Mek from n butene.pdf

111
F.V.O. Nr: 2693 Technische Universiteit Delft Vakgroep Chemische Technologie Verslag behorende bij het fabrieksvoorontwerp van A.H. Amer R.F. de Ruiter onderwerp: The production of methyl ethyl ketone from n-butene adres: Dr. H. Colijnlaan 187 A.M. de yonglaan 27 opdrachtdatum: 20-10-1986 2283 XG Rijswijk 3221 VA Hellevoetsluis verslagdatum: 12-07-1988

Transcript of Mek from n butene.pdf

Page 1: Mek from n butene.pdf

F.V.O. Nr: 2693 Technische Universiteit Delft

Vakgroep Chemische Technologie

Verslag behorende

bij het fabrieksvoorontwerp

van

A.H. Amer

R.F. de Ruiter

onderwerp:

The production of methyl ethyl ketone

from n-butene

adres: Dr. H. Colijnlaan 187 A.M. de yonglaan 27 opdrachtdatum: 20-10-1986

2283 XG Rijswijk 3221 VA Hellevoetsluis verslagdatum: 12-07-1988

Page 2: Mek from n butene.pdf

1

1.1 1.2 1.3 1.4 1.5 1.6 1.7

2

2.1 2.1. 1 2.1. 2 2.1. 3 2.1. 4 2.1. 5 2.1. 6 2.2 2.2.1 2.2.2 2.3 2.4 2.5 2.5.1 2.5.2 2.6 2.6.1 2.6.2

3

3.1 3.1.1 3.1. 2 3.1. 3 3.1. 4 3.1. 5 3.1. 6 3.2 3.3

4

5

6

Contents

Abstract

Conclusions and reco •• endations

General introduction

Uses and product ion Manufacture Choice of process Plant capacity Health and safety Feedstock Process description

Secondary butyl alcohol product ion

Butene absorber Liquification Absorption kinetics Material balance Heat balance and cooling Design Gas-liquid separator

Hydrolysis tank Material balance and design Heat balance

SBA stripper Caustic scrubber Sulfuric acid reconcentration unit

Reconcentration processes Drum design

SBA purification unit Liquid-liquid separator Azeotropic distillation unit

Methyl ethyl ketone product ion

Dehydrogenation reactor Convers ion of SBA Reaction thermodynamics Catalyst choice Kinetics of a Cu/Ni-catalyst Pressure influences Design

Hydrogen recovery MEK purification unit

Mass and heat balance, strea. data

Apparatus specifications

Cost esti.ation and econo.ics

References

page

1

2

3

3 4 5 6 6 6 7

9

9 9 9

10 10 12 13 14 14 15 16 20 21 21 22 23 23 24

27

27 27 28 29 30 33 34 35 35

39

52

67

73

Page 3: Mek from n butene.pdf

.... __ ._-- _._----- --- - - --------

Abstract

In this preliminary design the production of methyl ethyl

ketone (MEK) from normal butene, with secondary butyl alcohol (SBA)

as intermediate, is described. This design is split into two parts.

In the first part SBA is obtained from n-butene by absorption in

sulfuric acid, followed by hydrolysis with water. Sulfurie acid and

SBA are separated in a stripper. The sulfurie acid is

reconcentrated and recycled to the absorber. The SBA is purified in

an azeotropic distillation unit, using diisobutylene as entrainer.

In the second part of the design, SBA is vaporized and fed to a

mul ti t ubular, isothermi c reactor, fi lIed wi th a Cu/Ni on S iO Zo

catalyst. The SBA is dehydrogenized, forming MEK and hydrogene The

hydrogen is purified and sold as a valuable by-product. The MEK is

purified in two fractionation columns and obtained with a purity of

99.1 wt"-%.

The capacity of the plant is 33,731 tons of MEK per year. An

economie evaluation shows that this plant can pay itself back

within approximately 1.5 to 2 years.

1

- - - - - ------------

Page 4: Mek from n butene.pdf

Conclusions and reco •• endations

The extractive distillation unit, where SBA and water are

separated is simulated, using the UNIFAC group contribution method

for predicting activity coëfficiënts. This simulation can only be

used as an indication. To make an accurate prediction of the be­

haviour of this unit, it is necessary to have reliable

thermodynamic data. The same problem occurs with the SBA stripper.

The influence of sulfuric acid on the equilibrium data could not be

forecasted and the assumptions made are rat her rigourous.

Although a compressor is attached, it is likely that n-butene

can be obtained in liquified state. The compressor covers 17% of

the equipment costs

equipment costs form

and because in the used economic model the

the base for obtaining the total capital

investment, this percentage has great effect on the economics of

the proces. Nevertheless a pay-out time of 1.5 years and an inter­

Dal rate of return of 58.2% give a good indication for the expected

perspectives. This is due to the great difference between butene

costs and MEK selling prices. The price difference of f.200,-/t

between SBA and MEK can not justify the design of an SBA convers ion

plant only.

2

Page 5: Mek from n butene.pdf

1 General introduction

1.1 Uses and production

Methyl ethyl ketone is one of the lowest priced solvents in its

boiling range and it is widely used as a solvent in a great variety

of coating systems. As a solvent for lacquers, MEK is particularly

advantageous because it provides low viscosity solutions at high

solid contents without affecting film properties. MEK is also used

as a dewaxing agent in the refining of lubricating oils and as a

solvent for adhesives, rubber, cement, printing inks and cleaning

solutions. It is used in vegetable-oil extract ion processes and in

azeotropic separation schemes in refineries [IJ. Furthermore it is

used in the pharmaceutical industry. Table(l-l)lists the main uses

of MEK for 1977 in the USA.

Table(l-l): Methyl ethyl ketone uses

Use

Vinyl coatings

Nitrocellulose coatings

Adhesives

Acrylic coatings

Miscellaneous coatings

Lube-oil dewaxing

Miscellaneous and export

Percentage

34

14

14

12

7

7

12

The output of MEK in the United States of America reached 27,000

tons per year in 1976 and the demand is expected to increase an­

nually by 6 %. The situation is similar in Western Europe and in

Japan. The total annual production of MEK in Western Europe in 1976

was 220,000 tons. In Japan it was 65,100 tons.

The industrial importance of MEK is rising because the use of

solvents such as alkyl aromatics and branched ketones, which have

3

Page 6: Mek from n butene.pdf

high biostability will become restricted for reasons of conserva­

tion of the environment, and they can be replaced by MEK. In the

USA this is already alegal requirement [2J.

1.2 Manufacture

Methyl ethyl ketone can be manufactured by a direct oxidation of

n-butenes in aqueous solutions of palladium and cupric chlorides

[3 J :

+ ----)

It is also commercially available as a byproduct from liquid-phase

oxidation of butane to acetic acid.

In general MEK is produced by a two-step process from n-butenes.

The first step is the convers ion of n-butenes into secondary

butanol (SBA). In the second step the formed SBA is converted into

MEK, wether by oxidation or by dehydrogenation.

Secondary butanol can be produced by the hydration of l-butene

in the vapor phase by passage with steam over asolid catalyst

containing phosphoric acid and the oxides of metals as Zn, Mg and

Fe, at a temperature of 240°C and a pressure of 9.9 atm. [4], or

over a mixture of boric acid and phosphoric acid catalysts at 388°C

and 380 atm., with a maximum convers ion of 8.5 % per pass [5J:

+ -----)

About 10 percent of the reacted butene is lost by polymerisation.

Secondary butanol is usually produced by absorption of n-butenes

in sulfurie acid, followed by hydrolysis with water:

-----)

(-----

CH 3 -ÇH-C&H s + 3 H&O -----) OS03 H

CH 3 -ÇH-C&H s + 2 H&O OS03 H

The absorption of but ene can be carried out in 65 wt-% sulfurie

acid at 50-60 oC, in 75-80 wt-% acid at 30-50 oC and in 90-100 wt-%

acid at 15°C or below [4]. Gaseous butenes can be absorbed in 80

wt-% acid at a temperature of 43°C and atmospheric pressure [6J,

4

Page 7: Mek from n butene.pdf

liquid butenes can be absorbed at a temperature of 38°C and a

pressure of 2-3 atm.(7].

The second step is dehydrogenation or oxidation of secondary

butanol to methyl ethyl ketone. The dehydrogenation of SBA can be

done in the liquid phase at a temperature of l50-250oC with

catalysts as raney nickel or copper chromite (8], and in the vapor

phase over copper or zinc catalysts at higher temperatures and low

pressures. The oxidation is done by air over copper or zinc oxides

at temperatures between 250 and 400°C.

Several other licenced methods for producing MEK are described

in literature (1]:

-Oxidation by acid dichromate,

peroxide or sodium perchlorate.

alkaline permanganate, hydrogen

-Free radical addition of acetaldehyde and ethylene:

free radical initiator -----------------------)

-Isomerization of butene oxide:

-Isomerization of isobutyraldehyde:

1.3 Choice of process

Most of the methyl ethyl ketone now being produced is obtained

from n-butenes in two stages: the sulfuric acid hydration of n­

butenes to produce secondary butanol, followed by dehydrogenation

of the alcohol to ketone. Although sulfurie acid hydration is an

energy consuming process and corrosion aspects can not be underes-

timated, its technology has been proven for decennia and, when a

5

Page 8: Mek from n butene.pdf

hydration plant is combined with a refinery or a naphta cracker

(what are also favorable combinations regarding the butene supply),

a major part of the required energy can be supplied from waste-heat

from flue gases. In the second stage the dehydrogenation is

preferabie to the oxidation, as the temperature regulation is

easier, the MEK yield is higher and hydrogen is formed as

byproduct.

1.4 Plant capacity

A design had to be made for a plant, capable to produce at least

30,000 ton MEK per year. To reach this target the feed of the plant

must be 23,347 tons per year of n-butenes (at a MEK yield of 100%).

The plant is designed to run continuous for 300 days per year (7~

hours per year). The actual butene feed is 26,457 t/yr and the

actual MEK production is 33,731 t/yr. The MEK is obtained with a

purity of 99.13 wt-% and the overall MEK yield from n-butene is

98.35%.

1.5 Health and safety

The toxic weight of methyl ethyl ketone in air is 200 ppm. For

the intermediate SBA this is 150 ppm. MEK is highly flammable

(flashpoint -lOC) and should be used with caution. The lower explo­

sion limit is 1.8 vol-% in air and the upper explosion limit is 9.5

vol-% in air. For n-butene these limits are respectivily 1.6 and

9.7 vol-% in air and for SBA 1.7 and 9.8 vol-% in air. The electri­

cal conductivity of MEK has a value of 2*10 7 pS/m, which means that

there is no danger for static charge build-up. Care should be taken

when MEK is stored for longer periods. Storage in carbon steel

tanks will lead to peroxide formation. Special alloys are available

which do not initiate this reaction.

1.6 Feedstock

Butylene

methylpropene

butene. The

These four

is the name of a mixture of four isomers: 2-

or isobutylene, l-butene, cis-2-butene and trans-2-

last three are referred to as normal- or n-butenes.

isomers and butane are treated as a C4 -group because

6

7 , j ,

Page 9: Mek from n butene.pdf

they are of ten obtained as a mixture from cracked petroleum

fractions.

For the manufacture of secondary butyl alcohol (SBA) as inter­

the product ion of methyl ethyl ketone (MEK) it is mediate for

necessary to have a feedstock in which the isobutylene is removed.

In electrophilic reactions isobutylene will react about thousand

times faster than the n-butenes and in our reaction scheme this

would lead to formation of tertiary butyl alcohol. However, this

difference in reactivity can also be used to separate the

isobutylene from the n-butenes. For this separation sulfuric acid

extraction can be used. Isobutylene can quantitativily be removed

in a solution of 45-60% HzSO. at 30°C.

Butane in the feedstock does not have affect on the but ene

absorption because it does not react with sulfuric acid. As in our

scheme unreacted butenes are recycled, inerts in the feedstock

would lead to accumulation and to prevent this, a part of the

recycle stream must be purged (e.g. to a furnace). r.; We assumed to have a gaseous feedstock at 1 atmosphere which

only containes n-butenes in their ~a~~~~l ~q~i]~b~~u~ distribution

at 300 K: 2 % l-butene, 9 % cis-2-butene and 89 % trans-2-butene

[24].

1.7 Process description

Gaseous butenes with a pressure of 1 atmosphere and a tempera­

ture of 25°C are charged to a compressor, which is followed by a

cooler,

The

charged

to form

where liquification takes place at a pressure of 3 atm.

liquified butenes are mixed with 80 wt-% sulfuric acid and

to an absorption column. The acid reacts with the butenes

butyl sulfates and deprotonated secondary butyl alcohol.

The reaction is exothermic, and heat is withdrawn by cooling.

The conversion of butenes is practically complete (> 98 %).

Af ter the absorption stage the pressure is decreased to atmospheric

and residual butenes are removed from the product in a phase

separator and are recycled. The acid-sulfate mixture flows to a

hydrolyzer, where water is added and secondary butyl alcohol is

formed.

The hydrolyzate is fed to a column where the alcohol is stripped

from the diluted acid by means of life steam. Entrained acid is

7

Page 10: Mek from n butene.pdf

captured in a demister and traces of acid in the alcohol-water

vapor are removed in a scrubber with diluted sodium hydroxide. The

scrubbed vapors are then condensed to form a crude containing water

and alcohol.

The diluted acid is reconcentrated in two stages and is recycled

to the absorption column.

