Ret Htec2010 Rufus Gary

download Ret Htec2010 Rufus Gary

of 38

Transcript of Ret Htec2010 Rufus Gary

  • 7/29/2019 Ret Htec2010 Rufus Gary

    1/38

    1

    HTEC Mich_13jul10.pptx

    Wayne Hung1, Rufus Lamere2, and Gary SanMiguel3

    1Texas A&M University, College Station, TX

    2Texas State Technical College, Waco, TX3Biomedical Manufacturing Center, Athens, TX

    Present at

    The Fourth Annual HTEC Conference

    Detroit, Michigan

    July 13-15, 2010

    Contact: [email protected]

    BMC

    http://engineering.tamu.edu/
  • 7/29/2019 Ret Htec2010 Rufus Gary

    2/38

    2

    AGENDA

    1) Introduction

    2) Objectives

    3) NSF-RET program4) Investigation

    Cutting fluids

    Micromist Machinability

    5) Summary

    6) Future works

    Acknowledgement

    References

    Impact ofMicromist in CNC

    Machining

    Source: furtech.typepad.com

  • 7/29/2019 Ret Htec2010 Rufus Gary

    3/38

    3Source: (Marksberry and Jawahir, 2008)

    INTRODUCTION

    The cost of cutting fluids is around 17% of the

    machining costs of automotive components.

    1.2 million workers are affected by the chroniceffects produced by cutting fluids.

    OSHA demands tighter control on cutting fluids(cost, maintenance, disposal, emission standards)

    Propose solution: use micromist as minimumquantity lubrication in machining

  • 7/29/2019 Ret Htec2010 Rufus Gary

    4/38

    4

    OBJECTIVES

    1) Characterize micromist

    2) Apply micromist in macro/micro machining3) Identify technical issues

    4) Study economics of micromist

  • 7/29/2019 Ret Htec2010 Rufus Gary

    5/38

    5

    NSF-RET program

    1) Is funded by National Science Foundation

    2) Provides research experience to teachers/instructors from nearby high schools /community

    colleges.

    3) Covers 9 weeks in summer

    4) Must implement to home institutions

  • 7/29/2019 Ret Htec2010 Rufus Gary

    6/38

    6

    NSF-RET program (summer2010)

    Rufus Lamere, Texas State Technical College, Waco, TX

    Gary Miguel, Biomedical Manufacturing Center, Athens, TX

    Wayne Hung, Texas A&M University, College Station, TX

  • 7/29/2019 Ret Htec2010 Rufus Gary

    7/38

    7

    INVESTIGATION: setup

    1) Machines: Haas OM2 CNC micromill, VF1 CNC mill, and SL20 CNC lathe.2) Workpieces:

    Micromachining: 12 mm (1/2 in) square bars of 316L stainless steel, CP

    titanium PEEK plastics, H11 tool steel, 1010 steel, 6061-T6 aluminum.

    Macromachining: 4140 steel bars / plates

    3) Tools

    Micromill: TiN un/coated WC, 100-1016m (0.004-0.040 in)

    Microdrill: Uncoated WC 50-203m (0.002-0.008 in)

    Macromill: TiN un/coated WC Ingersoll APKT102308R-HS insert, 15.8(5/8 in)

    Marcroface: TiN un/coated WC Hertel TNG431 insert

    4) Tool failure criteria: 50 m (0.002 in) flank wear for microtool, 300 m(0.012 in) for macrotool.

  • 7/29/2019 Ret Htec2010 Rufus Gary

    8/38

    8

    INVESTIGATION: setup

    5) Machining parameters: Micromilling: 15-157 m/min (50-520 ft/min),10 m/tooth (0.0004

    in/tooth), 0.35mm (0.014 in) axial depth, 0.56 mm (0.022 in) radial

    depth, climb (down) side milling. Macromilling: 55-102 m/min (183-343 ft/min), 0.043-0.178 mm/tooth

    (0.0017-.0070 in/tooth), 1-2 mm (0.04-0.08 in) axial depth, 4.25-8.5 mm

    (0.017-0.333 in) radial depth, down milling on D2 tool steel.

