Van der Waals-Zeeman Institute, University of Amsterdam “Twee halen - een betalen” Si...
-
Author
damian-passon -
Category
Documents
-
view
220 -
download
2
Embed Size (px)
Transcript of Van der Waals-Zeeman Institute, University of Amsterdam “Twee halen - een betalen” Si...

Van der Waals-Zeeman Institute, University of Amsterdam
“Twee halen - een betalen”
Si nano-photovoltaics
Tom Gregorkiewicz

Preferred solutions for energy• Use processes occurring in nature
- do not produce “new” components(nuclear waste, CFC, …)
- CO2, CO, SO2 do occur in nature but in small quantities (e.g. burning of wood)
• The scale needs to be “small” (best negligible) when compared to those occurring naturally
Absorption of solar energy is a natural process
PV “shapes” this natural process in the way useful to men, using only a (very)
small partVan der Waals-Zeeman Institute, University of Amsterdam

Calibrating the energy needs
Daily food consumption:2000 cal/day 100 W ~ 1 kW
Solar power: 120.000 TW
~0.02% of the total is enough to power our civilization!
2 kW pp 13 TW (2010) 28 TW (2050)
Van der Waals-Zeeman Institute, University of Amsterdam

– light low/high temperature heat
– light electricity
Main solar energy conversion options
Van der Waals-Zeeman Institute, University of Amsterdam

– light low/high temperature heat
– light electricity
– light chemical energy
(solar fuels, art. photosynthesis)
Main solar energy conversion options
Van der Waals-Zeeman Institute, University of Amsterdam

Jimmy Carter at SERI (now NREL) May 5, 1978
Oil crisis of the 1970’sDon’t worry Mr.
President, solar will be economical in 5
years!
I can’t believe he said that.
Van der Waals-Zeeman Institute, University of Amsterdam

“Global warming” crisis
Barack Obama at Nellis AFB May 2009Van der Waals-Zeeman Institute, University of Amsterdam

Van der Waals-Zeeman Institute, University of Amsterdam

Van der Waals-Zeeman Institute, University of Amsterdam

Solar electricity solutions
• Indirect conversion: light-high T heat-electricitySolar thermal energy: photons-to-phonons-to-electrons
- without energy storage- with energy storage
Van der Waals-Zeeman Institute, University of Amsterdam

Solar thermal power
Van der Waals-Zeeman Institute, University of Amsterdam

Solar thermal power
Van der Waals-Zeeman Institute, University of Amsterdam

Solar electricity solutions
• Indirect conversion: light-high T heat-electricitySolar thermal energy: photons-to-phonons-to-electrons
- without energy storage- with energy storage
• Direct conversion: light-to-electricityPhotovoltaics: photons-to-electrons
- without light concentration- with light concentration
Van der Waals-Zeeman Institute, University of Amsterdam

Van der Waals-Zeeman Institute, University of Amsterdam
load
topmetal
contact
bottommetal
contact
activematerial
(with asymmetryfor charges)
mobile negative chargemobile positive charge
Photovoltaic cell
Courtesy W. Sinke, ECN

Researchers at Bell Labs, N.J. (USA)1953, first photovoltaic solar cells based on silicon( 5%)
In 1954, the U.S. News & World Report wrote :…..one day such silicon strips……“may provide more
power than all the world’s coal, oil and uranium”
PV history
Van der Waals-Zeeman Institute, University of Amsterdam

17th March 1958: The Vanguard 1 satellite with solar panels - 0.1 watt peak power – is put onto orbit
PV history
Van der Waals-Zeeman Institute, University of Amsterdam

Van der Waals-Zeeman Institute, University of Amsterdam

Van der Waals-Zeeman Institute, University of Amsterdam
Polycrystalline silicon – a cheap & easy-to-make alternative

Van der Waals-Zeeman Institute, University of Amsterdam

PV application limits?
Van der Waals-Zeeman Institute, University of Amsterdam

Source: PhotonInternational
March 2010
Van der Waals-Zeeman Institute, University of Amsterdam

Thin film
1979
2009
wafer Si
silicon feedstockshortage
2007
2009
22% price decrease for everydoubling of cumulative production
Source: EPIA, October 2009
Price development
Van der Waals-Zeeman Institute, University of Amsterdam

• Over 90% of today’s PV modules are based on Crystalline Silicon
• Excellent performance modules: ~20% lab: up to ~25%
Current status PV
Van der Waals-Zeeman Institute, University of Amsterdam

Silicon for PV

• indirect bandgap• low emission/absorption rates (at low energies)
Van der Waals-Zeeman Institute, University of Amsterdam
Silicon and light

gap energy
heat generation
recombination
light
X
X
X
PV conversion – basic concept
Van der Waals-Zeeman Institute, University of Amsterdam

wavelength [nm]
1.6
1.2
0.8
0.4
400 800 1200 1600 2000 24000.0
available for conversion in crystalline Si
infraredvisibleUV
solar spectrum (Air Mass 1,5; 1000 W/m2)
po
we
r [W
/(m
2 .n
m)]
1100 nm 1.1 eV = Si bandgap
courtesy John Schermer, KUN
X
X
PV conversion loses
Van der Waals-Zeeman Institute, University of Amsterdam