The crude alcohol is, af ter separation in two liquid phases,

purified in a fractionation column. Diisobutylene (2,4,4-trimethyl­

l-pentene) is added to the column as an entrainer to form a light­

boiling ternary azeotrope in the top of the column, while alcohol

is withdrawn in the bottom. In a second column water is withdrawn

from the remaining mixture.

The secondary butyl alcohol is vaporized, preheated and charged

to a tubular reactor where dehydrogenation to MEK takes place. The

tubes are packed with a Cu/Ni on SiO z catalyst and are direct-fired

to maintain areaction temperature of 310°C. The reactor effluent

contains MEK, unconverted alcohol, hydrogen and a small amount of

water (the water comes with the alcohol from the fractionation

column). This effluent is condensed and charged to a phase

separator where the hydrogen is removed. The flue gasses of the

furnace are used for reconcentrating the diluted sulfuric acid.

The methyl ethyl ketone is purified in two fractionation

columns. In the top of the first column a mixture of MEK, alcohol

and a trace of water is withdrawn with a purity of MEK of 98.9

percent. The bottom product is charged to the second column. The

top product of the second column contains MEK with a purity of 99.3

percent and the bottom product contains the remaining alcohol which

is recycled to the reactor.

8

Page 11: Mek from n butene.pdf

2 Secondary butyl alcohol product ion

2.1 Butene absorber

2.1. 1 Liquification

The liquification pressure of the mixture of butenes (89~ trans-

2-butene, 9~ cis-2-butene, 2% l-butene) is calculated by using the

Antoine equation for the vapor pressure:

(1)

where p is the pressure in mm Hg and T is the temperature in K and

A, Band Care to the vapor related constants. Values for these

constants are mentioned in appendix A-I . At a temperature of 25°C

the vapor pressure of the butene mixture becomes 1953 mm Hg (2.57

atm). The operating pressure in the column is fixed at 3 atm.

The gaseous mixture of n-butenes at atmospheric pressure and a

temperature of 25°C is compressed to 3 atm in a compressor and

liquified in a co~ The outlet temperature of the compressor is . .-XH.\' ( l' . 71°C, the actual ~ of the compressor 1S 73.72 kW. The condenser

duty is 1.76 MM kJ/hr (489 kW). These calculations have been done

with the program PROCESS on a mainframe computer and a printout of

the results is added in appendix A-2.

2.1. 2 Absorption kinetics

The relative rate of absorption of butenes into sulfuric acid

can be expressed by the following equation [9]:

x = l-exp(-K*t) (2)

where K is the absorption constant. K-values are mentioned for

gaseous and liquified butenes for various acid concentrations at

25°C [10]. For a sulfuric acid solution of 80 wt-% at a temperature

of 25°C, the absorption constant K has the value: K=33.48

xlO- 3 min- 1 for the above mentioned mixture of liquified butenes.

9

Page 12: Mek from n butene.pdf

The relation between the convers ion percentage and the time is

shown in table (2-1):

Table (2-1): Conversion percentage of butenes at 25°C

in 80 wt-% sulfuric acid.

~ (min) 10 20 30 40 50 60 120

Conv. % 28.45 48.81 63.37 73.79 81.25 86.59 98.20

2.1.3 Material balance

180

99.76

For a conversion of at least 98% at 25°C, the residence time 0 which is needed is 2 hours. For equimolar amounts of sulfuric acid

~

and butenes it is necessary to have the following flow rates:

-Amount of butenes 3,742.6 kg/hr

-Density of liquid butenes at 25°C 602.09 kg/m 3

-Volume rate of liquid butenes 6.216 m3 /hr

-Amount of 80 wt-% sulfuric acid 8,032.54 kg/hr

-Density of sulfuric acid (80 wt-%) 1727.2 kg/m 3

-Volume rate of sulfuric acid 4.651 m3 /hr

2.1.4 Heat balance and cooling

During the absorption an excess of energy is released which has

to be removed as adequate as possible to prevent the temperature to

rise above 40°C. If the temperature of butene, in contact with 80

wt-% sulfuric acid, rizes above 60°C ,polymerisation will occur. To

prevent any polymerisation in the system the maximum reaction

temperature is set at 40°C.

It was not possible to determine the molar enthalpies for the

butylsulfate and the deprotonated SBA in the effluent of the ab­

sorber and the assumption was made that they had the same value as

the molar enthalpy for normal SBA. During the absorption sulfuric

10

Page 13: Mek from n butene.pdf

acid is diluted from 80 wt-% down to 54.6 wt-%. The involved heat

of mixing is calculated as if the acid is diluted with water. The

formed absorption products are to leave the column at a temperature

of 40°C. To achieve this temperature, it is necessary to withdraw

an amount of heat Q of 2166 kW. It is not possible to withdraw this

heat by the use of a jacket, filled with cooling water, because a

jacket can not provide anough area for heat transfer. To give an

idea for the required cooling area and the required amount of

cooling water, calculations were made for two different cases:

cocurrent and countercurrent flow of cooling water through pipes in

the column, made of stainless steel with a wallthickness d of 2 w mme

Foulingfactors: inside the pipes: hf(in) = 5.7 kW/mz.oC for

treated cooling water and outside the pipes: hf(out) = 2.8 kW/mz.oC

for inorganic liquids (12].

Heat conductivity coëffiënt for stainless steel:

W/m.oC.

The overall heat transfer coëfficiënt U becomes:

d + ---~-- +

À ss

U = 1538 W/m z . oe

(3)

À = 17 ss

If T(in) and T(out) are the temperatures of respectivily incom­

ing and outgoing product streams and t(in) and t(out) are the

temperatures of respectivily incoming and outgoing cooling water

streams, the logarithmic mean temperature difference ~Tln follows

from:

(4)

for countercurrent cooling and:

= (T(in)-t(in»-(T(out)-t(out» -----î~-!I!~I=!I!~I==---------

T(out)-t(out)

(5)

for cocurrent cooling.

11

Page 14: Mek from n butene.pdf

The required heat transfer area A can be obtained from:

Q A = ------ (6)

U . .1T ln

In table (2-2) .1T ln , cooling area A and required amount of

cooling water are mentioned as function of the outgoing cooling

water temperature.

table (2-2): .1T ln , cooling area A and required amount of

cooling water for co- and countercurrent cooling

water flow

t(out)

( Oe)

21

22

23

24

25

26

27

28

29

30

t(c.w.)

(m 3 /hr)

1861

931

620

465

372

310

266

233

207

186

countercurrent cocurrent

9.94 142 10.49 134

8.96 157 10.15 139

7.82 180 9.81 144

6.34 222 9.46 149

9.10 156

8.74 161

8.37 168

8.00 176

7.61 185

7.21 195

As can be seen from table (2-2) cocurrent coo1ing is preferabie

to countercurrent cooling. With increasing t(out) the required

cooling water flow t(c.w.) decreases while the required cooling

area increases.

2.1. 5 Design

With specific data about cooling water costs and heat transfer

area costs one can derive an optimal design. However, we assumed

12

Page 15: Mek from n butene.pdf

- --------- - - - ---------------- --

that a 6Tln

of 8°C is the minimum acceptable driving force for

sufficiënt heat transfer and this fixes the cooling area at 176 mZ

and the cooling water flow at 233 m3 /hr. Another criterion is the

minimum allowable water velocity in the tubes. This velocity must

be above 0.7 mis to prevent fouling inside the tubes [40]. To

attain this velocity, the water must flow through a total, radial

tube surface of 233/3600/0.7 = 0.0925 mZ • Assuming a total of n

tubes, each with a height h, in the column, gives us the tube heat

exchange area A and the radial tube area A' as function of the tube

radius r:

A = 176 = 2 * n * r * h n

0.0925 A' = ------ = n * r Z n

(7)

(8)

The liquid butenes and the sulfuric acid are fed together in

the bottom of the column with a total volume rate of 10.867 m3 /hr.

With a residence time of 2 hours, the minimal required volume is

21.734 m3 • A column with a height of 13.7 mand a diameter of 1.5 m

provides a total volume of 24.210 m3• With the tube height h fixed

to 13.7 m, eq.(7) and eq.(8) can be solved and give us the number

of tubes n = 142 and the tube radius r = 0.0144 m. The total tube

volume Vtt becomes:

Substracting this value from the total column volume gives a

remaining absorber volume of 22.566 m3• This volume provides a

residence time for the butene-acid mixture of 2 hours and 4.6

minutes and a maximum butene absorption of 98.48% at 25°C.

At 40°C the absorption constant K is not known, but it can be l

assumed that absorption at that temperature will be complete.

2.1. 6 Gas-liquid separator

Af ter the absorption column the pressure is reduced to atmos­

pheric and although but ene absorption is considered to be complete,

a gas-liquid separator is attached for removal of small amounts of

13

Page 16: Mek from n butene.pdf

unreacted gases. We assumed these gases to be butenes and recycle

them to the entrance of the compressor. If the feedstock, however,

containes small amounts of inert ia as butane, a part of the recycle

is to be purged to prevent a build-up of these inert ia in the

absorber.

In general

1iquid. The

gravity is used for the separation of gas from

maximum horizontal vapor velocity U in the separator v is calcu1ated with the fo1lowing equation [21]:

o 5

U = 0.035 ( (Pl-p )/ P ) v v v (9)

where Pv and PI are the densities of respectively vapor and

liquid (kg/m 3 ). For our system the maximum vapor velocity becomes

0.53 mis. We want to remove a maximum of 2% of the initial amount

of butene, what results in a gas flow rate of 0.008 m3 /s. The

minimum

between

must be

diameter

area

the

20%

is

gas bubbles

the minimum

for vapor passage then becomes 0.015 mZ • The height h

top of the (horizontal) vessel and the liquid level

of the vessel radius R. Using this data, the vessel

calculated at 0.60 m. With a slip velocity for small

of 1 cm/s, the residence time becomes 54 seconds and

vessel volume for the liquid only 0.147 m3• Together

with the required gas volume, the total vessel volume becomes 0.164

m3 and the vessel length 0.60 m.

2.2 Hydrolysis tank

2.2.1 Material balance and design

Af ter the absorption of n-butenes in sulfuric acid the liquid

contains partially deprotonated SBA and secondary butyl sulfate.

Both components are completely and instantaneous converted into SBA

when excess water is added to the liquid. The sulfuric acid is

di1uted from 36.8% by moles (80 wt-%) down to 6.8% by moles (30 wt­

%). At this dilution all intermediates are converted to SBA.

The feed of the hydrolysis tank contains 65.5 kmo1es/hr HzSO.,

65.5 kmoles/hr SBA and 46.8 kmoles/hr water. This represents a

total flowrate of 11,774.5 kg/hr. The density of this mixture is

derived with the following equation:

14

Page 17: Mek from n butene.pdf

(10 )

Because we have to deal with highly corrosive sulfurie acid, a

hydrolysis tank is designed in which the fluid is not mixed by an

agitator with a shaft and inevitable seals, but in which the liquid

is mixed by the impuls of the incoming water stream. Racz et.al.

[13] stated that the mixing time of an aqueous solution in a tank

with approximately equal diameter D and height H can be calculated

with the following equation:

where:

D = tank diameter

d = nozzle diameter

v = velocity of the water in

t = m mixing time

With the following data:

-Density of productstream

-Flowrate of productstream

-Volume rate of the water to

dilute the acid to 30 wt-%

-Assumed nozzle diameter (2 inch)

-Assumed tank diameter

we obtain the following results

-Mixing time (t ) m

-Residence time (1.5*t ) m -Volume of the tank

-Height of the tank

2.2.2 Heat balance

(11)

(m)

(m)

the nozzle (mis)

(s)

1370 kg/m 3

8.542 m3 /hr

14.483 m3 /hr

0.0508 m

0.5 m

15.16 s

22.73 s

0.145 m3

0.740 m

Wh en sulfurie acid is diluted with water a large amount of

dilution heat is involved. It can roughly be estimated that in the

15

Page 18: Mek from n butene.pdf

feed one mole of HZ S04 is solved in two moles of water. In the

product stream leaving the hydrolysis tank however, one mole of

HZ S04 is solved in thirteen moles of water. The molar enthalpy for

a mixture with an acid-water ratio of one to two is -204.55

kcal/mole

is -211,19

hydrolysis

HZ S04 and for an acid-water ratio of one to thirteen it

kcal/mole HZ S04 [19J. By diluting the acid in the

tank an excess of 6.73 kcal/mol HZ S04 (28.20 kJ/mol) is ~ -released. The total heat product ion becomes:

65.5 kmoles/hr HZ S04 * = =

1.847*106 kJ/hr

513.11 kW

The feed enters the hydrolysis tank with a maximum temperature of

40°C. If we assume the temperature of the water stream entering the

tank to be 25°C, the temperature of the productstream leaving the

hydrolysis tank is 51.4°C . Af ter dilution all butylsulfate and

deprotonated butylalcohol is converted into SBA and there is no

danger for polymerisation of the butene derivates. The product

stream can now be heated to 91°C (boiling temperature of the water­

SBA azeotrope at 1 atm.) and fed to a stripper where SBA and acid

are separated.

2.3 SBA stripper

The product stream leaving the hydrolysis tank is a mixture with

86.34 mol-% water, 6.83 mol-% secondary butyl alcohol and 6.83 mol­

% sulfuric acid. In this mixture acid and SBA have to be separated

from each other. It was not the intens ion to obtain one of the

components in its pure form. It was assumed that sulfuric acid, due

to its high boiling point (338°C) and due to the fact that it is

dissociated in water, did not take part in the vapor-liquid equi­

libria of SBA and water. With this assumption only the binary

system SBA-water is left.

