PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de...

53
Academiejaar 2012-2013 DE ROL VAN MICRORNA IN DE ONTWIKKELING EN PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE Freddy VAN DAMME Promotor: Prof. Dr. Jan Philippé Scriptie voorgedragen in de 2 de Master in het kader van de opleiding tot MASTER OF MEDICINE IN DE GENEESKUNDE

Transcript of PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de...

Page 1: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

Academiejaar 2012-2013

DE ROL VAN MICRORNA IN DE ONTWIKKELING EN

PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE

Freddy VAN DAMME

Promotor: Prof. Dr. Jan Philippé

Scriptie voorgedragen in de 2de

Master in het kader van de opleiding tot

MASTER OF MEDICINE IN DE GENEESKUNDE

Page 2: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

2

Academiejaar 2012-2013

DE ROL VAN MICRORNA IN DE ONTWIKKELING EN

PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE

Freddy VAN DAMME

Promotor: Prof. Dr. Jan Philippé

Scriptie voorgedragen in de 2de

Master in het kader van de opleiding tot

MASTER OF MEDICINE IN DE GENEESKUNDE

Page 3: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

3

Aan Kristien

aan Karel, Jan en Mieke

Page 4: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

4

Voorwoord

Mijn eerste en oprechte dank gaat uit naar Prof. Dr. Jan Philippé. Zijn beschikbaarheid,

motiverende begeleiding en vele suggesties zijn het fundament van dit werk. Tevens wil ik

Apr. Barbara Denys en Dr. Karl Vandepoele danken voor hun hulp en advies.

If humanity is to have a hopeful future, there is no

escape from the preeminent involvement and

responsibility of the single human soul, in all its

loneliness and frailty.

George F. Kennan (1904-2005)

Page 5: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

5

“De auteur en de promotor geven de toelating deze scriptie voor consultatie beschikbaar te

stellen en delen ervan te kopiëren voor persoonlijk gebruik. Elk ander gebruik valt onder de

beperkingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting

uitdrukkelijk de bron te vermelden bij het aanhalen van resultaten uit deze scriptie.“

Datum: 10 april 2013

Handtekening student : Handtekening promotor:

Freddy Van Damme Jan Philippé

Page 6: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

6

Inhoud

Abstract ................................................................................................................................................... 8

1 Inleiding ............................................................................................................................................... 9

1.1 Doel van de studie ......................................................................................................................... 9

1.2 Acute Myeloïde Leukemie ............................................................................................................ 9

1.3 MicroRNA .................................................................................................................................. 15

2 Methodiek .......................................................................................................................................... 18

3 Review Paper: “The Role of MicroRNAs in the Development of Chemoresistance Mechanisms in

Acute Myeloid Leukemia: any Hope for the Patient?” ......................................................................... 20

Abstract ............................................................................................................................................. 20

1 Introduction .................................................................................................................................... 20

2 A review of the role of some key microRNAs in AML ................................................................. 22

3 The Role of MicroRNAs in Chemoresistance Mechanisms .......................................................... 33

4 Review papers dealing with microRNA in AML .......................................................................... 38

5 Conclusions .................................................................................................................................... 40

4 Discussie ............................................................................................................................................ 42

5 Referenties ......................................................................................................................................... 45

6 Bijlagen (op CD) ................................................................................................................................ 53

Bijlage 1: Samenvattingen van de bestudeerde literatuur ................................................................. 53

Bijlage 2: Tabel MicroRNA‟s in AML ............................................................................................. 53

Bijlage 3: Humane hematopoiese en normale bloedcelwaarden ....................................................... 53

Page 7: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

7

Lijst van frequent gebruikte afkortingen

AK abnormaal karyotype

ALL acute lymfatische leukemie

AML acute myeloïde leukemie

APL acute promyelocytenleukemie

AraC cytarabine of cytosine arabinoside

ATRA all-trans retinoic acid

BI betrouwbaarheidsinterval

CA cytogenetisch abnormaal

CBFL core-binding factor leukemia

CDK cyclin-dependent kinase

CEBPA CCAAT/enhancer-binding protein-α

CLL chronische lymfatische leukemie

CR complete remissie

1,25-D3 1,25-dihydroxyvitamine-D3

FAB French-American-British

FLT3-ITD Fms-like tyrosine kinase – internal tandem duplication

HSC hematopoietische stamcel

LSC leukemische stamcel

MDR multiple drug resistance

miR microRNA

mRNA messenger RNA

MLL mixed lineage leukemia

NPM1 nucleophosmine1 gen

NPMc+ cytoplasmatisch nucleophosmine eiwit

RISC RNA-induced silencing complex

RNA ribonucleïnezuur

SCT stamceltransplantatie

siRNA small interfering RNA

3‟UTR 3’ untranslated region

wt wild type

Page 8: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

8

Abstract

Inleiding. De rol van microRNA‟s in de ontwikkeling van acute myeloïde leukemie (AML)

heeft gedurende de voorbij 5 tot 10 jaar toenemend aandacht gekregen. Dit is een relevant

onderzoeksdomein daar de prognose van patiënten met AML ongunstig is. De detectie van

specifieke microRNA‟s bij AML kan potentieel de diagnose, prognose en behandeling

verbeteren.

Methodologie. Dit werk is gebaseerd op een brede literatuurstudie over de rol van

microRNA‟s in AML en in het bijzonder bij chemoresistentie.

Resultaten. Specifieke patronen van geïnduceerde of onderdrukte microRNA‟s lijken

gecorreleerd te zijn met individuele AML-subklassen. Voor een beperkt aantal microRNA‟s

is een belangrijke rol in AML aangetoond. Deze zijn: miR-10, miR-29, miR-126, miR-155,

miR-181 en miR-223. Verhoogde expressie van miR-29b in AML is in verschillende studies

als gunstig beschreven. Dit microRNA onderdrukt de expressie van anti-apoptotische genen

en stimuleert de expressie van pro-apoptotische genen. Ook de miR-181-familie wordt

consistent als tumorsuppressor beschreven. Een hogere expressie van dit microRNA is

gecorreleerd met een significant betere prognose, maar het mechanisme hierbij is nog niet

opgehelderd. miR-223 heeft een sleutelfunctie in het blokkeren van de celcyclus-progressie

en in het induceren van granulocytaire differentiatie.

Eén van de belangrijke redenen van therapiefalen bij AML is de aanwezigheid chemo-

resistentie of multiple drug resistance (MDR). De microRNA‟s gecorreleerd met MDR lijken

sterk verschillend in de verschillende onderzoeken. Toch heeft de kennis van microRNA-

expressie in AML reeds geleid tot concrete klinische studies. Zo is zeer recent lenalidomide,

een immunomodulerende drug, in een muizenmodel aangewend om de expressie van de

tumorsuppressor miR-181a te versterken. Ook is de aanwezigheid van hogere gehaltes van de

tumorsuppressor miR-29b bij oudere uitbehandelde of bij zwakke patiënten belangrijk. De

aanwezigheid van hogere miR-29b expressie onder behandeling met decitabine leidde tot een

versterkt hypomethylerend en dus silencing effect op actieve oncogenen betrokken in AML.

Conclusie. In het toekomstige AML-onderzoek zal het belangrijk zijn de moleculaire

effecten van microRNA‟s in kritische pathways zoals apoptose, differentiatie, proliferatie,

Page 9: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

9

immuniteit en epigenetische gencontrole te doorgronden. Een beter moleculair inzicht kan

zeer gerichte microRNA-gerelateerde therapie mogelijk maken, die de huidige chemotherapie

effectiever maakt of ten dele kan vervangen.

1 Inleiding

1.1 Doel van de studie

Het doel van dit werk is het in kaart brengen en het samenvatten van de kernpunten van de

huidige kennis betreffende de rol van microRNA‟s bij de ontwikkeling van acute myeloïde

leukemie (AML). Als methodologie is gekozen voor een uitgebreide literatuurstudie van dit

onderzoeksgebied waarin een opmerkelijke dynamiek heerst. De aandacht gaat vooral naar de

rol van microRNA in de ontwikkeling, de diagnose, de prognose en de behandeling van

AML. Bijzondere aandacht gaat naar de potentiële rol van microRNA bij het ontwikkelen van

chemoresistentie bij leukemische blasten. De opgedane kennis dient in eerste instantie om het

AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en

Microbiologie een sterker fundament te geven. Uit de literatuur blijkt immers welke

microRNA‟s het belangrijkste zijn bij de grootste subgroepen van AML. De literatuurstudie

leert ons in welke centra ter wereld er expertise is op het domein van AML-microRNA en

kan mee aanwijzingen geven aan de vakgroep: op welke subdomeinen is verder onderzoek

zinvol? Het overzicht maakt ook duidelijk met welke andere onderzoeksgroepen,

bijvoorbeeld binnen de Benelux, een samenwerking zinvol zou kunnen zijn. De

samenvattingen van de bestudeerde artikels (een 50-tal) zijn opgenomen in Bijlage 1. De

bestudeerde literatuur werd geïntegreerd in hoofdstuk 3. In overleg met de promotor is de

opgedane kennis samengevat in de vorm van een engelstalige Review Paper. Deze tekst is

een eerste voorstel van „final draft‟. De bedoeling is deze review paper in te sturen ter

publicatie in het tijdschrift “Leukemia Research”.

1.2 Acute Myeloïde Leukemie

Etiogenese

AML is de verzamelnaam van een heterogene groep van klonale maligniteiten van

hematopoietische progenitorcellen die ontstaan zijn uit de maligne transformatie van één

Page 10: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

10

stamcel of één voorlopercel (1). Hiervoor zijn minstens twee transformaties nodig. Een eerste

interfereert met de normale uitrijping van myeloblasten of verdere myeloïde voorlopers

waardoor deze geblokkeerd worden in een immature toestand, de tweede leidt tot een

ongecontroleerde proliferatie van deze onrijpe voorlopers (2). Dit leidt tot de accumulatie van

deze blasten in het beenmerg en later ook in het perifeer bloed. Een blastenpercentage in het

beenmerg hoger dan 20% is nodig voor de diagnose van „acute leukemie‟ tenzij er een

recurrente translocatie wordt gevonden (type t(15;17) of t(8;21) of inv(16)) (3). Meestal gaat

dit gepaard met een perifeer bloedbeeld dat ernstige anemie en trombopenie vertoont,

aangezien de snel prolifererende blasten-populatie het normale hematopoietische weefsel

verdringt (2). Deze beenmergpathologie verklaart dan ook de typische symptomen van acute

leukemie: bleekheid, snelle vermoeidheid en dyspnoe d’effort (anemie), recidiverende

infecties (granulocytopenie) en bloedingsneiging (trombopenie) (4). Afhankelijk van het type

AML kunnen ook andere symptomen optreden. Zo komt extramedullaire infiltratie vaker

voor in subtypes met monocytaire morfologie (AML-M5). Dit kan aanleiding geven tot

hypertrofisch tandvlees, lymfadenopathie, huidinfiltraties (chloromen) en hepato-

splenomegalie (2,5). In acute promyelocytenleukemie (APL of AML-M3) daarentegen is er

een hoge incidentie van DIC (disseminated intravascular coagulation) en een hoog risico op

spontane bloedingen in vitale organen. APL wordt dan ook als een medische urgentie

beschouwd en behandeld (2,5).

Incidentie - Prevalentie

AML komt vooral bij volwassenen voor (85%) en de incidentie ervan per 100.000 inwoners

stijgt met de leeftijd: van minder dan 1 tot meer dan 10 per 100.000 personen per jaar voor

jongeren en ouderen (> 65 jaar) respectievelijk (2). De mediane leeftijd bij diagnose is 66

jaar (6). De prevalentie is gemiddeld 3,8 gevallen per 100.000 inwoners en dit stijgt tot 17,9

gevallen per 100.000 personen ouder dan 65 jaar (1).

Klassieke FAB morfologische indeling (7)

Acute myeloïde leukemieën werden klassiek volgens een morfologische classificatie

ingedeeld op basis van de locatie van blokkade in de differentiatie binnen de myeloïde reeks.

Deze zogenaamde FAB (French-American-British) classificatie is weergegeven in Tabel 1.

Page 11: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

11

Tabel 1

FAB-classificatie van AML op basis van morfologie en differentiatie in de myeloïde lijn

(7).

M0 acute myeloblastenleukemie zonder uitrijping, < 3% aankleuring met Sudan Black

M1 acute myeloblastenleukemie zonder uitrijping, ≥ 3% aankleuring met Sudan Black

M2 acute myeloblastenleukemie met uitrijping

M3 acute promyelocytenleukemie (APL)

M4 acute myelomonocytenleukemie

M5 acute monocytenleukemie

M6 erythroleukemie

M7 megakaryoblastenleukemie

Cytogenetische en moleculaire indeling (WHO 2008)

De oorspronkelijke FAB classificatie van 1976 (7) op basis van morfologie werd in 2001 een

eerste maal en in 2008 verder geoptimaliseerd en vervangen door de huidige WHO AML-

indeling gebaseerd op acht subgroepen (8), zie Tabel 2. Deze indeling is gebaseerd op de

verworven kennis van de cytogenetische en moleculaire afwijkingen van de leukemische

cellen, opgedaan gedurende de voorbije 20 jaar. Dit is belangrijk daar deze indeling een

biologisch relevanter idee geeft van de leukemie en een duidelijkere voorspelling van de

prognose mogelijk maakt dan de oorspronkelijke morfologische FAB-classificatie. De

correlatie van cytogenetische en moleculaire eigenschappen van AML met klinische

prognose is in Tabel 3 weergegeven. Deze is voorgesteld als standaard door Döhner et al. in

naam van de Europese LeukemiaNet groep rond AML in 2010 (3).

Het overzicht in Tabel 2 toont aan dat AML een verzamelnaam is die een bijzonder

heterogene groep van subtypes omvat. Bij ongeveer 55% van de volwassen patiënten worden

specifieke cytogenetische afwijkingen gedetecteerd (9). Deze worden in de literatuur vaak als

CA-AML (cytogenetisch abnormaal) of als AK-AML (abnormaal karyotype) patiënten

aangeduid. Zoals blijkt uit Tabel 3 hebben deze chromosomale afwijkingen vaak een

prognostische significantie. Zo zijn b.v. t(15;17), t(8;21) of inv(16) meestal gecorreleerd met

een gunstige prognose.

Page 12: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

12

Tabel 2

WHO 2008-classificatie van AML en gerelateerde precursor neoplasmata, en acute

leukemieën van ambigue lineage (3,8).

