Ministerie van Economische Zaken Directie Energiemarkt T.a.v. - … · Ministerie van Economische...

21
Ministerie van Economische Zaken Directoraat-generaal Energie, Telecom & Mededinging Directie Energiemarkt T.a.v. Postbus 20401 2500 EK DEN HAAG Cc Staatstoezicht op de Mijnen T.a.v. Postbus 24037 2490 AA DEN HAAG Nedmag Industries Mining & Manufacturing B.V. BiUitonweg 1 9641 KZ Veendam RO. Box 241 9640 AE Veendam The Netherlands T +31 598 651 911 F +31 598 551 226 E infoiinedmag.nl I www.nedmag.com Uw kenmerk Telefoon Betreft Datum DGETM-EM/14135221 (0598)-651260 Winningsplan Nedmag Industries Veendam, 30 oktober 2015 Geachte OJ OJ OJ Oa Conform artikel 6 van het instemmingsbesluit (3 oktober 2014) van het Ministerie van Economische Zaken aangaande het gewijzigde winningsplan, dient Nedmag een nadere studie uit te voeren naar het verschil tussen het squeezevolume uit de materiaalbalans en het volume uit de inversie, en de invloed daarvan op de onzekerheid in de bodemdalingsvoorspelling. In mijn brief van 23 juni 2015 heb ik u gevraagd om het onderzoek later te mogen indienen. In het bijgevoegd rapport is een gedetailleerde studie weergegeven naar de invloeden van de kritische parameters op de massabalans van Nedmag's zoutwinning. Naast het gevraagde squeezevolume is ook het ondergrondse pekelvolume berekend. Bij de opzet van de studie is van het bedrijf NG-Consulting uit Sondershausen geconsulteerd over de wijze waarop de diverse oplosprocessen verlopen. De heeft namelijk een uitgebreide expertise op het gebied van "zoutchemie". Trade register Groningen 02331543 VAT HD. IML 0049270B4B01 NedMag is ISO 9001. ISO 14001 150 22000 and GMP+ certified

Transcript of Ministerie van Economische Zaken Directie Energiemarkt T.a.v. - … · Ministerie van Economische...

  • Ministerie van Economische Zaken

    Directoraat-generaal Energie, Telecom & Mededinging

    Directie Energiemarkt

    T.a.v.

    Postbus 20401

    2500 EK DEN HAAG

    Cc Staatstoezicht op de Mijnen

    T.a.v.

    Postbus 24037

    2490 AA DEN HAAG

    Nedmag Industries

    Mining & Manufacturing B.V.

    BiUitonweg 1

    9641 KZ Veendam

    RO. Box 241

    9640 AE Veendam

    The Netherlands

    T +31 598 651 911

    F +31 598 551 226

    E infoiinedmag.nl

    I www.nedmag.com

    Uw kenmerk

    Telefoon

    Betreft

    Datum

    DGETM-EM/14135221

    (0598)-651260

    Winningsplan Nedmag Industries

    Veendam, 30 oktober 2015

    Geachte

    OJ

    OJ

    OJ

    O a

    Conform artikel 6 van het instemmingsbesluit (3 oktober 2014) van het Ministerie van

    Economische Zaken aangaande het gewijzigde winningsplan, dient Nedmag een nadere

    studie uit te voeren naar het verschil tussen het squeezevolume uit de materiaalbalans en

    het volume uit de inversie, en de invloed daarvan op de onzekerheid in de

    bodemdalingsvoorspelling.

    In mijn brief van 23 juni 2015 heb ik u gevraagd om het onderzoek later te mogen indienen.

    In het bijgevoegd rapport is een gedetailleerde studie weergegeven naar de invloeden van

    de kritische parameters op de massabalans van Nedmag's zoutwinning. Naast het gevraagde

    squeezevolume is ook het ondergrondse pekelvolume berekend.

    Bij de opzet van de studie is van het bedrijf NG-Consulting uit

    Sondershausen geconsulteerd over de wijze waarop de diverse oplosprocessen verlopen. De

    heeft namelijk een uitgebreide expertise op het gebied van

    "zoutchemie".

    Trade register Groningen 02331543 VAT HD. IML 0049270B4B01

    NedMag is ISO 9001. ISO 14001 150 22000 and GMP+ certified

  • O

    Het bijgevoegde rapport geeft het volgende aan:

    • Het huidige BDS (Brine Data System) model geeft een onvolledige berekening van

    het squeeze- en ondergronds volume omdat de geproduceerde magnesiumchloride

    pekel artificieel wordt gesplitst in de componenten carnallitische en bischofitische

    pekel, en water. Daarnaast is het model opgezet voor berekeningen per individuele

    caverne waardoor het squeezevolume onjuist berekend wordt wanneer individuele

    cavernes met elkaar verbonden raken.