To define the number of equilibrium stages in the stripper, the

grafical method of McCabe-Thiele is used. The binary system is

described with the data in fig.(2-1) [25J. A part of this figure is

16

Page 19: Mek from n butene.pdf

magnified and presented in fig.(2-2), together with the q-line, the work

seen line and the equilibrium stages which are obtained. As can be

in this figure, the azeotropic vapor separates in two liquid phases and

point (x sba

distillation can not

= 0.1 40 , Ysba = 0.396).

go beyond the first separation

(1) 2-BUTANOL

(2) WATER

+++++ ANTOINE CONSTANTS (1) 7.47429 1314.188 (2) 8.07131 1730.630

PRESSURE- 760.00 MM HG

CONSTANTS: A12

MARGULES 3.9182 VAN LAAR 3.7964 WILSON 11814.8851

NRTL 639.8173 UNIQUAC 350.171l7

EXPERIMENTAL DATA T DEG C Xl Yl

87.80 0.11110 11.36211 87.69 1l.1l2411 11.38211 87.911 11.31111 1l.39611 87.1111 0.3320 11.3960 87.IlII 11.3619 11.39611 87.19 11. 4781l 11.4999 87.29 11.51411 9. 4 lil 11 87.4Il 11.5629, 11.42211 87.59 11.58411 11.42611 87.611 0.61140 11.4360 87.70 11.6520 0.45011 88.10 0.6840 11.4640 88.10 0.71100 0.48411 911.20 0.860" 0.6219 92.70 0.91411 0.7160 93.80 0.93110 0.7580 95.80 11. 961111 0.8400

MEAN DEVIATION:

MAX. DEVIATION:

C4H 190

H20

REG ION +++++ 186.500 25- 120 C 233.426 1- 190 C

1.al3 BAR

A21 ALPHA12

1. 2808 1.4144

1643.6524 2491. U63 0.4385

309.5428

MARGULES VAN LAAR WILSON DIFF T

-7.32 -3.78

2.114 1. 95 1. 86 1.97 2. lil 2.27 2.32 2.34 2.08 2.10 1. 85

-1. 02 -1.36 -1. 21 -1.10

2.27

7.32

1.00

1 0.80

0.'0

YI

D.40

0.10

0.00

DIFF Y1 DIFF T

1l.1996 -3.33 11.9946 1.12

-11.11450 1. 56 -11.11369 1. 53 -0.9265 1.51

11.9961 1. 58 11.9199 1. 69 11.9296 1. 61 9.9397 1. 58 11.9367 1. 53 0.0352 1.15 0.0337 1.12 0.11442 0.87

-11.0045 -1. 30 -11.9249 -1. 25 -0.0239 -1. 91 -0.0277 -0.84

0.9417 1. 44

0.1906 3.33

.c~ lL V

/ V

V

DIFF Y1 DIFF T

11.11763 11.38 -1l.II257 9.22

0.0063 0.21 11.11112 0.23 0. U61 11.26 II.92U 11.35 9.9241 9.411 11.9237 11.47 11.112112 0.49 11.0224 0.511 Il.0134 0.31 Il.0983 9.44 0.1ll76 11.28

-0.1ll89 -0.80 -0.9258 -0.56 -0.9210 -0.33 -0.9203 -11.29

11.11219 0.38

9.1l764 C.81l

~ / I

lL 'f V " lL lL

~ K<

NRTl Y· -I - 51.95 Y· -. - 5.12

O~ O~ O~ O~ O~ I~

XI •

DIFF Y1

-".U22 9.0979

-0.0054 -0. ""82 -11.9123 -9.11289 -11.11269 -".9274 -9.9299 -11.11263 -0.93112 -11.11303 -11.9183 -0.0154 -0.11194 -0.11937 -11.111137

II.1ll74

II.1l303

DIFF T

-2.22 1. 79 11.56 9.57 11.58 9.62 9.64 9.66 11.66 0.64 0.39 9.49 11.31

-0.82 -11.51 -0.26 -0.211

0.70

2.22

figure (2-1) McCabe-Thiele diagram for the

system SBA-water at 1.013 bar

17

NRTL UNIOUAC DIFF Yl DIFF T DIFF Yl

11.9474 -3.53 9.9819 -0.9394 1. 96 -9.9243

11.11115 1. 64 II.0U1 11.0102 1. 61 1l.9957 9.91172 1. 59 9.9193

-9.9115 1. 66 9.U59 -9.11115 1. 79 1l.9195 -11. U511 1.72 II.92U -0.U911 1. 70 0.U7l -Il. U68 1.66 0.1l198 -0.0237 1.30 9.11121 -0.0258 1.28 9.91189 -11.0147 1.114 1l.1ll76 -0.0158 -1.14 -0.9157 -11.0091 -1.14 -0.0230 -11.0018 -Il.92 -1l.9186 -11.99118 -Cl.79 -1l.9188

0.0165 1. 50 0.9193

0.0474 3.53 0.9819

Page 20: Mek from n butene.pdf

r Ysu

0.3

0./

1."/

..."

)t­SBA

tI./O

figure (2-2): part of McCabe-Thiele diagram

from fig. (2-1)

The separation configuration is as follows:

over the top the binary azeotrope of SBA and water is withdrawn.

Practically all alcohol is withdrawn this way.

- the bottom product consists only of water (and acid).

- there is no reflux and no condenser in the top.

there is no reboiler. Vapor and energy are supplied by means of

steam injection in the bottom of the column.

The slope of the equilibrium line for

* "'sba * Psba K = 1 = -----------x p

x ~ 0 is given by: sba

(12 )

At 100°C, P:ba = 771.3 mm Hg, p = 760 mm Hg and "'sba = 51.95. The

K-value becomes 52.72. If we want to evaporate 65.5 kmol/hr SBA, an

energy of 758.4 kW is required. If steam of 1900C and 3 bar is

converted to water of 100°C and 1 bar, the enthalpy change is

42.577 kJ/mol. For SBA evaporation an amount of 64.12 kmol/hr steam

is to be condensed. To form an azeotrope with molefraction SBA = 0.396, an amount of 99.9 kmol/hr water vapor is required. A total

feed rate of 164 kmol/hr steam of 190°C and 3 bar is sufficiënt to

18

Page 21: Mek from n butene.pdf

strip the SBA from the water-acid mixture. This implies a vapor

flow V in the stripper of 164 kmol/hr and a liquid flow L of 957.5

kmol/hr. For x sba factor S becomes:

S = K * ~ = 9.02

< 0.005 the K-value is constant and the strip

(13)

For constant S, the fraction f of not stripped SBA on a tray,

compared with N trays above this tray is calculated with:

(14)

The xf

= 0.0733 and as can be seen in fig.(2-2), af ter two

stages the x decreased to 0.004. In table (2-3) the compositions of

liquid and vapor are given for each tray. The trays are numbered

from the top down.

table (2-3): Tray number N and SBA fraction in liquid (x)

and vapor (y).

N x y

1 0.073 0.396

2 0.040 0.395

3 0.004 0.211

4 4.0e-4 0.021

5 4.4e-5 2.3e-3

6 4.8e-6 2.5e-4

7 5.4e-7 2.8e-5

8 6.0e-8 3.2e-6

The number of equilibrium stages is 8 and with an assumed (low)

Murphree tray efficiëncy of 60% the actual number of trays used in

the column is 13.

19 - ---- -

Page 22: Mek from n butene.pdf

2.4 Caustic scrubber

If the demister on the top of the alcoholstripper fails, the

entrained acid-mist (max. 0.05 kgf kg vapor) must be removed by

another technique. This is necessary to prevent deactivation of the

catalyst used for the convers ion of SBA in MEK. This catalyst is,

like most catalysts, sensitive for small traces of sulfur in the

reactor input stream. The vapor is therefore scrubbed with a

diluted sodium hydroxide solution. The maximum acid-mist flow is

0.05*6653 kg/hr = 332.65 kg/hr. This mist contains maximal 28.55

wt-% acid (acid concentration in feed stripper), so a maximum of 97

kg/hr HZ S0 4 has to be removed. For this a NaOH-solution (9 wt-%)

flow of 465.3 kg/hr is needed. The diameter of this column, based

on 70 percent of the flooding velocity, is 1.0 m.

20

Page 23: Mek from n butene.pdf

2.5 Sulfuric acid reconcentration unit

2.5.1 Reconcentration processes

Sulfuric acid acid reconcentration processes can be classified

in high-temperature processes, operating at atmospheric pressure

and in vacuum processes, operating at reduced temperatures [15].

High temperature processes have their major use in reconcentrating

acid with organic contaminants, which must be reduced to the lowest

possible level. For large scale concentration of relatively clean

acid the vacuum system is expected to be the process of choice,

because of the minimum air pollution possible. For reconcentrating

the sulfuric acid leaving the acid stripper and which contains a

small amount of secondary butanol, is choosen for the Chemico drum

concentrator as a high-temperature process [16J,

,

coo ..... -J. . , ....---__, :wd,f,f:i ,n

., .... IICI •

... ~.L. ""' ••

•• oovc, ac .. Hw .... , _,t •• eo.cI.' •• '''.'

Figure 2-3 Simplified flowsheet of Chemico drum concentration process.

21

Page 24: Mek from n butene.pdf

The ehemico drum concentrator is used for concentrating sulfurie

acid solutions up to 93 wt-%. In this process, as shown in figure

(2-3), hot furnace gases are contacted with the acid in a serie of

vessels arranged countercurrently. The gases are blown onto the

liquid at approximately the liquid level through silicon iron dip­

pipes and the vapors leaving the concentrator are scrubbed in a

venturi scrubber. The operating temperature is reported to be about

50°C below the atmospheric boiling temperature of the actual

mixture.

2.5.2 Drum design

It is necessary to use two drums to reconcentrate the sulfurie

acid coming from the acid stripper from 28.55 wt-% to 80 wt-%. In

the first and largest drum a reconcentration from 28.55 wt-% to 50

wt-% is achieved. In the second drum the remaining acid stream is

concentrated upto 80 wt-%.

First drum:

The reconcentration from 28.55 wt-% acid to 50 wt-%

-The boiling temperature for

50 wt-% acid solution

-Operating temperature

-Amount of water to be vaporized

-Heat required for evaporating water

-Heat of mixing (to be added)

-Tot al amount of heat required

(for the first step)

Second drum:

123

73

9,646.9

6.234

0.109

6.343

The reconcentration from 50 wt-% acid to 80 wt-%

-Boiling temperature for 80 wt-%

-Operating temperature

-Amount of water to be vaporized

-Heat required for evaporating water

-Heat of mixing

-The total amount of heat required

(for the second step)

22

196

146

4819.5

2.847

0.546

3.393

oe

oe

kg/hr

MW

MW

MW

oe

oe

kg/hr

MW

MW

MW

Page 25: Mek from n butene.pdf

The total amount of heat required for reconcentrating the acid

stream is 9.736 MW.

2.6 SBA purification unit

2.6.1 Liquid-liquid separator

Wh en the SBA-water vapors from the caustic scrubber are con­

densed, the formed liquid tends to separate into a light organic

phase and a heavy inorganic phase. The upper liquid layer has a

mole fraction x b 1 of 0.460 (77.8 wt-%) and the lower layer has s a,u a mole fraction xsba,ll of 0.040 (14.6 wt-%). This separation is

obtained in a liquid-liquid separator and occurs under the in­

fluence of gravity, owing to the difference in density between the

two liquids [22J. Horizontal drums are generally used for this

separation. The required residence time t (min.) can be ap­

proximated with the formula:

(15 )

with ~ the viscosity of the dispersed phase (cP) and PIl and Pul

the densities of lower and upper layer respectivily (g/cm 3 ). The

dispersed phase is the heavy, water-rich, phase and the viscosity

of water at 90 0 e is 0.3147 cP. At 90 0 e the densities of SBA and HzO

are respectivily 0.78347 g/cm 3 and 0.96534 g/cm 3 • the density of

the upper layer is calculated as:

x sba (wt-%) * Psba + x h 0 (wt-%) * Psba = _______________________ A ______________ _ 100 (16)

and has the value 0.8238 g/cm 3 • The lower layer density has the

value 0.9388 g/cm 3 • The required residence time is t = 8.21 min.

With a total flow rate of 1.832 kg/s, what is equal to 0.0022 m3 /s,

a minimum separator volume of 1.085 m3 is required. With a length­

diameter ratio of 4, the separator diameter is fixed at 0.70 mand

the length at 2.80 m.

23

Page 26: Mek from n butene.pdf

2.6.2 Azeotropic distillation unit

In figure (2-4) are two McCabe-Thiele diagrams presented, both

for the binary system HzO-SBA at 1.013 bar. One predicts a

heterogeneous azeotrope [25] and the other a homogeneous azeotrope

with liquid-liquid separation beside the azeotrope [26].