1. AML met terugkomende genetische abnormaliteiten

a. AML met t(8;21)(q22;q22); RUNX1-RUNX1T1

b. AML met inv(16)(p13;1q22) of t(16;16)(p13.1;q22); CBFB-MYH11

c. APL met t(15;17)(q22;q22); PML-RARA *AML-M3 of APL

d. AML met t(9;11)(p22;q23); MLLT3-MLL

e. AML met t(6;9)(p23;q34); DEK-NUP214

f. AML met inv(3);(q21q26.2) of t(3;3)(q21;q26.2); RPN1-EVI1

g. AML (megakaryoblastisch) met t(1;22)(p13;q13); RBM15-MKL1

Provisoire entiteit: AML met gemuteerd NPM1

Provisoire entiteit: AML met gemuteerd CEBPA

2. AML met myelodysplasia-gerelateerde veranderingen

3. Therapie-gerelateerde myeloïde neoplasmata

4. AML, niet anders gespecificeerd (AML-NOS : Not Otherwise Specified)

a. AML met minimale differentiatie AML-M0

b. AML zonder maturatie AML-M1

c. AML met maturatie AML-M2

d. Acute myelomonocytaire leukemie AML-M4

e. Acute monoblastische/monocytaire leukemie AML-M5

f. Acute erythroïde leukemie AML-M6

i. Pure erythroïde leukemie

ii. Erythroleukemie, erythroïd/myeloïd

g. Acute megakaryoblastaire leukemie AML-M7

h. Acute basofylaire leukemie

i. Acute panmyelose met myelofibrose (synoniem: acute myelofibrose; acute

myelosclerose)

5. Myeloïd sarcoma (synoniem: extramedullaire myeloïde tumor; granulocytair sarcoma;

chloroma)

6. Myeloïde proliferaties gerelateerd aan Downsyndroom

a. Transiënte abnormale myelopoiese (synoniem: transiënte myeloproliferatieve

aandoening )

b. Myeloïde leukemie geassocieerd met Downsyndroom

7. Blastisch plasmacytoïd dendrietisch cel neoplasma

8. Acute leukemieën van ambigue lineage

a. Acute ongedifferentieerde leukemie

b. Gemengd fenotype acute leukemie van t(9;22)(q34;q11.2); BCR-ABL1

c. Gemengd fenotype acute leukemie van t(v;11q23); MLL herschikking

d. Gemengd fenotype acute leukemie, B/myeloïd, NOS

e. Gemengd fenotype acute leukemie, T/myeloïd, NOS

Provisoire entiteit: NK-cel lymfoblastaire leukemie/lymphoma

* De oorspronkelijke FAB subtypes zijn in deze tabel toegevoegd. De types AML-M0-M7

komen in de AML-NOS entiteit in dit systeem, met uitzondering van AML-M3. Zie ook

verdere commentaren in (3) over deze tabel.

Page 13: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

13

Tabel 3

Gestandaardiseerde rapportering voor de correlatie van cytogenetische en moleculair

genetische data in AML met klinische data (3).

Genetische groep Subsets

Gunstig t(8;21)(q22;q22); RUNX1-RUNX1T1

Inv(16)(p13.1; q22) of t(16;16)(p13.1;q22); CBFB-MYH11

Gemuteerd NPM1 zonder FLT3-ITD (normaal karyotype)

Biallelische mutatie in CEBPA (normaal karyotype)

Intermediair-I Gemuteerd NPM1 en FLT3-ITD (normaal karyotype)

NPM1-wt en FLT3-ITD (normaal karyotype)

NPM1-wt zonder FLT3-ITD (normaal karyotype)

Intermediair-II t(9;11)(p22;q23); MLLT3-MLL

Cytogenetische afwijkingen niet geclassificeerd als

gunstig of ongunstig

Ongunstig inv(3)(q21;q26.2) of t(3;3)(q21;q26.2); RPN1-EVI1

t(6;9)(p23;q34); DEK-NUP214

t(v;11)(v;q23); MLL herschikking

-5 of del(5q); -7;abnl(17p); complex karyotype

Bij ongeveer 45% van de AML-patiënten zijn er echter geen detecteerbare chromosomale

veranderingen; deze worden in de literatuur als CN-AML of NK-AML patiënten aangeduid,

zijnde cytogenetisch normaal of normaal karyotype patiënten (10). Dit is een bijzonder

heterogene groep. De leukemische blasten van deze patiënten tonen specifieke mutaties en/of

een deregulering in de expressie van specifieke genen (3). Zeer frequent voorkomende

mutaties zijn deze van de NPM1, CEBPA en FLT3-genen. Mutaties in deze genen zijn ook

gecorreleerd met de ziekteprognose, zie Tabel 3. Zo hebben patiënten met een FLT3-ITD

(interne tandem duplicatie in het FLT3-gen) een slechtere prognose dan patiënten met het

FLT3-wt-gen, terwijl de aanwezigheid van NPM1 of CEBPA mutatie meestal geassociëerd is

met een gunstige prognose (3). Naast de prognose voorspeld op basis van de gedetecteerde

chromosomale aberraties (cytogenetica) en de moleculair genetische afwijkingen (genmutatie

en expressie), kan de prognose ook voorspeld worden op basis van enkele klinische factoren.

Dit zijn: 1) de leeftijd bij het stellen van de AML-diagnose (hoe ouder, hoe slechter), 2) de

aanwezigheid van voorafbestaande afwijkingen passend bij een myelodysplasie voorfase

(slechtere prognose), en 3) vooral het resultaat van de eerste chemotherapiekuur: een vroege

remissie vertaalt zich in een significant beter eindresultaat (2).

Page 14: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

14

Behandeling

De huidige diagnose- en behandelingsmogelijkheden van AML bij volwassenen zijn recent

samengevat in een bijzonder gedetailleerde “Landmark Paper” van Döhner et al. in opdracht

van de Europese LeukemiaNet groep (3). De hoeksteen van de behandeling is nog steeds een

intensieve combinatie-chemotherapie ingedeeld in minstens twee fasen: 1) inductie-therapie,

en 2) consolidatie-therapie. De eerste fase beoogt remissie-inductie, d.i. het normaliseren van

het beenmerg zodat de morfologie ervan niet meer onderscheiden kan worden van normaal

beenmerg: het is normocellulair en er zijn minder dan 5% blasten. Bij deze patiënten is dan

een zogenaamde complete remissie (CR) bereikt. In de inductietherapie wordt meestal de

“3+7-standaard” toegepast: drie dagen met een anthracycline-behandeling (b.v.

daunorubicine) gevolgd door 7 dagen met cytosine-arabinoside (AraC) (3). Na deze therapie

zijn echter niet alle leukemiecellen gedood: er blijft een minimale ziekterest (minimal

residual disease - MRD) die onder de morfologische (lichtmicroscopische) detectiegrens ligt,

maar mogelijks niet onder de cytogenetische en moleculaire drempel van 109-10

10 residuele

tumorcellen (2). Om onder deze drempel te dalen wordt verder behandeld. Dit wordt de

consolidatie-therapie of postremissie-therapie genoemd. Afhankelijk van het type AML, de

leeftijd en patiëntspecifieke condities (comorbiditeit, herval), kan dit intensieve

conventionele chemotherapie zijn, langere-duur onderhoudsbehandeling, chemo-intensificatie

met b.v. AraC, eventueel gevolgd door een autologe- of allogene stamceltransplantatie als

laatste stap (3). De genezingskans is het hoogst na allogene stamceltransplantie (alloSCT).

Vanwege het hoge risico op mortaliteit verbonden met alloSCT, is deze therapie niet voor

alle patiënten geïndiceerd. Stamceltransplantatie zal voornamelijk toegepast worden bij

jongere personen met een hoogrisico-AML of bij herval, na het vinden van een geschikte

donor (2,3,5).

Ziekteprognose

In Nederland steeg de 5-jaarsoverleving bij AML met 8% in de periode van 1989-93 tot

2004-8: van 8% (95% - BI: 6-11%) tot 16% (95% - BI: 13-20%). De toegenomen overleving

na AML is echter sterk afhankelijk van de leeftijd van de patiënten: er werd een stijging van

20% naar 35% gemeten in de AML-populatie jonger dan 65 jaar in deze periode, terwijl de

overlevingswinst voor AML-patiënten ouder dan 65 jaar slechts met 1% was gestegen en nog

steeds lager was dan 10% in de periode 2004-8 (11). Dergelijke prognose-cijfers vindt men

ook wereldwijd. Döhner meldt een genezing van 20-75%, die zoals bovenvermeld zeer sterk

afhankelijk is van het cytogenetische en moleculair subtype, en uiteraard van de

Page 15: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

15

patiëntspecifieke factoren (leeftijd, algemene conditie, comorbiditeit). Voor patiënten ouder

dan 60 jaar werd een genezing door chemotherapie lager dan 10% vermeld (1).

1.3 MicroRNA

MicroRNA‟s zijn enkelstrengige, niet-coderende RNA-ketens met een lengte van 18-25

nucleotiden die de expressie van celproces-regulerende genen beïnvloeden (12). Zij regelen

de expressie van ten minste 5000 genen (13). Hun rol in fundamentele celprocessen zoals

ontwikkeling, differentiatie, proliferatie, overleving en apoptose is temporeel en zeer

weefselspecifiek (14). De rol van endogene microRNA‟s (lin-4, let-7) werd voor het eerst

beschreven door Lee, Feinbaum en Ambros in 1993 in hun genetische studie van C. elegans

mutanten met ontwikkelingsstoornissen (15). Functionele microRNA‟s worden gevormd in

een meerstapsproces in de nucleus en het cytoplasma (12,16). De eerste stap bestaat uit de

transcriptie van het microRNA gen door RNA Polymerase II wat een primair transcript of een

zogenaamd pri-microRNA geeft. Dit is typisch 1-3 kilobasen lang. Deze pri-microRNA‟s

worden in de kern omgevormd tot pre-microRNA‟s (hairpin intermediates) door de

ribonucleasen Drosha en DGCR8. De pre-microRNA‟s zijn 70-100 nucleotiden lang. Deze

worden vanuit de nucleus naar het cytoplasma getransfereerd door het proteïne Exportin-5. In

het cytoplasma worden de pre-microRNA‟s door het Dicer ribonuclease omgevormd in

mature dubbelstrengige korte microRNA‟s (18-25 bp, meestel 21-22 bp). Splitsing van deze

korte RNA-dubbelstrengen in enkelstrengen levert de finale microRNA -5p en -3p strengen.

Een van beide strengen wordt in het RNA-induced silencing complex (RISC) ingebouwd wat

toelaat dat deze hybridiseert met het doelwit (target) mRNA. Dit gebeurt op basis van de

complementariteit tussen de zogenaamde seed sequentie van het microRNA (positie 2 tot 8

van het 5‟ eind) met het 3’untranslated region (3‟UTR) van het doelwit mRNA. De

baseparing tussen het microRNA en het mRNA in deze stap zal resulteren in de afbraak

(slicing) van mRNA, of tot het onderdrukken van de mRNA translatie. Beide processen

resulteren in een post-transcriptionele genrepressie en leiden daarbij tot een gedaalde

proteïneconcentratie. Deze cytoplasmatische post-transcriptionele genrepressie door

microRNA‟s wordt momenteel als hun belangrijkste taak beschouwd (16). Recent zijn

microRNA‟s ook beschreven als activatoren van de eiwit translatie (17,18) en als regulatoren

van de transcriptie in de nucleus (19). Verder is ook aangetoond dat microRNA‟s de mRNA

translatie kunnen moduleren (decoy activity), onafhankelijk van het RISC-complex (20). De

vorming en werking van microRNA‟s is schematisch weergegeven in Figuur 1.

Page 16: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

16

Figuur 1: MicroRNA biogenese en effector pathways – uit (16).

a: transcriptie door RNA polymerase II leidt tot pri-microRNA, Drosha vormt hieruit pre-microRNA; b: pre-

microRNA transport van nucleus naar cytoplasma door Exportin 5; c: microRNA-duplex vorming door Dicer; d:

mature microRNA streng wordt geïncorporeerd in het RISC; e: microRNA-mRNA hybridisatie in het RISC

leidt tot mRNA afbraak, of tot inhibitie of activatie van de mRNA translatie, f: decoy activity: binding van

microRNA aan RNA-bindende proteïnen; g: regulatie van gen-transcriptie door microRNA.

De deregulering van microRNA in kanker werd voor het eerst beschreven door Calin et al. in

2002 in een genetische studie van de grote subgroep van patiënten met chronische

lymfatische leukemie (CLL) met 13q-deletie. Zij toonden aan dat miR-15 en miR-16, gelegen

op 13q14, onderdrukt waren in 68% van de CLL-patiënten (21). Kort na deze publicatie werd

aangetoond dat specifieke microRNA-patronen konden geassocieerd worden met andere

Page 17: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

17

maligne kankers (22,23). Deze artikels initieerden een nieuwe focus binnen het oncologisch

onderzoek en sindsdien gaat er wereldwijd veel aandacht naar de rol van microRNA‟s in het

ontstaan, de diagnose, de prognose en behandeling van kanker (16). Op het gebied van CLL

en de rol van microRNA‟s in de CLL-etiogenese was de publicatie van de Croce-groep in

2011 een mijlpaal (24). Zij leverden hierbij een sluitende moleculaire verklaring voor de

gunstige prognose van de indolente CLL-vormen met 13q-deletie en bewezen dat de miR-

15a/miR-16-1 cluster onderdrukking op locus 13q14 het “primum movens” was in een

microRNA/TP53 circuit dat geassocieerd is met CLL-pathogenese en -outcome.

De rol van microRNA‟s met betrekking tot aspecten van AML krijgt sinds 2005 ook steeds

meer aandacht. De leidende researchgroep binnen dit onderzoeksdomein is zonder twijfel

deze van Marcucci en Croce van het Comprehensive Cancer Center van de Ohio State

University in de USA. Deze groep heeft baanbrekend werk verricht omtrent het belang van

microRNA in de etiogenese (9,25,26), de diagnose en prognose (8, 26-32) en in de

behandeling van AML (16,33,34,35). In een 2010 Nature Reviews artikel hebben Garzon et

al. (16) gepostuleerd dat microRNA‟s zowel als oncogen of als tumorsuppressorgen kunnen

fungeren. Zo kan een microRNA dat in normale fysiologische condities de expressie van een

oncogen onderdrukt, als een tumorsuppressor (gen) gedefinieerd worden. In pathologische

omstandigheden leidend tot mutatie van dit microRNA-gen, door deletie van dit gen, door

methylatie van de microRNA promotor, of door andere processen die de microRNA-

expressie onderdrukken, leidt dit tot gedaalde microRNA-expressie en dus tot een abnormaal

gestegen expressie van het target oncogen en kan dit bijdragen tot carcinogenese. Analoog

kan de gestegen expressie of amplificatie van een microRNA dat een tumorsuppressor

mRNA als doelwit heeft, leiden tot onderdrukking van deze tumorsuppressor en eveneens

leiden tot belangrijke stappen in de ontwikkeling en evolutie van kanker zoals apoptose-

inhibitie, celproliferatie, invasie en angiogenese. Zie Figuur 2.