    • Om een separate controle op het BDS model te kunnen uitvoeren is een nieuw

    massabalansmodel (MB) opgezet.

    • In dit massabalansmodel zijn alle productiedata vanaf 1972 op maandbasis ingevoerd

    en zijn onjuiste loogfasen, die in het verleden in BDS zijn gehanteerd, gecorrigeerd

    (MB revised).

    • acht het zeer waarschijnlijk dat in loogfase 3 het

    bischofietvoorkomen direct oplost in plaats indirect. De indirecte oplosroute zou

    inhouden dat eerst carnallitische pekel wordt gevormd welke zich daarna omzet tot

    bischofitische pekel. Gezien de zeer hoge oplossnelheid van bischofiet zout is een

    indirecte oplosroute ergonwaarschijnlijk. De massabalans is hiervoor gecorrigeerd

    (MB revised LF 3->2).

    • Het model is tot slot aangepast om het effect van clustering van cavernes te bepalen

    (MB cluster). Op het moment dat cavernes verbonden raken is er vanuit gegaan dat

    het zeer oplosbare bischofiet rond het injectiepunt reeds is opgelost. Door de

    verdere loging wordt de gevormde carnallitische pekel onderweg naar de cq in de

    producerende caverne omgezet in bischofitische pekel. Dit is dan de indirecte

    oplosroute.

    Dit laatste model (MB cluster) geeft de beste benadering weer van de ondergrondse

    oplosprocessen en de hierbij ontstane squeezevolumes van de Nedmag

    magnesiumchloridewinning.

    De belangrijkste conclusies uit dit rapport zijn dat:

    • Het berekende squeezevolume 3 % groter is in vergelijking met het huidige BDS

    model.

    • Het ondergrondse pekelvolume met 11 % is toegenomen in vergelijking met het

    huidige BDS model.

    Nedmag heeft gevraagd om bijgevoegd rapport inclusief de

    massabalansberekeningen te toetsen. Nedmag heeft, op dit moment, nog geen bevestiging

    gekregen dat hij deze opdracht wil uitvoeren.

  • De invloed van het toegenomen squeeze- en ondergronds volume op de huidige en

    toekomstige bodemdaling is beperkt gezien de bovengenoemde beperkte afwijkingen ten

    opzichte van de huidige waarden in BDS. Voordat wij hieraan verdere conclusies verbinden

    stellen wij voor om eerst de onderstaande lopende acties af te wachten zodat er een totaal

    beeld ontstaat van alle huidige en toekomstige effecten van onze zoutwinning. Eveneens

    vinden wij het belangrijk om een reactie van Staatstoezicht op de Mijnen te krijgen op dit

    rapport.

    Lopende acties

    Aangezien het squeezevolume bepalend is voor de optredende bodemdaling hebben wij het

    volume uit de ontstane bodemdalingskom over de periode eind 2003 t/m medio 2010 laten

    bepalen met behulp van de INSAR techniek. Deze pilot study is ingediend bij het

    Staatstoezicht op de Mijnen (21 augustus 2015) en op 20 oktober 2015 besproken met

    Als vervolg op deze pilot study wil Nedmag de

    bodemdaling over de gehele squeezeperiode 1993 t/m 2015 door SkyGeo laten bepalen.

    Zoals met het Staatstoezicht op de Mijnen is besproken op 20 oktober is het van belang dat

    de INSAR meetdata goed worden geïnterpreteerd en verwerkt. Hiervoor is nog een nadere

    bespreking nodig tussen het Staatstoezicht op de Mijnen, Nedmag en SkyGeo. Indien alle

    partijen het eens zijn over een goede verwerking en interpretatie van de INSAR meetdata zal

    Nedmag deze studie laten uitvoeren. Het voordeel van deze INSAR analyse is dat ook het

    komvolume berekend kan worden en vergeleken kan worden met de resultaten uit het

    bijgevoegde rapport voor de periode 1993 t/m 2015. Een belangrijk punt van dit onderzoek

    is de wijze waarop de correctie wordt gemaakt voor de bodemdaling door gaswinning welke

    rond de zoutwinning Nedmag optreedt.

    Staatstoezicht op de Mijnen laat de door Nedmag uitgevoerde abandonneringsstudie (onze

    brief van 2 april 2015) reviewen. De verwachting is dat deze review in het voorjaar van 2016

    gereed is. Deze abandonneringsstudie en de review zullen antwoord geven op de vraag welk

    effect het ondergrondse pekelvolume heeft op de toekomstige bodemdaling na

    abandonnering van de cavernes.

