngasto

    improve the conversion efficiency of the downstream chemical or transportation fuel

    conversion reactors. Using that concentrated CO2 for CCS purposes results in low CO2

    removalcosts,makingIGPGfacilitiesinterestingearlyoptionsforCCSimplementation.

    Figure1.7SimplifiedprocesslayoutofaflexibleIGPGfacilitywithCO2captureusing

    stateofthearttechnology.Waste,heatandrecyclestreamsarenotdisplayed.

    PerformanceDespite the many advantages of gasification facilities, the current globally installed

    gasificationcapacityisrelativelylow.Amainreasonisthehighcapitalcostsofgasification

    facilities, resulting in high production costs.[51]

    Literature studies indicate that an IGCC

    without CO2 capture can produce electricity for 5094 /MWh with an efficiency of

    4045%HHV.[52,53]

    If CCS is applied, the production costs are projected to increase to

    64132 /MWh and efficiency could drop by as much as 11%pt, depending on the

    technologyusedforgasification,CO2extractionandturbine;theseresultsaresimilarfora

    Feedstock

    ASU

    Pre treatment GasifierGas

    Cleanup

    Power

    production

    FTliquids

    production

    H2production

    AGR

    MeOH

    production

    Urea

    production

    CO2compression

    Claus/

    SCOT

    FTfuel

    MeOH

    Urea

    LiquidS

    H2

    O2

    O2

    N2

    CO2

    H2S

    Scompounds

    Syngas

    CO2

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    22/312

    Chapter1

    22

    conventional PC plant, both with and without CCS.[52,53]

    A recent study by the European

    Technology Platform for Zero Emission Fossil Fuel Power Plants (ZEP) reported the

    production costs of electricity of different types of Nth

    of a kind power plants, namely

    pulverised coal (PC), integrated gasification combined cycle (IGCC) and natural gas

    combined cycle (NGCC), both with and without CCS. Production costs of electricityproductionwithoutapplyingCCSare48/MWhforPCand72/MWhforNGCC.IfCCSis

    applied,theproductioncostsofIGCC2andPCaresimilar(6675/MWhvs.6773/MWh

    respectively), while NGCCCCS results in significant higher electricity production costs

    (104/MWh).AstudybytheNationalEnergyTechnologyLaboratory(NETL)foundsimilar

    results for coal, but much lower production costs of electricity for NGCC mainly due to

    lowernaturalgasprices.[53,54]

    Furthermore, model studies indicate that FTliquids can be produced from coal in

    commercialscaleplantsfor617/GJ.[22,23,24,25,55,56]

    Thelowerrangesaremainlyaresultof

    low coal prices (in the range of 1 /GJ). For comparison,oilderived transportation fuels

    canbeproducedfor13/GJifcrudeoilpriceare72/bbl(whichwastheaveragecrude

    oilpricein2011).[65]

    Asmentionedbefore,CO2needstobeextractedfromthesyngasto

    enablehighefficiencies intheconversionreactors.Thisresults inCO2avoidancecostsas

    low as 17 /t CO2.[57]

    IGPG facilities can also use biomass. However, literature studies

    suggest that production costs of electricity and FTliquids could double due to higher

    feedstockcosts,lowerefficienciesandsmallerscaleinstallations.[22,23,24]

    Thecombineduse

    of coal and biomass in gasificationfacilities equipped with CCS hasbeen investigated by

    the Princeton Environmental Institute, but only for dedicated gasifiers for each type of

    feedstock.[23,24,25,57]

    They conclude that CCS can be applied at integrated gasification

    facilities producing FTliquids (IGFT) at relative low costs. The cofeeding of biomass

    results in higher production costs compared to a coalfired IGFT, mainly due to higher

    capital and feedstock costs. Their studies also indicate that applying CCS at a coalfired

    IGFT facility has the same effect to mitigating CO2 emissions as replacing about 40% of

    thecoalbybiomassatanIGFTfacilitywithoutCCS.[57]

    Inthemidtolongterm,significantcostsreductionsareexpectedforgasificationfacilities

    due to technological learning. Studies by the NETL estimate that novel technologies and

    improved operating experience could decrease production costs of electricity in an IGCC

    by 33% and reduce the CO2 avoidance costs to 13 /t CO2.[58,59]

    Production costs of

    FTliquids without CCS could potentially drop to 9 /GJ, equivalent to an oil price of

    50/bbl.

    FlexibilityThementionedstudiesassumenoflexibilityinfeedstockorproduction.However,market

    conditions can change considerably in the operational lifetime of a largescale IGPG

    facility.Examplesaretheemergingmarketofbiomasspelletsforenergy,thedevelopment

    oftheCO2creditspriceandthemarketofnonoilbasedtransportationfuelsaswellasthe

    mature markets of coal and crude oil which has experienced strong price fluctuations in

    2 In this study the reference plants is always a PC power plant, therefore data for IGCC

    withoutCCSarenotreported.

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    23/312

    Introduction

    23

    thelastyears(seeFigure1.8).[60,61,62,63,64,65]

    Besideslongtermuncertainties,therearealso

    shortterm variations, such as the daily variation in the electricity price,[66]

    which can

    impacttheeconomicsof IGPG facilities,especiallyas largescalestorageofelectricity is

    currentlyeconomicallynotfeasible.

