The a-Si:H/c-Si interface - key for high efficiency heterojunction

31
The a-Si:H/c-Si interface - key for high efficiency heterojunction cells Lars Korte , Erhard Conrad, Heike Angermann, Rolf Stangl, Tim Schulze, Manfred Schmidt Weierstraß-Institut Berlin, 24. November 2008

Transcript of The a-Si:H/c-Si interface - key for high efficiency heterojunction

Page 1: The a-Si:H/c-Si interface - key for high efficiency heterojunction

The a-Si:H/c-Si interface -key for high efficiency heterojunction cellsLars Korte, Erhard Conrad, Heike Angermann, Rolf Stangl, Tim Schulze,Manfred Schmidt

Weierstraß-Institut Berlin, 24. November 2008

Page 2: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

2

Outline• a-Si:H/c-Si heterojunction solar cells• impact of the heterointerface: passivation and transport• experimental results:

– “soft deposition” of a-Si:H, initial growth on c-Si– optimization of a-Si:H:

• optimum emitter thickness• measuring the density of states in <10 nm a-Si:H• optimum doping

– a-Si:H/c-Si band offsets• (older) cell results & summary

Page 3: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

3

The a-Si:H/c-Si solar cell

a-Si:H(n), ~ 10 nm

c-Si(p) (~300 µm)

Al grid

a-Si:H(p+), ~ 20-30 nmAl

sputtering/e-beam

PE/HW-CVD

back surface field

front contact

back contact

TCO

base(absorber)

emitter

PE/HW-CVDsputtering

function deposition by

ZnO:Al, 80 nm

a-Si:H(i), < 10 nm PE/HW-CVD

PE/HW-CVDa-Si:H(i), < 10 nm

Page 4: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

Progress in a-Si:H/c-Si cell efficiency(incomplete) list of R&D on a-Si:H/c-Si cellsJapan

Sanyo:• (p,i)aSi on (n)cSi (22.3%)• production: 100cm2, 19.5%, 350MWp in ‘08

USNREL: p/i on n-type, 18.2%, HW-CVDUDEL: rear contacted cell, w/ SunPower

AustraliaUNSW: p/i on n-type, 17.6% (EPVSEC 22)

EuropeHZB (D):

• n on p-type, 18.4%, and• p on n-type, 19.8%, no i-layer

CEA-INES (F): n, (i)pmSi on p, 16.8%, 25cm2

U Neuchâtel (CH): n,i on p, VHF-PECVDothers:

CNRS (F), ENEA (I), IMEC (B),U Utrecht (NL), IPE (D), FUH (D), ...

1996 1998 2000 2002 2004 2006 20086

8

10

12

14

16

18

20

22

cell

effic

ienc

y [%

]

year

p/n n/p Sanyo R&D Sanyo Production

NREL R&D HMI R&D

Others (Europe)

Korte et al., 22nd EPVSEC, Milan (2007) p. 859

Page 5: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

Impact of the heterointerface: Recombination and transport

5

a-Si:H(n/p)

c-Si(p/n)

metallization

ZnO

a-Si:H(p+/n+)

back contacta-Si:H(n)

Ev

EF

EC

10nm

band scheme

+

-

-

+

c-Si(p)

transport

passivation

Tasks: • minimize recombination losses at/near a-Si:H/c-Si interface• maximize efficiency of charge carrier transport over heterointerface

Page 6: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

simulation using AFORS-HET

• strong influence of interface recombination at front (and rear) side• Dit <1010cm-2eV-1 → IF recombination plays no role in cell

1010 1011 101216

18

20

2237

38

39600

640

680

η

η [%

]Dit [cm-2 eV-1]

Isc

I sc[m

A cm

-2]

Voc

[mV]

Voc

a-Si:H(n) c-Si(p)

Ev

EF

EC

~10nm

LD=400µm

parameter:interface state density Dit(E)

influence of interface defects on cell parameters - simulation study

Schmidt et al., 4th IEEE WCPEC (2006) 1433

Page 7: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

7

Outline• a-Si:H/c-Si heterojunction solar cells• impact of the heterointerface: passivation and transport• experimental results:

– “soft deposition” of a-Si:H, initial growth on c-Si– optimization of a-Si:H without intrinsic layer:

• optimum emitter thickness• measuring the density of states in <10 nm a-Si:H• optimum doping

– a-Si:H/c-Si band offsets• (older) cell results & summary

Page 8: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

Maruyama et al., 4th IEEE WCPEC (2006)and also• Taira et al., 22nd EPVSEC (2007),• H. Kanno et al., 23rd EPVSEC (2008),• ...