1.00

1 0.10

0.10

YI

0.40

o.ZO

0.00

r L 7

V /

V

V1 / I

/ f / ~

V / ~ ~

NRTL Y· -I - 51.95 Y· -. - 5.12

1.00

1 o.eo

0.80

YI

0.20

0.00

~

V

A V

/ V

VI / /

V V

/ y'

V A ~

V

NRTL Y· -I -

71.31 Y· -. - 5.05

0.00 0.20 0.40 0.10 0.10 1.00 0.00 o.ro 0.40 0.10 0.10 1.00

XI .. XI ..

figure (2-4): two different McCabe-Thiele diagrams for the

system SBA-water at 1.013 bar

In theory it is possible to separate SBA and water if they form

a heterogeneous azeotrope and not if they form a homogeneous

azeotrope. Furthermore the difference in boiling points is only

0.5°C and separation by normal distillation is for this reason only

very difficult. To make an SBA-water separation possible, an or-

ganic solvent (entrainer) can be added to the mixture, which forms

a light-boiling ternary azeotrope and is by this way able tobreak

the azeotrope. If the right amount of solvent is added, in one

fractionation column the mixture can be split in SBA and a mixture

with azeotropic composition, while in a second column the mixture

is split in water and again the azeotropic mixture. The tops of

both columns are connected with a decanter, where the condensed

azeotrope is splitted in a light organic layer and a heavy inor­

ganic layer. Both layers are then recycled as reflux to the

columns. In table (2-4) four entrainers are mentioned with the

properties of the azeotrope they form with SBA and water. As can be

seen, diisobutylene (2,4,4-trimethyl-l-pentene, further referred to

as DiiB) forms an azeotrope with the smallest amount of water in

24

Page 27: Mek from n butene.pdf

the organic layer and the smallest amount of SBA in the inorganic

layer.

ComponenlS Azeotrope:

~ . Percent composition Relative Spc:cific BP. . BP. volume of gravity

Compounds ·C ·C In azeo- Uppe:r Lower layers of layers .. trope: layer layer at 2o-C or azeotrope:

a. 2-Butanol 99.5 85.5 27.4 ~1.7 4.6 U 86.0 U 0.858 b. 2-Butyl acetate 1122 52.4 62.3 0.6 L 14.0 L 0.994 c. Water 100.0 20.2 6.0 · 94.8

a. 2-Butanol 99.5 86.6 56.1 65.0 10.0 U 86.0 U 0.816 b. Butyl ether

. . 1420 19.2 23.0 0.2 L 14.0 L 0.981

c. Water 100.0 24.7 12.0 89.8

a. 2-Butanol 99.5 67.0 · b. Cyc10hexane 81.0 c. Water 100.0

a. 2-Butanol 99.5 77.5 19.0 20.0 9.0±1 U 92.0 U 0.736 b. Diisobutylcnc 1026 70.0 78.8 0.5 L 8.0 L 0.987 c. Water 100.0 - ILO ; 1.2 91.0± I

table (2-4): ternary azeotropes, containing water and SBA

A computer program, provided by Magnussen et. al. [34], is used

to do the separation calculations. The algoritm of this program is

based on the separation calculations as presented by Naphtali and

Sandholm [35]: the equations of conservation of mass and energy and

of equilibrium are grouped by stage and then linearized. These

linearized equations are then solved simultaneously. Solution

convergence is obtained by the Newton-Raphson method. In the

program energy balances are not taken in account, but equimolar

overflow is assumed. The program uses UNIQUAC binary parameters to

predict activity coëfficiënts. These parameters were obtained with

the UNIFAC group contribution method. Program output for the

columns T23 and T29 plus the obtained UNIQUAC parameters are

presented in appendix A-4. The value for the molar heat of evapora-

tion of DiiB was not available and in the energy balance it is

given an arbitrary value Q.

25

Page 28: Mek from n butene.pdf

In the figures (2-5) and (2-6) the component profiles in resp.

column T23 and column T29 are presented:

lIale fractian 1.8

8.5

DUB

SBA

H20 8.8*-~--~~~~~~~~~==~-,--~~~=-~-4

1 2 3 4 5 Ei 7 B 9 18 11 12 13 14 15 H. tray na.

figure (2-5): component profile for column T23

(stage 1 is in the bottom)

.ale fractlan 1.8

8.5

8.8l-~~~---+--~--~==~~~~-=~==~--~ 1 2 3 4 5 7 B 18 11 12

tray no.

figure (2-6): component profile for column T29

(stage 1 is in the bottom)

26

Page 29: Mek from n butene.pdf

3 Methyl ethyl ketone product ion

3.1 Dehydrogenation reactor

3.1.1 Convers ion of SBA

There are basically two paths to convert SBA into MEK. One path

is partial oxidation with oxygen:

SBA + i Oz -----) MEK + HzO

This reaction is exothermic and a very good temperature control is

essential

CO, CO z ,

sufficiënt

oxidized

reaction

to prevent uncontrolled reactions in which byproducts as

butenes and other volatiles are formed. Even with a

temperature control, a large amount of the alcohol is

to HzO, CO and CO z . By using a catalyst as zinc-oxide the

temperature can be decreased to about 300·C and the yield

of MEK from SBA can be increased to 75-80 percent. However, a large

amount of the feed is turned into useless products which have also

to be separated from the MEK.

The second path is dehydrogenation of SBA by use of a catalyst:

SBA _E~!.!._) ( ______ MEK + Hz

This

the

reaction is endothermic and the maximum convers ion depends on

equilibrium constant of the reaction. Because energy has to be

added, the temperature control is much easier. Furthermore hydrogen

is formed as a valuable byproduct. This hydrogen is of a high

quality because it doesn't contain non-condensables.

Depending on the used catalyst, undesired byproducts can be

formed due to selfcondensation of MEK. These byproducts are of ten

unsaturated Ce-ketones like 3-methyl heptene-3-one-5, which are the

precursors of polymerisation and coking on the surface of the

catalyst, resulting in a rapid decreasing of the catalyst activity.

It is also difficult to separate these byproducts from the crude

MEK.

of

In this

the easy

design is choosen for a dehydrogenation of SBA because

temperature control, the formation of high quality

27

Page 30: Mek from n butene.pdf

hydrogen as byproduct and because a catalyst was found that com­

bined good activity and stability with a selectivity of 100% for

MEK.

3.1.2 Reaction thermodynamics

The dehydrogenation of SBA into MEK is a gasphase equilibrium

reaction:

with:

K ____ E ___ > SBA <________ MEK + Hz

p (ME K) * p ( Hz) K = p ---p(SBA)----- (17 )

Kolb and Burwell [17] derived three equations in which Kp' 6HTo

and

6STo

were found as function of the temperature (T in K):

log K -2790 + 1. 510 * log T +1.865 (18) = -----p T

6HTo

= 12770 + 3.0 * T (cal/mol) (19)

6STo

= 11. 54 + 6.908 * log T (cal/mol/K) (20)

In figure (3-1) the convers ion of SBA at equilibrium is plotted

as function of the temperature. Note that at a temperature of 200°C

the maximum convers ion is ~nly 60% and at 300°C the maximum conver­

sion increases upto 93%. For a satisfying convers ion without a

large SBA-recycle stream, the reaction temperature must be above

300°C.

28

Page 31: Mek from n butene.pdf

The

SM cOllYllra i on 1.8,---------------:=::::===;-8.9

8.8

8.7

8.6

8.5

8.4

8.3

8.2

8.1

8.8+-==~----_+----------+_--------__ --------_+ 8 188 4B8

figure (3-1): maximum feas ib Ie SBA convers ion ai , Q.tw.. as function of the temperature

3.1.3 Catalyst choice

gas phase dehydrogenation of SBA is supported by

heterogeneous catalysis. Criteria for useful catalysts are good

selectivity, good activity and good stability. Some examples of

licenced catalysts are:

-Raney nickel, suspended in tetradecahydroanthracene, for liquid

phase dehydrogenation [27J. Provides a yield of 99.6% of MEK at a

temperature of 142°C. Disadvantages are the large amount of

tetradecahydroanthracene (27 times the amount of SBA) required and

the slow convers ion (1.1 kg MEK per kg catalyst per hour).

-ZnO with Bi z0 3 [28J or Na Z C0 3 [29J,supported on brass or steel.

Provides yields of 58 up to 98% of MEK at temperatures between 400

and 500°C. Feed rates are between 1.5 and 6.0 volumes of (liquid)

SBA per volume catalyst per hour. A catalyst example is reported

that af ter 180 days of operation still converted more than 80% of

the SBA to MEK. Catalysts are irreversible poisoned by traces of

water in the feed.

29

Page 32: Mek from n butene.pdf

-Cu with CrZ03 and MgO on SiO z [30J. Provides at 260°C a product

with 90% MEK, 5% SBA and 5% high-boiling byproducts. Adding 10 vol­

% water to the feed provides 95% MEK, 4.8% SBA and 0.2% byproducts.

Reported activity is stabIe over 6 months.

-Copper-tetramine complex with 0.37% CrZ03 [31J. Provides a yield

of 93 to 96% of MEK at a temperature of 270 to 320°C. Low conver­

sion rate « 1 vol. liq. SBA per vol. cat. per hour). Regenerated

with air at 350°C and hydrogen at 250°C.

-Cu with BaCrO., CrZ03 and NazO on SiO z [32J. Provides a yield of

97.8% of MEK at a temperature of 180°C. Catalyst is also able to

convert di-secondary butyl ether to MEK.

-ZnO with 6 wt-% CeOz,ZrOz or ThO z [33J. Moderate reaction rate (up

to 6 vol. liq. SBA per vol. cat. per hour), and 1 to 14 mol-% heavy

by-products formed. Maximum MEK yield about 96% at 400°C, but

rapidly decreasing activity af ter 20 hours of use.

3.1.4 Kinetics of a Cu/Ni-catalyst

The kinetics of dehydrogenation of SBA over a catalyst with

composition Cu:Ni:KzO:SiO z (13.8:5.8:0.4:80) have been studied by

Chanda and Mukherjee [18J. Properties of this catalyst are men­

tioned in table (3-1):

. BET surracc area (S.) Size Average diameter (d,,) Hulk density (Ph) Pore volume (V.) Porosity (~') Average pore radius (r) ParticIe bulk density (p,,)

table (3-1): catalyst properties

154.9 m~/g - 48 + 65 Tyler mesh 0.02515 cm 0.7188 g/cm 3

0.4519 cm3/g 0.38 58.35 x I O-R cm 1.160 g/cm 3

Analysis of their data shows that a mechanism of dual-site

surface reaction is applicable over the entire temperature range

studied (250-310 0 C).

Below 250°C the conversion was found to be very low while above

320°C the convers ion was found to decrease with increasing

30

Page 33: Mek from n butene.pdf

temperature. This was due to fouling of the catalyst by reaction

products formed at elevated temperatures. However, in the tempera­

ture range of 250°C up to 310°C the dehydrogenation reaction was

not accompanied by any side-reaction and no byproducts were

detected in the reactor effluent. The catalyst which has been used

at 320°C and above regained more than its original activity af ter

it was oxidized with air at 350°C. Stability tests showed no

decrease in activity over a long period of time. It is, however,

recommended to do supplementary tests to make sure the catalyst

keeps sufficiënt activity over a period of two years when it is

only regenerated in the reactor with air at 350°C when necessary.

Other experiments, which were conducted with catalysts of par­

ticle sizes in the range of 0.25-1.0 mm diameter (d ), showed that p the rate of reaction remained constant for particle sizes below 0.5

mm, thus indicating the absence of internal diffusional resistance

below this size.

The initial reaction (p(H&) = p(MEK) = 0)

SBA ------) MEK + H&

is a first order reaction with respect to the partial pressure of

SBA. The initial reaction rate ro can be fitted to an equation of

the form:

The values

mentioned

ro = ko * p(SBA) (21)

of the rate constant ko for several temperatures are

in table (3-2), together with the values for the activa-

tion energy.

31

Page 34: Mek from n butene.pdf

table (3-2): initial reaction rate constant ko at

various temperatures.

temperature (Oe)

250

260

270

290

310

Activation energy: 21.96 kj/mol

ko (mol/g.hr.atm)

0.6279

0.7560

0.9340

1.1180

1.2830

The reaction mechanism of the equilibrium reaction

SBA

K p

) MEK + Hz i-(----

is one of a dual-site mechanism, with the adsorption of alcohol as

rate limiting step. The reaction rate r is derived from the

equation:

ko * (p(SBA)

r = 1

( r in mol ) g.hr.atm

p(MEK) * p(Hz)

K p )

(22)

In the temperature range from 270°C to 310°C the k-values are

given by (T in K):

k H 2.70 * 10-3* exp( 3.92 * 10 3

) = T (23)

kM 0.226 * exp( 0.87 * 10 3 ) = T

(24)

k MH 5.25 10-14* exp( 15.74 * 10 3

= * ) T (25)

32

Page 35: Mek from n butene.pdf

3.1.5 Pressure influences

From eq.(22) it is obvious that with increasing SBA pressure the

reaction rate also increases while with increasing MEK and Hz

pressure the reaction rate decreases and the equilibrium changes in

favor of SBA. In a tubular plug flow reactor a high pressure drop

over the catalyst bed would be useful for a fast initial reaction

rate (p(SBA) high and p(MEK) and p(Hz) both low) at the entrance of

the reactor and a high degree of convers ion at the end of the

reactor (low total pressure, in favor for equilibrium). This

desired pressure drop can be obtained wether by high flow rat es

(disadvantage: short contact time, so large amounts of catalyst are

required or large SBA recyle will occur) or by the use of catalyst

particles with small diameter (advantage: no diffusional resistance

limitations, resulting in efficiënt use of catalyst area).

The pressure drop over the reactor is calculated, using the

Ergun-relation for the pressure drop over a bed of spherical par­

ticles for turbulent gas flow (Re> 700):

Ap

with: E -p -

u -g H -

d -p

u z g

voidfraction

density of gas

gas velocity

height of bed

diameter of particles

H * -a-­p

(-) (kg/m 3

)

(m/s)

(m)

(m)

(26)

(the lowest Re-number is later on determined as 1382, what jus­

tifies the assumption of turbulent gas flow).