    Figure1.8Historicpricesofprimaryenergycarriers(left)anddistributionofhistoricelectricityprices(right).[60,61,64,65,66]

    AsIGPGfacilitiescanhandleavarietyoffeedstocksandcanproducemultipleproducts,

    thesefacilitiesallowreactiontoandexploitationoffluctuations inmarketconditions.An

    example is exploiting the daily electricity variation existing in North WestEurope by

    producing electricity during peak hours and transportation fuels or chemicals during

    offpeak hours. Flexibility of the facility does, however, come with thedisadvantage of

    highercapitalinvestmentandO&Mcostsand,dependingonthetypeofflexibility,lower

    efficiencies compared to nonflexible IGPG facilities. Currently, a detailed analysis of

    whether the advantages of flexibility offset the disadvantages has not been performed

    yet, despite the fact that flexibility is mentioned to be a strong argument in favour of

    IGPG

    facilities.[44,67]

    1.4 SummarisingThere are significant potentials for both biomass and CCS to reduce GHG emissions.

    However,thecurrentcapacityofbothCO2mitigationoptionsislow.Asstatedpreviously,

    biomass for modern applications only comprises 2% of our global primary energy

    demand[7,27,28]

    and CCS is only being applied in eight commercialscale projects.[41]

    Important reasons for the lowpenetration forbiomassare thecurrentlyhigh feedstock

    prices,theuncertaintyregardingavailabilityduetotheimmaturityofthebiomassforthe

    energymarket,[7]

    resulting in relatively smallscalebiomassfed conversion facilities.For

    CCS,important

    reasons

    are

    the

    high

    costs

    to

    avoid

    CO2

    emissions

    relative

    to

    the

    current

    CO2creditpriceorCO2taxandtheuncertaintyinfutureclimatepolicy.

    Gasification can play an important role to increase the deployment of both mitigation

    options.Theinstalledgasificationcapacityis,however,onlyaround70GWth.Animportant

    cause is the high production costs. Although technological innovation resulting in large

    reductionsincapitalcostsandimprovementinoverallefficiencyareforeseeninthenear

    future, achieving this improved performance requires that the installed gasification

    capacityincreasessignificantly.

    0

    5

    10

    15

    2000 2002 2004 2006 2008 2010

    2008

    /GJ

    Year

    EUBrentCrudeOilBiomasspelletsNorthernAppalachia

    0%

    5%

    10%

    15%

    20%

    0 50 100 150 200

    Occurence(%)

    Electricityprice(2008/MWh)

    Nominalprice

    Dayprice

    Nightprice

    Priceat50%occurence

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    24/312

    Chapter1

    24

    Flexibility might facilitate the deployment of gasification facilities for two main reasons.

    First, the ability of IGPG facilities to be feedstock flexible allows the construction of

    biomassfed facilities at coalfed scale, and thereby takes advantage of economies of

    scale,butwithouttheriskimposedbyaninadequatesupplyofbiomass.Second,flexibility

    lowers the investment risk as both feedstock and production can be altered during theoperationallifetimeofthefacility.Anadditionaladvantageofgasificationfacilitiesisthat

    CO2 is often removed when chemicals are produced. This should allow the

    implementation of CCS at relatively low costs. Currently, there is a need for better

    understanding what the possibilities and limitations of flexibility at gasification facilities

    areandunderwhich(economic)conditionsflexiblefacilitiesaremoreadvantageousthan

    theirstaticcounterparts.Theseaspectsareatthecoreofthisthesis.

    A promising (natural gasfired) gasification application for the deployment of CCS in the

    shorttermissteammethanereforming(SMR)atindustrialfacilities.CO2avoidancecosts

    at SMR facilities are projected to be lower compared to the avoidance costs at power

    plants due to the presence of a pressurised CO2 rich gas stream and the possible

    availability of waste heat streams, as SMR facilities are generally located inside large

    industrial complexes, like refineries. Although literature studies on applying CCS at SMR

    facilities have been performed, the impact of applying CCS at existing facilities (retrofit)

    andtheeffectofusingwasteheatontheCO2avoidancecostsatSMRfacilitieshavenot

    yetbeenstudied.

    1.5 ThesisobjectiveandoutlineThe main objective of this thesis is to determine the technoeconomic potential of

    commercialscalegasificationsystemsproducingenergycarriersandotherchemicalswith

    low CO2 emissions and to assess how and when flexibility improves the overall

    performanceofthesegasificationsystems.

    Thethreemainresearchquestionsare:

    RQ.I Whatistheimpactofflexibleoperationofstateoftheartgasificationfacilitieson the technical and economic performance of integrated gasification

    polygenerationfacilities?

    RQ.II What is the potential improvement intechnicaland economic performanceofintegratedgasificationfacilitiesinthecomingdecades?

    RQ.III WhataretheCO2avoidancecostsofgasificationfacilities,includingSMR,intheshorttolongterm?