    Macrofacing: max 44-80 m/min (147-265 ft/min), 0.5 mm (0.020 in)

    depth of cut, 0.1-0.3 mm/rev (0.004-0.006 in/rev) feedrate, constant

    RPM, on 4140 steel.

    6) Cutting fluids: Dry

    Flood cooling: synthetic Blasocut 2000 Universal, 5:1 mixture

    Micromist: UNIST Uni-MAX system, 2210EP oil, 0.022 cc/min.Use withMistbuster500.

  • 7/29/2019 Ret Htec2010 Rufus Gary

    9/38

    9

    INVESTIGATION: setup

    7) Measurement:

    Keyence LK-G82 laser system, 70m beam, 50 kHz sampling

    rate, 0.2 m resolution

    Olympus STM6 measurement microscope, 0.1 m resolution JEOL JSM 6400 scanning electron microscope

    Video tensiometer FTA 188, 001 mN/m accuracy

    8) Computer aided tools

    SolidWorks, FeatureCam, and MasterCam software

    Cosmos finite element software

  • 7/29/2019 Ret Htec2010 Rufus Gary

    10/38

    10

    INVESTIGATION: machines

    3mm (1/8) plug gage @ 10k rpm

    Haas OM2 CNC micromill: 5-axis capability

    50,000 rpm air spindle

    1 m spindle runout 3 m repeatability

    Micromist 2210EP oil, 0.022 cc/min

    30 mm @60 from z axis

    -45 in x-y plane

    x

  • 7/29/2019 Ret Htec2010 Rufus Gary

    11/38

    11

    INVESTIGATION: machines

    Haas VF1 CNC mill: 5-axis capability

    7,500 rpm spindle

    25 m spindle runout 3 m repeatability

    Micromist 2210EP oil, 0.022 cc/min

    25 mm @70 from z axis

    -120 in x-y plane

    x

  • 7/29/2019 Ret Htec2010 Rufus Gary

    12/38

    12

    INVESTIGATION: machines

    Haas SL20 CNC lathe: Live tooling capability

    3,400 rpm spindle

    3 m repeatability

    Micromist 2210EP oil, 0.022 cc/min

    6 mm @150 from y axis

    -60 in x-y plane

    z

    x

  • 7/29/2019 Ret Htec2010 Rufus Gary

    13/38

    13

    MICROMACHINING: tool setting

    Microtool offset using laser sensor

    (b)

    Set up for tool height z-offset

    xz

    y

    (a)

    Set up for edge detection on x-y plane

    x

    yz

  • 7/29/2019 Ret Htec2010 Rufus Gary

    14/38

    14

    MICROMACHINING: tool setting

    Edge detection for tool offsets in x, y directions.

    -3

    -2

    -1

    0

    1

    2

    3

    0 5 10 15 20 25

    Trial Number

    Deviation

    fromM

    ean

    (m)

    Laser on 5/16 inch drill Mechanical edge finder Laser on 1/8 inch plug gage

    (mil)

    0

    -0.1

    0.1

    X, Y settingsdepend on tool

    quality

    A precision pluggage should be

    used

  • 7/29/2019 Ret Htec2010 Rufus Gary

    15/38

    15

    -15

    -10

    -5

    0

    5

    10

    15

    0 10 20 30

    Trial Number

    DeviationFromM

    ean(m) paper & center drill

    paper & 4-insert cutter

    laser & drill on membrane

    MICROMACHINING: tool setting

    Tool height offset in z direction.

    Z offset

    depends on toolgeometry

    Expect a larger

    z offset error

    than x, y offsets

    0.2

    0.4

    -0.2

    -0.4

    0

    (mil)

  • 7/29/2019 Ret Htec2010 Rufus Gary

    16/38

    16

    MACHINING: cutting fluid

    1) Penetrate the boundary layer of arapidly rotating tool,

    2) Adhere to a tool surface despite

    centrifugal force, and

    3) Wet the tool/chip interface to provide

    lubricating/cooling

    For effective cooling/lubricating,cutting fluid must:

  • 7/29/2019 Ret Htec2010 Rufus Gary

    17/38

    17

    xpn = Vf t +M

    ( V0 cos0 - Vf) [1 - e -( /M) t ]

    ypn =M

    V0 sin0 [1 - e -( /M) t ]

    Particle Trajectory

    MACHINING: micromist

  • 7/29/2019 Ret Htec2010 Rufus Gary

    18/38

    18

    3/1

    3

    2/32

    3/1]

    coscos32)cos1(.24[)(

    += K

    V

    P

    V: volume of droplet

    P: diameter of dropletK: 1 for900

    : contact angle

    MACHINING: coolant wetting

  • 7/29/2019 Ret Htec2010 Rufus Gary

    19/38

    19

    MACHINING: micromist

  • 7/29/2019 Ret Htec2010 Rufus Gary

    20/38

    20

    1

    2

    Apparatus for Surface tension measurement1. Needle for delivering liquid droplets

    2. Camera

    MACHINING: micromist

  • 7/29/2019 Ret Htec2010 Rufus Gary

    21/38

    21

    0

    10

    20

    30

    40

    50

    60

    70

    Water CL 1:30 2210 2210EP 2300 HD 2200

    ContactAngle

    ()

    Coolant

    1mm 1mm 1mm 1mm

    316L Stainless Steel

    MACHINING: micromist

  • 7/29/2019 Ret Htec2010 Rufus Gary

    22/38

    22

    0

    10

    20

    30

    40

    50

    60

    70

    Water KM CL2200 CL2210EP CL2300HD CL2210 RL1:15

    ContactAn

    gle()

    Tungsten Carbide

    MACHINING: micromist

  • 7/29/2019 Ret Htec2010 Rufus Gary

    23/38

    23

    22

    6 2

    h rV h

    h

    = +

    34

    3V R=

    V: volume of droplet

    h: height of droplet

    R: radius of airborne dropletr: (D1+D2)/4

    MACHINING: micromist

  • 7/29/2019 Ret Htec2010 Rufus Gary

    24/38

    24

    0

    2

    4

    6

    8

    10

    12

    AverageDiame

    ter(m)

    Coolants

    Coolant drop size comparison

    2210 EP

    2210

    2300 HD

    2200

    MACHINING: micromist

  • 7/29/2019 Ret Htec2010 Rufus Gary

    25/38

    25

    (a) Micro-droplet on a rotating tool;

    (b) Free body diagram of forces acting on the micro-droplet

    a) b)

    m: mass of droplet

    v: surface speed of tool

    R: radius of toolD: diameter of droplet

    2: surface tension of liquid

    2

    22 sin Dmv

    R + =

    MACHINING: micromist

  • 7/29/2019 Ret Htec2010 Rufus Gary

    26/38

    26Balance of adhesion and centrifugal

    force on a 2210EP microdroplet

    MACHINING: micromist

  • 7/29/2019 Ret Htec2010 Rufus Gary

    27/38

    27

    Parameters of tool wetting experiments:

    Tools are run from 0-500 m/min

    Tool diameter: 3.175mm, 12.7mm

    Air pressure: 3.197 to 3.39 bar

    Stroke length: 2.7 mm

    Stroke frequency: 12 strokes/min

    Volume flow rate of coolant: 3.33 x 10-9 mm3/sec

    MACHINING: micromist

  • 7/29/2019 Ret Htec2010 Rufus Gary

    28/38

    Setup for validation of tool wetting

    28

    (a)Mist spray setup (b) 3.175 mm 2 flute end-mill

    12.7mm 2 flute end-mill (not shown)

    APPROACH OBJECTIVE # 2

  • 7/29/2019 Ret Htec2010 Rufus Gary

    29/38

    RESULT: flow of micromist

    Direction of flow

    @40 m/min

    Separation of flow

    Dia. 1.016mm cylinder

    @4000 RPM

  • 7/29/2019 Ret Htec2010 Rufus Gary

    30/38

    RESULT: flow of micromist

  • 7/29/2019 Ret Htec2010 Rufus Gary

    31/38

    31

    MICROMACHINING: tool deflection

    End deflection=17% tool diameter

    Bending stress= 50% tool strength

    End deflection=34% tool diameter

    Bending stress= 100% tool strength

    Spindle runout, built-up edge, uncontrolled chip, and/or cutting force deflect amicrotool cyclically and cause premature tool failure.