    Samenvattend

    In het tweede kwartaal van 2016 zal zowel de review van Staatstoezicht op de Mijnen als

    ook de bovenstaande acties zijn afgerond. Met de uitkomst hiervan en de genoemde

    conclusies uit de massabalans studies kunnen effecten van de huidige en toekomstige

    zoutwinning bepaald worden. Deze resultaten zullen met het Staatstoezicht op de mijnen

    worden besproken.

    Hopende u hiermee voldoende te hebben geïnformeerd.

    Hoogachtend,

    NEDMAG INDUSTRIES

    turing B.V.

    Algemeen directeur

  • OUIAIQBN

  • Mass balance study of the Nedmag caverns

    Modelling of magnesium salt dissolution and calculated squeeze volumes

    NEDMAG

    Author

    Version

    Date

    1

    30-10-2015

  • ni NEDMAG Mass balance of the Nedmag caverns v1

    1. INTRODUCTION

    On 26 March 2013 NEDMAG Industries Mining & Manufacturing B.V. in Veendam

    (Nedmag) has requested the Minister of Economic Affairs for approval of a modified

    production plan for potassium and magnesium salts. The plan announces a study into

    best practices to abandon the caverns after final production stop ^\

    On 3 October 2014 the Minister of Economic Affairs has approved of the modified plan

    under certain conditions, among others article 6, stating that Nedmag will investigate the

    discrepancy between the squeeze volume calculated on basis of a mass balance and the

    volume derived from inversion of the soil subsidence and the influence on soil subsidence

    predictions.

    After pre-feasibility study and discussions with magnesium salt solution mining expert

    a study proposal was presented to State Supervision of Mines and

    TNO-Utrecht on 25 March 2015. The proposal was to do a history match of the Nedmag

    brine field from 1972 with the aim to improve the accuracy of the calculated squeeze

    volume. The study includes the following:

    A mass balance model will be developed and expanded with the salt lithology to

    quantify the amount of inert material and bulking effects.

    - The existing BDS model will be scrutinized with respect used leaching phase and

    other assumptions.

    The effect of direct versus indirect dissolution of bischofite will be studied.

    - The effects of connectivity of caverns will be incorporated.

    This note describes the results of these investigations followed by conclusions regarding

    the accuracy of calculated squeeze volumes.

    Page 2

  • ni NEDMAG

    Mass balance of the Nedmag cavems v1

    2. THE NEDMAG SOLUTION MINING PROCESS AND ITS MODELLING

    2.1 The Nedmag solut ion mining process

    Nedmag produces magnesium brine by solution mining of magnesium at a depth of

    1300 to 1800 m in the Zechstein II formation. The first four caverns VE-1 to 4 have

    been developed from WHC-1, the caverns TR-1 to 9 were developed from WHC-2.

    Process water or dilute brine is injected into the bischofite/carnallite containing ZE-I

    l b layer. In the early years also salt was produced from the carnallite containing ZE-I

    2b/3b layer.

    ' I l l

    1 n i l j r /

    MOB n K . i j l

    D lOOOm I r i n

    I « M B

    _ .

    IMOm

    Z3 =J I I I

    Vtfm II

    1

    VWH),,,

    1

    /..».!

    Kkt

    Metfcl

    I I . l l l l I

    Figure 1: Typical salt lithology of a Nedmag cavern

    In the development of the caverns the following 6 leaching phases are distinguished:

    Page 3

  • ni NEDMAG Mass balance of the Nedmag cavems v1

    Cluster operation

    Figure 2: Leaching phases of Nedmag caverns

    In leaching phase 1 water or dilute brine is directly injected into the carnallite layer

    underlying the bischofite salt. In this phase a sump is prepared and a carnallitic (KCI-

    rich) brine is produced while sylvite precipitates. To prevent uncontrolled upward

    leaching the top of the cavern is protected with an oil blanket.

    The leaching paths can be represented below by line OPC in the thermodynamic

    phase diagram (Figure 3). From O to P carnallite dissolves congruently, thereafter

    from P to C more carnallite dissolves while sylvite precipitates.

    Page 4

  • ni NEDMAG Mass balance of the Nedmag cavems v1

    Figure 3: The MgCla/KCI phase diagram

    After the desired sump volume is obtained the oil blanket and/or the injection level

    are raised and the upper lying bischofite salt is contacted and leaching phase 2 sets in.