low damage deposition?- RF-PECVD at low power - VHF-PECVD

at low pressure - hot-wire-CVD- remote plasma - …?

soft deposition of a-Si:H - the Sanyo „mantra“

HZB

8

Page 9: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

Influence of epitaxy at the a-Si:H/c-Si interfacedetrimental effect of epi-growth at the a-Si:H/c-Si interfacereported many times:• E. Centurioni et al., IEEE Trans. El. Devices & 19th EPVSEC, Paris (2004) 1285• T.H. Wang et al., ibd., p. 1269• de Wolf & Kondo, Appl. Phys. Lett. 90 (2007) 042111• ...

usual result: epitaxy up to doped layer → Voc < 600mV

possible explanations:• epitaxy extends through i-layer

→ surface defect passivation by doped a-Si:H:much less effective than (i)a-Si:H

• partial epitaxy/mixed phase (i)a-Si:H→ increased interface area betw. a-Si & c-Si

• poor conditions for epitaxy→ epi highly defective

PECVD @ 230°C on c-Si(100)

de Wolf & Kondo, Appl. Phys. Lett. 90 (2007) 042111

9

Page 10: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

Smoothing and passivation of pyramids

additional complication: random pyramidsurface texture(light trapping)

need optimizedchemical pre-treatment of c-Si wafer

Angermann et al., Proc. 23rd EU-PVSEC 2008, pp. 1422-6

optimized smoothinganisotropic etching

3 µm

0.5 µm

Page 11: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

11

Outline• a-Si:H/c-Si heterojunction solar cells• impact of the heterointerface: passivation and transport• experimental results:

– “soft deposition” of a-Si:H, initial growth on c-Si– optimization of a-Si:H:

• optimum emitter thickness• measuring the density of states in <10 nm a-Si:H• optimum doping

– a-Si:H/c-Si band offsets• (older) cell results & summary

Page 12: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

12

a-Si:H(n/p)

c-Si(p/n)

metallization

ZnO

a-Si:H(p+/n+)

back contacta-Si:H(n)

Ev

EF

EC

10nm

band diagram

c-Si(p)

cell structureoptimum?

Page 13: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

finding the optimal a-Si:H emitter thickness

400 600 800 1000 12000.0

0.2

0.4

0.6

0.8

1.0

5nm a-Si:H(n)

30nm a-Si:H(n)

inte

rnal

yie

ld

λ [nm]

internal quantum efficiency

absorption and recombination in the a-Si:H emitter lead to a decrease in JSCoptimum a-Si:H thickness: 5-10nm – how to analyze its electronic properties?

0 5 10 15 20

28.0

28.5

29.0

29.5

30.0

30.5

31.0

615

620

625

630

635

640

J sc [m

A/cm

2 ]d [nm]

V oc [m

V]

solar cell parameters

Stangl et al., 3rd WCPEC (2003) 4P-A8-45

cell structure: TCO/(n)a-Si:H/(p)c-Si/Al

13

Page 14: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

14

Outline• a-Si:H/c-Si heterojunction solar cells• impact of the heterointerface: passivation and transport• experimental results:

– “soft deposition” of a-Si:H, initial growth on c-Si– optimization of a-Si:H:

• optimum emitter thickness• measuring the density of states in <10 nm a-Si:H• optimum doping

– a-Si:H/c-Si band offsets• (older) cell results & summary

Page 15: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

15

a-Si:H(n/p)

c-Si(p/n)

metallization

ZnO

a-Si:H(p+/n+)

back contacta-Si:H(n)

Ev

EF

EC

10nm

band diagram

c-Si(p)

cell structure

density of defects? EF position?

Page 16: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

Nocc(Ekin,hν)

Constant Final State Yield Photoelectron SpectroscopyEVac

‘classical’ UPS:hν = const.Ekin= var.

energy

hνdensity of states

Ekin

CFSYS:hν = var.Ekin= const.

energy

E'FEF

EF

Sebastiani et al.,PRL 75, 3352 ('95)

EVac

hν1

hν1 E'F,1Nocc(Ekin,hν1)

Ekin

hν2

E'F,2

Nocc(Ekin,hν2)

hν2

we obtain: photoelectron yielddensity of occupied states Nocc(E)Fermi level position EF

low excitation energy (4…7 eV)high electron escape depth (6-10 nm)high excitation cross section (at 4eV: 103 times higher than at 21.2eV!)