    Furthermore, literature indicates that performance of IGPG facilities can improve in the

    future.[58,59]

    However,therateofthisimprovementandthedriversbehinditisstillpoorly

    understood.Inthisthesistheimprovementpotentialisanalysedusingtwoapproaches:

    A bottomup analysis, giving insights into the extent of the potential costreductions and how they can be realised. This approach involves identifying

    promising technologies, determining their current status and potential

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    25/312

    Introduction

    25

    development in the future and designing new process layouts of gasification

    facilitieswhichtakeoptimaladvantageofnewtechnologies;

    Atopdownanalysismakinguseofanaloguelearningcurvestudies,givesinsightsintohowcost reductionscoulddevelopover time.Thisapproachcombines the

    required

    growth

    in

    installed

    capacity

    with

    scenario

    projections

    on

    the

    deploymentofgasificationfacilities.

    Bycomparingthetwoapproachesamorerobustpredictionisobtainedonhow,whenand

    towhatextentproductioncostsingasificationfacilitiescandecreaseinthefuture.

    Table 1.1 gives an overview of the chapters of this thesis in which these research

    questionsareaddressed.

    Table1.1Structureofthethesis.RQ.I RQ.II RQ.III

    Chapter2:Performanceofsimulatedflexibleintegratedgasificationpolygenerationfacilities.PartA:Atechnical

    energeticassessment

    Chapter3:Performanceofsimulatedflexibleintegratedgasificationpolygenerationfacilities.PartB:Economic

    evaluation

    Chapter4:Technicalandeconomicprospectsofcoal andbiomassfiredIGPGfacilitiesequippedwithCCSovertime

    Chapter5:FuturetechnologicalandeconomicperformanceofIGCC

    and

    FT

    production

    facilities

    with

    and

    without

    CO2capture:

    combiningcomponentbasedlearningcurveandbottomup

    analysis

    Chapter6:TechnoeconomicassessmentofCO2 captureatsteammethanereformingfacilitiesusingcommercially

    availabletechnology

    Chapter 2 aims to determine the technical impacts of flexibility in largescale IGPGfacilities.ThechapterprovidesanoverviewofthemajorcomponentsinanIGPGfacility.

    For each component the possibilities, limitations and effects of flexible operation is

    investigated.Thisinformationisusedtodevelopacomponentbasedcomputersimulation

    model.Thismodelyieldsthemassandenergybalancesneededtodeterminethetechnical

    performance of IGPG facilities and the impact flexibility has on overall IGPG facility

    performance. The chapter also investigates the impact on the CO2 fraction that can be

    captured in a flexible IGPG facility. The flexibility comprises both feedstock (biomass

    pellets, torrefiedbiomasspelletsandcoal)andproduct (electricity, FTliquids,methanol

    andurea).

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    26/312

    Chapter1

    26

    Chapter3 focuses on the impact of flexibility on the economics of IGPG facilities. Theresults of the technical model developed in Chapter 2 are combined with an economic

    model to calculate production costs using the net present value (NPV) method. The

    resulting production costs are used to identify under which conditions flexible IGPG

    facilities

    are

    economically

    more

    attractive

    than

    static

    IG

    PG

    facilities.

    The

    chapter

    also

    investigates the effect a CO2 credit price has on the profitability of the use of biomass

    versuscoalasfeedstockandonventingCO2versusapplyingCCS.

    Chapter 4 assesses the potential improvement in overall performance of static IGPGfacilitiesproducingelectricityortransportationfuels,withorwithoutCCSfromeithercoal

    or biomass using a bottomup analysis. For each component, possible improvements in

    existing technologies, as well as advanced alternative technologies are identified. The

    improvementsandadvancedtechnologiesarecategorizedinthreedifferenttimeperiods

    basedontheirexpectedcommercialisationperiod.Foreachtimeperiod,aprocesslayout

    ofthe IGPG facility ismadeusingthetechnologiesavailable forthattimeperiod.These

    processlayouts

    are

    used

    in

    the

    technical

    and

    economic

    models

    developed

    in

    Chapters

    2

    and3.Thisresultsininsightsintothepotentialreductioninproductioncostsandintothe

    extentthedifferentimprovementscouldpotentiallycontributetothatreduction.

    Chapter5aimstoassessthepotentialimprovementinoverallperformanceofstaticIGPGfacilitiesproducingelectricityortransportationfuel,withorwithoutCCSfromeithercoal

    orbiomassusingatopdownapproach.Learningcurveanalysis isapplied inthischapter

    basedoncurrentandprojectedinstalledcapacitiesofmajorIGPGcomponents.Basedon

    theseresults,productioncostsforelectricityandFTliquidsarecalculated,aswellasthe

    impactonCO2emissions,uptill2050.TheresultsarecomparedwiththeresultsofChapter

    4.

    Chapter6aimstodeterminetheoptimalstateoftheartCO2capturesystemformodernsteam methane reforming (SMR) facilities using process simulations. A stepbystep

    methodologyisdevelopedtoidentifytheoptimalCO2capturesystemforanSMRfacility,

    withtheaimofreducingtheenergypenaltyandminimisingCO2avoidancecosts,without

    compromisingH2purityorSMRavailability.Thechapterassessesthe locationoftheCO2

    captureunitwithintheSMRprocess,theCO2capturesolventandthedimensionsofthe

    absorberandregenerator.

    Chapter7summarisestheobjectives,approachandkeyfindingsofthisthesis.Besidesthemainconclusions,recommendationsforfurtherresearcharegiven.