Page 18: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

18

Figuur 2: MicroRNA’s als oncogenen en tumorsuppressor-genen – uit (16).

a: een microRNA dat normaal de expressie van een oncogen onderdrukt, kan gedefinieerd worden als een

tumorsuppressor en is vaak afwezig in tumorcellen. Het verlies van dit microRNA door b.v. mutatie, deletie, of

biogenese-afwijkingen zal resulteren in een abnormaal verhoogde expressie van het target oncogen. Dit kan

bijdragen tot oncogene processen zoals gestegen proliferatie, angiogenese, invasie of gedaalde apoptose. b: de

amplificatie of overexpressie van een microRNA dat een tumorsuppressor onderdrukt kan bijdragen tot

tumorigenese door het stimuleren van b.v. proliferatie, angiogenese, invasie of door het onderdrukken van

apoptose of door het verhogen van genetische instabiliteit.

2 Methodiek

Deze thesis is gebaseerd op een grondig literatuuronderzoek. Daar microRNA-AML

onderzoek nieuw is binnen de vakgroep, was de eerste bedoeling de recente kennis over de

rol van microRNA‟s in de ontwikkeling, diagnose en prognose van AML breed in kaart te

brengen. Daarnaast werd er specifiek gezocht naar de potentiële rol van microRNA‟s in het

mechanisme van chemoresistentie of multiple drug resistance (MDR) in AML. Hiertoe

werden verschillende searches in PubMed gedaan. Typische zoekpatronen waren gebaseerd

op “AML and microRNA”, “AML and chemoresistance”, “AML and MDR”, “AML and

multiple drug resistance and microRNA”, “microRNA and resistance and leukemia”. Dit

leverde publicaties op waarbij door kruisreferenties verdere artikels geïdentificeerd werden.

Er werd ook specifiek op auteurs gezocht, b.v. “Legrand and leukemia”. Dit samen leverde

een honderdtal relevante artikels waarvan er ongeveer zestig recent waren gepubliceerd in

peer-reviewed journals. Deze werden in detail bestudeerd en samengevat (zie Bijlage 1).

Page 19: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

19

Deze vormden de basis voor het schrijven van een eerste aanzet tot een Review Paper voor

het tijdschrift Leukemia Research.

Page 20: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

20

3 Review Paper: “The Role of MicroRNAs in the Development of

Chemoresistance Mechanisms in Acute Myeloid Leukemia: any Hope for

the Patient?”

Freddy Van Damme, Karl Vandepoele, Barbara Denys, Jan Philippé*

Department of Clinical Biology, Immunology and Microbiology

Faculty of Medicine, Ghent University and Ghent University Hospital

De Pintelaan 185, 9000 Gent, Belgium.

Abstract

Acute myeloid leukemia (AML) is a heterogeneous group of different clonal disorders of

hematopoietic progenitor cells in the bone marrow. Today‟s AML treatment is strongly based

on cytotoxic multi-chemotherapy and may be followed by stem cell transplantation. In

general, attempts to increase response rates by the use of modulators of multiple drug

resistance (MDR) have failed. The role of microRNAs in the leukemogenesis process has

gained increased attention in the past 5-10 years. MicroRNA expression profiling is

suggested to be valuable in fine-tuning diagnosis and prognosis, in classifying AML

subtypes, and in treatment stratification. A number of studies focused on unraveling the

molecular mechanisms of microRNAs in the development of MDR with the goal to find

potential molecular switches able to modulate chemosensitivity. The current paper briefly

reviews a number of microRNAs which have been consistently associated with AML

development and focuses mainly on reviewing the current knowledge about the role of

microRNA in the development of chemoresistance in AML.

Keywords: AML, microRNA, chemoresistance, MDR

1 Introduction

Acute myeloid leukemia (AML) is a very heterogeneous group of different clonal disorders

of hematopoietic progenitor cells in the bone marrow, so called blasts (1). These can show

many different cytogenetic abnormalities and molecular aberrations (3,36). This

Page 21: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

21

heterogeneity is acknowledged in the 2008 WHO classification for AML (8). The clonal

population of blasts has lost its ability to differentiate to final functional blood cells and is

proliferating malignantly (37). This leads to an accumulation of blasts in the bone marrow

which eventually will replace the normal hematopoietic tissue (1). AML incidence increases

from less than 1/100,000 persons/year for younger patients to more than 10/100,000

persons/year for patients above 60 years. An average age-adjusted incidence of 3.6 cases per

100,000 persons per year in the USA has been reported (6). In general, AML treatment is

based on cytotoxic chemotherapy and, depending on the specific cytogenetic and molecular

subtype and further clinical prognostic factors, leads to cure rates of 20-75% (1). Especially

the prognosis for older patients is dismal, with only about 10% of long-term (5-yr) survival

with current standard intensive chemotherapy (1). As a postremission strategy, autologous or

allogeneic stem cell transplantation (allo-SCT) in specific subgroups offers significant overall

survival for patients with intermediate- and high risk AML (3).

MicroRNAs are a class of small (18-25 nt) non-coding RNAs and their role in oncogenesis

has gained much attention in the past decade (9,12,26). The endogenous role of microRNAs

was first described by Lee, Feinbaum and Ambros in 1993 in their study of mutations in the

lin-4 and let-7 genes in the nematode C. elegans (15). They showed that the transcript of lin-4

is complementary to the 3‟UTR of the lin-14 and lin-28 genes, important regulators in the

larval development. The base-paring of the short lin-4 microRNA with the lin-14 mRNA,

leading to a double-stranded RNA, led to a decomposition of the lin-14 mRNA. As such, the

mechanism of post-transcriptional gene repression was first described. Since then, much

knowledge has been gathered on the mechanisms of formation and action of microRNAs (13,

14). Next to their predominant role in mRNA downregulation (12,38), recent papers have

also described miRNAs as activators of gene expression (17,18), of being able to bind to

ribonucleoproteins independent of RISC (with decoy activity) as modulators of regulation of

mRNA translation (20, 39), or can regulate gene expression at the transcriptional level by

binding directly to DNA (19). The first paper linking microRNA expression changes with

cancer was published by Calin et al. in 2002 (21). They described the downregulation of

miR-15 and miR-16 in the B-lymphocytes of a majority of chronic lymphatic leukemia

(CLL) patients, more specifically those with 13q deletions. This work was continued and a

small decade later, in 2011 (24), the Croce group published their landmark paper which

unraveled the detailed molecular pathway which associated the miR-15a/miR-16-1 cluster

downregulation with TP53, miR-34b/miR-34c and ZAP70 expression. As such, they

Page 22: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

22

associated a microRNA/TP53 feedback circuit with pathogenesis and outcome of B-CLL and

presented a novel pathogenic model for association of 13q deletions with the indolent form of

CLL. Since the first paper of this group (21), the detection of distinctive microRNA

expression changes associated with cancer pathogenesis and prognosis has gained increasing

attention (16). This is particularly relevant as it is predicted that the human microRNAs

(about 1000 or more) control 20-30% of the human genome (13). Furthermore, it has been

proposed that microRNAs which normally downregulate the expression of an oncogene can

be defined as tumor suppressors and are often downregulated in cancer (16). Similarly, the

overexpression of microRNAs which downregulate tumor suppressors might contribute to

tumorigenesis. The current review paper aims at summarizing some of the important findings

on microRNA-AML association of the last decade and focuses on reviewing the involvement

of microRNAs with drug resistance mechanisms in AML. This might indicate how AML

diagnosis, prognosis and treatment might be improved. Hopefully rather sooner than later,

this might give hope to people hearing the adverse diagnosis of AML.

2 A review of the role of some key microRNAs in AML

miR-10a

Garzon et al. (31) identified distinctive microRNA signatures of AML with cytoplasmic

nucleophosmin (NPMc+), the result of an NPM1 mutation. Mutations of the NPM1 gene are

the most common genetic alteration in CN-AML (50-60%), and in the absence of FLT3-ITD

mutation, have been associated with higher complete remission rates and event-free survival

(3). In comparing NPMc+ AML bone marrow samples (n=55) versus NPM1-wt (n=30)

samples, a microRNA signature of upregulated miR-10a, miR-10b, and multiple let-7 and

miR-29 family members was identified. High expression of HOX genes is one of the most

distinguishing features of NPM1 AML (40). Whether the HOX imbedded microRNAs (e.g.

miR-10a and -10b) have a critical role in the expression of the HOX genes, remained to be

elucidated. Ovcharenko et al. (41) studied microRNA expression and their association with

NPM1 mutation in intermediate risk AML patients. It was shown that NPMc+ mutant AML

samples had a significant higher miR-10a expression in comparison to NPM1-wt samples. In

vitro studies using several human leukemia cell lines revealed a downregulation of MDM4

(murine double minute 4) gene expression after pre-miR-10a transfection. MDM4 is known

as a mediator of cellular stress that, amongst others, interferes with p53 activation. The

Page 23: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

23

expression of MDM4 was also studied in intermediate risk AML patient samples with and

without NPM1 mutation. This revealed a trend (P = 0.07) for lower MDM4 expression in

AML patients with a mutated NPM1 versus patients with wild-type NPM1. Luciferase

reporter assays demonstrated that miR-10a has MDM4 as a direct target. The hypothesis was

that overexpression of miR-10a leads to MDM4 downregulation, which in turn leads to a

decrease of the MDM4-mediated repression of the p53-mediated transcriptional activation.

This p53 repression, as described in previous papers (42), occurs through a direct interaction

of MDM4 with p53 at its promoter binding sites. As such, lower levels of MDM4 lead to the

activation of p53, and so to the favorable prognosis of NPM1-mutant patients. The fact that

only a trend was observed for lower MDM4 expression in NPM1-mutant patient suggests that

additional mechanisms might contribute to oncogenic pathways in NPM1c+ AML patients.

miR-29a

Han et al. (43) used mouse bone marrow samples, normal human and AML bone marrow

cells as well as 293T cells (human embryonic kidney cells) in their study of the miR-29a-

induced self-renewal capacity of myeloid progenitors. It was shown that miR-29a expression

was high in hematopoietic stem cells (HSC) and was downregulated in progenitor cells. The

hypothesis was that miR-29a plays a unique role in the earliest stages of hematopoietic

development. An abnormal expression of this single microRNA might be sufficient to induce

proliferation and self-renewal in progenitors and might be a first step in malignant

transformation. Followed by further accumulating (epi)genetic „hits‟ during prolonged cell

life, this might lead to the final leukemic clone. To validate this hypothesis, mouse

hematopoietic stem / progenitor cells were modified to express miR-29a. This resulted in the

acquisition of a self-renewal capacity of myeloid progenitors, a granulocyte/macrophage

lineage bias amongst the myeloid progenitors, and the development of a myeloproliferative

disorder that progressed to AML. This demonstrated that miR-29a could be seen as a bona

fide oncogene, in contradiction to miR-29b which had been described as tumor suppressor

(44). Several tumor suppressor genes and regulators of the cell cycle were identified as

targets of miR-29a. One of these was HBP1, a known negative regulator of cell cycle

progression (45). However, knockdown of the HBP1 gene in mouse bone marrow cells using

short hairpin RNA did not yield the same effect as the ectopic overexpression of miR-29a.

This indicated that the function of miR-29a in leukemogenesis involves other targets that may

act alone or in concert with HBP1 downregulation. In a small population of human AML

LSC (Lin-CD34

+CD38

-) and non-LSC (Lin

-CD34

+CD38

+) blasts (n=12), the authors found a

Page 24: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

24

significantly increased expression of miR-29a in all AML blasts samples, at levels similar to

those in multipotent progenitors. This was accompanied with a reduced HBP1 mRNA level in

89% (8/9) of the studied samples. Using control 293T cells versus 293T cells overexpressing

miR-29a, it was shown that the latter entered the S/G2 phase more rapidly. Based on this

result, the authors suggested that miR-29a might serve as a potential target for AML therapy.

Teichler et al. (46) studied the microRNA signature in AML patients with monosomy 7 (-7)

or deletion of 7p (del7q), known to have a poor prognosis (3). The group previously reported

that the nucleoprotein Ski was upregulated in AML, especially in -7/del7q, which presumably

represses the retinoic acid-induced myeloid differentiation (47). The hypothesis was that loss

of 7q explains the Ski upregulation and this is caused by reduced expression of microRNAs

located on 7q. Using AML samples (n=17) with isolated -7/-7q or complex karyotypes

including this deletion, versus normal bone marrow samples (n=8), it was shown that the only

microRNA that was downregulated and is localized on 7q, was miR-29a. By transfection

experiments in HL-60 cells with microRNA precursors known to have their locus on 7q, only

the miR-29a precursor effectively lowered the Ski protein level. Furthermore, also the

expression of the monocytic differentiation marker CD11b had increased after miR-29a

transfection. This effect could be enhanced by ATRA (all-trans retinoic acid) induction.

Luciferase reporter assays validated a functional binding site for miR-29a in the 3‟UTR of

SKI. The in vivo inverse relation between Ski and miR-29a expression was further analyzed

in AML samples (n=21). Samples with very high miR-29a expression revealed low Ski

expression (P=0.02). This suggests that miR-29a regulates Ski expression in AML and

suggests a tumor suppressor role for miR-29a in this pathway. Wang et al. (48) detected the

upregulation of miR-29a and miR-142-3p during myeloid differentiation in leukemia cells

and in CD34+ hematopoietic/progenitor cells. By gain-of-function and loss-of-function

experiments, it was demonstrated that both microRNAs promote the PMA (phorbol 12-

myristate 13-acetate)-induced monocytic and ATRA-induced granulocytic differentiation of

HL-60, THP-1 and NB4 cells. The data showed that both microRNAs directly inhibit the

cyclin T2 gene (CCTN2), preventing the release of hypophosphorylated retinoblastoma (Rb)

protein and resulting in the induction of monocytic differentiation. In addition, it was shown

that the CDK6 and TAB2 genes, targets of miR-29a and miR-142-3p respectively, are

involved in the regulation of both monocytic and granulocytic differentiation. A significant

decrease of miR-29a and miR-142-3p levels associated with a parallel increase in their target

protein levels in blasts from AML patients. Using lentivirus-mediated transfer, it was

demonstrated that enforced expression of either miR-29a or miR-142-3p in hematopoietic

Page 25: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

25

stem/progenitor cells from healthy controls and AML patients downregulated the expression

of their targets and promoted myeloid differentiation. These findings confirmed that miR-29a

and miR-142-3p are key regulators of normal myeloid differentiation. As it was universally

observed that the two studied microRNAs were downregulated in AML M1 to M5 subtypes,

the authors stated that endogenous expression or ectopic implantation of miR-29a and miR-

142-3p may be a potential strategy in AML therapy.

miR-29b

Garzon et al. (33) studied the functional role of miR-29b in leukemogenesis. They

demonstrated that restoration of miR-29b expression in cell lines and primary AML samples

induced apoptosis and dramatically reduced tumorigenicity in a xenograft mouse model.