    In leaching phase 2 the injection fluid contacts the bischofite salt and bischofitic brine

    is directly formed along direct path OQB. In addition the carnallitic brine present in

    the sump is displaced by more dense bischofitic brine and also enriches to bischofitic

    brine.

    After further upward displacement of the oil blanket and/or injection point in leaching

    phase 3 the injection fluid first contacts the overlying carnallite salt and carnallitic

    brine is formed and sylvite precipitates. The carnallitic brine "floats" on top of the

    denser bischofitic brine. Since the volume of the formed carnallitic brine exceeds the

    volume of the formed cavity the excess carnallitic brine is pushed into the bischofitic

    area and further enriches towards bischofitic brine. As a result secondary carnallite,

    kieserite and halite precipitate. In leaching phase 3 the dissolution path OPCOB is

    followed and bischofitic brine is formed indirectly. The specific volume effects of

    indirect formation of bischofitic brine are significantly smaller than for direct

    formation as described in leaching phase 2.

    One major assumption in the BDS model (section 2.2.1) in leaching phase 3 is that

    insoluble tailings fall to the bottom of the cavern as well as part of the formed sylvite.

    Page 5

  • ni NEDMAG Mass balance of the Nedmag cavems v1

    As a resuit a larger cavity is created in the overlying carnallite giving less carnallitic

    brine overflows to the lb bischofite section.

    AV p r o d u c t l o n A

    fall

    AV in ject ion

    Sylvite •

    Inert Halite, Kieserite

    Precipitates Seconday carnallite, halite, kieserite 9

    Figure 4: Schematic fall-out of inert material and sylvite in leaching phase 3

    In leaching phase 4 the injection point and oil blanket are raised to the lower 2b

    carnallite layer. The carnallitic brine formed moves through the borehole to the top of

    the lb section and transforms to bischofitic brine as in leaching phase 3 with indirect

    formation of bischofitic brine.

    In leaching phase 5 the injection point and oil blanket are raised to the upper 3b

    carnallite layer and the production is raised to the lower 2b carnallite layer. In this

    phase carnallitic brine is produced according to the same dissolution path as in

    leaching phase 1.

    Until the year 1993 the caverns were operated close to litho-static pressures with a

    "room and pillar" solution mining approach. After successful demonstration of the

    squeeze concept between 1993 and 1995 the TR wells, except TR-9, are producing

    under 60 - 80 bar sub-lithostatic conditions

    Soon after start-up in October 1982 a pressure connection was found to be between

    TR-1 and TR-2. In the period from November 1996 onwards more TR caverns gradually

    interconnected into one large cluster. In September 2009 VE-4 also connected to the

    TR cluster. During the last VE-3 workover in November 2006 a connection with VE-2

    was noticed.

    Currently the Nedmag caverns consist of two clusters and two separate caverns:

    Page 6

  • ni NEDMAG Mass balance of the Nedmag cavems v1

    - The TR cluster consisting of TR-1/2/3/4/5/6/7/8 & VE-4.

    - The VE cluster consisting of VE-2 & VE-3.

    VE-1 developed in the 2b/3b section only.

    - TR-9 in development since May 2012.

    In the cluster operation which is currently applied to the TR cluster water or brine

    typically are injected into the shallower l b sections, the carnallitic brine formed

    migrates through connections within the l b bischofite layer to a deeper l b cavern.

    During its migration towards the production point the carnallitic brine contacts

    bischofite salt and enriches into a bischofitic brine.

    2.2 Nedmag mass balance models

    2.2.1 The BDS model

    The Brine Data System (BDS) model was developed in 1995 and is in use to

    monitor the development of the various volumes due to the Nedmag solution

    mining process since 1972. It is primarily based on a mass balance with inputs of

    measured: injection and production brine volumes and concentrations per cavern.

    At a given leaching phase BDS calculates the quantities of dissolved salt, and

    precipitate as well as the squeeze volume and the total underground brine

    volume. The squeeze volume is defined as the volume of brine coming to surface

    in excess to what could be expected from the injection fluid without cavern

    convergence.

    One characteristic BDS feature is that it assumes that all brine compositions can

    be represented by a mixture of the three components: saturated bischofitic brine,

    saturated carnallitic brine and water. In addition it is assumed that the caverns are

    filled by a two phase system of saturated carnallitic brine floating on top of a

    saturated bischofitic brine with compositions independent on depth. In case of the

    production under-saturated brine it is assumed that part of the injection water

    shortcuts directly to the brine production flow.

    The BDS calculations are set-up for a single cavern operation. The interconnection

    of caverns creates a mismatch between injection fluid and brine production per

    cavern. Therefor realistic squeeze volumes and underground brine volume can

    only be obtained by summating the values of the individual caverns.