Pressure and pressure drop in the reactorbed are related to the

degree of convers ion of SBA in the bed, because with proceeding

conversion the total gas flow rate increases (one mole of SBA is

replaced by two moles of product). The reaction rate at an ar-

bitrary place in the reactor,

pressures of SBA, MEK and Hz.

however, depends on the partial

A small computer program is written to make an accurate estima-

tion of the expected pressure drop and convers ion in a reactor

tube, filled with catalyst particles. Therefore the tube is cut

into a great number of slices. In each slice the pressure drop is

33

Page 36: Mek from n butene.pdf

calculated, assuming the SBA convers ion in the slice not having any

affect on the total gas flow rate. At the same time the convers ion

is calculated, assuming the pressure to be constant in the small

slice. Both gas flow rate and gas composition are then adjusted and

used to calculate the pressure drop and the convers ion in the next

slice. Main variables in the program are the initial gas flow and

composition and the initial pressure. Tube length and particle

diameter have fixed values. The output of the program contains,

among other things, the final pressure (must be slightly above

atmospheric) and the degree of SBA convers ion (must be above 90%).

Satisfying initial pressures and flow rates are found by trial and

error. Af ter that, changing the number of slices then gives an idea

of the obtained accuracy. The program has been written in Turbo­

Pascal and is to be used on a personal computer.The listing is

presented in appendix (A-5).

3.1. 6 Design

For sufficiënt heat transfer relatively small reactor tubes are

choosen (diameter 0.10 mand height 0.85 m). Each tube is filled

with 4.800 kg catalyst and the maximum initial flow rate with which

a convers ion of 90%, at a temperature of 310°C, is reached, is 0.71

mol/s (189.4 kg/hr). This implies a convers ion rate of 35.5 kg SBA

per kg catalyst per hour. The initial pressure is 2.4 atm. To give

an idea about the catalyst capacity, increasing the initial SBA

flow to 1.42 mol/s

convers ion of 85.6%

and the initial pressure to 4.4 atm, gives a

and a conversion rate of 67.2 kg SBA per kg

catalyst per hour. In appendix A-5 is also the program output

listed for these two cases. In the first case an amount of energy

of 23.84 kW must be added to the tube and in the second case 45.23

kW. With a total initial flow of 1.478 kg/s 99.8 wt-% SBA, an

amount of 28 reactor tubes, each with a length of 0.85 mand a

diameter of 0.10 m is required. The total heat flow from the fur­

nace to the tubes must be 89.28 kW/m z tube area.

The minimum required wall thickess t of a reactor tube is found w by the expression [41]:

t w

with: R - external tube radius

p - pressure difference

over tube wall

34

(27)

(m)

(bar)

Page 37: Mek from n butene.pdf

S - allowable metal stress (bar)

For special Cr-Si-Mo alloys, used in furnaces, the factor S has

a value between 440 bar and 1220 bar. With S = 440 bar, p = 2 bar

and R = 0.10 m, t becomes 0.4 mmo w

With an initial SBA flow of 0 . 71 mol/s the required energy in

the first fifth part of the reactor tube is 14.84 kW or 278 kW/m 2 •

With a thermal conductivity of 17 W/m.oC (average for special

alloys) and a wallthickness of 2 mm, the 6T over that part of the

tube wall must be at least 33°C and the temperature on the outside

of the tube 343°C. This is not a problem in a furnace, where at

800°C, heat transfer is for about 80% obtained from radiation and

for only about 20% from convection.

3.2 Hydrogen recovery

The next threatment for the gas leaving the reactor is to cool

it down and to liquify the major product. At first heat is

recovered in a heat exchanger where the effluent is cooled from

3l0oC down to 210°C and the feed is heated from 99.5°C to 197°C.

Af ter that, the effluent is cooled down to 80.5°C, the required

feed temperature for the first MEK purification column. At this

temperature MEK and SBA are condensed and separated from the

hydrogen in a gas-liquid separator. The remaining gas flow is

cooled further in two stages to remove the remaining SBA and MEK.

In the first stage it is cooled to 40°C with normal cooling water

and in the second stage it is cooled to -5°C with freon. At -5°C

the vapor pressures of SBA and MEK are respectivily 97 Pa and 340

Pa. The hydrogen can therefore be withdrawn at a temperature of -

5°C and approximately atmospheric pressure with a purity of 99.6

vol-%. If the hydrogen is to be obtained with a higher purity,

further cooling will not have much effect and it is better to wash

the hydrogen with a high boiling solvent.

3.3 MEK purification unit

The components in the process stream which have to be separated

are MEK, SBA and a trace of water. The trace of water made it very

difficult to separate SBA and MEK in one column. Simulations with

35

Page 38: Mek from n butene.pdf

_. __ ._- - ------------------------

PROCESS with the binary system MEK-SBA gave no major problems. MEK

could be separated and obtained with a purity exceeding 99 mol-%

and a yield of 94 % in the top of a column with 30 equilibrium

stages and a reflux ratio of 3. Adding a trace of water (0.5 mol-%)

to the system made the MEK yield decrease to 51.8 %. Increasing the

number of stages and the reflux ratio showed only marginal

improvements. All the water was found in the top of the column,

which means that the bottom only contained a binary SBA-MEK

mixture. In a second column this mixture could easily be separated.

Therefore two columns we re simulated. Figure (3-2) shows the com­

position profile of the three components over the first column

(T43) and figure (3-3) does the same for the two components in the

second column (T5l).

36

Page 39: Mek from n butene.pdf

Mole fraction 1.B

B.5

B.B 1 5 1B

figure (3-2) : composition profile for

(stage 1 is in the top)

MEK purification column T43:

Number of stages

Reflux ratio

Feed : at stage

temperature

pressure

composition: MEK

SBA

Hz.O

Top: rate, relative to feed rate

temperature

pressure

composition: MEK

SBA

Hz,O

Bottom: rate, relative to feed rate

temperature

pressure

composition: MEK

SBA

Hz.O

37

~ HZO

15 ZB tray no.

column T43

20

3

7

80.41 oe 1. 06 bar

89.46 mol-%

10.04 mol-%

0.50 mol-%

45.05 mol-%

78.31 oe 1. 00 bar

98.15 mol-%

0.73 mol-%

1.11 mol-%

54.95 mol-%

87.65 oe 1.19 bar

82.34 mol-%

17.66 mo1-%

0.00 mol-%

Page 40: Mek from n butene.pdf

.. ale fraction 1.8

8.5

8.8 1 5 18 15 28 25

tray no .

figure (3-3): composition profile for column T5l

(stage 1 is in the top)

MEK purification column T51:

Number of stages 25 Reflux ratio 3

Feed: at stage 7

temperature 82.18 oe pressure 1. 06 bar

composition: MEK 82.34 mol-%

SBA 17.66 mol-%

HzO 0.00 mol-% Top: rate, relative to feed rate 82.73 mol-%

temperature 79.38 oe pressure 1. 00 bar

composition : MEK 99.31 mol-%

SBA 0.69 mol-% Bottom: rate, relative to feed rate 17.27 mol-%

temperature 79.38 oe pressure 1. 24 bar

composition: MEK 1. 03 mol-%

SBA 98.97 mol-%

38

Page 41: Mek from n butene.pdf

IN Voor-waarts

M Q M

KtJis kw Q '"

1.020;1 1-'9.512

\.o'3.~6

1-32.g,

:13.12

\. 0 ~ ~ b 80 6.'Sl

6.20 '3~o. 5

"o~') ~ ~\6.~

43.2'2. L/ 533 f.1

2Ib6,'2

'3.26~6 6':1-7·2>

3.'2..501-b 6~ .:,s

0'014 0·50

), 366 I l/3. 1 1

.

Massa-en Warmtebal ans

C1

\ot 2 $0 \\.\. ~ ~ 0""\

o ~ Ct\. c.lt.

- - 5 r-------t .

.

Retour

M Q

O·O\~Cj 13.2..,\g

'2.2?,b \\o~. \~

UIT

M Q k<J/s kW

11

I

6·7.A ~3o. 11

Ltl. '2 'l 1'14'6,~

I

I

I I

I

'·_3b 6 642~

.. _. - -

Page 42: Mek from n butene.pdf

I· 1

W'\, + V"t1l.

"'" , \- 'W\ t. +- \.6S2.1

Q.o'2.3

a·S\

o . 'Z 2

Q. tLC;

Gis t Q(, - \~3.55

q!ö t-CQ(,

-<3~~.?

Lf22

<Ó. oS

(441. b

2'2. '2.~.<6

G20

+.11~{, . lo~Lf

1·2:J1G . 23qq.~a,

\.'64-6 -'L4~q.J

,.<6?>'Z. 2.<..( 55.6

'2.2\6 \ 6 \~. '.14

.

'N\,+W\z Qs~ Qb tlut ~r \- '·~5'2' - 9P";j. 2.

~----I15 .. 3. g6&'1 12l0.~tj

""'. + 'Wj t CQs~ G7, + ll. 03'2. _ 551. \

vg

0·5 , I~~. 2l

. 12. .------1

@-.. TI4 (,.'24'ó '2. I 5". g'i

-. '8 .-----t

c) . ILJ3 ~u + 12?;r~

· · 20}----I

41

Page 43: Mek from n butene.pdf

C'j. 0 L\- 756.1--6

\. ~ '3 2. 566.3

\·gX(ö-f

5.S)( (0- 1

\, <O~'l.. ~66.Lo.,

'5.I?-'2.. Q1 + ~.'" 1266.6

\, 3~ <6 425.3

'YY'\S'f- Q~-4-

'V't'\ .... Q....,

5.4o~

Q'\ ~ Q"l ~C{1,~.~

o·~3~ ~,+ ,'3\. ~

-

-

-~ -' -

-e-

v

T 2.~

--@----I 4.66~ G. + "308.3

. <3. 0 L{ 2G4~·Ob

Qsl-- Q, W\.~ - ,~'f.~

Q +Q~~ \,0) l

' y.f'\ ...., 4- \ tass. <:,

Page 44: Mek from n butene.pdf

!

~ ~ .. o.2~5 ,......:L Q,+~ .. +~g!

T ~~

~

~~

WQ.~'t" ._ 0·504 '2..og·QS

~L ® Y1'\s'- Qs\-

\-\ ~ Q)\. - Qtt S\-e.o.W\ Co~~", saJ~ "n'\.s\- - {oS.':l'i

30

--- I

l...6..

f· Cf::J. g -4 -=1-q.qq .k§ ~ I ~

- H ... I("Q I (J~ q 3S I. CJ~ ~ 5'17.2 37 .. 33 I ...

, ·41- g 1505.2.5

3ef

" I

~I GIs F" Q - 2'2.4·~$

ç-'""e.\ .... ~l\kt. ~"s "" s 36 1"

I

I ---r-

\ .4~g l~ 3 0

-@ W"\ 2. Ol" ç \"-'.. ~~t (\1, - g6&.g r~~\ I.. ""t.. --

3~ R~~.,.... ~+o. ~ I y..~ t'"

-~ \ .q-+ '6 l61..CO

311

~l. I

H 1·4 :t~ 4 =t4.~q 33 €) '·lf:J!i? ISos.15 '

35

f.~9-'6

I...- 5~1.1 ~B

43 '~

Page 45: Mek from n butene.pdf

----------------- ------

3.6 f

0'2. 5

O' {b 16·';f6

o. 3~4 lo$-i. I

(·l.JLf L 254.4

C.wQ.\e r

H

H

T Lf3

'3.6 \ 6 o't. ~\

o· 25 41.'119>

v · /6 36.1-Z.

().o~6 Cl • S ('2.

o·3~4 2., Lt. 5j.

Page 46: Mek from n butene.pdf

\. 0 b <"L~\, Z.

O· c;- ____ @ __ -I r-___ -+ _____ ~{-o-4~~

(J. b 1413.

13,4 I I 2'6.

H

T 51

H

52. C~

H

55

.

.

.

<:;.'1$ 1 66':/.S1

,. ( 6 , \S-?·2.

o· 6'6 1\3.82

o· 6tl5' 41·3

0 · 15 l.fq. 14

0·50 2.9 g .(6

13.4 2251. ':)

I

Page 47: Mek from n butene.pdf

o·~3

W\'-I +- 2. W\S\

+ l"W\ • .\- 2W\L

+ too.6

lO-- \, ~ ,\ ~ .... 'lc,1.r

V ... -'54

....... 1'"""

0·656 lott.2. -- ~I

~iI

H 6/.3l c.wo..~r c., WCl.\tY' 0'13 ~ ...

5~ ..

T HFit:: O·~5b ®r r---

. ,

---r---

---

Glo+ 34>~+3C.) W\",,-4- 2'W\~

... 1 4l.s~ + 6,)., ~,~, -+ l'""t "1"" ~

11~~1,~ ~ Totaal ~ too, b

Massa in kg/s Warmte in kW

Fabri eks voorontwerp No: 2.6Cj3

12.0.~f

45· ? çs

020 -t ~~,~ ~G la

~l~~~QLJ +

l~gljl.S

Page 48: Mek from n butene.pdf

~

• Apparaatstroom , Compo'nenten

"A - Bu...\-~ V\e.