Transcriptome analysis after ectopic transfection of synthetic miR-29b into leukemia cells

indicated that miR-29b targets apoptosis, cell cycle, and proliferation pathways. In the

studied population of 45 primary AML samples, a significant enrichment for apoptosis genes,

including MCL-1, was found to be inversely correlated with miR-29b expression. It has been

described (49) that the Bcl-2 family is composed of both pro-apoptotic (e.g. Bcl-2, Mcl-1 and

Bcl-Xl) and anti-apoptotic proteins (BH3 proteins such as Bim, tBid, and Puma), and the

authors state that the balance of these two determines life or death for the cell. It was shown

that miR-29a and miR-29b not only directly target anti-apoptotic genes but also upregulate

pro-apoptotic genes, such as BIM (BCL2L11) and the tumor suppressor PDCD4 (50,51).

Based on the current work and the integration of that with previous knowledge, the final

hypothesis was that through the miR-29‟s targeting of MCL-1 and upregulation of the BIM

and PDCD4 transcripts, the impact of miR-29 on the survival of AML cells could be even

more robust. As such, the collected data supported a tumor suppressor role of miR-29b, and

the use of synthetic miR-29b might be considered as novel strategy to improve treatment

response in AML. Eyholzer et al. (52) studied the CEBPA (CCAAT/enhancer-binding

protein-α) mediated regulation of the tumor suppressor miR-29b. About 10% of the AML

patients show dominant-negative mutations in the CEBPA coding region (53). CEBPA has

been described as a master regulator active in the normal hematopoiesis process and crucial

for myeloid differentiation towards mature granulocytes (54,55). Previous literature showed

CEBPA to be a regulator of miR-223 (56) while CEBPA expression was suppressed by the

leukemic fusion proteins AML1-ETO, AML1-MDS1-EVI1 and CBFB-MYH11 in AML

patients with t(8;21), t(3;21) and inv(16) chromosomal rearrangements respectively

(57,58,59). Using Kasumi-1 cells conditionally expressing CEBPA, an 18-membered miR

Page 26: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

26

signature was identified which associated with CEBPA upregulation. Focusing on the miR-29

cluster showed miR-29b to be suppressed in AML patients with impaired CEBPA function or

loss of chromosome 7q. It was demonstrated that CEBPA selectively regulates miR-29b

expression on its miR-29a/b1 locus on 7q32.3, while the 1q32.2 locus containing the miR-

29b2/c remains unaffected. As such, the authors provided a rationale for miR-29b

suppression in AML patients with disrupted CEBPA or aberrations on chromosome 7. Xiong

et al. (60) studied the expression of miR-29b in a cohort of 56 AML patients in relation to

MLLT11 expression. High expression of MLLT11, an MLL fusion partner, is a poor

prognostic biomarker in pediatric AML, adult CN-AML and adult MDS (3). They showed

that low miR-29b (and also miR-29a and -29c) expression was inversely related to MLLT11

expression (P < 0.05) in the AML patient population and the cell lines used (the leukemic cell

line REH and two lung cancer cell lines H157 and SKMES1). Their study focused on miR-

29b as only the expression of miR-29b had a significant predictive power for overall survival

in the studied cohort. Through transfection experiments the authors demonstrated that

MLLT11 expression was directly regulated by miR-29b. Furthermore they speculated that

deletion of the tumour suppressor miR-29b might be mechanistically responsible for the

pathogenesis of MDS/AML with -7q/monosomy 7 and that miR-29b may be a potential

prognostic biomarker for AML patients.

miR-125b, miR-126

Li et al. (61) studied the microRNA signatures associated with the four most common

rearrangements in AML, i.e. t(8;21)/AML1(RUNX1)-ETO(RUNX1T1), inv(16)/CBFB-

MYH11, t(15;17)/PML-RARA and the MLL/11q23 group. These count for about 30% of all

AML cases and are, except for the MLL group, associated with good outcome (31). It was

demonstrated that a minimum of two (miR-126-5p/126-3p), three (miR-224, miR-368, miR-

382) and seven microRNAs (miR-17-5p, miR-20a and the five abovementioned ones) could

accurately discriminate core-binding factor leukemias (CBFL: t(8;21) and inv(16)), t(15;17)

and MLL-rearrangement AMLs respectively, from each other. The precursor of the miR-126

gene is embedded in a 287-bp CpG island and it was shown that elevated expression of miR-

126 in CBF AML was associated with demethylation of the promoter and not with

amplification or mutation of the genomic locus. Gain-of-function and loss-of-function

experiments further showed that the microRNAs inhibited apoptosis and increased the

viability of AML cells. Enhanced colony-forming ability of mouse normal bone marrow

progenitor cells alone and particularly in cooperation with the fusion protein AML1-ETO was

Page 27: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

27

obtained. Luciferase reported assays indicated the tumor suppressor PLK2 (Polo-like kinase

2) to be a bona fide target of miR-126. As such, these microRNAs would act as oncogene in

CBF AML development. As miR-126 was almost uniquely overexpressed in CBF AMLs, the

authors speculate that its overexpression may contribute to CBF leukemia as a second hit,

cooperating with the primary hit caused by the fusion proteins AML1-ETO or CBFB-

MYH11. This is supported by the fact that miR-126 inhibits apoptosis and enhances cell

proliferation alone, and particularly, in cooperation with the t(8,21) fusion gene. Further

studies would be needed to validate this hypothesis. Zhang et al. (62) studied microRNA

expression in pediatric AML and ALL (n=111, younger than 14 yrs) based on a test cohort of

36 patients and 7 normal controls and an independent validation cohort of 63 patients and 5

normal donors. Among other upregulated microRNAs (miR-100, -335, -146a, -99a), miR-

125b was highly expressed in the pediatric AML bone marrow samples versus controls,

especially in the M3 subtypes. The AML-M3 or acute promyelocytic leukemia (APL)

subgroup, with t(15;17)(q22;q12) and formation of the PML-RARA fusion gene, is

characterized by differentiation arrest at the promyelocytic stage of development. APL

represents about 10% of the pediatric AML cases (63). It was further demonstrated that miR-

125b expression in M3 patients was much higher in PML/RARA positive patients than in

PML/RARA negative patients, though miR-125b was high in both groups. This suggested

that miR-125b expression is associated with PML/RARA status and acts as a favorable

prognosticator in APL. For the M1 and M2 groups, the highest expressed microRNAs were

miR-335 and miR-126 respectively. Using the validation cohort, the expression of miR-126

was slightly higher in patients with t(8;21)(q22;q22) carrying the fusion gene AML-ETO than

AML-ETO negative ones. This might also imply that miR-126 expression associates with

prognosis of M2 patients. In a 2011 paper, the same authors (63) further studied miR-125b

upregulation in pediatric APL. In this study, miR-125b expression was analyzed in 169

pediatric bone marrow AML samples including 76 APL samples before therapy and 38 APL

samples after therapy. The data showed that miR-125b was highly expressed in the APL

samples, although also in the other subtypes a higher miR-125b was detected. The microRNA

expression was also analyzed in matched diagnosis-CR versus diagnosis-relapse pairs. This

showed that miR-125b expression had normalized in all complete remission patients while

the expression level in relapse patients was higher than in normal controls. The effects of

enforced expression of miR-125b were evaluated in leukemic cells and drug-resistant cell

lines (NB4, HL-60, K562). This showed that miR-125b could promote leukemic cell

proliferation and inhibit cell apoptosis by regulating the expression of Bak1 (BCL-2

Page 28: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

28

antagonist/killer), a pro-death protein able to promote programmed cell death (64). These

findings indicate that miR-125b in APL may function as an oncogene by inhibiting cell

apoptosis and promoting cell proliferation.

miR-155

Garzon et al. (31) identified distinctive microRNA signatures of AML with NPMc+.

Comparing microRNA expression profiles of samples with NPMc+ and FLT3-ITD versus

samples with NPMc+ and FLT3-wt showed that only miR-155 was upregulated at a

significant level in FLT3-ITD mutated samples. Further experiments showed that the up-

regulation of miR-155 was independent from FLT3 signaling. This was demonstrated through

an unchanged miR-155 expression after either blocking of the FLT3 phosphorylation activity

or overexpressing FLT3-ITD in mouse myeloid progenitor cells. In another paper, Garzon et

al. (32) studied microRNA signatures associated with cytogenetics and prognosis in AML in

a cohort of 122 untreated adult AML patients. An independent set of 60 untreated AML

patients was used to validate the outcome signatures. This data showed that miR-155 was

significantly upregulated in FLT3-ITD versus FLT3-wt patients. The microRNA expression

was also compared between a cohort of relapsed and primary refractory patients and the

initial cohort of 122 patients. Similar microRNA signatures were obtained to those of the

untreated patients supporting the author‟s hypothesis that microRNA expression is largely

driven by cytogenetics. Whitman et al. (29) studied the association of FLT3-ITD with

outcome and gene- and microRNA expression signatures in a cohort of older (n=243, ≥ 60

yrs) CN-AML patients. FLT3-ITD is a known adverse prognostic marker in younger (< 60

yrs) CN-AML patients (3). Their data showed that presence of FLT3-ITD remained

associated with shorter disease free survival and overall survival in the group with age 60-69

years, but not in the subgroup of patients of 70 years or older. The most overexpressed

microRNA was miR-155 (2.8 times) which already had been associated with NPM1 mutation

and/or FLT3-ITD in previous papers (32, 65). Although some target genes of miR-155 have

been identified, e.g. the SHIP1 gene (66) as negative regulator of cell signaling in the

immune system and CEBPB (67) with a critical function in granulopoiesis, the molecular

pathways affected by miR-155 and their roles in oncogenesis remain to be elucidated.

miR-181

Debernardi et al. (68) correlated the expression of miR-181a with morphological sub-class

in AML in bone marrow and peripheral blood samples of 30 adult CN-AML patients. In this

Page 29: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

29

study, the miR-181a expression levels were elevated in the M1 and M2 samples compared to

samples with M4 or M5 morphology. The authors referred to the fact that in normal human

bone marrow, in contrast, miR-181a has been reported to be preferentially expressed in B-

and T-cells, and in monocytes and granulocytes (69) which are more closely allied to the M4

and M5 leukemic subtypes. Marcucci et al. (27) studied CN-AML patients younger than 60

years (n=64) with high-risk molecular features like a FLT3-ITD, a wild-type NPM1, or both.

In this extensive correlation study, 12 microRNAs, of which 5 from the miR-181 family,

were associated with event-free survival in the training group. Based on the weighted levels

of the microRNAs as found in the training group, a calculated microRNA summary value (a

microRNA compound covariate predictor) was inversely associated with event-free survival

in the independent validation group (n=55). Using the results of gene-expression microarray

analysis, it was demonstrated that the expression levels of the miR-181 family were inversely

correlated with expression levels of predicted target genes involved in mechanisms of the

innate immunity. These included genes encoding toll-like receptors (e.g. TLR2, TLR4,

TLR8) and those encoding interleukin-1β and further effectors controlling the activation of

this cytokine (e.g. CARD family members). The hypothesis was that the downregulation of

the miR-181 family might contribute to an aggressive leukemia type through pathways

regulating the innate immunity. Garzon et al. (32) studied microRNA signatures associated

with cytogenetics and prognosis in AML in a cohort of 122 untreated adult AML patients. An

independent set of 60 untreated AML patients was used to validate the outcome signatures

using RT-qPCR. In a subtheme of this study, the microRNA expression profile of a subset of

patients (n=29) with multilineage dysplasia (MLD) was compared to a group of untreated de

novo AML patients (n=79). MLD-AML is mostly affecting older patients and is associated

with an unfavourable response to therapy (3, 70). This comparison revealed only miR-181a to

be downregulated in the MLD group. Wang et al. (71) studied the role of miR-181

interaction with p27Kip1

in human myeloid leukemia cell lines induced to differentiate by

1,25-dihydroxyvitamine-D3 (1,25-D3). Work described in previous papers (72,73) showed

that 1,25-D3 could induce (HL-60 cells) or enhance (U937 cells) the monocytic phenotype

and arrest their proliferation, predominantly in the G1 phase of the cell cycle. The mechanism

for this action so far was not understood. The authors provide evidence that exposure of HL-

60 and U937 cell lines to low concentrations of 1,25D3 decreases the expression of miR-181a

and miR-181b in a concentration and time dependent manner. p27Kip1

, an inhibitor of the cell

cycle controlling cyclin-dependent kinases (CDK4, CDK6), was identified as one of the

predicted targets of the miR-181s. Expression of pre-miR-181a in these cells led to the

Page 30: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

30

abrogation of 1,25D-induced increase of p27Kip1

at both the mRNA and protein levels.

Transfection of the pre-miR-181a also blunted the effect of 1,25D3 on the expression of

monocytic differentiation markers, and reduced the G1 block in 1,25D3-treated cells. In

contrast, transfection of anti-miR-181a increased the 1,25D3-induced differentiation. These

data demonstrate that in cultured human myeloid cells the expression of p27Kip1

can be

regulated by at least two members of the miR-181 family. 1,25D3-induced repression of miR-

181s therefore may, amongst other mechanisms, contribute to the accumulation of p27Kip1

and the arrest of the cell cycle progression in the G1 phase. Schwind et al. (28) studied the

expression of miR-181a in a group of 187 CN-AML patients younger than 60 years. Another

group of 122 CN-AML patients (≥60 years) constituted an independent validation set for

outcome analysis. The presence of molecular prognosticators like FLT3-ITD, NPM1-wt and

others were also assessed. The results showed that higher miR-181a expression is associated

with a higher complete remission rate and a longer overall survival. The impact of miR-181a

expression was particularly striking in poor molecular risk patients with FLT3-ITD and

NPM1-wt where it yielded a higher complete remission rate and longer disease free survival.

Also in multivariate analysis, higher miR-181a expression was significantly associated with

better outcome, both in the whole patient cohort as in patients with FLT3-ITD and NPM1-wt.