    The accuracy of the BDS model calculations for the total underground brine

    volume has been estimated by Renier His main findings were that the selected

    leaching phases were not always correct and that the choice for indirect or direct

    formation of bischofitic brine has a significant effect on the volumes calculated.

    Renier recommended to study the following:

    Page 7

  • ni NEDMAG

    Mass balance of the Nedmag cavems v1

    o

    o

    The effect of depth (temperature) on saturated brine compositions and

    densities. A variation analysis for the total height difference between the

    caverns showed that this introduces an inaccuracy of 4 % of the calculated

    squeeze volume. This result has been reported by Nedmag in 2012

    The effect of pressure, depth and shape on cavern convergence. This is

    part of the Nedmag Abandonment study .

    The effect of brine exchange between interconnected caverns, which is

    part of this study.

    2.2.2 The mass balance model

    Since BDS relies on the physically incorrect assumption that all brine compositions

    can be split into: saturated carnallitic and bischofitic brine and water a more exact

    mass balance model was prepared. In this model it is assumed that the undiluted

    brine composition is representative for the entire cavern content. This avoids the

    use of a standard bischofitic brine composition. However the use of standard

    saturated carnallitic brine remains necessary in the case of indirect dissolution in

    leaching phases 3 and 4. The model equations are given in Appendix I and have

    been described previously

    3. MODEL CALCULATIONS

    3.1 BDS and mass balance model with the same input data and assumptions

    Using the same monthly based input data-set for the period of 1972 till June 2015 the

    volume calculations were repeated with the mass balance model. All leaching phases

    as well as fall out of tailings/sylvite in leaching phase 3 were kept identical to the ones

    used in the original BDS calculations. The summated volumes for the two single

    caverns and the two clusters are reported below.

    Cavern/Cluster Squeeze volume, m^ Total underground brine volume, m^

    BDS MB BDS MB

    VE-1 21,646 31,115 197,531 165,637

    TR-9 56,426 138,493 192,560 132,637

    VE-2/3 219,954 424,544 684,396 665,202

    TR-1/8, VE-4 5,696,586 6,389,158 4,747,297 4,317,038

    Total 5,994,612 6,983,311 5,821,784 5,280,514

    It is shown that the improved mass balance produces 16 % more squeeze volume and

    9 % less total underground brine volume than BDS. This is besides imperfections in

    the BDS mass balance, which is not closed because of brine splitting, mainly due to

    the large negative squeeze contributions that arise in BDS when in case of injection

    into a cavern without brine production.

    Page 8

  • ni NEDMAG

    Mass balance of the Nedmag cavems v1

    3.2 Mass balance model with revised leaching phases

    The designation of leaching phases in the BDS data was checked against the actual

    injection depth as reported in historical monthly reports in relation to the salt

    lithology per cavern. It was found that there were a number of months in which was

    injected into the lb bischofite (leaching phase 2) instead of the overlying lb carnallite

    (leaching phase 3) as used in BDS. This means that there has been more direct

    production of bischofitic brine than accounted for in the original BDS calculation. After

    revision of the leaching phases for this (MB revised) the following volumes were

    calculated:

    Cavern/Cluster Squeeze volume, m^ Total underground brine volume, m^ Cavern/Cluster

    MB original MB revised MB original MB revised

    VE-1 31,115 31,115 165,637 165,637

    TR-9 138,493 36,361 132,637 327,345

    VE-2/3 424,544 226,705 665,202 986,054

    TR-1/8, VE-4 6,389,158 5,914,734 4,317,038 5,005,945

    Total 6,983,311 6,208,914 5,280,514 6,484,981

    Because in direct dissolution mode of bischofite more brine is formed than by indirect

    dissolution the non-squeeze contribution to the production flow is increased. As a

    result the squeeze contribution reduces by 0.78 Mm^ and the total underground brine

    volume increases by 1.20 Mm^.

    3.3 Mass balance model with revised leaching phases and direct dissolution from lb

    only

    In the view of consultant Norbert Grüschow complete indirect dissolution of

    bischofite in leaching phase 3 for a single cavern is highly unlikely. This is mainly due

    to the mixed nature of the overlying bischofite and carnallite salt and the brine

    convections flows. To quantify the effect of direct bischofite dissolution the

    calculations with revised leaching phases were repeated with all leaching phases 3

    replaced by leaching phase 2.

