1 (Schomaker, Segers, Vuurpijl, Mackowiak, 1996) Alge bra.

Post on 15-Jan-2016

215 views 0 download

Transcript of 1 (Schomaker, Segers, Vuurpijl, Mackowiak, 1996) Alge bra.

1(Schomaker, Segers, Vuurpijl, Mackowiak, 1996)

Algebra

2

image million

3

million processed

4

Regelmatigheden

+regulariteiten

5

Regelmatigheden

Singulariteiten

+singulariteiten

6

"million" ==> convex:concave:3(north:concave) :(north:LOOP):concave:(north:LOOP) :concave:north :concave:HOLE :2(convex:concave)

(J.-C. Simon, 1989)

JC-Simon

7

menselijk lezen

8(Vuurpijl & Schomaker, 1997)

allografen “t”

9

All x with feature F1, F2 and not F3, F4, …

{ x : has(x,F1) & has(x,F2) & ¬ has(x, F3) & ¬ has(x,F4)…}

kenmerkenlogica

10

Stroke definition

(Teulings, Maarse, Thomassen, van Galen, Hulstijn, Schomaker e.v.a.)

Halendefinitie

11

Newton handtekeningen

12

Ne

wton tijdschatting

100 ms per stroke,alsoforIsaac Newton

13(Morasso, Schomaker, 1990-1993)

KohSom

Kohonen SOM of strokes

14(Schomaker, 1993)

+ woordtraject

Probabilistic Stroke-Transition Network

15

Sensory input

16

F1

F2

high-dimensionalsensory representation

low-dimensionalfeature representation

Kenmerk

en

17

F1

F2

aud 2kenmerken

F1 = angle phiF2 = distance r

18

Prob / Cost

Patterns

? = a, u or d?

19

Prob / Cost

Patterns

Symbols: ( a | u | d)

20

Prob / Cost

Patterns

geometry

logicSymbols: ( a | u | d)

21

F1 = Phi

F2 = r

22

F1 = phi

F2 = r

au

d