16

workfunction

Page 17: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

Nocc(E) = exp. tail (‘strained bonds‘) + Gaussian distribution (‘dangling bonds‘)

Urbach energy E0v integrated density of deep defects ND

density of a-Si:H gap statesnear-UV photoemission (CFSYS mode) → Nocc(E)

1014

1015

1016

1017

1018

1019

1020

1021

1022

Noc

c [cm

-3eV

-1]

1.81.61.41.21.00.80.60.40.20.0-0.2E-EV [eV]

Ce1-1

EF

Nocc (E) strained bonds ('Urbach-tail') dangling bonds

EF

17

Page 18: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

1014

1015

1016

1017

1018

1019

1020

1021

1022

dens

ityof

sta

tes

N(E

) [cm

-3eV

-1]

2.01.51.00.50.0-0.5E-EV [eV]

p-type (1·104 B2H6)intrinsicn-type (2·104 PH3)

EV

a-Si:H(p/i/n)

c-Si(p), <111>, 1Ωcm

10nm (p, i and n)a-Si:H on c-Si, Ts = 200°Cdoping dependence of N(E), EF

18

Page 19: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

n-type doping seriessamples: ~10 nm a-Si:H(n) on c-Si(p), [PH3]/[SiH4] = 0 – 2×104 ppm, Ts=170°C

Korte & Schmidt, J. Non-Cryst. Sol. 354 (2008) 2138

1014

1015

1016

1017

1018

1019

1020

1021

1022D

ensi

tyof

occ

upie

dst

ates

[cm

-3eV

-1]

2.01.51.00.50.0-0.5E-EV[eV]

0 ppm

2·104ppm

EV

EC

a-Si:H(n)c-Si(p), <111>,

1Ωcm

measured using UV-PES

19

Page 20: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

n-type doping seriessamples: ~10 nm a-Si:H(n) on c-Si(p), [PH3]/[SiH4] = 0 – 2×104 ppm, Ts=170°C

optimum doping:[PH3]/[SiH4] = 104 ppm?

no change in band gapwith doping (Eg~1.7eV)

same as for thick films(e.g. V. Chacorn, D. Haneman,

Solid State Comm. 65 (1988) 609)

0.7

0.6

0.5

0.4

0.3

E C -

E F [e

V]

2.52.01.51.00.50.0[PH3]/[SiH4] [x104 ppm]

1.5

1.4

1.3

1.2

1.1

1.0

EF

- EV [e

V]

1.9

1.8

1.7

1.6

1.5

1.4

Eg ≈

EC -

EV [e

V]

CFSYS

dark conductivity

20

Page 21: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

-0.7

-0.6

-0.5

-0.4

eVoc

, eφ 0

[eV

]

2.01.51.00.50.0[PH3]/[SiH4] [104 ppm]

band bending

Voc (solar cells)

optimum doping ~ 2000ppm - higher doping: enhanced recombination?

a-Si:H c-Si

Ev

EF

EC10nm

aSi

EvcSi

eϕ0

∆EV

n-type doping seriessamples: ~10 nm a-Si:H(n) on c-Si(p), [PH3]/[SiH4] = 0 – 2×104 ppm, Ts=170°C

Korte & Schmidt, J. Non-Cryst. Sol. 354 (2008) 213821

Page 22: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

Band bending, Voc and recombination - optimized a-Si:H doping

600

400

200

0

τ ini[µ

s]

2.01.51.00.50.0[PH3]/[SiH4] [104 ppm]

SPV data:A. Laades, PhD Thesis, HMI/TU Berlin

-0.7

-0.5

-0.3

eVoc

, eφ 0

[eV

] calculated band bendingcell Voc

effective charge carrier lifetimeat high injection (from surface photovoltage)

doping > 2000ppm: enhanced recombination reduced charge carrier conc.Voc decreases

and also: hopping into a-Si:H via a-Si:H tail states possible, additional recombination (see also: Boehme et al., J. Non-Cryst. Sol. 352 (2006) 1113)

22

Page 23: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

23

Outline• a-Si:H/c-Si heterojunction solar cells• impact of the heterointerface: passivation and transport• experimental results:

– “soft deposition” of a-Si:H, initial growth on c-Si– optimization of a-Si:H:

• optimum emitter thickness• measuring the density of states in <10 nm a-Si:H• optimum doping

– a-Si:H/c-Si band offsets• (older) cell results & summary

Page 24: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

24

a-Si:H(n/p)

c-Si(p/n)

metallization

ZnO

a-Si:H(p+/n+)

back contacta-Si:H(n)

Ev

EF

EC

10nm

band diagram

c-Si(p)

cell structure

band offset?