S~l ç\).'f~c. ~

Wct.'e'(' ~u.. \'" \ ~û. \ ~oJl

--

Totaal:

Apparaatstoom

, Componenten V\ - ~u.. \-~ V\t

Su. \ ~ÛX\ (' ("'Ar ~(ll Wf'l:\,~\",

~v..~ \Su..\ ~oJe v

~(' ~\L'-'\ t'1. \('I\\\'o \ v

Totaal:

M in kg/s Q in kW

1

M Q

. /.02.0':7 +ltJ.5/2

1.02.01- 1'9.512-

6 M Q

0'0\ '6~ 13.2.916

o. q ti 60 ':fC/.'f4 2. g cC{ f SgC).21'l

3.2t'lt 611.25

2 :5 4 '3

M 0. M a M 0. M Q

l.o3lj~ 732·81 l.o3Cjb 806.'33 l.o~C)6 3\6. Cj o'''\~~ /3. 2..(j '3

0.'-4'-460 9-4.'14 2. <l,ot{? 5B~.Z'2.

,.o3t)b 1~2.81 ',0~9 b 806.':> 3 '.C) 3~~ 316. ~ 3. 2.6Cj~ 6'17. 2 5

1- R ~ \0 . I

M Q M Q M Q M Q

o.o\~Cj 13.29B

'.9 g4 OOI;")'"

0·4460 74. '/4 Lf.o2.3 iJ 22. 4.rttz u J -.T·

2. ~oqi 5S~. 2/ 1·3LJ g 20 l. 2-9

o.o,gij 13.29& 3.250 1 663.'15 4·02. ~ . 4 'L 2. 1.2'1l/ lo lj 4

Stroom /Componenten staat

Page 49: Mek from n butene.pdf

oe::­~

A pparaa tsTr oom

f Compo'nenten .

Sl.l\ÇUt"\L OM VJoJer ~c _ gLl-~ ( a l(oho\

~

Totaal:

APparaatstoom

, Componenten

'S u. W"" 'f\c.. ö...tÀ.d wnlpr"'

Stt.. B\.thl areola I Sc.,..\:,l..,. U. ,1,..", ',la .,

Totaal:

M in kg/s

11

M Q

I· :t~Lf O{',. .... '71

~ .142 o J"-.

I,3llg 20 l. 29

1· 2'tf4 /09 q

16 M Q

"':}'1 I t. lil 0.,4

D · 4- 46 ..... J

2.2 [6 tG Iq. 9'1

12 13 14 IS I M 0. M 0. M 0. M Q

I·1-S4 '} (') U'J.. I? \'1 ';fo ') I ~ u,.,q J'1~O I Q. I " !lOl

4· 142 ' .. o.~2.o 3 4of· KI 4. lf '1 f-

... '2.o~~

v ;r -'

,. ~tJ'a 352.z6 0.0 0 , o. gs

-:;.2'1-4 23tj~.~q o. g20 3L4of·gl 6. 2.4 <6 21 Sl(o 89 3.{?6g Igl()·1~

li Ig 1i} 2.0

M Q M U M 0. M 0. I· '7 ~PI 11_'" ,/I <:).014 ,.,/r. lP

0·446 .-.~-, T

0.495 IJ 0 J.O)

o ·4gs I 35 o. ~ S' I. ~q=l /l05.2S 1.341- I,aS·2.r

0.129 Qo

2.2'3 ft 09. 1'1 1,'3Lt6 2q~4.3 o· Cl q Q() \. <ó 3 '2. 2q 55.6

---.S t L..J'lO rn _L C () n:Ln () n ~ n t ~ n c. t .::l ::l t

Page 50: Mek from n butene.pdf

~

ApparaatsTroom

, Compo'nenten

\i\hf-tr S~L- DU~'l1 alCohol Di ,'so 1ovJ-(.,v\~

Totaal:

Apparaatstoom

f Componenten \Na.~Y'

5tc.. ~~~'1' 0.. kb~O \ 0,' i~ulc~.

Totaal:

M in kg/s Q in kW

2\

M Q o .qgs I 1'3· 1-9 ,.341- 386'·51

/·f?3z 566·3

26

M U 0'0 84 2').2~

0·96'1 2gl. o '6 '3.ö21 ~.

Q1 +

4·6 cr; :Su~. '5

22 23

M Q M Q M S -s o· t 10 "fjStl~l 0·485 I ~ Cj.t6'g 0'') 68

1 -s . 3 ~ fa 3. 6s 'u;'3 '.'34'1 sg(.5 0 2.. o.c, g~ 3. b'l.'

I.g'f.(ös 5 -1 ·5 tlo ,.g ~ 2 5{,6' 2~ 5.1':/2.

27 28 M 0. M Q M

o·So') 1611·92 o'°2...S 64· 43 0·4 g 3 0.0 6 S IC. 6 g o· Cl 9s 14,41- o . 0 Z ,

o · 16'; ~t.. o. I 6 5 û?l -\- Q~

-ah -+ Û>z +GJ q t

0·'1-39 \81.{ 0·2.15 18· ~ oS04

Stroom /Componenten staat ."" a .i i' w_ : , _.~ _______ t~ .... ~_-.z=;~_· ' . _~

24 2S I

Cl M Q

1463.::}4 o. Slj1 lC)l. IJ

802.56 l.o'2.g Z Cj:]. ~+ G1 -+- Q, ~. ~ '6 b Q, + <V'l.

CV. +01 t Q,+GL t

'2'l{6·3 5.40f. q g~. '1

29 30

0. M 0. 'Lo z.43 ,,'6'1.(;) O· iS"

6.0) /,326 42Q.Sf"

'"

2b~. q g 1,32.(? 42.5.1

Page 51: Mek from n butene.pdf

A pparaatsT'room , Compo"nenten

WCl.~~Y"

S{Q. _~\~\ ~'Cb~O\

r\~~ ..... ' ~"'V\\ tL.h·,'\.(. ~",rt~ue>o..~

.j

Totaal: .

~ APparaatstoom

f Componenten wo..\-~y-

Sec- (3~a\c...'v\.o' Mt'~V\\ .f~~\ ~!"'" -Uv.dy-o~

"

-

Totaal:

M in kg/s ct in kW

33

M a O·ou \ 8 0'1 S I I. 4:;~ 411.6 <6 0.0 0 1'2- Loo 6

',4=1 ~ Lf';}4.44

3~

M U 0'\:>0\3 O· 61-(). 'l.../ 9 37· '6 r ,. 2l) I 2'$.8' O'o'lb 41, t q

I

'·41-'8 2.95. S 9

34 3S 3?- sCO M a. M Cl M a. M Q

0'00 \ g l{.13g 0·001 g 4. 3 C; o . 00 \ 6' 4.g9 t:). 00 \ ~ L{, S 1

1.<.f1-) ISol.(( I·L/;f5 17lJ./») o·ltlC) 'tt.{·tJ6 o. ,qt] , 3l.~~

0'0011 1.6'7f O· 00 11.. 2.. 06 I • '2~1 '210.44 ,. 2 q I ~ S 2.0' O· 0 3(; 151.6 f o· 0 1 ~ 101.44

/. cf.:;. 8 15 o S'lr I,4:;g 1'1-3 0 '·4 tg \ 6 2.. ~ '.lf:; ~ 597-

40 41 42 43 -

M U " M U M Cl. M Q

o. 00 'B O· -6 ~ 0'00 s 13.00

o· (lI-9 3;1. '6'1 o.0'3J (o'1-1-I . 2 C, , 2($. g ~ I. ?- « t- '0'1 t}. 0 b

0,os6 'LC) . ~ 1- O· 036 o ·S f L

0'0 >b 2.t,·47 ~~s6_ o · SI 2 "qq z 25~JI I. g 06 ll'2l.g1

Stroom /Componenten staat

Page 52: Mek from n butene.pdf

A pparca t sTr oom LIet 45 4(, Lfi L(~

t Compo"nenten M Q M a. M a. M a. M a Wcd·e.~ 0.005 '.64{, 0.0\3 \'6 o·s 82 0 ' 00\8 o.'So2...

.S!c. _ Bu.~\ n\Cn'-"n\ 0.0/37- 3.01Lf o.()oLi9 1.0'99 o.()oQ9 o . S 63 o. (44 '36". 311 o. (49 43. IS ):1~\h~ ~ ..... \ Y'.-\. ....... , /.-:;.8:J 2/U,·4g 0.6 3 g (0'2. .113 0·63 g 46.Q?f Cl· 653 '2 q. q, o-oUIZ ,.00' I

..J

Totaal: 1·8" 6 29/.2 o.~ q~ io 4 o· ~t1f 47· 1 0·19:; \ 6'. '1 o· 15 l49. ,4

'" A pparaatsrroom t.tq 50 51 52 f ComQonenten

-M Q M 0. " M Q M a. M a.

S~c:...-Bv..\.~\ o.\c.~~o\ Q. 017- 13. Sb O· 0 l1- ~.gr 4.66' Xlö1 '.04 4 '6t )( (.; 1 b·5~.r

.~\\...."'\ ~\-"" .... \ V',\,.",~ 2. 4S' , 5 o.j. ~1 2 -45 \ 3~3.g~ 0.652. {o? (6 0·652. 44.11)" -- '----

I I

,

-

Totaal: 2.LJ6~ IS 20 ' 1- 2..468 '3/11. ':f 0'656 l 04,2. 0.656 QS .'2g

r-.1 in kg/s Stroom /Comr n in kW ----------------------------------------------

Page 53: Mek from n butene.pdf

-- - --_._ - ------ -_._---- -

Apparatenli~st voor warmtewisselaars, fornuizen -----------------------------------------------

Apparaat No: H 2 ft q H \3 \-\ \~ \-\ \ ~

Benaming, C O"Y\.cl e-.t\S<I\. {oo Ier \+eaJ-t/L Cooler H eateJL type

Medium

pijpen-/ Ccl ci~·C;o\u..t~", HzS 04-( Ul.~oc{ + ~ a\ . ~ a(ec./ NC1.0HI mantelzijde V ,,_10 \A..\-<'V\e CCA.. Jl. SO \~\:, ~ ( S~e.o..~ C. WÛ\UL CS \ (D.W"\

Capaciteit,

uitgewisselde Lf~<j.63 5 0 '3.'6 1305 Iq \g~(\.~ '2-6. ~ warmte in kW.

Warmtewisselend 26./ oppevl. in m 2 21.0 /4.6 f,~ o. So

Aantal pafKlfê{ 1 1 1 1 1 Abs. of eff. * druk in bar

I pijpen- / 1/3 3/1 \/3 \ / \ l I ~ mantelzijde

I temp. in / uit , . or.

~n ,

pijpzijde '2.0 /40 \4b / 25 52 / ~ \ ~ \ I gg.!" 25 /~t mantelzijde tt /25 20 /40 l~o 1/30 20 I qo J~o 1130

Speciaal te ge- I?. V s 3 \~ {(\JS1lb e.VS 'S\b bruiken mat.

i( aan~even wat bedoeld wordt

Page 54: Mek from n butene.pdf

Apparaat No: H 211 H 2'1- 1-1 30 H 32 H ~S

Benaming, ~e6<.:> ~ tUl. [ ()Y\.c1 ~eIl ~e \ooae.n.. \\ e.",-t

Co ol ClL type

.ti C-~eJ'\.

Medium b.u:l. cJ.c.uU / c. wo..teAl WaJeJL / ~.~)J W. J~".( pijpen-/ b~.a.O~

C. vJ~ mantelzijde S\-eo.W"\ -+ ei .. ,·su h.:i:L <t> \- ea. 0,1' I\Ebz ,-Capaciteit,

uitgewisselde 220 \ 0:$ 0 warmte in kW.

Warmte .... isselend LI. Q S·S 2 oppevl. in m

Aantal paf!lt~{ \ \ \ I , Abs. of eff.

i(

druk in bar

pijpen- 1 l /3 I I r 1 /3 \ I \ \ I , mantelzijde

temp. in / uit . oe ln ,

pijpzijde ~9.r / 9Q·f' 2.:> 14.:; /00 I (cv CJ~.s Il/o 99.1 11 =1-9 mantelzijde 130 1IJu ~:;.s I:;:;· r 11.)IUo ~ IC/u '3/0 12/;;)

Speciaal te ge-bruiken mat.

7( aaneeven .... at bedoeld .... ordt

Page 55: Mek from n butene.pdf

Apparaat No: r- 36 ~ 3CO H ~o \-\ q, \-\- 4 <J

Benaming, ç'~U- C~~ Coolen- Coo \-eJL eebo',\u type

Medium ~~~. cJc.t.e. / c. watiA; c. (.AJ~I e~~/ ~~CJ.A el ... \0\. pijpen-I

ç'~ ~J 5J-~), + HEt H~cl(,,~ I s+eo..~ mantelzijde t\'do.(O~

Capaciteit,

uitgewisselde 2.25 ~o \. 6 2..0 ,91.. 2.0 . 0 842.. S 'Warmte in kW.

Wa=mte .... isselend /, '13 o. ~ 1\, ~ oppevl. in m 2 0·5

Aantal pafältê{ 1 1 1 1 1 Abs. of eff.

i(

druk in bar

pijpen- I 2·'-411 1 11 1 / 1 1 ( 1 \ (1 mantelzijde

temp. in I uit . °c l.n ,

pijpzijde \ '1'1- I 3t.:> 2.:) 14 û LO 11.4 0 -5/-~ ?>B{8~ mantelzijde Soo/)JI.:l 210 ( 80· S" 30. r I Cf û ~o {-5 130 I 1J0

Speciaal te ge-bruiken mat.