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    27/312

    27

    2 Performanceofsimulatedflexibleintegratedgasificationpolygenerationfacilities.PartA:A

    technical-energeticassessment

    HansMeerman,AndreaRamrez,WimTurkenburg&AndrFaaij

    RenewableandSustainableEnergyReviews15(2011)256387

    DOI:http://dx.doi.org/10.1016/j.rser.2011.03.018

    AbstractThis article investigates technical possibilities and performances of flexible integrated

    gasification polygeneration (IGPG) facilities equipped with CO2 capture for the near

    future.These facilitiescanproduceelectricityduringpeakhours,whileswitching to the

    productionofchemicalsduringoffpeakhours.

    SeveralsimulationswereperformedtoinvestigatetheinfluenceofsubstitutingfeedstockandproductiononIGPGfacilityoutput,loadandefficiency.Thesesimulationsweredone

    usingadetailedAspenPlussimulationmodelofaShellentrainedflowgasifiercombined

    with conversion facilities. In this model carbonrich feedstocks (oil residues, coal and

    biomass)wereconvertedtoavarietyofproducts(H2,electricity,FTliquids,methanoland

    urea) using stateoftheart technology. The size of the gasifier was limited to the

    equivalentof2000MWthIl#6coalinput.

    Overallefficiencyofthesimulatednonflexibleconfigurationstoconvertpurecoalorpure

    woodpelletstoelectricity (40%HHVvs.38%HHV),FTliquids (60%HHVvs.55%HHV),methanol

    (53%HHVvs.

    49%HHV)

    or

    urea

    (51%HHV

    vs.

    47%HHV)

    are

    in

    good

    agreement

    with

    the

    literature.

    Using torrefiedwoodpellets instead ofpurewoodpellets reduces thepenaltydrop in

    efficiency compared to coal.Moreover, torrefiedwood pellets have superior energetic

    density,handlingandfeedingcomparedtowoodpellets.

    Inthisanalysis,theH2:COratioofthesweetsyngaswasfixedtomatchFTliquidscriterion.

    Asaresult,overallCO2captureratesarelow,around5665%,dependingonthefeedstock

    used. Still, especially with FTliquids and methanol production, CO2 emissions at the

    facility are significantly reduced; less than 20% of the carbon feedstock entering the

    facility is emitted with the flue gas. Applying biomass and CO2 capture shows great

    opportunitiesto

    produce

    CO2

    neutral

    electricity

    or

    chemicals.

    When

    the

    biomass

    fraction

    exceeds 40% on an energy basis, production is CO2neutral, independent of what is

    produced.

    Biomasscanbecofedup till50%onanenergybasis.Higher fractionscausesignificant

    fouling on cooling equipment. A small partload penalty is observed during the

    substitutionofcoalbybiomass.Whenchangingfrompurecoaltopurewoodpellets,the

    powercasesuffersa2.5%efficiencydrop,whileallthreechemicalcaseshaveanefficiency

    dropoflessthan1%.Atthesametimetotaloutputisreducedto6769%,mainlybecause

    ofthelowerenergydensityofbiomass.Byoverdimensioningthegasifierandgascleanup

    andoptimisation

    section

    this

    drop

    can

    be

    eliminated.

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    28/312

    Chapter2

    28

    The syngas can be tailored to the desired composition regardless of the used feedstock.

    Therefore,thechemicalconversionsectionsonlyhavetocopewithareductioninsyngas

    flowandnotwithachangeinsyngascomposition.Alteringproductionbetweenchemicals

    and electricity is possible, although the load of the conversion sections should remain

    between 40% and 100% to prevent operational problems. This gives a high degree offlexibility.

    Complete substitution between chemical and power production while using the same

    feedstockispossibleforthemethanolandureacases.TheFTliquidscaseisrestrictedto

    60100% load of the chemical conversion section to prevent that the gas turbine load is

    reducedbelow40%.

    TheeconomicaspectsofflexibleIGPGfacilitiesareaddressedinpartB.

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    29/312

    Performanceoffacilities.PartA:Atechnicalenergeticassessment

    29

    2.1 IntroductionIn 2008 global fossil fuel consumption was around 410 EJ. About 40% of this camefrom

    crude oil.[68,69]

    These fossil fuels power the economies of today. However, their use has

    several drawbacks. Fossil fuel resources are finite and their consumption results in large

    CO2 emissions (unless carbon capture and storage is applied) as well as otherenvironmental effects. Moreover, their consumption may result in high import

    dependence which may threaten supply security, for example in the European Union.

    Lastly, largescale implementation of solar and wind power socalled intermittent

    renewables requires largescale backup electricity generation capacity. The output of

    backup facilities must be easily adjustable in case solar and wind electricity production

    changes.[70]

    Also, the operating hours of these backup facilities will be relatively low

    comparedtobasepowerplants.

    A technology that can partly help to overcome these drawbacks is gasification. Through

    gasification (renewable) biomass, coal and oil residues can be converted into syngas,which can subsequently be converted into electricity, transportation fuels and other

    chemicals(Figure2.1).Naturalgascanbeconvertedintosyngasusingreforming.

    Figure2.1Conversionofcarbonrichfeedstockstodifferentproducts.

    ToreduceCO2emissions,CO2canbeextractedfromprocessandfluegases,compressed

    to30110bar,transportedandstoredinundergroundfields(generallyknownasCCS).In

    this way, electricity and hydrogen can be produced with minimal CO2 emissions. CCS at

    IGPGfacilitiescanbeaccomplishedatreducedcosts.[24,71]

    Thereasonforthis istwofold.