Page 25: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

2.0

1.5

1.0

0.5

0.0

Y intC

FSY

S /(hν

R2 ) [x1

022cm

-3eV

-1]

1.51.00.50.0-0.5E-Ev [eV]

1014

1015

1016

1017

1018

1019

1020

1021

1022film thickness da-Si:2.9 nm6.6 nm10.8 nm103.6 nm

EF

c-Si

a-Si:H

ECEV EFz

E

daSi < information depth

photo-electrons from substrate

assumption/model:

example: a-Si:H(i) / c-Si(p)a-Si:H/c-Si valence band offset

25

Page 26: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

fit: sum of a-Si:H- and c-Si spectrum

c-Si(E+∆EV)

a-Si:H(E)

1014

1015

1016

1017

1018

1019

1020

1021

1022

Yin

t/(hν

R2 ) [

w. E

.]

2.01.51.00.50.0-0.5-1.0E-Ev [eV]

-1000

100

Res

id. [

%]

∆Ev

c-Si

a-Si:H

ELEV

EF

z

EEV EL

a-Si:H/c-Si valence band offset

26

Page 27: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

fit results

• mean: ∆EV=0.458(6) eV (systematic error: ~50 meV)• no dependence on substrate- or film doping• (weak) trend: decreasing ∆EV with film thickness - possible explanation: decreasing

Si-H interface dipole, because Si-H bonds are substituted with Si-Si

0.8

0.6

0.4

0.2

0.0

∆ EV

[eV

]

151050da-Si:H [nm]

∆Ev = 0.458(6) eV

i on p (old) i on p, codep. withi on p i on nn on pp on n

a-Si:H/c-Si valence band offset

27

Page 28: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

28

Outline• a-Si:H/c-Si heterojunction solar cells• impact of the heterointerface: passivation and transport• experimental results:

– “soft deposition” of a-Si:H, initial growth on c-Si– optimization of a-Si:H:

• optimum emitter thickness• measuring the density of states in <10 nm a-Si:H• optimum doping

– a-Si:H/c-Si band offsets• cell results & summary

Page 29: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

0 100 200 300 400 500 600 700

5

10

15

20

25

30

35

40

a-Si:H(p)/c-Si(n)

a-Si:H(n)/c-Si(p)Jsc(mA/cm²) 39.26 34.9 Voc(mV) 639.4 629FF(%) 78.9 79η(%) 19.8 17.4

|J| (

mA

/cm

2 )

VOC (mV)

independently confirmed at ISE Freiburg

1 cm²34.9 mA/cm²629 mV17.4 %pyramidsa-Si(n)/c-Si(p)/a-Si(p)

1 cm²39.3 mA/cm²639 mV19.8 %pyramidsa-Si(p)/c-Si(n)/a-Si(n)

Solar cell results

areaJscVocηtexturedoping sequence

front contact

a-Si:H (n+/p+)d≈5-10nm

c-Si (p/n)

TCO - 80 nm

a-Si:H (p+/n+) d≈35nm

back contact

Conrad, Korte et al., EPVSEC21, 2DO.3.5

1 cm²34.9 mA/cm²629 mV17.4 %pyramidsa-Si(n)/c-Si(p)/a-Si(p)

1 cm²39.3 mA/cm²639 mV19.8 %pyramidsa-Si(p)/c-Si(n)/a-Si(n)

areaJscVocηtexturedoping sequence

1 cm²18.4 %pyramids uncertified

29

Page 30: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

Summarya-Si:H growth• growth mode on c-Si: islands – coalescence – thickening• high hydrogen content at a-Si/c-Si interface ↔ enhanced defect density• optimum growth conditions:

• high c-Si surface quality prior to a-Si:H deposition• low plasma damage during growth• low defect density in a-Si:H “bulk”

reduced recombinationa-Si:H/c-Si interface• device simulation: (effective) interface DOS < 1010 cm-2

→ not detrimental to cell parameters• asymmetric band offset: ∆EV ~ 460meV (→ ∆EC ~ 150-200meV)

n-doped a-Si:H emitters• Urbach-Energy and ND increase with doping, comparable to thick films• optimum doping for device ~2000ppm, not at minimum of EF-EC –

trade-off: doping ↔ defect generation

30

Page 31: The a-Si:H/c-Si interface - key for high efficiency heterojunction

Weierstraß-Institut Berlin – 24.11.2008Lars Korte

The a-Si:H/c-Si interface -key for high efficiency heterojunction cells

Thank youPeople

Walther FuhsBernd Rech

Thomas LußkyMatthias Schulz

Aziz LaadesKarsten von Maydell

Andreas SchöpkeKerstin Jacob

Brunhilde RabeDagmar Patzek

BMBF Netzwerk-Projekt Nr. 01SF0012„Grundlagen und Technologie von Solarzellen auf der

Basis von a-Si/c-Si Heterostrukturen“

Funding

EU FP7 project no. 211821“Heterojunction Solar Cells based on a-Si c-Si”

31