I

i( aan~even wat bedoeld .... ordt

55

Page 56: Mek from n butene.pdf

Apparaat No: ~I Ll t- t-t 52 H S5 H 51- H S~

Benaming, C~eY\SVL ~Ioo~ \m. C~~~ Cao 1 efL Cao lOL type

Medium

hJ· alcoh~ C. w~1 r\E.~ r\E~ c. wo1(/L! pijpen-I

mantelzijde I1E~ SteAW"\ MEK C. woleIL C. WcJvt

Capaciteit,

uitgewisselde <O~\·b 1ll5. 0 112..'3, 59 '56 . 1-'Warmte in kW.

Warmte'Wisselend (Ö'b L-6 \ L{. '3 \ . Ll oppevl. in m 2 I ,Lf

Aantal pafäItê{ 1 1 1 1 ~ Abs. of eff. ~

druk in bar

pijpen- I 1 I 1 mantelzijde 1 I 3 '1 11 1 l1 1 (1

temp. in I uit . o~ ~n ,

pijpzijde '20(4° 105 1(0) ?a 140 -::t-qll-J o 15 / q0 mantelzijde 16/1-3 '5 0 /'Jv -=1-9 l1-ct Lo/q." LO l q lJ

Speciaal te ge-bruiken mat.

i{ aan~even 'Wat bedoe~d wordt

Page 57: Mek from n butene.pdf

_ ._------ .... __ ._-

Technische Hogeschool Delft Afd. Chemische Technologie

Fabrieksvoorontwerp No: .2' ~ 3. . Datum : • • g 11- .{ Iq·S t6. . . . Ontworpen door •. A.\-\: l.W\(.'ç' •

Y?~E!11:~~Iê.§ELMgsP~fI!:I~1:I~~~~ R, JA- (~~\-V'-Apparaatnunnner : H. 2 . Aantal : .1. serie/parallel *

ALGEMENE EIGENSCHAPPEN :

Funktie . . • . • . . • • :

Type . . . . . . . . . . :

Uitvoering . . . . . . . :

Positie . . . . :

TT '~ * dtaiii'is keselaar iC. alG!! Kondensor Uuie.,,,,

met vaste pijpplaten* ~, • B J 1

1 ... 11' .1j bhh 2 pj jp p2 'iuu e_'ililFkllllslaar

horizon taal/'u T'i Lh ur*.

Kapaciteit

Warmtewisselend oppervlak : .. 4 ~'\~ '1-: ... 7..-6. \ ..

.kW (berekend) 2 • m (berekend)

Overallwarmteoverdrachtscoëfficiënt : .. 56S". 2 • Wim K(globaal) Logaritmisch temperatuurverschil (LMTD) • : • • Aantal passages pijpzijde •••••••• : 4 Aantal passages mantelzijde • • • • • • • : 2

14.3 . .. Oe

Korrektiefaktor LMTD (min. 0,75). : o .. tO o Gekorrigeerde LMTD. . • . . : .. \~.H!i.

BEDRIJFSKONDITIES :

Soort fluidum . .

Massastroom . • . kg/s Massastroom te ~~l~I .. /kondenseren~ . • • • • • .kg/s Gemiddelde soortelijke warmte . Verdampingswarmte • •

Temperatuur IN

Temperatuur UIT .

• • • • .kJ/kg •. oe

. • • • • . • kJ/kg

° • • C Druk . . . . . . . . . . . . . . . . . . . . . . . bar Materiaal .

o •• C

Mantelzijde

t'l .. b. t;~ •

· .\~o.q .. ..\.Oc;.t .. · . ~. ~ 5 . . · . '!SS - . · ·11· . . .

· . ·3· . . . . · .S~uJ .. .

Pijpzijde

Ca. de ~ot~\~", · be'L'O .. · .. ~ . • ~.a 'i) •

· . 2-.0. . . · . . 4-a .. · . . 1 . . . · .~~~ " .

*Doorstrepen wat niet van toepassing ~s

·57 -------------------------

Page 58: Mek from n butene.pdf

Apparatenlijst voor reaktoren, kolommen, vaten ----------------------------------------------~----------~----------~----------r_--------~----------~--------~ I

Apparaat No:

Benaming,

type

Abs.of eff.*

druk in bar

T3 V6

1 1 1 ~-----------+----------~----------~--------~----------~--------~ '

temp. in oe

Inhoud in m3

Diam. in m

1 of h in m

25-40

2. 2. \ 1·5

12·5

l46 liO

0 •• 64 o. blo (l,bO

\ 11

\.00

3.1-\e ' f

52.. I

0·150

0.50

0·1-66 ~-----------+----------~----------~---------+----------~--------~ I

;{ Vulling:

schotels-aant.

vaste pakking

katalysator-

type

- ,t - vorm

Spec iaa2. te ge-

bruiken ::lat.

aantal

serie / :;:a:ëallel

CL LIS 1\(,

1

* aangeven wat bedoeld wordt

Page 59: Mek from n butene.pdf

Apparatenlijst voor reaktoren, kolommen, vaten ---------------------~------------------------

Apparaat No: T tl{ t"\ tb T 17- \I 20 T 2.3

f-\c.;d No..o t\ A ~s\)( r\~0\'1 Li,\~ - [) \ ~\: \~;J~~ Benaming, sh·:p~.ljL L\',~ type

~\b"~ ~lu.~>') löl\A""'" '1 I

5..e.f~óL 3(

Abs.of eff. 1 1 1 1 1

druk in bar

temp. in oe '3\ - 10 'l ~\ <j\ gfJ· 5 '.f.1. f - \Ct)

Inhoud in m3 ~.S "\ +.~S 1,08$ 2 \. L Diam. in m \. \ 0 0·20 1 . 0 0,7° \. S 1 of h in m \0 1..0 1 0 2,80 \'2. Vulling:

3(

schotels-aant. \3 TMTP- ss 23

vaste pakking i>~~~ katalysator-

ItoDM;-'.1 oll~-type ~~ 2.5 he,...

- " - vorm

· ............ · ............ · ............

Speciaa.l te ge-R.. V S 1 tb f- V5 316 e.. V j J { l.

b::uiken :nat.

aantal 1 1 1 1 1 serie/ pa!'allel

* aangeven wat bedoeld wordt

53

Page 60: Mek from n butene.pdf

Apparaat No: '-J 2t; \" '2-'1 \J ~~ ((.3'1- Cj 3" S~.

L\~~ - O\I)\~ \\~~~~ O!~ ~~-Benaming, ~6L type \..t\~ Co \ u.. "'" "" S-\<5\o8f- Lt~~

~()j\J.ó\- ~~óL 3(

Abs.of effe 1 1 1 2,Q 1 druk in bar

temp. o 0c ~n 1?-- ~ =1-7- r - loa 4-0 '2> \ 0 30.)

in m3 2'b 1. (J 2-0 " Inhoud ,01 0-0

Diam. in m /'" l o-s" 3 0 25 0·25'

1 of h in m ~.'2..S la '2. ~1 .~ l . 2 S- I

Vulling: :;{

schotels-aant •. \3 vaste pakking

katalysator- C"'/,{{ Oh );0, type S~~J

- " - vorm

· ............. · ...... . ....... · ...... ~ .........

Speciaal te ge- CÎl,-)l--Ho-b:-uiken ::lat. a/lo}"

aantal 1 1 serie ,lDa!'allel 1 1 1

3( aangeven wat bedoeld wordt

60

Page 61: Mek from n butene.pdf

Apparaat No: T 4-3 V LIl, T5\ " 54

Benaming, O;St-; llo..t· o~

UtSsJ DiS\; \\o..\ttM

\J f! '>S~ type Co lu\'Y'\ Y'\ [Qtûw\.t) !

I 3{ I Abs.of eff. 1 ~ t \ I druk in bar

I temp. in oe -:tg - 2,<6 tg '1-l3 - l" S 1-9 I

in m3 I

Inhoud ll, ~ , 15·0 , I

Diam. in m 1 , I I I

1 of h in m 15 1 • 2. 19 I·Z I

Vulling: 2(

schotels-aant. 36 2~ vaste pakking

katalysator-

type

- , , - vorm

· ............ · ............ · ..... . ......

Speciaal te ge-

b::-uiken :':lat.

aantal 1 \ \ ,

se::::,ie / pa::::,al lel

1( aangeven wat bedoeld wordt

Page 62: Mek from n butene.pdf

Technische Hogeschool Delft Afd.Chemische Technologie

Fabrieksvoorontwerp No: 1. b ~ '1 Datum: 1- /1- , \ Cj '6 fb Ontworpen door : ' A. \-\. ~"1"'\~

TORENSPECIFIKATIEBLAD R.. c4 f"~ \ tA-

Apparaatnummer : T··5 I Fabrieksnummer :

ALGEMENE EIGENSCHAPPEN :

Funktie ............... : destillatie / a_,liiiiiil~iliiii , i~iiliiiii~1: / •••••••• ;te Type toren ... 0 •••••••• : 8 R \ultE / schotel / iipt:geilu~ / * ................. Type schotel .......... k1.91-j Oi / zeefplaat / Hiàlue- / * : .................. Aantal schotels ....... : theoretisch : "2..0 Aantal schotels . ...... : praktisch : '2..~ Schotelafstand / HETS : o· S· m Materiaal schotel : ~~~ Diamet er toren ........ : \ • .0 0 m Hoogte toren .... : \~ W"\

Materiaal toren ...... : s-\ui Verwarming ............ : ~/ 'ilfilOiiil ij e 11111" / reboiler / * ................

BEDRIJFSKONDITIES :

Voeding , Top Bodem Reflux/-eb~ol:p E~tt'e\tüQ ~e Ifti:èèe:l .miàèei/ •.•

Temperatuur ...•. oe 82> *1-9 \05 :tij Druk .. 0 ••••••••• bar , . \Cj I \, '2.4 \ Dichtheid ....... kg/m 3

5 0 1- <005 C6lS 80S Massastroom ..... kg/s o . :}Cf t o ·6Sb o· \ S \ . .g \ Samens telling ln "'" ,,/. VI~. W\ '10 v'l. _.,. w,I. W\. ". w ·10 mol 7. resp. gew.7.

Se-.c.o~o\ \1·1- \~ oob~ Oot ~8'~1 '1 Cf" J ,,·bq 0':;

M EK g'2·3 82 ~Oj,J' 9~·J /,0 J 0,9 '\'1.J I Cf'" 3

ONTWERP :

Aantal kj J ' / zeef gaten / ** lo.fo T)l'5e flekkittg ...•.. : ... :

Aktief schoteloppervlak .... o.bj m 2

Hete!':tee:3: l' e:td~ iftg - . ..... : : Lengte overlooprand ......... ..... : ~oomm AftHetirrgcn pakking : Diameter valpijp /~ / ............. :

7 I!.\W\HR

Verdere gegevens op schets vermelden

* doorstrepen wat niet van toepassing lSo

! i

**, d " d- ,

ln len een toren schotels van verschillend oncwerp bevatJ .~l~t~a~alin~g~e~v~e~nL. ______________ __

Page 63: Mek from n butene.pdf

Apparatenlijst voor pompen, blowers, kompressoren --~----------------------------------------------

Apparaat No: c1 eS p \0 r 11- PIS I

Benaming, CCJWlfrt.,sS 0'- ~"~'JJ c4~j ~~~ ~~Jl

type f(Á~f p~p fu.~p f tA.W"\f

te verpompen &>0 wt_o~ 8a wt-% Hz SOl\-

fl_ b \A.. t (..vU. H2.S o~ HL 30y No..o~ I medium + W.rJCb~ I

Capaciteit in \.oLt '2,2- S 6.25 1. 2 1- 0, lL~ I

t/d of kg/si( I

2.'50..\/ l I

Dichtheid \~OO ( 2 l q I 15 Z l 0 0 u I

kg/m 3 ~ in (./:r.e 1;:, ZI '" •

~l~~;p 1

in bar(abs. · 3.2 S I ~i()

0

ltf6 [ lqb lol.! (01.. temp. in C 25 / 1-1 5 L I 5 2 <3 \ I ~ 1 in / uit I

I Vermogen in kW 13. +/ theor./ prakt.

\ 0':>.3 Speciaal te ge

R- tts bruiken mat. 5l~ eVS J I , f..VS ~\b e.rlS 3l€

aantal 1 serie / parallel 1 1 1 t

* aangeven wat bedoeld wordt

Page 64: Mek from n butene.pdf

Apparatenlijst voor nomuen. blowers. kompressoren -------------------------------------------------

Apparaat No: P '2.. 1 P '2. 2. P 'LS P 2 <ó r ~ \

~~j) ~~\\.\.~

~J) cdf,~ Benaming, ~j~ ~7JJJ type

t>\.L~f fu.~ f~p ~ ~

B~. Jc.JJ. gvl,- c..O(M ~~- cJea1J B~_ o1cv{) wa.i0-te verpompen + Di; \ u L..",,--:t-vf ....L-+ Oi ~So b~

medium +~~ -+ Wa..tVL -\-wo:ttA

Capaciteit in \·3'1 4 ,6 b C6 o -1-5 Cf o -s I t/d of kg/s~ \. g 1

Dichtheid g1- 0 3\5 131> ÛJ1t loo 0 kg/m 3 in

Zuig-/persdruk

1/1.5 . in bar(abs.~

~!) I

0

B~-) (g~- ) Cj~.r / c,S, r ~1,r Itf') 1- f~ s 19-t-;- ! 1 o~ temp. in C 10.;) in / uit I

I Vermogen in kW

O· \~~ theor./ prakt. 0·2 Speciaal te ge I

bruiken mat I

I

aantal

I 1 \ \ \ serie / parallel I

I

* aangeven wat bedoeld wordt

Page 65: Mek from n butene.pdf

~EE~~~~~~!!~~~_~~~~_E~~E~~~_~!~~~~~~_~~~E~~~~~~~~

Apparaat No: p ~q P 42- P ~ 5 P q~ ~ L\ C'j -

~ ~\v..'Jl . ~J ~J J~.J Benaming,

~J ~j type f7 pc.\.~p r~p (?u -(J H f~

te verpompen ~~.~ M(~ \1 Et:..

t---\ Et: rtE K medium + o.f.û!'