These results were validated with the independent set of older CN-AML patients. In

agreement with previous data (27), a miR-181a-associated gene-expression profile showed an

enrichment of genes involved in innate immunity (e.g. TLR4 and IL-1B). Li et al. (30)

studied the role of miR-181 in the upregulation of the potential targets of this microRNA:

HOXA7, HOXA9, HOXA11 and PBX3, members of the so-called homeobox genes. The

aberrant overexpression of homeobox genes has been reported before in various AML

subtypes of intermediate or poor prognosis, including those bearing MLL rearrangements or

trisomy 8 (74,75). The upregulation of a gene signature composed of the four studied

homeobox genes associated with miR-181 downregulation was an independent predictor of

adverse overall survival on multivariate testing of 183 cytogenetic abnormal AML patients.

This was confirmed with an independent validation set of 271 CA-AML patients. In vitro and

in vivo studies showed that ectopic expression of miR-181b significantly promoted apoptosis

and inhibited viability and proliferation of leukemic cells and delayed leukemogenesis. Of the

four genes studied in depth, PBX3 was the only gene in four different calibration and

validation sets that consistently associated with poor survival and it was stronger repressed by

miR181a/b than the other genes. It was further proven that PBX3 is a direct target of miR-

181a/b and the PBX3 downregulation effect by miR-181a/b was shown on mRNA and

Page 31: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

31

protein level in MLL bearing leukemic cells. The effects of miR-181a/b on cell viability,

growth and apoptosis could be reversed by forced expression of PBX3 in vivo and in vitro,

suggesting that PBX3 may play an important role in development and maintenance of MLL-

rearranged AML. The authors claim that restoring the expression of miR-181b or targeting

HOXA-PBX pathways directly may help improve the outcome of patients with adverse CA-

AML.

miR-221/222/223

Briochi et al. (76) elucidated a microRNA pathway which links the core-binding factor

fusion proteins with KIT upregulation in CBF AML. A common mutation associated with

CBF AML involves the KIT receptor (77). As such, high expression of KIT is a sign of CBF

leukemia. KIT or CD117, a proto-oncogene, is a receptor tyrosine kinase which upon binding

to stem cell factor activates its tyrosine kinase activity leading to activation of a pathway with

cell survival, proliferation and differentiation. Based on previous literature, the authors

hypothesized that miR-222/221 (with its locus on the X chromosome) represents the link

between CBF leukemia and KIT expression. The experimental work showed miR-222/221

upregulation after myeloid differentiation of normal bone marrow AC133+ stem progenitor

cells. CBFL blasts with high expression of KIT displayed a significant lower level of miR-

222/221 than non-CBFL blasts. Additionally, they found that the t(8;21) AML1-ETO fusion

protein binds on the miR-222/221 promoter and induces transcriptional repression of a

luciferase reporter containing the miR-221/221 promoter. Furthermore, a concomitant miR-

221/222 downregulation and KIT up-regulation was demonstrated in the 32D/WT1 mouse

cell model carrying the AML1-MTG16 (RUNX1-CBFA2T3) fusion protein. As such, the

authors provided a first hint that CBFL-associated fusion proteins may lead to KIT

upregulation by the down-regulation of the miR-222/221. In the same study, it was also

observed that miR-223 was down-regulated in CBFL samples. miR-223 is known as a

regulator of the myeloid differentiation also with its locus on the X chromosome (77,78). The

observation of down-regulation of miR-223 in t(8;21) AML was consistent with previous

literature describing the oncoprotein AML1-ETO as a direct transcriptional suppressor of

miR-223 expression utilizing an epigenetic silencing mechanism.. This work shows that the

CBF fusion proteins, in addition to directly targeting and downregulating the expression of

hematopoietic protein-coding sequences containing an AML1 consensus sequence (80,81),

can target microRNA genes such as miR-223 with a critical role in myelopoiesis.

Page 32: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

32

Pullikan et al. (56) unravelled an autoregulatory negative feedback loop between the master

cell-cycle regulator E2F1 and miR-223 in AML. Previous papers had described that the

inhibition of E2F1 by CEBPα is pivotal for granulopoiesis (82). Recent studies described

miR-223, a transcriptional target of C/EBPα, as a critical player during granulopoiesis

(78,79). The authors built further on this knowledge and demonstrated that miR-223 blocks

the cell-cycle progression and is downregulated in different subtypes of AML. Experimental

work provided evidence that E2F1 binds to the miR-223 promotor in AML blasts and inhibits

miR-223 transcription. The data suggest that the binding of C/EBPα leads to the

transactivation of miR-233, which in turn blocks the translation of E2F1 leading to inhibition

of the cell-cycle progression and to myeloid differentiation. These findings suggest that

deregulation of C/EBPα by various mechanisms in AML results in weak binding of C/EBPα

to the miR-223 promotor, resulting in fewer miR-223 molecules in the cell cycle to inhibit

E2F1 translation (see Figure 3). The resulting overexpressed E2F1 could bind to the miR-

223 promotor and in turn lead to a further decrease in miR-223 expression through a negative

feedback loop. This leads to myeloid cell-cycle progression at the expense of differentiation.

Based on the fact that the myeloid master regulator C/EBPα has been shown to be

deregulated by different oncoproteins (e.g. AML1/ETO, BCR/ABL, PML/RARα, FLT3) in

AML (83), and that the CEBPA gene is mutated in about 10% of AML cases (3), the authors

speculate that C/EBPα deregulation may be one of the major steps in AML development. As

such, this work revealed a molecular network involving miR-223, CEBPA and E2F1 as major

components of the granulocytic differentiation program, which is deregulated in AML.

Therefore, manipulation of miR-223 could be a therapeutic target relevant in AML subtypes

with deregulated E2F1 inhibition.

Page 33: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

33

Figure 3: A model for miR-223, C/EBPα and E2F1 in normal granulopoiesis and in

AML (56).

“During granulopoiesis (top panel), C/EBPα binds and transactivates miR-233 promotor, which in turn leads to

E2F1 repression and inhibition of cell-cycle progression resulting in myeloid differentiation. When C/EBPα is

deregulated by various mechanisms in AML (bottom panel), transactivation of miR-223 is inhibited, which

results in accumulation of E2F1. Overexpressed E2F1 binds to miR-223 promotor and inhibits miR-223

transcription through a negative feedback loop resulting in myeloid cell-cycle progression and block of

differentiation”. Copied from (56).

3 The Role of MicroRNAs in Chemoresistance Mechanisms

Multiple drug resistance (MDR) is considered a major contributor to the failing of

chemotherapy in leukemia and cancer in general (84-86). Drug resistance can result from

random drug-induced mutational events, epigenetic changes or karyotypic changes (87-90).

This can lead to a decreased uptake of drugs, to pathway changes affecting the capacity of

cytotoxic drugs to induce cell death (e.g. reduced apoptosis, increased DNA repair,

upregulation of glutathione-mediated drug detoxification), or can give rise to increased drug

efflux out of the cancer cell (91-93). Especially the expression of the family of ATP Binding

Page 34: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

34

Cassette (ABC) transporters in relation to drug resistance in AML has been studied (94-97).

To date, the microRNA-based modulation of MDR in AML subtypes has not been studied

very intensively, and the mechanistic understanding of drug resistance remains largely

elusive. A limited number of papers dealing with microRNA in relation to drug resistance in

AML have been published in recent years and are summarized in the next paragraphs.

Mishra et al. (98) showed that a naturally occurring single nucleotide polymorphism (SNP)

in a microRNA binding site can lead to drug resistance. In particular they studied the

naturally occuring SNP C829T in human dihydrofolate reductase (DHFR) and showed this to

be a loss-of-function mutation resulting in methotrexate resistance. This SNP is located near a

miR-24 binding site in the 3‟UTR of DHFR. As a direct effect of this mutation, the inability

of miR-24 to downregulate the DHFR mRNA resulted in an increase of dihydrofolate

reductase yielding an increased methotrexate resistance. Zhao et al. (99) described the role of

miR-138 in MDR in the leukemia cell line HL-60. Parental HL-60 cells were compared to

vincristine-resistant HL-60 cells (HL-60-VCR) and to miR-138-transfected HL-60-VCR

cells. The HL-60-VCR cells showed a lower expression of miR-138 than the parental cells.

Three potential MDR mechanisms were studied: first a P-glycoprotein (P-gp) expression

increase; secondly an increased GST-mediated intracellular drug-detoxification, and thirdly a

decrease in apoptosis through regulation of genes in the Bcl-2-family: Bcl-2, Bcl-xL, Bax,

Bak. It was shown that VCR-resistance could be abrogated through the upregulation of miR-

138 in the HL-60-VCR cells. This loss of drug resistance was present for drugs known to be

transported by P-gp (e.g. vincristine and adriamycin) as well as for drugs known to be

unaffected by P-gp activity (e.g. 5-fluorouracil or cisplatin). Experimental data showed miR-

138 to target the MDR1 (ABCB1) mRNA, reducing the expression van P-gp significantly,

and re-establishing vincristine sensitivity. The expression of the multidrug transporter MRP

(ABCC1) had not altered after miR-138 upregulation. It was further shown that the MDR

mechanism for 5-fluorouracil and cisplatin could not be explained by an upregulation of the

GST-mediated drug detoxification mechanism. The third mode of the potential MDR-

mechamism (blocking of apoptosis) was also studied. This was done through adriamycin

(ADR)-induced apoptosis in miR-138-transfected HL-60/VCR cells. The upregulation of

miR-138 in these cells showed an accumulation of ADR in the cells, a reduced efflux of the

drug, and promoted the ADR-induced apoptosis. The upregulation of miR-138 was

associated with a decrease of Bcl-2 expression and increase of Bax, which could be

correlated with increased apoptosis. The authors concluded that miR-138 likely plays a role

Page 35: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

35

in MDR in leukemia through regulation of MDR1/P-gp expression and through regulation of

an apoptosis pathway (BCL2). Li et al. (100) showed that anti-miR-21 enhanced the AraC

chemosensitivity of leukemic HL-60 cell by inducing an apoptosis mechanism. The anti-miR

alone was able to inhibit HL-60 cell viability while in combination with AraC, it sensitized

the cells to AraC-induced apoptosis. It was shown that anti-miR-21 effectively reduced the

miR-21 level which was accompanied with an upregulation of the studied target gene, the

PDCD4 tumor suppressor at both mRNA and protein level. The author‟s conclusion is that

anti-miR-21 enhances the chemosensitivity to AraC by inducing apoptosis in HL-60 cells

which might be partially due to upregulation of PDCD4. Feng et al. (101) studied the miR

signatures in leukemia cell lines with increasing resistance to doxorubicin (DOX) in

comparison to the parental cell line K562. MicroRNA-microarrays and qRT-PCR were used

to detect and confirm the differential microRNA expression. This showed that the expression

of miR-331-5p and miR-27a could be inversely correlated with the expression of MDR1/P-

gp in cells with increasing resistance to DOX. Transfection of DOX-resistant K562 and HL-

60 leukemia cell lines with miR-331-5p and miR-27a (individually or combined) led to an

increased sensitivity of these cells to DOX. This finding suggests that correction of a changed

microRNA modulation might be a therapeutic strategy to restore drug sensitivity. The authors

further demonstrated that both miRs were expressed at a lower concentration in a panel of

relapsed ALL and AML patients, in comparison to the population of patients diagnosed with

primary leukemia. This might indicate that relapse could be correlated, or is a consequence of

deregulation of miR-331-5p en miR-27a. Zhang et al. (63) studied miR-125b upregulation

in association with increased drug resistance in a pediatric AML population (n=176) of which

76 APL patient samples before therapy and 38 APL samples after therapy. This showed a

significant miR-125b upregulation in most of the AML subtypes in comparison to normal

bone marrow samples and a very high expression of miR-125b in the APL subgroup.

Transfection experiments indicated that miR-125b targets the tumor suppressor pro-death

protein Bak1 in leukemic cell lines (NB4, HL60, K562) which was confirmed by luciferase

reporter assays. An inverse association between miR-125b and Bak1 expression was

measured in about 70% of the APL samples. Dichotomisation of these samples in a high and

low miR-125b expressing group correlated with low and high Bak1 expression, respectively.

Bak1 expression was also increased in 60% of the complete remission patients after

chemotherapy. miR-125b was also found upregulated in leukemic drug-resistant cell lines,

and transfection of miR-125b-5p into HL-60 and NB4-R1 cells promoted cell proliferation

and significantly suppressed drug-induced apoptosis. An interesting observation was that

Page 36: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

36

transfection with miR-125b-3p led to the opposite effect: an increase of drug-induced

apoptosis. Downregulation of the Bak1 protein by siRNA likewise led to similar effect of

decreased apoptosis after miR-125b upregulation. The results showed that miR-125b may

have a critical role in pediatric APL samples through targeting the tumor suppressor Bak1

and its dysregulation may be linked to increased drug resistance. This suggests that miR-125

may be a biomarker for malignancy and for the prediction of chemotherapy effectiveness in

APL. Gocek et al. (102) studied the miR-32 upregulation by 1,25-dihydroxyvitamine-D3

(1,25-D3) in human myeloid leukemia cells. Previous literature described that 1,25-D3

induced differentiation of AML cells was accompanied with an increased cell survival

capacity (103). The hypothesis was that miR-32 is a modulator of the pro-apoptotic protein

Bim and this is associated with changes in the ability of AraC to induce apoptosis in AML. It

was experimentally verified that miR-32 targets the 3‟UTR of the BCL1L11 gene encoding

for Bim. The reduction of the cellular level of miR-32, consequent increase in Bim

expression and potential increased AraC drug sensitivity was tested by preincubating AML

cells with anti-miR-32 followed by treatment of the cells with AraC. Necrosis and apoptosis

assays confirmed this anti-miR-32 effect and led to increased cell death induced by AraC,

DOX or daunomycin and abrogated the previously reported anti-apoptotic effect of 1,25D. As

such, the combination of differentiation (by 1,25-D3) with cytotoxic therapy (AraC) in AML

might be further enhanced by agents lowering the cellular miR-32 levels. Bai et al. (104)

studied the involvement of miR-21 in resistance to daunorubicine (DNR) in a K562 cell line.

Previous literature had described PTEN, a negative regulator of the PI3K/Akt pathway as a

direct target of miR-21 (105). Akt kinase phosphorylates several downstream proteins such as

e.g. Bcl2 in K562 cell (106) and as such is active in cell growth regulation. The hypothesis

was that overexpression of miR-21 may activate the PI3K/Akt pathway by reducing the

PTEN protein level. The authors showed that miR-21 expression was upregulated in a

daunorubicine-resistant cell line, while suppression of miR-21 led to enhanced sensitivity to

DNR. K562 cells with transduced miR-21 showed increased Akt phosphorylation, while

miR-21 knockdown in the K562/DNR resistant cell line resulted in reduced phosphorylation.