    Cavern/Cluster Squeeze volume, m^ Total underground brine volume, m^ Cavern/Cluster

    MB revised MB revised LF 3 - > 2 MB revised MB revised LF 3 - > 2

    VE-1 31,115 31,115 165,637 165,637

    TR-9 36,361 36,361 327,345 327,345

    VE-2/3 226,705 197,875 986,054 1,021,098

    TR-1/8, VE-4 5,914,734 5,470,444 5,005,945 5,802,750

    Total 6,208,914 5,735,795 6,484,981 7,316,829

    Page 9

  • \i NEDMAG

    Mass balance of the Nedmag cavems v1

    In the extreme situation of direct bischofite dissolution only when injected and

    produced from the lb section the squeeze volume drops by 0.47 Mm^ and the total

    underground brine volume increases by 0.83 Mm^.

    3.4 Mass balance model with revised leaching phases and clustering

    The general conception is that inter-cavern connections arise in the continuous more

    soluble bischofite layers. Caverns are assumed to be connected when their pressures

    start to correlate. However pressure communication gives no clue about volumetric

    exchange between caverns. This can only be deduced by comparing volumetric

    balances of injection and production per cavern. Unfortunately the balances are also

    affected by squeeze flows which are not known for the individual caverns. However in

    practice the connections in the TR cluster are actively used with in general injection

    into the more shallow lb caverns and production from the deepest l b caverns, but

    the actual flow paths are uncertain.

    The mass balance model was used to determine the effect of a cluster operation on

    the calculated volumes. It was assumed that up to the point of connection caverns

    can be treated as single caverns using revised leaching phases and the assumption

    that there is only direct dissolution when injected and produced from the lb section.

    From the onset of connection the connected caverns are represented by one big

    cavern with mixed injection and mixed production flows.

    In the cavern development over time the following 9 clusters can be defined:

    Figure 5: Time development of connections between the Nedmag caverns

    For the connected cluster it is assumed that all bischofite in the injection zone already

    has been consumed in the pre-connection period and that additional injection results

    in the formation of carnallitic brine. The carnallitic brine migrates through the cluster

    and somewhere contacts bischofite to form bischofitic brine. This type of leaching can

    be described by leaching phase 4.

    Page 10

  • ni NEDMAG

    Mass balance of the Nedmag cavems v1

    Cavern/cluster Squeeze volume m^ Total underground brine volume, m' Cavern/cluster

    MB revised LF 3 - > 2 Cluster MB revised LF 3 --> 2 Cluster

    VE-1 31,115 31,115 165,637 165,637

    TR-9 36,361 36,361 327,345 327,345

    VE 2/3- 197,875 218,891 1,021,098 449,516

    TR 1-8/VE-4 5,470,444 1,621,421 5,802,750 1,828,331

    Cluster 1-9 4,270,717 3,703,218

    Totaal 5,735,795 6,178,504 7,316,829 6,474,046

    As a resuit of an increased indirect dissolution contribution in the cluster approach

    the squeeze volume increase by I

    total underground brine volume.

    the squeeze volume increase by 0.44 Mm^ with an associated decrease of 0.84 Mm^ in

    4. DISCUSSION

    In 2011 an inversion study was carried out by TNO '̂ on the subsidence measurements

    for the period of 1993 till 2010. From this study a mismatch of about 15 % was found

    between the BDS calculated squeeze volume and the squeeze volume as determined

    by inversion. According to TNO this discrepancy can be due to either an error in the

    geomechanical model or a positive structural error in the determination of the total

    squeeze volume from production data.

    In the table below the calculated squeeze and underground brine volumes are

    summarised.

    Case Squeeze Underground

    volume brine volume

    3

    m m^

    BDS 5,994,612 5,821,784

    MB 6,983,311 5,280,514

    MB revised LF's 6,208,914 6,484,981

    MB revised, LF 3 - > 2 5,735,795 7,316,829

    MB cluster approach 6,178,504 6,474,046

    Under the assumption of a constant factor of 85 % for the whole production period of

    1972 till June 2015 an inversion volume of 5.09 Mm^ is expected on basis of the BDS

    squeeze volume. In none of the above calculations with the mass balance model such

    a low value is approximated even with direct bischofite dissolution giving a minimum

    value of 5.74 Mm^.

    Page 11

  • I i ; NEDMAG Mass balance of the Nedmag cavems v1

    Since the cluster approach gives a more realistic representation of the multiple cavern

    operation a squeeze volume of 6.18 Mm^ is considered to the more likely value with

    an associated total underground brine volume of 6.47 Mm^.