    First,thechemicalconversionprocessesalreadyrequireremovalofCO2fromthesyngas.

    Second, the higher partial pressure of the CO2 makes precombustion capture using

    physical solvents possible. This lowers the energy requirements for the CO2 capture and

    subsequent compression. By combining gasification and CCS it is possible to drastically

    reduce global CO2 emissions without drastic changes to the current infrastructure.Furthermore, cofeeding biomass allows the production and use of liquid hydrocarbon

    transportation fuels with no net CO2 emissions.[22,72]

    At large biomass fractions even net

    negativeCO2emissionscanbeachieved.

    Anattractivefeatureofgasificationis itspotentialflexibility.Especiallythefollowingtwo

    combinations of flexible integrated gasification polygeneration (IGPG) facilities are

    interesting:

    (1) Coal substitution by biomass can facilitate the use of biomass as feedstockwithoutbeingdependentonaconstantbiomasssupply.

    Coal

    Biomass

    Heavyoil

    Gas

    Electricity

    Hydrogen

    FTliquids

    Methanol

    Urea

    Syngas

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    30/312

    Chapter2

    30

    (2) Chemicalplantsproducingmidloadelectricitycanreducetheneedofdedicatednatural gas fired midload power plants. Midload plants are operated when

    electricitydemandexceedsthebase load.As intermittentrenewableselectricity

    generation capacity is everincreasing, midload power plants will increasingly

    havetoactasbackuppowerplantsfortheseintermittentrenewables.ThismaycreateopportunitiesforflexiblelargescaleIGPGfacilities.

    Multifeedstock polygeneration (XtY)3 system integration has seen a lot of attention in

    literature. A brief overview of studies highlighting results relevant for this study is given

    below.

    2.1.1 GeneralCummerandBrown investigated themajorancillary components, i.e. pretreatmentand

    gas cleaning, in integrated gasification combined cycle (IGCC) facilities.[73]

    They

    investigated whether components specifically designed for coal could also handle

    biomass. They also determined the stage of development of ancillary equipment forbiomass fired IGCC. Their conclusion is that most of the ancillary equipment is not yet

    commerciallyavailable.

    2.1.1.1 Electricity productionElectricity production using coalfired IGCC combined with CCS has received quite some

    attention. A recent study by NETL indicates that, based on stateoftheart (SOTA) Shell

    gasificationtechnology,a636MWeIGCCcanachieveanoverallefficiencyof41%HHV,while

    emitting750kgCO2/MWh.EquippedwithCO2capture,plantefficiencywouldatpresent

    dropto32%HHVandCO2emissionsto90kgCO2/MWh.[74]

    Similarvaluesarepresentedby

    the IEAGHG with 40%HHV efficiency for Shell IGCC without CO2 capture and 32%HHV with

    CO2capture.[49,50]

    2.1.1.2 Fischer-Tropsch fuels productionAlthough there is some variation in final efficiency among the literature, reported XtL

    conversion efficiencies lay between 46%HHV and 56%HHV. Boerrigter calculated an overall

    conversion efficiency of 56%HHV for a noncapture CtL facility.[75]

    Larson et al., calculated

    an overall conversion efficiency for a noncapture CtL facility of 49%HHV (33% FT + 17%

    power). Introducing CO2 capture and compression lowers the power output by 3%pt.

    Converting a mixture of switch grass and coal to FTliquids with CO2 capture could be

    performed with an overall conversion efficiency of 47%HHV.[76]

    This efficiency was

    confirmedbyastudyofHamelincketal.TheycalculatedthatbiomasscanbeconvertedtoFTliquidswithCO2captureat46%HHVefficiency(33%FT+13%power).

    [77]

    2.1.1.3 Methanol productionA CtM studybased onthe liquid phase methanol (LPMeOH

    TM) demonstration process at

    the Eastman Chemical Company in Kingsport was performed by Heydorn and Diamond

    3 Facilities or systems where feedstocks are gasified and converted into products are

    referred to as XtY systems. The X is often substituted if a specific feedstock is used:

    biomass(BtY),torrefiedbiomass(TtY)orcoal(CtY).TheYisoftensubstitutedifaspecific

    outputisproduced:electricity(XtP),FTliquids(XtL),methanol(XtM)orurea(XtU).

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    31/312

    Performanceoffacilities.PartA:Atechnicalenergeticassessment

    31

    showing a CtM efficiency of 60%HHV assuming a gasification efficiency of 80%HHV and a

    syngasenergytoelectricityefficiencyof40%HHV.[78]

    TwodifferentCtMconfigurationswere

    analysed by Larson and Tingjin.[79]

    They calculated an efficiency of 47%HHV for

    oncethroughand63%HHVforsyngasrecycle.ABtMefficiencywascalculatedbyWilliams

    et al., at 61%HHV.