The role of PTEN in the induced DNR resistance was studied through transfection of PTEN

siRNA, followed by the treatment with various doses of DNR. This led to reduced PTEN,

increased pAkt levels and a cell survival pattern similar as obtained after miR-21

overexpression. As such, this work showed that overexpression of miR-21 activates the

PI3K/Akt pathway by decreasing the PTEN protein leading to increased daunorubicine

resistance. The authors state that this miR-21/PTEN/PI3K/Akt pathway may therefore be a

Page 37: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

37

therapeutic target for drug sensitization in leukemia. Blum et al. (34) studied the clinical

response and miR-29b predictive significance in AML patients of 60 years or older, treated

with a 10-day schedule of decitabine, an azanucleoside DNA methyl transferase (DNMT)

inhibitor. Decitabine is applied in the treatment of MDS (107) and AML (108), based on its

capability to inhibit DNMT-induced aberrant hypermethylation and gene activation. miR-29b

was previously shown to target the DNA methyltransferases and miR-29b had been shown to

be downregulated in AML (109). A phase II clinical trial with single-agent decitabine was

conducted in a cohort of 53 patients with previously untreated AML. The data indicated that

higher levels of miR-29b were associated with improved clinical response. Following the

decitabine treatment schedule, complete remission was achieved in 52% of subjects with

normal karyotype and in 50% of those with complex karyotype with a median overall

survival and disease free survival of 55 and 46 weeks, respectively. Patients who responded

to decitabine had a higher pretreatment level of miR-29b than non-responders (P = 0.02).

This data suggests that higher baseline miR-29b expression in myeloid blasts leads to lower

DNMT levels and acts in synergy to induce increased sensitivity to the hypomethylating

effect of decitabine. Consistent with this finding, a trend to lower DNMT3a expression was

observed in decitabine responders compared to non-responders. Hickey at al. (110) recently

reported the upregulation of the anti-leukemic miR-181a by lenalidomide, a drug recently

applied in treatment of AML patients with CEBPA mutation (111, 112). This was a next step

after previous work showed that increased miR-181a expression is associated with improved

outcome in CN-AML (27). Within the studied adult population (<60 years) of primary CN-

AML with high-risk features, it was shown that miR-181a expression was increased in over

90% of the CEBPA mutated samples. CEBPA mutation was linked to inhibition of the

expression of the full-length C/EPBα-p42 isoform, while the expression of the truncated

C/EPBα-p30 isoform remained undisturbed or was even enhanced. The authors showed that

the presence of N-terminal CEBPA mutation and miR-181a expression are linked. The

truncated C/EPBα-p30 isoform was shown to bind to the miR-181a-1 promoter and

upregulate the miR-181a expression. In vitro experiments using THP-1 cells treated with

lenalidomide showed sensitization of these cells to AraC. This lenalidomide activity was

inhibited in the presence of the miR-181a antagomir, supporting that lenalidomide-induced

sensitivity to AraC is dependent on its ability to increase miR-181a expression. It was further

shown that the ectopic expression of miR-181a inhibited tumor growth in a xenograft mouse

model. Lenalidomide exhibited anti-tumorigenic activity paralleled by an increased miR-181a

expression. This collected data may provide a rationale for the improved clinical outcome

Page 38: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

38

observed in CEBPA-mutated patients, and suggests that lenalidomide treatment enhancing

the C/EPBα-p30 protein levels, and in turn miR-181a, may sensitize AML blasts to

chemotherapy. To prove this principle, a Phase I trial (NCT01132586) of lenalidomide

followed by the AraC induction therapy was initiated by the authors.

In a couple of papers dealing with MDR in chronic myeloid leukemia (CML) or acute

lymphatic leukemia (ALL), identical microRNAs as described in the AML papers above,

were associated with chemoresistance. Therefore these papers are covered here as well.

Zimmerman et al. (113) profiled the microRNA expression in a model of Lyn kinase

mediated imatinib-resistant CML cells (Myl-R) and identified about 30 microRNAs whose

expression differed more than two-fold compared with drug-sensitive cells. Especially the

expression of the miR-181a-d family had significantly reduced (11-25 fold) in Myl-R cells.

Incubation of Myl-R cells with a Lyn inhibitor or nucleofection with Lyn-targeting siRNA

increased miR-181b and miR-181d expression. Sequence analysis of potential targets for

miR-181 predicted the anti-apoptotic Mcl-1 protein (myeloid cell leukemia-1) whose

expression was increased in Myl-R cells. Inhibition of Lyn or rescue of miR-181b expression

reduced the Mcl-1 expression in the Myl-R cells. Luciferase reported assays further

demonstrated that Mcl-1 is a direct target of miR-181b. Further data demonstrated that the

stimulation of Lyn kinase expression by 1,25-dihydroxyvitamine-D3 treatment in HL-60 cells

decreased miR-181b expression and increased Mcl-1 expression. This work suggests that

down-regulation of miR-181 upon Lyn activation could be a novel mechanism of drug

resistance in leukemia by increasing the Mcl-1 protein. This experimental observation

correlates well with the observation that low miR-181 expression is associated with poor

prognosis in AML, whereas high miR-181 expression is prognostic for event-free survival in

AML (27, 28). Han et al. (114) showed that downregulation of the same miR-27a might

promote relapse in ALL by regulating genes with roles in drug resistance pathways. The

polycomb gene BMI1 was identified as a bona fida target of miR27a in this work.

4 Review papers dealing with microRNA in AML

Havelange, Garzon and Croce (9) summarized the knowledge about microRNA

dysregulation in AML anno 2009 and focused on reviewing four major large-scale global

microRNA profiling studies. In these different studies, unfortunately, only a few miRs within

the full microRNA signature associated with an AML cytogenetic or molecular subclass are

equally up- or downregulated. In other words, the reproducibility of identifying up- or

Page 39: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

39

downregulated microRNAs in identical subclasses of AML between different labs and

employing different patient cohorts, seems rather poor. The authors suggest that such

differences in reported microRNA signatures, might be explained mainly because of the

differences in overall cytogenetic and molecular AML subgroups in the studied patient

population. A second explanation may be the type of platforms used to interrogate microRNA

expressions. Such bias would be less evident, the authors state, when future research would

focus on well characterized cytogenetic and molecular subgroups of AML, as such

minimizing the biological heterogeneity. The authors further believe that microRNA studies

will have relevant therapeutic implications in the coming years. Synthetic microRNAs or

anti-miRs alone, or in association with chemotherapy, could become future AML therapies.

Synthetic microRNAs could be used to restore lost tumour suppressor microRNA expression,

or overexpressed oncogenic microRNAs could be silenced with antagomirs. Seca et al. (115)

reviewed microRNA patterns associated with AML subtypes as published in previous

literature. The knowledge at that time about microRNA patterns associated with t(8;21),

t(15;17), inv(16), MML-rearrangements, and NPM1, BAALC, CEBPA, MN1 en FTL3-

ITD/wt mutations are discussed. Similar to the previous review, the authors critically reflect

on the rather poor reproducibility of microRNA patterns associated with AML subtypes,

between different papers. Possible explanations are suggested which included the difference

in the studied AML populations with different cytogenetic and molecular features,

differences in sample preparation used for RNA extraction and purification, differences in

microRNA profiling methods and platforms used, and the absence of standardized

normalization procedures e.g.versus snRNA or tRNA. Garzon, Marcucci and Croce (16)

describe the role of microRNAs in tumorigenesis (“a paradigm shift“) and discuss the

rationale, the strategies and the challenges for the therapeutic targeting of microRNA in

cancer. The authors describe a number of microRNAs and the knowledge about their in vitro

and in vivo roles in cancer deeper. Examples are the miR-17-92 cluster, miR-155 and miR-

181a. The main portion of their paper deals with discussing future potential strategies of

microRNA-based therapeutics. Marcucci et al. (26) reviewed the prognostic and functional

role of microRNAs in AML in 2011. An overview of the most significant microRNAs

correlating with cytogenetics and molecular features in AML is given. Furthermore an

overview of the current knowledge about the functional roles of miR-155, miR-196b, miR-

223 and miR-29 is given in more detail. Havelange et al. (25) studied the functional

implications of microRNAs in AML by integrating microRNA and mRNA expression

profiling of bone marrow or peripheral blood samples of newly diagnosed AML patients.

Page 40: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

40

Although not intended as a review article, this original article offers suggestions and opens

doors to future AML-microRNA research. Through network analysis linking microRNA and

mRNA interactions in e.g. apoptosis and inflammation/immunity networks, the data indicates

that mRNA transcripts are associated with several microRNAs. This suggests a combinatorial

effect in gene (dys)regulation by co-expressed endogenous microRNAs in AML. In other

words, a small group of microRNAs coordinately regulates an mRNA pathway transcriptome

by modulating the same group of genes within the pathway. Based on obtained in vitro

experimental results and potential discrepancies with AML patient samples in studying

molecular effects of miR-145, miR-23a, - 26a, and -128a, the authors reflect on potential

limitations of using cell lines for the validation of events as measured in primary AML

samples. An explanation for such discrepancies between true AML samples and cell lines

may be that many microRNA-mRNA interactions will occur only in the context of well-

defined cytogenetics and molecular subtypes of AML. Such very specific temporal and

molecular conditions may be very hard to reproduce by artificially manipulating in vitro

microRNA expression in specific cell lines.

5 Conclusions

Within the past 5-10 years, the role of microRNA dysregulation and its contribution to AML

pathogenesis is step-by-step being unraveled. In several studies, a limited number of

microRNAs has been consistently associated with the most abundant specific cytogenetic and

molecular aberrations in AML (9,31,26,61). The first mechanistic proposals explaining the

oncomiR and tumor suppressor miR action in pathways have been published (33,25,52,

56,76). MicroRNA up- and downregulation has been proposed as a contributor to improving

prognosis (26-30, 32,33,52,46,60) or has been described to affect resistance to drug therapy

(24,27,28,34,63,99,100-104,110,113) and the first clinical trials evaluating microRNA

expression modulation as a therapeutic option in AML have been reported (16,34,110).

Insight in the complex molecular mechanistic circuitry of specific microRNAs is slowly

being gathered. Several microRNAs act in a temporal and combinatorial way in the

regulation of a pathway transcriptome (e.g. immunity or apoptosis), and a same microRNA

can target different genes active in very different cell processes (25). This knowledge

challenges the idea to modulate single or a few microRNAs as an adjuvant to improve

outcome in cancer therapy. However, microRNAs such as miR-181a, miR-29b and miR-223

Page 41: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

41

seem involved in crucial crossroads cell processes and as such their endo- or exogenous

modulation offers hope to restore malignant cell processes. Promising examples are miR-29b

expression levels in stratification of older AML patients for which decitabine treatment might

be a last option (34) or lenalidomide treatment leading to increased expression of the tumor

suppressor miR-181a potentially increasing the chemosensitivity of blasts to AraC

chemotherapy (110). The development of further fundamental insights in the action of

microRNAs in critical pathways affecting cell proliferation and differentiation may,

eventually, enable novel microRNA-targeting therapeutics and/or inhibit classical multidrug

resistance.

========

Page 42: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

42

4 Discussie

Gedurende de voorbije 5 tot 10 jaar is er toenemende aandacht voor het ontrafelen van de

kennis over de rol en mechanismen van microRNA‟s in het leukemogenese proces. Dit heeft

geleid tot het definiëren van tumorsuppressor microRNA‟s en oncogene microRNA‟s.

Eenzelfde microRNA kan in een bepaalde pathway de rol van tumorsuppressor vervullen

(b.v. suppressie van een oncogen), terwijl het in een andere pathway een oncogene rol kan

uitoefenen (b.v. onderdrukking van een tumorsuppressor-gen) (16). De rol van microRNA‟s

in de ontwikkeling van chemoresistentie of MDR krijgt ook een steeds belangrijker plaats in

het leukemie-onderzoek. Hierbij wordt de microRNA-expressie gecorreleerd met MDR en

wordt gezocht naar genen die door de veranderde microRNA expressie geïnduceerd of

onderdrukt worden in b.v. apoptose pathways of transporter systemen (63,99,101). De

microRNA expressie van AML patiënten kan ook gebruikt worden in het stratificeren van de

AML patiënten voor behandeling. Hierbij kan een verhoogde expressie van een specifiek

microRNA het behandelingsresultaat verbeteren. Deze kennis heeft dan ook geleid tot de

eerste klinische studies (16, 34, 110, 116) gebaseerd op microRNA-modulatie of microRNA-

expressieniveau.

Wat zijn de uitdagingen verbonden met microRNA-modulatie met het oog op de verbetering

van de prognose van AML patiënten?

Uit het literatuuroverzicht is het ten eerste duidelijk geworden dat één specifiek microRNA

betrokken kan zijn in de regulatie van verschillende celprocessen, b.v. immuniteit, apoptose,

epigenetische genregulatie, celproliferatie. Ten tweede is het ook aangetoond dat binnen deze

pathways (b.v. apoptose) verschillende microRNA‟s samenwerken om de verschillende

genen binnen dit specifiek celproces optimaal te moduleren (33). Deze complexe

samenwerking van microRNA‟s vormt een uitdaging voor het gebruik van microRNA-

targeting therapie. Hierdoor lijkt het aanneembaar dat modulatie van één specifiek

microRNA slechts een beperkt effect zal hebben op het beïnvloeden van een bepaalde

pathway. Daarom kan het zinvol zijn dat een dergelijke therapie zich eerst richt op specifieke

microRNA‟s die, volgens de recentste studies, in meerdere AML-subtypes een sleutelrol

lijken te vervullen. Zo‟n voorbeelden zijn de tumorsuppressoren miR-29b (33,52,60) en miR-

181 (27,28,30,32,68,71), miR-223 met een sleutelrol in het granulocytair differentiatieproces

(52,78,79) en het oncomir miR-126 dat sterk geïnduceerd wordt in core-binding factor

leukemieën, en geassocieerd is met het ontstaan hiervan (61). Een voorbeeld van een

Page 43: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

43

microRNA-targeting therapie is onlangs (2013) beschreven (35). Hierbij werd, in een

muizenmodel, lenalidomide, een immunomodulerende drug, aangewend om de expressie van

de tumor suppressor miR-181a te verhogen, wat op zijn beurt leidde tot een verhoogde

gevoeligheid voor AraC therapie. Op basis van deze resultaten is een Fase I klinische studie

recent geïnitieerd (35). Een ander voorbeeld is de aanwezigheid van hogere miR-29b

expressie bij oudere uitbehandelde of zwakke patiënten. Dit microRNA is vaak onderdrukt in

AML (109). De aanwezigheid van een hoge miR-29b-expressie bij patiënten behandeld met

decitabine, een inhibitor van de DNA-methyltransferasen, leidde tot een versterkt

hypomethylerend en dus onderdrukkend effect op actieve oncogenen betrokken in AML. Dit

werd in een Fase II klinisch onderzoek in 2010 bevestigd (34). Andere voorbeelden zullen in

de nabije toekomst zeker volgen, mede door de grote interesse van de farmaceutische sector

voor microRNA-therapie (16,116). Het herstellen van miR-223-expressie kan ook een

therapeutische optie zijn. De verstoring van de transcriptiefactor C/EBPα is het primum

movens in een mechanisme dat leidt tot miR-223 onderdrukking, gevolgd door verhoogde

E2F1 expressie. Dit leidt tot een blokkering in de differentiatie en inductie van celproliferatie.