    Finite element analysis of bending stress on a micromilling tool.

  • 7/29/2019 Ret Htec2010 Rufus Gary

    32/38

    33

    MICROMACHINING: limit of parameters

    Catastrophic failure threshold of micromilling tools.0.35mm (0.014 in) axial depth, dry , climb (down) side milling of 316L stainless steel.

    0

    20

    40

    60

    80

    100

    0 5 10 15 20 25 30

    Radialdepth/Cutte

    r

    (%)

    Chipload / Cutter (%)

    Axial depth of cut (17% cutter dia)Axial depth of cut (34% cutter dia)Crash test

    Tool fracture

    Tool safe

  • 7/29/2019 Ret Htec2010 Rufus Gary

    33/38

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0 5 10 15 20

    #4: dry

    #12: flood

    #20: mist

    Time (min)

    wear(m)

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0 5 10 15 20

    #5: dry

    #13: flood#21: mist

    Time (min)

    wear(m)

    TiN-WC, V3.6m/s, F6.4mm/s, D2mm

    TiN-WC, V2.0m/s, F6.4mm/s, D1mm

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0 5 10 15 20

    #2: dry

    #10: flood

    #18: mist

    34

    MICROMIST: macromilling

    Time (min)

    wear(m)

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0 5 10 15 20

    #7: dry

    #15: flood#23: mist

    Time (min)

    we

    ar(m)

    TiN-WC, V2.0m/s, F12.7mm/s, D2mm

    TiN-WC, V3.6m/s, F12.7mm/s, D1mm

  • 7/29/2019 Ret Htec2010 Rufus Gary

    34/38

    35

    MICROMIST: macrofacing

    time(min)

    0.00

    0.04

    0.08

    0.12

    0.16

    0.20

    0 20 40 60 80

    #2: dry

    #6: flood#10: mist

    WC on 4140, V0.9m/s max, F0.1mm/rev, D0.5mm

    wear(m)

    # passes

    Dry, 75 passes

    Flood, 75 passes

    Mist, 75 passes

  • 7/29/2019 Ret Htec2010 Rufus Gary

    35/38

    36

    MICROMIST: micromilling

    Micromilling of 316L stainless steel and effect of cutting fluids.10 m/tooth (0.0004 in/tooth), 0.35mm (0.014 in) axial depth, 0.56 mm (0.022 in) radial depth, climb (down) side milling

  • 7/29/2019 Ret Htec2010 Rufus Gary

    36/38

    37

    1) NSF-RET program Promote collaboration among schools and industry

    Encourage college grads to continue for higher degrees

    2) Effective micromist must:

    Penetrate and adhere to moving tool/workpiece.

    Wet both tool and workpiece.

    Avoid stagnant mist location.

    3) Optimal micromist increases tool performance Macromachining.

    Micromachining.

    4) Submicron mist particles Contaminate other equipment.

    Pose potential health issues.

    Should be used with air cleaner unit.

    MICROMIST: summary

  • 7/29/2019 Ret Htec2010 Rufus Gary

    37/38

    38

    MICROMIST: future works

    1) Complete DOE experiment and compare with theoretical data

    2) Compare economic advantages of dry, flood, and mist

    3) Apply to machines at TSTC Waco and BMC Athens

    4) Extend micromilling and include microdrilling studies using tool steel,

    aluminum, and titanium.

    5) Optimize tool coating

    http://engineering.tamu.edu/
  • 7/29/2019 Ret Htec2010 Rufus Gary

    38/38

    39

    ACKNOWLEDGEMENT

    National Science Foundation (NSF

    award #0552885).

    Mr. Dave Hayes, Haas Automation Inc.

    Mr. Joe Kueter, M.A. Ford Inc.

    Mr. Wally Boelkins, UNIST Inc.

    Mr. Patrick Anderson, PMT Inc.

    http://engineering.tamu.edu/