    [80]

    Hamelinck and Faaij calculated a BtM efficiency of 51%HHV using afluidisedbedsystem.[81]

    2.1.1.4 Urea productionUreasynthesisviagasificationhasreceived little interest in open literature.Neelisetal.,

    found an energy consumption of 21 GJLHV/t urea, resulting in a CtU energy conversion

    efficiencyof44%LHV.[82]

    2.1.2 ObjectivesAll these studies do not investigate variation in feedstock or production during the

    operationofthefacility.ArecentstudyfromIEAGHGhasmadeafirstassessmentofthe

    flexibility between hydrogen and electricity production, but only at two different

    production ratios.[49]

    To our knowledge that is the only study which investigated the

    possibilities of flexible IGPGfacilities andthe impact offlexibility on overallefficiencies.

    Thisstudyaimstofillthisgap.Theobjectivesofthisstudyaretherefore:

    First,to identify which bottlenecks occurwhen altering feedstock or productionandhowthesebottleneckscanberesolved;

    Second,toanalysesystembehaviourandchangesintheoverallefficiencyandintheenergy,massandcarbonbalanceswhenalteringfeedstockorproduction;

    Third, to analyse the effect of flexibility on the CO2 balance and emissions andcomparethebalanceandemissionswiththosefromdedicatedXtYfacilities.

    In this study the focus is on the performance of SOTA commercial technologies relevant

    for XtY systems. To study these systems, an AspenPlus flowsheet process model of a

    flexibleIGPGfacilitywasbuildtogenerateenergyandmassbalancesfordifferentIGPG

    facilities.Toallowaccuratemodelling,dataonthetechnicalbottlenecksasminimal load

    constraintsandpartloadbehaviourofthevariouscomponentswerecollected.

    Thestructureof this article is asfollows: Section 2describes the commodities, including

    the different feedstock characteristics. In Section 3 the different components, including

    feedstock pretreatment, syngas cleaning and syngas conversion, and their operating

    conditions are described. Section 4 gives the process model and plant configurations. In

    Section 5 the case studies are defined. Section 6 gives the simulation results, including

    overallperformanceandtheeffectofflexibilityonoverallIGPGperformance.InSection7

    a discussion of the results and used assumptions is given. Finally, Section 8 contains the

    conclusions.

    In this study, units are in SIunits and heating values are in higher heating value (HHV),

    unlessstatedotherwise.

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    32/312

    Chapter2

    32

    2.2 Commodities2.2.1 FeedstocksFor this study three representative solid carboncontaining feedstocks were selected.

    Eucalyptuspellets(EP),torrefiedwoodpellets(TOPS)andIllinois#6coal.Theirpropertiesare given in Table 2.1. Short rotation trees, of which Eucalyptus is one of them, is a

    potentiallyimportantbiomasssource.[83,84,85]

    Thebiomassisdirectlypelletisedortorrefied

    andthenpelletisedasthisdrasticallyimprovesbiomassproperties,likeheatingvalueand

    moisture content (Table 2.2). This results, among others, to a more efficient

    transportation and handling of the biomass.[22,84,86,87]

    Illinois #6 coal is a Bituminous coal

    typeoftenusedinandcommonlyusedasreferencecoal.[74,79,88,89]

    Table2.1Feedstockparametersusedinthisstudy.

    Composition Unit(1)

    EP[90]

    TOPS[90]

    Il#6coal[74]

    Heatingvalue MJHHV/kga.r. 17.29 20.51 27.14Moisture wt%a.r. 10.00 5.00 11.12

    VolatileMatter wt%dry 86.60 75.90 44.50

    FixedCarbon wt%dry 12.83 24.10 44.59

    Ash wt%dry 0.50 1.34 10.91

    C wt%d.a.f. 49.77 54.63 80.50

    H wt%d.a.f. 5.80 5.67 5.68

    O wt%d.a.f. 44.20 39.45 8.70

    N wt%d.a.f. 0.14 0.22 1.58

    S wt%d.a.f. 0.03 0.02 3.17

    Cl wt%d.a.f. 0.06 0.01 0.37

    (1) The composition is on as received (a.r.), moisture free (dry) or moisture and ash free (d.a.f.)

    basis.

    2.2.2 End-productsSyngas can be converted into a wide variety of endproducts. The main endproducts

    evaluated in this study are electricity, FTliquids, methanol and urea. An important

    intermediateproductishydrogen.

    2.2.3 By-products

    TwoimportantbyproductsofXtYfacilitiesareslagandelementalsulphur.Slagisaninertglasslike material consisting mainly of minerals. It is formed as the ash in the feedstock

    meltsand issubsequentlyquenched.Slag is,amongothers,usedasconcreteadditiveor

    road surface coating compound.[91]

    The amount and quality of the slag depends on the

    used feedstock. Coal generally produces more slag than woody biomass. Almost all

    sulphur inthefeedstock isrecoveredaselementalsulphur.Itisused inawidevarietyof

    processes, including vulcanisation, bleaching and the production of fertilizers and

    viscose.[92]

    Coalgenerallycontainsmoresulphurthanbiomass.

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    33/312

    Performanceoffacilities.PartA:Atechnicalenergeticassessment

    33

    2.3 ProcessdescriptionIn this section a technical description and partload performance of the different

    components used in a flexible IGPG facility is presented. For all components only

    commercial available technologies were investigated. The key processesare displayed in

    Figure2.2.

    Figure2.2SimplifiedprocesslayoutofaflexibleIGPGfacilityusingSOTAcommerciallyavailable

    technology.Waste,heatandrecyclestreamsarenotdisplayed.