    5. CONCLUSIONS

    Mass balance calculations for the Nedmag caverns incorporating revised leaching

    phases and the effects of cavern connections gives a most likely squeeze volume of

    6.18 Mm^ and a total underground brine volume of 6.47 Mm^ for the period 1972 till

    June 2015. This squeeze volume is only 3 % higher than the 5.99 Mm^ found with the

    current BDS model. Since this disagreement is far less than the accuracy of

    subsidence measurements a correction on soil subsidence predictions is not

    reasonable.

    However a squeeze volume of 6.18 Mm^ is 21 % higher than the expected inversion

    squeeze volume of 5.09 Mm^ for the same period. This discrepancy cannot be

    explained by the physical solution chemistry and the followed leaching paths of

    dissolving carnallite and bischofite but must be due to inaccuracies in the subsidence

    measurements or geomechanical effects that prevent part of the underground

    volume reduction to come to surface.

    REFERENCES

    1. Winningsplan kalium- en magnesiumzoutwinning 2013, Nedmag Industries Mining &

    Manufacturing B.V., Winningsvergunning Veendam, 26 maart 2013.

    2. Gedrag van Magnesiumzouten tijdens de Winning in de Concessie van Nedmag te

    Veendam en een daaruit volgende volumebepaling van het Complex van Cavernes van

    WHC-2. MSc Thesis TU Delft, 1 september 2006.

    3. Het ondergronds pekelvolume en onzekerheidsanalyse hiervan bij de Nedmag

    zoutwinning. Interne Nedmag notitie, Veendam, 25 april 2012.

    4. Abandonment study Nedmag caverns. Cavern squeeze modelling and geophysical

    analysis of brine permeation and containment. Well Engineering Partners B.V.,

    , Hoogeveen 31-3-2015.

    5. Nauwkeurigheidsanalyse BDS modelberekeningen. Interne Nedmag Notitie, ,

    Veendam, januari 2013.

    6. Nedmag Veendam inversie bodemdaling TNO-rapport (060-UT-2011-00687).

    , Utrecht, 8 april 2011.

    Page 12

  • ni N E D M A G Mass balance of the Nedmag cavems vi

    APPENDIX I

    Leaching phase 1

    The development of a cavern starts with the creation of an undercut in the lower section of

    the l b carnallite salt. Dissolution of the overlying bischofite salt is prevented by installing an

    oil blanket. In phase 1 water or diluted brine (Mi) is injected and the salts: carnallite (C),

    halite (H), kieserite (K) go into solution forming brine (M). Due to the incongruent

    dissolution behaviour of carnallite the sylvite {Si) precipitates simultaneously. Typically a

    carnallitic brine is formed typically wi th: 27 % MgCb, 5.2 % KCl, 2 % NaCl and 1.3 % MgSOa

    and a density of 1.33 t /m^ (PCB) at saturation.

    For phase 1 the following mass balance equations are valid:

    Total mass M i + C + H + K = M + S| (1)

    Magnesium chloride m i M i + mcC = mM (2)

    Potassium chloride SiMi + ScC= sM + Sj (3)

    Sodium chloride balance h i M i + H = hM (4)

    Kieserite balance k i M i + kkK = kM (5)

    The symbols: m, s, h and k represent the dissolved mass concentrations of MgCb, KCl, NaCl

    and MgS04 in the injection fluid (subscript 1) or of the brine formed. The symbols mc, Sc and

    kk represent the MgCIa content in carnallite, the KCl content in carnallite and the MgS04

    content in kieserite respectively.

    Combination of eqn's (2), (3), (4) and (5) and substitution in eqn. (1) yields:

    M = M l (1-mi/mc - h i - k M / ( I - m/mc - h - k/k^) (6)

    Insertion of known mass of injected water or brine and measured concentrations of injection

    and product brine allows the calculation of the mass of brine (M) formed. Insertion of M in

    eqn's (2) till (5) quantifies the mass of the dissolved salts: C, H, K and precipitate SJ..

    The net volume of the carnallite cavity for litho-static pressure conditions, i.e. in the absence

    of cavern convergence, is calculated using the respective salt densities through:

    AV ccav = C/pc + H/PH + K/PK - Si/psy (7)

    Finally the volume of brine produced under litho-static conditions is calculated through:

    AVprod = M / PCB - AVc,cav (8)

    Page 13

  • \i NEDMAG

    Mass balance of the Nedmag caverns vl

    Carnallite Bischofite Kieserite Halite Sylvite

    p, t /m3 1.60 1.60 2.57 2.14 1.99

    MgCl2,% 34.28 46.86

    KCl, % 26.84

    NaCl, %

    MgS04, % 86.98

    Leaching phase 2

    After an undercut has been developed the oil blanket is withdrawn allowing contact of the

    injected water or brine with bischofite salt. As a result bischofite dissolves (B) from the l b

    section and a bischofitic brine is produced typically containing: 36.8 % MgCb, 0.32 % KCl, 0.48

    % NaCl and 0.45 % MgS04 and a density of 1.38 t /m^ (PBB) at saturation.