Dit mechanisme suggereert dat C/EBPα verstoring een belangrijke stap kan zijn in de

ontwikkeling tot AML (56). Het lijkt hierdoor zinvol de miR-223 expressie te herstellen, b.v.

door het gebruik van miR-223 mimics.

Welke zijn de verdere uitdagingen in het AML-microRNA-onderzoek ?

Vooreerst is er de grote heterogeniteit van AML-stalen die in diverse laboratoria op

microRNA-expressie worden onderzocht. Zoals aangegeven door Havelange (9) en Seca

(115), kan dit een belangrijke reden zijn om de waargenomen verschillen in AML subtype-

geassocieerde microRNA-patronen tussen de verschillende onderzoeksgroepen te verklaren.

Daarom kan het nuttig zijn meer homogene patiëntenpopulaties te bestuderen met een meer

beperkte cytogenetische en moleculaire variabiliteit. Het behandelingsresultaat zou dan

binnen dergelijke populatie kunnen gecorreleerd worden met microRNA- en mRNA-

signatuur, proteïne expressie en activiteit. Een tweede uitdaging is het gebruik van

leukemische cellijnen om in vivo associaties of gepostuleerde moleculaire mechanismen te

valideren. Vaak worden in leukemische cellijnen significante correlaties gevonden tussen

microRNA of mRNA en drugtransporter expressie (b.v. P-glycoproteïne) en geeft transporter

suppressie een significante daling van MDR (98,101). Deze in vitro resultaten zijn vaak niet,

of slechts matig, op AML-patiëntstalen overdraagbaar (3,63). Deze discrepanties kunnen

verklaard worden door het feit dat vele microRNA-mRNA interacties slechts plaatsvinden in

Page 44: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

44

de context van zeer specifieke cytogenetische en moleculaire subtypes in AML (9). Een

grotere focus op het in vitro gebruik van AML stalen i.p.v. leukemie-cellijnen, kan hierin

misschien verbetering brengen.

De literatuur toont in elk geval een sterk groeiende aandacht voor microRNA in AML-

onderzoek. De eerste klinische onderzoeken zijn achter de rug. Of microRNA-modulerende

therapie, in de vervanging of als adjuvans tot de klassieke agressieve chemotherapie een

plaats krijgt in de standaard AML therapie, zal in de komende jaren duidelijk worden. In elk

geval zou dergelijke therapie met endogene biomoleculen een alternatief kunnen zijn.

Voornamelijk voor de groeiende populatie van oudere en zwakkere patiënten kan microRNA-

therapie de overleving en levenskwaliteit verbeteren.

Page 45: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

45

5 Referenties

(1) Estey E, Döhner H. Acute myeloid leukemia. Lancet. 2006;368:1894-907.

(2) Offner F. De acute leukemieën: uit BLOKBOEK “Problemen van hart, longen, bloedvaten, bloedvormende

organen en nieren I en II”. PARTIM Hematologie. Universiteit Gent 2011-12; p.23-24.

(3) Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, et al. Diagnosis and management

of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the

European LeukemiaNet. Blood. 2010;115(3):453-74.

(4) Stehouwer CDA, Koopmans RP, van der Meer J. In: Interne Geneeskunde. 7de

ed. Houten: Bohn, Staflue,

van Loghum; 2010. Hoofdstuk 9, Hemato-oncologie; p.286-88.

(5) Howard MR, Hamilton PJ. Acute Myeloid Leukemia. In: Haematology. 3rd

Edition. Elsevier, Edinburgh;

2008; p.40-41.

(6) Ries LAG, Melbert D, Krapcho A et al. SEER cancer statistics review. 1975-2005. National Cancer Institute

Web site. http://seer.cancer.gov/csr/1975_2005.

(7) Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposals for the

classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol.

1976;33(4):451–8.

(8) Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the

WHO Classification of Myeloid Neoplasms and Acute Leukemia: rationale and important changes. Blood.

2009;114(5):937-51.

(9) Havelange G, Garzon R, and Croce CM. MicroRNAs: new players in acute myeloid leukemia. Brit J Cancer.

2009;101(5):743-8.

(10) Langer C, Radmacher MD, Ruppert AS, Whitman SP, Paschka P, Mrózek K, et al. High BAALC

expression associates with other molecular prognostic markers, poor outcome, and a distinct gene-expression

signature in cytogenetically normal patients younger than 60 years with acute myeloid leukemia: a Cancer and

Leukemia Group B (CALGB) study. Blood. 2008;111(11):5371-9.

(11) Siesling S, Visser O, Luth TK, Karim-Kos HE, van de Poll-Franse LV, Aben KKH, Damhuis RAM.

Volwassen kankerpatiënten overleven langer in Nederland. Ned Tijschr Geneeskd. 2011;155(12):514-9.

(12) Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482(7385):347-55.

(13) Bartel DP. MicroRNAs: genomics, biogenesis, mechanisms, and function. Cell. 2004; 116(2):281-97.

(14) Ambros V. The function of animal microRNAs. Nature. 2004; 431(7006):350-5.

(15) Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with

antisense complementarity to lin-14. Cell. 1993;75(5):843–54 .

Page 46: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

46

(16) Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges.

Nature Reviews. 2010;9:775-89.

(17) Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, Carlson JW, et al. Discovery of functional elements

in 12 Drosophilia genomes using evolutionary signatures. Nature. 2007; 450(7167):219-32.

(18) Orom UA, Nielsen FN, Lund AH. MicroRNA-10a binds to the 5‟UTR of ribosomal protein mRNAs and

enhances their translation. Mol Cell. 2008;30(4):460-71.

(19) Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W. Transcriptional control of

gene expression by microRNAs. Cell. 2010;140(1):111-22.

(20) Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, et al. miR-328 functions as an RNA decoy to

modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 2010;140(5):652-65.

(21) Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-

regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad

Sci USA. 2002;99(24):15524–29.

(22) Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. RNA expression profiles classify

human cancers. Nature. 2005;435(7043):834-8.

(23) Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature

of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103(7):2257-61.

(24) Fabbri M, Bottoni, A, Shimizu M, Spizzo R, Nicoloso MS, Rossi S, et al. Association of a

MicroRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia.

JAMA. 2011;305(1):59-67

(25) Havelange V, Stauffer N, Heaphy CC, Volinia S, Andreeff M, Marcucci G et al. Functional implications of

MicroRNAs in acute myeloid leukemia by integrating MicroRNA and messenger RNA expression profiling.

Cancer. 201;117:4696-706.

(26) Marcucci G, Mrózec K, Radmacher MD, Garzon R, Bloomfield CD. The prognostic and functional role of

microRNA in acute myeloid leukemia. Blood. 2011;117(4):1121-8.

(27) Marcucci G, Radmacher MD, Maharry K, Mrózek K, Ruppert AS, Paschka P et al. MicroRNA expression

in cytogenetically normal acute myeloid leukemia. New Eng J Med. 2008;358(18):1919-28.

(28) Schwind S, Maharry K, Radmacher MD, Mrózek K, Holland KB, Margeson D et al. Prognostic

significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia:

a Cancer and Leukemia Group B study. J Clin Oncol. 2010; 28(36):2953-64.

(29) Whitman SP, Maharry K, Radmacher MD, Becker H, Mrózek K, Margeson D, et al. FLT3 internal tandem

duplication associates with adverse outcome and gene- and microRNA expression signatures in patients 60

years of age or older with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia

Group P study. Blood. 2010;116(18):3622-6.

Page 47: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

47

(30) Li Z, Huang H, Li Y, Jiang X, Chen P, Arnovitz S, et al. Up-regulation of a HOXA-PBX3 homeobox-gene

signature following down-regulation of miR-181 is associated with adverse prognosis in patients with

cytogenetically-abnormal AML. Blood. 2012;119(10):2314-24.

(31) Garzon R, Garofalo M, Martelli MP, Briesewitz R, Wang L, Fernandez-Cymering C et al. Distinctive

microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Nat Acad

Sci USA. 2008;105(10):3945-50.

(32) Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F et al. MicroRNA signatures

associated with cytogenetics en prognosis in acute myeloid leukemia. Blood. 2008;111(6):3183-9.

(33) Garzon R, Heaphy CE, Havelange V, Fabbri M, Volinia S, Tsao T et al. MicroRNA 29b functions in acute

myeloid leukemia. Blood. 2009;114(26):5331-41.

(34) Blum W, Garzon R, Klisovic RB, Schwind S, Walker A, Geyer S et al. Clinical response and miR-29b

predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci

USA. 2010;107(16):7473-8.

(35) Hickey CJ, Schwind S, Radomska HS, Dorrance AM, Santhanam R, Mishra A, et al. Lenalidomide-

mediated enhanced translation of C/EBP-α-p30 protein upregulates expression of anti-leukemic microRNA-

181a in acute myeloid leukemia. Blood. 2013;121(1):159-69.

(36) Marcucci G, Haferlach T, Döhner H. Molecular genetics of adult acute myeloid leukemia: prognostic and

therapeutic implications. J Clin Oncol. 2011;29(6);475-86.

(37) Lowenberg B, Downing JR, Burnett A. Acute Myeloid Leukemia. N Eng J Med. 1999; 341(19):1051-62.

(38) Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2) :215-33.

(39) Beitzinger M, Meister G. MicroRNAs: from decay to decoy. Cell. 2010;140(5): 612-4.

(40) Mullighan CG, Kennedy A, Zhou X, Radtke I, Phillips LA, Shurtleff SA, Downing JR. Pediatric acute

myeloid leukemia with NPM1 mutation is characterized by a gene expression profile with dysregulated HOX

gene expression distinct from MLL-rearranged leukemias. Leukemia. 2007;21(9):2000-9.

(41) Ovcharenko D, Stölzel F, Poitz D, Fierro F, Schaich M, Neubauer A, et al.miR-10a overexpression is

associated with NPM1 mutations and MDM4 downregulation in intermediate-risk acute myeloid leukemia. Exp

Hematol. 2011;39(10):1030-42.

(42) Kruse JP, Gu W. Modes of p53 regulation. Cell. 2009;137(4):609-22.

(43) Han YC, Park CY, Bhagat G, Zhang J, Wang Y, Fan JB, et al. MicroRNA-29a induces aberrant self-

renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp

Med. 2010;207(3):475-88.

(44) Garzon R, Liu S, Fabbri Z, Liu Z, Heaphy CE, Callegari S et al. MicroRNA-29b induces global DNA

hypomethylation and tumor suppressor gene re-expression in acute myeloid leukemia by targeting directly

DNMT3A and 3B and indirectly DNMT1. Blood. 2009;113(25):6411-8.

Page 48: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

48

(45) Shih HH, Tevosian SG, Yee AS. Regulation of differentiation by HBP1, a target of the retinoblastoma

protein. Mol Cell Biol. 1998;18(8):4732-43.

(46) Teichler S, Illmer T, Roemhild J, Ovcharenko D, Stiewe T, Neubauer A. MicroRNA29a regulates the

expression of the nuclear oncogene Ski. Blood. 2011;118(7): 1899-902.

(47) Teichler S, Schlenk RF, Strauch K, Hagner NM, Ritter M, Neubeuer A. Expression of the nuclear oncogene

Ski in patients with acute myeloid leukemia treated with all-trans retinoic acid. Haematologica.

2008;93(7);1105-7.

(48) Wang XS, Gong JN, Yu J, Wang F, Zhang XH, Yin XL et al. MicroRNA-29a and microRNA142-3p are

regulators of myeloid differentiation and acute myeloid leukemia. Blood. 2012;119(21):4992-5004.

(49) Huang DC, Strasser A. BH3-only proteins: essential initiators of apoptotic cell death. Cell.

2000;103(6):839-42.

(50) Egle A, Harris AW, Bouillet P, Cory S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc

Natl Acad Sci USA. 2004;101(16):6264-9.

(51) Jansen AP, Camalier CE, Stark C, Colbum NH. Characterization of a programmed cell death 4 in multiple

human cancers reveals a novel enhancer of drug sensitivity. Mol Cancer Ther. 2004;3(2):103-10.

(52) Eyholzer M, Schmid S, Wilkens L, Mueller BU, Pabst T. The tumour-suppressive miR-29a/b1 cluster is

regulated by CEBPA and blocked in human AML. Br J Cancer. 2010;103(2): 275-84.

(53) Pabst T, Mueller BU, Zhang P, Radomska HS, Narravulo S, Schnittget S et al. Dominant-negative

mutations of CEBPA, encoding CCAAT/enhancer binding protein-alpha (C/CEBPalpha), in acute myeloid

leukemia. Nat Genet. 2001; 27(3):263-70.

(54) Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG. Absence of granulocyte

colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-

deficient mouse. Proc Natl Acad Sci USA. 1997;94:569-74.

(55) Radomska HS, Huettner CS, Zhang P, Cheng T, Scadden DT, Tenen DG. CCAAT/enhancer binding

protein alpha is a regulatory switch sufficient for induction of granulocyte development from bipotential

myeloid progenitors. Mol Cell Biol. 1998;18(7):4301-14

(56) Pullikan JA, Dengler VD, Peramangalam PS, Peer Zada AA, Müller-Tidow C, Bohlander SK, et al. Cell-

cycle regulator E2F1 and microRNA-223 comprise an autoregulatory negative feedback loop in acute myeloid

leukemia. Blood. 2010;115(9):1768-78.

(57) Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G et al. AML1-ETO downregulates the

granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med. 2001;7(4):444-51.

(58) Helbling D, Mueller BU, Timchenko NA, Hagemeijer A, Jotterand M, Meyer-Monard S et al. The

leukemic fusion gene AML1-MDS1-EV11 suppresses CEBPA in acute myeloid leukemia by activation of

calreticulin. Proc Natl Acad Sci USA. 2004;101(36): 13312-7.