    2.3.1 PlantflexibilityA flexible IGPG facility must be designed to cope with alterations in feedstock, syngas

    flowandheatstreams.Amongothers, itmustbeabletoadjusttheH2:COratio.Physical

    limitationsrestricttheflexibilityoftheconversionprocesses.Forexample,separatorsare

    usually unable to operate properly below 40% volume load.[93,94]

    Also, gas turbines havedifficulties maintaining the desired flue gas exit temperature below this load.

    [95] In the

    subsequent paragraphs the load restrictions and partload behaviour of the various

    componentsarediscussed.

    2.3.2 Pre-treatmentThe gasifier has several minimal requirements concerning the feedstock (see 2.3.5). To

    fulfil these requirements, the feedstock, especially biomass, needs pretreatment, like

    pelletisingandtorrefactioncombinedwithpelletising.Theeffectsofthesetechniquesare

    giveninTable2.2.Forcomparisontheaveragecoalcharacteristicsarealsogiven.

    The pretreatment can be performed at the harvesting, central gathering or factory

    location.[22,86]

    Itcanalsobedividedovertheselocations.Inthisstudyitwasassumedthat

    thebiomassisalreadytorrefiedorpelletisedwhenarrivingattheIGPGfacility.Themost

    importantpretreatmenttechniquesaredescribedbelow.

    Prepared

    feedstock

    ASU

    GasifierGas

    Cleanup

    Power

    production

    FTliquids

    production

    H2production

    AGR

    MeOH

    production

    Urea

    production

    CO2compression

    Claus/

    SCOT

    FTfuel

    MeOH

    Urea

    LiquidS

    H2

    O2

    O2

    N2

    CO2

    H2S

    ScompoundsCO2

    Sweet

    WGSSour

    WGS

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    34/312

    Chapter2

    34

    Table2.2Overviewofchemicalpropertiesofdifferentfueltypes.

    PropertyIl.#6coal

    79

    (Bituminous)

    Fresh

    Wood[90]

    Wood

    pellets[96]

    TOPS

    [97]

    Heatingvalue(MJHHV/kga.r.) 27 1011 1820 2024

    Massdensityofbulkmaterial(kg/m3) 600 350 500650 850

    Energydensityofbulkmaterial(GJ/m3) 1617[97] 34 913 1721

    Moisturecontent(wt%) 11 50 610 15

    C/Hratio(wt)1

    1316 ~8 ~8 91087

    C/Oratio(wt)2

    710 1 1 1287

    Flammability3

    o ++ +++ ++98

    Hydrophobicity + +

    (1) GasifyingafeedstockwithahigherC/HratioresultsinmoreCOandlessH2.

    (2) AlowerC/Oratioresultsinalowerheatingvalue(HHV)ofthefuel.Inagasifieritalsoresultsin

    lowerexternalO2consumption.

    (3) Theflammabilityofcoalwassetonaverage.Woodiseasiertocombust,butitshighmoisture

    contentlowersflammabilityslightly.Duringpelletisation,thismoistureisremoved.TOPShasa

    lowmoisturecontent,butduringthetorrefactionprocessitlostmostofitsvolatilecompounds,therebyloweringitsflammability.

    2.3.2.1 TorrefactionTorrefaction transforms biomass into a brittle, moisturepoor, hydrophobic solid with an

    increased energy density compared to the original biomass.[86,99]

    In short: the biomass

    becomes more coallike. Another benefit is better storage properties as deterioration is

    muchslowerthanrawbiomass.Thetorrefactionprocessconsistsoffourstages:heating,

    drying,torrefactionandcooling.Duringthetorrefactionstage,thebiomassisheatedina

    moving bed reactor to 200300C for several minutes. H2O, CO2 and other volatile

    compounds evaporate, resulting in an increased C/O ratio of the solid product. Besides

    thissolid,alowcaloricgasisproduced.Onaverage,thebiomasswilllose30%ofitsmass

    and 510% of its energy, depending on the biomass used and the original moisture

    content.Thelowcaloricgasiscombustedandusedasheatingsource.Additionalbiomass

    is combusted to supply the remaining heat demand, resulting in an almost completely

    selfsufficientsystem.[86,99]

    Torrefactionisabatchprocessrequiringstoragewhenapplied

    inacontinuousprocess,suchasanIGPGfacility.Storagealsofitstopartloadoperation

    of the facility. The torrefaction process is operated at full load, regardless of the IGPG

    facility load. When the storage bins are filled, the torrefaction process is shutdown. It is

    restartedwhenthefeedstockinthestoragebinscomesbelowacertainthresholdvalue.

    2.3.2.2 PelletisingPelletising increases the energy density of biomass feedstocks. This, among others,

    reduces transportation costs. During pelletising the biomass is highly compressed. If the

    biomass is torrefied, pelletising is mandatory except if the torrefied product is used

    immediately. When using raw biomass, the pelletising process consists of four stages:

    dryingandgrinding,steamconditioning(tosoftenthefibres),pressurisationandcooling.

    Topreventpelletdisintegration,glueisneeded.Whenpelletisingat150Cthelignininthe

    biomass which softens above 100C is used as glue.[86]

    The energy density of the

    biomassincreasesbyaboutafactorof2(Table2.2).Electricityconsumptionofpelletising

    is90160MJe/tinput.[86]

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    35/312

    Performanceoffacilities.PartA:Atechnicalenergeticassessment

    35

    Combiningtorrefactionwithpelletisingresultsinafactor3increaseinbulkenergydensity

    comparedtorawbiomass(Table2.2)andahalvingoftheelectricityconsumptionofthe

    pelletising process. It isbest topelletisethe biomassdirectly after the torrefaction step.