    For this phase the following mass balance equations are valid:

    Total mass

    Magnesium chloride

    Potassium chloride

    Sodium chloride

    Kieserite

    M i + C + B + H + K = M

    m i M i + mcC + mBB= mM

    SiMi + ScC= sM

    h iMi+ H = hM

    k iM i + kkK = kM

    (9)

    (10)

    (11)

    (12)

    (13)

    The symbols: m, s, h and k represent the mass concentrations of MgCl2, KCl, NaCl and MgS04

    in the injection fluid (subscript 1) or in the brine formed. The symbol mg represent the MgCb

    content of bischofite salt.

    Combination of eqn's (2), (3), (4) and (5) and substitution in eqn. (1) yields:

    M = M l (1- Si/sc*(l-mc/mB)- mi/mg - h i - ki/kk) / ( 1 - s/sc*(l-mc/mB)m/mB - h - k/kk) (14)

    Insertion of the known mass of injected water or brine and measured concentrations of

    injection and product brine allows the calculation of the mass of brine (M) formed. Insertion

    of M in eqn's (10) till (13) allows the calculation of mass of the dissolves salts: B, C, H, K.

    The net volume of the cavity without for litho-static pressure condition convergence, is

    calculated using the respective salt densities through:

    AV B.cav = C/pc + B/PB + H/PH + K/PK (15)

    Finally the volume of brine produced under litho-static conditions is calculated through:

    AVprod = M/PBB - AVB.CSV (16)

    Page 14

  • ni NEDMAG Mass balance of the Nedmag caverns vi

    Leaching phases 3 and 4

    After the bischofitic cavern had reached its optimum diameter the injection point was raised

    either into the l b carnallite layer above the bischofite salt (phase 3) or the 2b/3b carnallite

    layer (phase 4). As a result the injected water or brine initially forms a carnallitic brine in a

    carnallite cavity. The carnallite dissolution process is identical to phase 1 described by eqn's:

    (1) to (7). The part of the carnallitic brine that doesn't fit into the carnallitic cavity overflows

    to the underlying l b bischofite cavity according to:

    AVoverf low = M / pCB " A V c ,( (17)

    In the bischofite cavity the carnallitic brine (M i = AVoverfiow * PCB) dissolves bischofite salt and

    a bischofitic brine is produced. As a result of the increased MgCb concentration part of the

    carnallite (C|), kieserite (K|) and halite (H|) precipitate. The effects of the carnallitic brine

    transformation can be described by:

    Total mass balance:

    Magnesium chloride balance:

    Potassium chloride balance

    Sodium chloride balance

    Kieserite balance

    M i + B = M + Ci + Ki + H i (18)

    m i M i + mBB= mM + mcCi (19)

    SiMi = sM + ScCi (20)

    h i M i = h M + H i (21)

    k iM i = kM + kkKi (22)

    After some manipulation of eqn's (19), (20), (21) and (22) followed by substitution in eqn.

    (18) gives:

    M = M l (1- Si/sc*{l-mc/mB)- mi/mg - h i - k M / ( I - s/sc*(l-mc/mB)m/mB - h - k/kk) (23)

    This equation is identical to equation (14).

    Insertion of known mass of injected water or brine and measured concentrations of injection

    brine allows the calculation of the mass of the overflow AVoverfiow The underlying assumption

    is that a saturated carnallitic brine. Inserting the overflow as M i allows the calculation of the

    bischofite brine formed (M). With eqn's (19) till (22) the mass of the dissolved B and

    precipitates: C|, H i , K l is calculated.

    Leaching phase 5

    The volume effects resulting from production of carnallitic brine though injection and

    production from the 2b/3b layer can be fully described are identical to the ones derived for

    leaching phase 1.

    Calculation of squeeze volume

    The net volume of the cavity without for litho-static pressure condition convergence for the

    l b bischofite section is calculated using the respective salt densities through:

    AVB.cav = B/PB - Ci/pc - Hi/pH - Ki/pK

    Page 15

  • ni N E D M A G Mass balance of the Nedmag cavems vi

    The volume of brine produced that would be produced under litho-static conditions is

    calculated through:

    AVprod = M / PBB - AVB,cav

    The squeeze volume is defined as the excess of brine coming to surface over the calculated

    litho-static contribution:

    AVsqueeze ~ AVjurface " AVprod

    Page 16

  • f \ 1