Page 49: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

49

(59) Helbling D, Mueller BU, Timchenko NA, Schardt J, Eyer M, Betts DR et al. CBFB-SMMHC is correlated

with increased calreticulin expression and suppresses the granulocytic differentiation factor CEBPA in AML

with inv(16). Blood. 2008;106(4):1369-75.

(60) Xiong Y, Li Z, Ji M, Tan AC, Bemis J, Tse JV et al. miR29B regulates expression of MLLT11 (AF1Q), an

MLL fusion partner, and low miR29B expression associates with adverse cytogenetics and poor overall survival

in AML. Brit J Haematol. 2011;153(6):753-7.

(61) Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT et al. Distinct microRNA expression profiles in acute myeloid

leukemia with common translocations. Proc Nat Acad Sci USA. 2008;105(40): 15535-40.

(62) Zhang H, Luo XQ, Zhang P, Huang LB, Zheng YS, Wu J et al. MicroRNA patterns associated with

clinical prognostic parameters and CNS relapse prediction in pediatric acute leukemia. PLoS ONE.

2009;4(11)e7826:1-10. doi:10.1371/journal.pone.0007826.

(63) Zhang H, Luo XQ, Feng DD, Zhang XJ, Wu J, Zheng YS et al. Upregulation of microRNA-125b

contributes to leukemogenesis and increases drug resistance in pediatric acute promyelocytic leukemia. Mol

Cancer. 2011; 10:108. Available from: http//www.molecular-cancer/content/10/1/108.

(64) Galonek HL, Hardwick JM. Upgrading the BCL-2 network. Nat Cell Biol. 2006; 8(12):1317-9.

(65) Jongen-Lavrencic M, Sum SM, Dijkstra MK, Valk PJM, Löwenberg B. MicroRNA expression profiling in

relation to genetic heterogeneity of acute myeloid leukemia. Blood. 2008;111(10):5078-85.

(66) O‟Connell RM, Chaudhuri AA, Rao DS, Baltimore D. Inositol phosphatase SHIP1 is a primary target of

miR-155. Proc Natl Acad Sci USA. 2009;106(117):7113-8.

(67) Costinean S, Sandhu SK, Pederson IM, Tili E, Trotta R, Perrotti D, et al. Src homologue 2 domain-

containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells

of Emu-MiR-155 transgenic mice. Blood. 2009;114(7);1374-82.

(68) Debernardi S, Skoulakis S, Molloy G, Chaplin T, Dixon-McIlver A, Young BD. MicroRNA miR-181a

correlates with morphological sub-class of acute myeloid leukemia and the expression of its target genes in

global genome-wide analysis. Leukemia. 2007;21(5):912-6.

(69) Ramkissoon SH, Mainwaring LA, Ogasawara Y, Keyvanfar K, McCoy Jr JP, Sloand EM et al.

Hematopoietic-specific microRNA expression in human cells. Leuk Res. 2006; 30(5):643-7.

(70) Jaffe ES, Harris NL, Stein H, Vardinam JW, eds. World Health Organization classifications of tumors.

Pathology and genetics of tumors of haematopoietic and lymph tissues. 2001; Lyon, France: IARC.

(71) Wang X, Gocek E, Liu CG, Studzinkski GP. MicroRNAs181 regulate the expression of p27Kip1

in human

myeloid leukemia cells induced to differentiate by 1,25-dihydroxyvitamin D3. Cell Cycle. 2009;8(5):736-41.

(72) Rots NY, Iavarone A, Bromleigh V, Freedman LP. Induced differentiation of U937 cells by 1,25-

dihydroxyvitamine D3 involves cell cycle arrest in G1 that is preceded by a transient proliferative burst and an

increase in cyclin expression. Blood. 1999;93(8):2721-9.

Page 50: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

50

(73) Wang QM, Studzinski GP, Chen F, Coffman FD, Harrison LE. p53/56 (lyn)

antisense shifts the 1,25-

dihydroxyvitamine D3-induced G1/S block in HL60 cells to S phase. J Cell Phys. 2000;183(2):238-46.

(74) 44/25 Li Z, Luo RT, Mi S, Sun M, Chen P, Bao J, et al. Consistent deregulation of gene expression

between human and murine MLL rearrangement leukemias. Cancer Res. 2009;69(3):1109-16.

(75) 44/28 Kok CH, Brown AL, Ekert PG. D‟Andrea RJ. Gene expression analysis reveals HOX gene

upregulation in trisomy 8 AML. Leukemia. 2010;24(6):1239-43.

(76) Brioshi M, Fischer J, Cairoli R, Rossetti S, Pezzetti L, Michelatti M, et al. Downregulation of microRNAs

222/221 in acute myelogenous leukemia with deranged core-binding factor subunits. Neoplasia. 2010;12(11):

866-76.

(77) Shih LY, Liang DC, Huang CF, Chang YT, Lai CL, Lin TH et al. Cooperating mutations of receptor

tyrosine kinases and Ras genes in childhood core-binding factor acute myeloid leukemia and a comparative

analysis on paired diagnosis and relapse samples. Leukemia. 2008;22(2):303-7.

(78) Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I. A minicircuitry comprised of

microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell.

2005;123(5):819-31.

(79) Fukao T, Fukuda Y, Kiga K, Sharif J, Hino K, Enomoto Y, et al. An evolutionary conserved mechanism for

micriRNA-223 expression revealed bij microRNA gene profiling. Cell. 2007;129(3):617-31.

(80) Fazi F, Racanicchi S, Zardo G, Starnes LM, Mancini M, Travaglini L et al. Epigenetic silencing of the

myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell. 2007;12(5):457-66.

(81) Downing JR. AML1/CBFb transcription complex: its role in normal hematopoiesis van leukemia.

Leukemia. 2000;15(4);664-5.

(82) Rosenbauer F, Tenen DG. Transcription factors in myeloid development balancing differentiation with

transformation. Nat Rev Immunol. 2007;7(2):105-7.

(83) Schuster MB, Porse BT. C/EBPalpha: a tumour suppressor in multiple tissues? Biochim Biophys Acta.

2006;1766(1):88-103.

(84) Fan D, Zhang X, Chen X, Mou Z, Hu J, Zhou S, et al. Bird‟s-eye view on gastric cancer research of the

past 25 years. J Gastroenterol Hepatol. 2005;20(3):360-5.

(85) Kaspers GJ, Veerman AJ, Pieters R, Van Zantwijk CH, Smets LA, Van Wering ER, et al. In vitro cellular

drug resistance and prognosis in newly diagnosed childhood acute lymphoblastic leukemia. Blood.

1997;90(7):2723-9.

(86) Baudard M, Beauchamp-Nicoud A, Delmer A, Rio B, Blanc C, Zittoun R, et al. Has the prognosis of adult

patients with acute myeloid leukemia improved over years? A single institution experience of 784 consecutive

patients over a 16-year period. Leukemia. 1999;13(10):1481-90.

(87) Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, et al. Characterization of microRNA

expression levels and their biological correlates in human cancer cell lines. Cancer Res. 2007;67(6):2456-68.

Page 51: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

51

(88) Glasspool RM, Teodoridis JM, Brown R. Epigenetics as a mechanism driving polygenic clinical drug

resistance. Br J Cancer. 2006;94(8):1087-92.

(89) Iwasa Y, Nowak MA, Michor F. Evolution of resistance during clonal expansion. Genetics. 2006;172(4):

2557-66.

(90) Roberti A, La Sala D, Cinti C. Multiple genetic and epigenetic interacting mechanisms to clonally selection

of drug-resistant tumours: current views and new therapeutic perspective. J Cell Physiol. 2006;207(3):571-81.

(91) Rabik CA, Dolan ME, Molecular mechanisms of resistance and toxicity associated with platinating agents.

Cancer Treat Rev. 2007;33(1):9-23.

(92) Johnstone RW, Ruefli AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell.

2002;108(2):153-64.

(93) Zhang K, Mack P, Wong KP. Glutathione-related mechanisms in cellular resistance to anticancer drugs. Int

J Oncol. 1998;12(4):871-82.

(94) 19 Marzac C, Garrido E, Tang R, Fava F, Hirsch P, De Benedictis C, S et al. ATP binding cassette

transporters associated with chemoresistance: transcriptional profiling in extreme cohorts and their prognostic

impact in a cohort of 281 acute myeloid patients. Haematologica. 2011; 96(9):1293-304.

(95) Tang R, Faussat AM, Perrot JY, Marjanovic Z, Cohen S, Storme T, et al. Zosuquidar restores drug

sensitivity in P-glycoprotein expressing acute myeloid leukemia. BMC Cancer 2008; 8:51. doi:10.1186/1471-

2407-8-51.

(96) Tang R, Cohen S, Perrot JY, Faussal AM, Zuany-Amorim C, Marjanovic Z, et al.. P-gp activity is a critical

resistance factor against AVE9633 and DM4 cytotoxicity in leukemia cell lines, but not a major mechanism of

chemoresistance in cells from acute myeloid leukemia patients. BMC Cancer 2009; 9:199. doi:10.1186/1471-

2407-9-199.

(97) Hirsch P, Tang R, Marzac C, Perrot JY, Fava F, Bernard C, et al. Prognostic impact of high ABC

transporter activity in 111 adult acute myeloid leukemia with normal cytogenetics when compared to FLT3,

NPM1, CEBPA and BAALC. Haematologica. 2012;97(2):241-5.

(98) Mishra PJ, Humeniuk R, Mishra PJ, Longo-Sorbello GSA, Banerjee D, Bertino JR. A miR-24 microRNA

binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci

USA. 2007;104(3):13513-18.

(99) Zhao X, Yang L, Hu J, Ruan J. miR-138 might reverse multidrug resistance of leukemia cells. Leuk Res.

2010;34(8):1078-82.

(100) Li Y, Zhu X, Gu J, Hu H, Dong D, Yao J et al. Anti-miR-21 oligonucleotide enhances chemosensitivity of

leukemic HL60 cells to arabinosylcytosine by inducing apoptosis. Hematology. 2010;15(4);215-21.

(101) Feng DD, Zhang H, Zhang P, Zheng YS, Zhang XJ, Han BW et al. Down-regulated miR-331-5p and miR-

27a are associated with chemotherapie resistance and relapse in leukemia. J Cell Mol Med. 2011;15(10): 2164-

75.

Page 52: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

52

(102) Gocek E, Wang X, Liu X, Liu C-G, Studzinski GP. MicroRNA-32 upregulation by 1,25-

dihydroxyvitamin D3 in human myeloid leukemia cells lead to Bim targeting and inhibition of AraC-induced

apoptosis. Cancer Res. 2011;71(11):6230-9.

(103) Wang X, Wang TT, White JH, Studzinski GP. Expression of human kinase suppressor of Ras 2 (hKSR-2)

gene in human leukemia cells is directly upregulated by 1,25-dihydroxyvitamin D3 and is required for optimal

cell differentiation. Exp Cell Res. 2007;313(14):3034-45.

(104) Bai H, Xu R, Cao Z, Wei D, Wang C. Involvement of miR-21 in resistance to daunorubicin by regulating

PTEN expression in the leukaemia K562 cell line. FEBS Lett. 2011;585(2): 402-8.

(105) Meng F, Henson M, Lang H, Weehbe S, Maheshwari JT, Mendell J et al. Involvement of human

microRNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology.

2006;130(7):2113-29.

(106) Marfe G, Tafani M, Indelicato M, Sinibaldi-Salimei P, Reali V, Pucci B et al. Kaempferol induces

apoptosis in two different cell lines via Akt inactivation, Bax and SIRT3 activation, and mitochondrial

dysfunction. J Cell Biochem. 2009;106(4):643-50.

(107) Kantarjian H, Issa JP, Rosenfeld CS, Bennett JM, Albitar M, DiPersio, J, et al. Decitabine improves

patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer. 2006;

106(8);1794-803.

(108) Cashen AF, Schiller GJ, O'Donnell MR, DiPersio JF. Multicenter, phase II study of decitabine for the

first-line treatment of older patients with acuty myeloid leukemia. J Clin Oncol. 2010;28(4);556-61.

(109) Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, et al. MicroRNA-29 family induces global

DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly

DNMT3A and 3B and indirectly DNMT1. Blood. 2009;113(25):6411-8.

(110) Hickey CJ, Schwind S, Radomska HS, Dorrance AM, Santhanam R, Mishra A, et al. Lenalidomide-

mediated enhanced translation of C/EBP-α-p30 protein upregulates expression of anti-leukemic microRNA-

181a in acute myeloid leukemia. Blood. 2013;121(1):159-69.

(111) Blum W, Klisovic RB, Becker H, Yang X, Rozewski DM, Phelps MA, et al. Dose escalation of

lenalidomide in relapsed or refractory acute leukemias. J Clin Oncol. 2010;28(33);4919-25.

(112) Fehniger TA, Uy GL, Trinkaus K, Nelson AD, Demland J, Abboud CN, et al. A phase 2 study of high-

dose lenalidomide as initial therapy for older patients with acute myeloid leukemia. Blood. 2011;117(6);1828-

33.

(113) Zimmerman EI, Dollins CM, Crawford M, Grant S, Nana-Sinkam SP, Richards KL, et al. Lyn kinase-

dependant regulation of miR181 and myeloid cell leukemia-I expression: implications for drug resistance in

myelogenous leukemia. Mol Pharmacol 2010;78(5):811-7.

(114) Han BW, Feng DD, Li ZG, Luo XQ, Zhang H, Li XJ et al. A set of miRNAs that involve in the pathways

of drug resistance and leukemic stem-cell differentiation is associated with the risk of relapse and glucocorticoid

response in childhood ALL. Human Molec Genetics. 2011; Oct 4, 1-13. doi:10.1093/hmg/ddr428.

Page 53: PROGNOSE VAN ACUTE MYELOIDE LEUKEMIE - lib.ugent.be · AML-onderzoek op dit gebied binnen de vakgroep Klinische Biologie, Immunologie en Microbiologie een sterker fundament te geven.

53

(115) Seca H, Almeida GM, Guimarăes JE, Vasconcelos MH. MiR signatures and the role of miRs in acute

myeloid leukemia. Eur J Cancer. 2010;46(9):1520-7.

(116) Murray MY, Rushworth SA, MacEwan DJ. Micro RNAs as a new therapeutic target towards leukaemia

signaling. Cell Signal. 2012;24(2):363-8.

6 Bijlagen (op CD)

Bijlage 1: Samenvattingen van de bestudeerde literatuur

Bijlage 2: Tabel MicroRNA’s in AML

Bijlage 3: Humane hematopoiese en normale bloedcelwaarden