    This reduces the pelletising process to pressurisation and cooling only. Like torrefaction,

    pelletisingisabatchprocess.Therefore,thesamepartloadbehaviourapplies.

    2.3.2.3 SizingSizing reduces the particle size of solid feedstocks, making transporting and feeding the

    feedstock more efficient and easier. It also improves drying, torrefaction and pelletising.

    ShellEFgasifiers demand particles smallerthan 0.1 mm for coaland smaller than 1mm

    forbiomass.Biomassparticlescanbelargerastheyaremorereactivethancoal.[100]

    Hard

    brittlefeedstocks(TOPS,coal)aregroundusingcrushers.Morefibrousfeedstocks(rawor

    pelletisedbiomass)aregroundusingahammermill.Grindingbiomassto1mmandcoalto

    0.1mmrequiresanenergyconsumptionof0.010.02kWe/kWth grindingbiomassto0.1

    mm would require 0.08 kWe/kWth.[100]

    Sizing has good partload behaviour. By reducing

    the speed of the conveyer belt and the sizing equipment, partload operation can be

    achievedwithoutlowerefficiencies.

    2.3.2.4 DryingThehighmoisturecontentinrawbiomassmakesitunsuitableforgasification freshwood

    hasatypicalmoisturecontentofaround50wt%.[90]

    Dryingispreferredbeforepelletising

    or long distance transport. Active drying of biomass below 10 wt% moisture is not

    practical as drying efficiency drops dramatically below that value.[101]

    Heat demand

    depends among others on initial and final moisture content, particle size and

    hydrophobicity of the feedstock. This heat can be supplied by waste heat of other

    processes.Dryinghasgoodpartloadbehaviour.Justlikesizingthespeedoftheconveyerbeltandtheamountofheataddedtothefeedstockcanbereduced.Inthisstudythecoal

    was dried to 2.5 wt% using waste heat of the IGPG facility. Biomass did not receive

    furtherdryingasitsmoisturecontentwasalreadybelow10wt%.

    2.3.3 PressurisingandfeedingPrevious research indicated that pressurised gasifiers have significant advantages over

    atmospheric gasifiers. The most important advantages are smaller downstream

    equipmentandhavingagasstreamatelevatedpressure.[77]

    Asmostchemicalconversion

    processes and the gas turbine operate at higher pressure, the latter advantage

    significantly lowers compression requirements. However, using pressurised gasifiers alsorequires pressurised feeding. For solid feedstocks, the pressurising and feeding systems

    dependontheparticledensityandsize.Coal isusuallyfedbya lockhoppersystemwith

    pneumaticfeed.Fresh(orpelletised)biomassneedsadifferentfeedingsystemasitistoo

    fibrous. This can lead to blockage of the lockhopper feeding system. Due to the larger

    particle size of biomass, a hydraulic piston system with screw feeding can be used. The

    torrefaction process destroys the fibres, allowing TOPS to use both feeding systems.

    However,screwfeedingismoreefficientthanpneumaticfeeding.[100]

    Asbothsystemsare

    batch systems, they are equipped with pressurised storage bins, allowing homogeneous

    and continuous feeding. As pressurising agent, CO2 was used. Energy consumption

    dependsontheusedprocessandisneededforCO2compressionandthehydraulicpiston

  • 7/29/2019 20120904 150120 Proefschrift Meerman

    36/312

    Chapter2

    36

    feedersystem.Inthisstudyseparatefeedingsystemforthebiomassandcoalwereused.

    Partloadoperationonlyaffectsthefrequencyatwhichthestoragebinsarerefilled.The

    effectoffeedingthedifferentfeedstocksisgiveninTable2.3.[100]

    Table2.3Feedstockpressurisationcharacteristics.[100]

    Il.#6coal(1)

    TOPS(1)

    EP(1)

    CO2consumption Nm3

    CO2/tfeedstock 3.7 0.2 0.2

    ofwhich:togasifier 2.1 0.1 0.1

    toatmosphere 1.6 0.1 0.1

    Electricalconsumption kWh/tfeedstock 46.7 42.5 42.5

    (1) Basedonalockhoppersystemwithpneumaticfeedingforcoalandahydraulicpistonsystem

    withscrewfeedingforbiomass.

    2.3.4 Airseparationunit(ASU)The use of pure oxygen (95%) instead of air leads to a lower syngas volume and higher

    syngas energy density. There are three different air separation techniques available toextractoxygenfromair:(vacuum)pressureswingadsorption,membraneseparation,and

    cryogenicseparation.[102]

    Largescalemembraneseparationshowshighpotentialbutisstill

    in the demonstration phase. Of the other options, cryogenic separation is currently the

    most economical option when high purity (>95%) and throughput (>2.5 t/h) are

    required.[103,104]

    Energy savings can be accomplished by integrating the ASU with thegas

    turbine. An integrated ASU receives (part of) its air already partly compressed from the

    gas turbine. Although this increases efficiency, plant flexibility and reliab