Shockley-Queisser limit
Conversion efficiency maximum for single junction PV cell with Egap=1.1 eV (≈ 31 %)
Van der Waals-Zeeman Institute, University of Amsterdam

• Optimal bandgap energy • Abundant • Mechanically strong • High mobilities possible
Si for photovoltaics
Van der Waals-Zeeman Institute, University of Amsterdam

• Manipulate band-structure• Light management:
– waveguiding, cloaking, multiple reflection, dispersing
• Si nanowires• Si nanocrystals• Quantum cutting and pasting
“Smart” solutions for Si PV
Van der Waals-Zeeman Institute, University of Amsterdam
TGG
TGG
TGG

Si nanocrystals

Nanocrystals (NCs)
• Bandstructure modification induced by quantum confinement
• Bands → quantized energy levels• Relaxation of k-vector conservation for indirect
bandgap• Tuning optical properties
Silicon
4.3 nm
SiNC

Paillard et al., Tolouse
Si Nanocrystals in SiO2
Van der Waals-Zeeman Institute, University of Amsterdam

VB
CB
PL
SiNC
Van der Waals-Zeeman Institute, University of Amsterdam
Si NC photoluminescence

VB
CB
PL
SiNC
Van der Waals-Zeeman Institute, University of Amsterdam
Si NC photoluminescence

SiNC
Van der Waals-Zeeman Institute, University of Amsterdam
Si NC photoluminescence

VB
CB
PL
SiNC
Auger
Van der Waals-Zeeman Institute, University of Amsterdam
Si NC photoluminescence

Si NC PL saturation
Van der Waals-Zeeman Institute, University of Amsterdam

• photon convertors:size-tunable energy
• photon limitersonly one photon out
Van der Waals-Zeeman Institute, University of Amsterdam
Si nanocrystals
Hot electrons are not used!

Using “hot electrons”: Cutting
and emitting photons with Si-NCs

PL from SiNCs in SiO2
Van der Waals-Zeeman Institute, University of Amsterdam

λexc = 323 nmf = 3.8 MHz
MCMPMT
• 370 ≤ λdet ≤ 700 nm• τresolution ~25 ps
~2 psPL
O-related PL
Hot PL
Excitonic recombination
~μs~nsτ1 ≈ 25 psτ2 ≈ 100 ps
PL from SiNCs d=4.5 nm

Hot PL for all the samples
Van der Waals-Zeeman Institute, University of Amsterdam

3.32 eV 1.17 eV
Direct
Indirect
Si Nanocrystal
Theoretical model
Van der Waals-Zeeman Institute, University of Amsterdam

Pulsed vs. semi-cw excitation
1 – 10 ps
~μsNIR
~ns420 nm
Pulsed~2 ps
~5 ns
10 – 100 ps
Semi-cw
~μsNIR
~ns420 nm
Auger
cooling
<Nexc><1
<Nexc>>1

“hot” PL in Si NC 1000 stronger than in bulk Si
hot PL
s-PL≈ 5 hot PL
s-PL≈ 1
W.D.A.M. de Boer et al. Nature Nanotechnology 2010
Relative efficiency
enhanced emission and absorption in the visible
Van der Waals-Zeeman Institute, University of Amsterdam

Cutting photonswith Si NCs

Solid state sample: SiO2:Si-NCs
Colloidal sample: SiNCs in ethanol
• HF chemical etching: po-Si • suspended in ethanol
Experimental setup
Absolute QE of Si-NCs PL
Van der Waals-Zeeman Institute, University of Amsterdam

Q.E. for different wavelengths in visible and near UV
η is constant up to a photon energy
threshold of Ethreshold ≈ 2Egap
For larger photon energies a second excitation mechanism takes place
Definition relative quantum efficiency:
η =Nem
Nabs
Relative quantum efficiency
Van der Waals-Zeeman Institute, University of Amsterdam

Multi-excitongeneration
(MEG)
Space-separated quantum cutting
(SSQC)
Eexc ≥ 2Egap
Quantum cutting with Si-NCs
D. Timmerman et al., Nature Photonics (2008)

SSQC with SiNCs in SiO2
Eexc >2Egap
1 in → 2 out
Van der Waals-Zeeman Institute, University of Amsterdam

Quantum cutting with Si-NCs
QE is constant up to photon energy threshold of hν ≈ 2Eg
~100 % increase of initial value
Step-like behavior
Two types of Si-NC samples: Si-NCs in SiO2
po-Si in EtOh
In two different calibrated QE setups
Van der Waals-Zeeman Institute, University of Amsterdam

Shockley-Queisser limit
Conversion efficiency up to 44%!!!

D. Timmerman et al., under review Nature Materials
PV impact
Van der Waals-Zeeman Institute, University of Amsterdam

• XXIst century will begin“(Si) Solar Energy Age”
• Reaching ultimate PV cost and performance levels at sufficient sustainability critically depends on (Si) materials development
Conclusion
“you have seen nothing yet”
Van der Waals-Zeeman Institute, University of Amsterdam

TGG at WZI, UvA
Van der Waals-Zeeman Institute - UvA