+ d1c.-~ ~ cJc~)

Capaciteit in \ 131 , ,LJQ2 I. \ 6 o·6Qr 6.g t/d of kg/s*'

Dichtheid 3\5 ~o~ ~a ~ ~oS- ~o<Ó kg/m 3 in

Zuig-/persdruk

in bar(abs.of

eff. *.)

temp. in °c qo (C(o So.)"{ 2a,~ 1-8(1-~ 7-2 (1~ ~~ I F~ in / uit

Vermogen in kW I

theor./ prakt. I

Speciaal te ge I

bruiken mat

aantal 1 \

, serie / parallel \ ,

I

I

* aangeven wat bedoeld wordt

Page 66: Mek from n butene.pdf

p So p'S1 P5b I

Apparaat No:

Benaming , ~~jJ ~ ~J ~7J type fUY>'\f ftAf ~

te verpompen B J- -cJc.o~ f5~ +Á.{J nE~ medium .J... t-\E~

Capaciteit in o· 15 \ , g \ \ a·66 t/d of kg/si(

Dichtheid SiS 30g ~oS-kg/m 3 in

ZUig- / persdruk

in bar(abs.of

eff.i()

temp. in °c loS f{Ö) ?-q t 1-Cf 1-9 {1-cr in / uit

Vermogen in kW

theor. / prakt.

Speciaal te ge

brui ken mat

aantal 1 serie / parallel \ \

* aangeven wat bedoeld wordt

66

Page 67: Mek from n butene.pdf

6 Cost estimation and economics

The equipment costs have been calculated, according to the

prices published by the Dutch Association for Chemical Engineers

[24] and are given in the following tabie:

table (6-1): Equipment Costs

Equipment Number

Compressor and 1

cooler 1

Heat Exchangers 18

Columns 7

Tanks and

separators 11

Pumps 17

Furnace 1

Reactor 1

Total 57

Costs (f)

~ 384,000

880,000

443,400

329,000

42,000

126,000

2,654,400

Page 68: Mek from n butene.pdf

The total capital investment has been calculated by using the

method of H. C. Bauman [23] and is given in the following tabie.

table (6-2): Total capital investment

Component Ratio

Purchased equipment 100

Equipment installation 47

Instrumentation 18

Piping 66

Electrical 11

Buildings 18

Yard improvements 10

Service facilities 70

Land 6

Total direct costs 346

Engineering and supervision 33

Construction expenses 41

Construction's fee 21

Contingency 42

Fixed-capital investment 483

Working capital 86

Total capital investment 569

68

Cost (f)

2,654,400

1,247,568

477,792

1,751,904

291,984

477,792

265,440

1,858,080

159,264

9,184,224

875,952

1,088,304

557,424

1,114,848

12,820,725

2,282,784

15,103,536

Page 69: Mek from n butene.pdf

table (6-3): Raw material costs

Material

n-Butene

Sulfurie acid

Sodium hydroxide

Total

Amount

(t/yr)

Cost

(f/t)

26,456.6 638

290.3 150

300.9 500

table (6-4): Selling prices

Material

MEK

Hydrogen

SBA

Total

Amount Price

(t/yr) (f /t)

33,721.9 1750*

933.2 1800

o 1550

Total cost

(f/yr)

16,879,311

75,996

,150,467

17,105,724

Total price

(f/yr)

59,013,325

1,679,616

o

60,692,941

*: Price obtained from Shell Nederland Chemie section Marketing.

A price of f 1750/ton was reported as normal although in

june 1988 prices increased to f 2100/ton and incidental

prices up to f 3300/ton where reported.

Page 70: Mek from n butene.pdf

table (6-5): Manufacturing costs

Component

A.Direct production costs

(60% of total product costs)

1.Raw materials

Ratio

60

(10-50% of p.c.) 33

2.0perating labor

(10-20% of p.c.) 10

3.Direct supervisory

(10-25% of operating labor) 1.5

4.Utilities

(10-20% of p. c.)

5.Maintenance and repairs

(2-10% of fixed capital)

6.0perating supplies

(0.5-1% of fixed capital)

7.Laboratory charges

(10-20% of operating labor)

8.Patents and royalities

(0-6% of p.c.)

B.Fixed charges

(10-20% of product costs)

C.Plant-overhead costs

(5-15% of p.c.)

10

1.5

0.2

1.5

2.3

15

8

Cost (f)

31,101,316

17,105,724

5,183,553

777,533

5,183,553

777,533

96,155

777,533

1,192,212

7,775,329

4,146,842

Page 71: Mek from n butene.pdf

D.General expenses

1.Administration

(2-5% of p.c.)

2.Distribution and sel1ing

(2-20% of p.c.)

3.Research and development

(5% of p.c.)

4.Financing

(0-7% of total capital)

Total

Income

Gross annual earning

17 8,812,039

3 1,555,066

8 4,146,842

5 2,591,776

1 518,355

100 51,835,527

60,692,941

8,857,414

Two statie methods, used for deciding if a n investment is

economical justified, are the pay-out time calculation and the

return on investment calculation.

The pay-out time (POT) is defined as the minimum required number

of years, necessary to repay the original investment. As is assumed

that the working capital is returned af ter ending the project, the

original investment only consists of the fixed capital investment:

POT = gE~§§_~~~~~l_~~E~!~K ___ _ fixed capital investment (28)

This assumption is not made when calculating the return on

investment (ROl). The ROl is defined as:

ROl = grQ~~_~~~~~l_~~r~!~g ______________________ * 100% fixed capital investment + working capital

(29)

For this project the POT is 1.45 years and the ROl is 58.6%.

The internal rate of return (IRR) is an example of adynamie

method. With this method the cash flows, inc1uding the investments,

over the entire life time of the project are converted to this very

day with a return fraction r. The sum of all converted cash flows

must be zero and this can be obtained by changing r.

7'

Page 72: Mek from n butene.pdf

For this project the 1ife time is fixed at 10 years and the rest

value RV of the equipment is fixed at 10% of the fixed capita1

investment F. Furthermore it is assumed that the gross annua1

earning E is constant over 10 years. The working capita1 W is

returned af ter 10 years. The converted cash flow over a period of

10 years is:

-F -W + E + E E + E+RV+W (30) Ï+r (Ï+r)Z + ... + (Ï+r)g (Ï+r)ïo

Solving this equation with:

F = 12,820,725

W = 2,282,784

E = 8,857,414

RV = 1,282,073

gives a va1ue for r of 0.58187 and a IRR of 58.2%.

72.

Page 73: Mek from n butene.pdf

REFERENCES.

1 Kirk-Othmer, "Encyclopedia of Chemical

Technology",vol.13,Wiley Intr.Ed. (1984)

2 G.A.Chernyshkava and D.V.Mushenko, J. Appl.

Chem. (USSR), 53(11), 1834 (1981)

3 Hydrocarbon Processing,48(11),204 (1969)

4 Kirk-Othmer, "Encyclopedia of Chemical Technology",

vo1.4,Wiley Intr.Ed. (1984)

5 C.B.Dale, C.M.Sliepcevich,and R.R.White,

Ind. and Eng. Chemistry, 48(5), 913 (1956)

6 Petroleum Refiner, 36(11), 264 (1957)

7 Petroleum Refiner, 38(11), 272 (1959)

8 Chemical Engineering, Feb. 8, 63 (1960)

9 H.S.Davis ,J. Am. Chem. Soc., 50, 2780 (1928)

10 H.S.Davis and R.Schuler,J. Am. Chem. Soc., 52, 721 (1930)

11 R.C.Weast,"Handbook of Chem. and Physics" ,

The Chem. Rubber Co. (1971-1972)

12 R.H.Perry and C.H.Chilton,"Chemical Engineerings Handbook",

McGraw-Hill Int. Book Co. (1974)

13 J.Racz, J.G.Wassink Hnd P.Dees, Chem. Eng. Tech.,

46(6), 261 (1974)

14 E.E.Ludwig, "Design for Chemical and Petrochemical plants",

vo1.2, Gulf Publishing Co., (1964)

15 I.Rodger, Chem.Eng.Progress, 11(2), 39 (1982)

16 G.M.Smith and E.Mantius, Chem.Eng.Progress, 17(9), 78 (1978)

17 H.J.Kolb and R.L.Burwell jr., J.Am.Chem.Soc., 67, 1084 (1945)

18 M.Chanda and A.Mukherjee, J.Appl.Chem.Biotechnol.,

28, 119 (1978)

19 D.D.Wagman and W.H.Evans, "Selected Values of Chemical

Thermodynamics Properties", National Bureau of

Standards, Washington (1968)

20 "WEBCI/WUBO prijzenboekje", Dutch Association of Cost

Engineers, Leidschendam (1986)

21 J.M.Coulson and J.F.Richardson,"Chemical Engineering",

vol.6, Pergamon Press (1983).

22 L.Ricci, "Separation Techniques 1: Liquid-Liquid Systems"

McGraw-Hill Publ. Co. ,New Vork (1980).

23 M.S.Peters and K.D.Timmerhaus, "Plant Design and Economics

--------- ---

Page 74: Mek from n butene.pdf

for Chemical Engineers", McGraw-Hill Publ. Co., N.Y. (1958)

24 Ullmanns, Encyklopädie der Technischen Chemie,

4, band 9 (1975)

25 Y.Yamamoto and T.Maruyama, Kagaku Kogaku, 23, 635 (1959)

26 I.N.Bushmakin, A.P.Begetova and K.I.Kuchinskaya,

27

28

29

30

31

32

Sintet.Kauchuk, 4, 8 (1936)

US pat.no. 2,829,165 (1958)

US pat. no. 2,436,970 (1948)

US pat.no. 2,835,706 (1958)

German pat. no. DT 2,347,097

German pat. no. DT 1,026,739

German pat. no. DT 1,913,311

(1973 )

(1958)

(1969 )

33 British pat.no. 663,376 (1949)

34 T.Magnussen, M.L.Michelson and A.Friedenslund,

IChE Symp.Series 56, Proc.Int.Symp.on Dist.,

London (1979)

35 L.M.Naphtali and D.P.Sandholm, AIChE Journal,

17(1), 148 (1971)

36 J.Gmehling, U.Onken and W.Arlt, Vapor-Liquid Equilibrium

Data Co11ection, vol.1 (suppl.1), Dechema (1981)

37 A.G.Montfoort, De Chemische Fabriek, deel IA: Flowsheet­

theorie en ontwerp, Collegediktaat TUD, Delft (1980)

38 A.G.Montfoort, De Chemische Fabriek, deel 11: Economische

aspecten en cost-engineering, Collegediktaat TUD,

Delft (1980)

39 F.J.Zuiderweg, Fysische Scheidingsmethoden, Collegediktaat

TUD, Delft (1980)

40 concept diktaat Apparaten voor de Procesindustrie deel 4:

apparaten voor warmteoverdracht, Collegediktaat TUD,

Delft (1980)

41 W.L.Nelson, "Petroleum Refinery Engineering",

fourth edition, McGraw-Hill Publ. Co., N.Y. (1958)

7'1

Page 75: Mek from n butene.pdf

Appendix

A-I Chemical and physical properties

table (1): Antoine constants

In (p) = p in mm Hg and t

Component A B c

n-butene 15.785 2299.6 -22.77

15.737 2932.1 -52.55

SBA 17.210 3026.0 -86.66

DiiB 18.585 3984.9 -39.73

MEK 16.264 2904.3 -51.19

in K.

:temp. range

°C

: -73 +27

+1 - +100

:+25 - +120

-2 - +127

: +20 - +120

Page 76: Mek from n butene.pdf

Tab1e(2): Chemica1 and physica1 properties

Methyl Ethyl Ketone

-Molecular weight

-Boiling point at 1 atm.

-Freezing point

-Refractive index,

-Density at 20°C

-Surface tension at 20 0 e

-Specific heat of vapor at 137°e

-Specific heat of 1iquid at 20°C

-Heat of combustion at 25°C and

constant pressure

-Heat of formation at constant

pressure

-Latent heat of vaporization at

79.6°C and I atm.

-Critical temperature

-Critical pressure

-Viscosity at 20°C

-Flash point

-Solubility in water at 20°C

-Electrical conductivity at 20°C

Secondary Butyl Alcohol

-Molecular weight

-Boiling point at 1 atm.

-Freezing point'

-Refractive index,

-Density at 15°C

-Specific heat of vapor at 137°C

-Specific heat of 1iquid at 20°C

-Heat of formation at constant

pressure

-Latent heat of vaporization at

99.5°C and 1 atm.

72.10

79.57

-85.90

1. 378

804.5

24.6

1732

2084

2435

-279.5

32.8

260

4299

0.416

-1

27.5

2*10"

74.10

99.5

-114.7

1.39446

810.9

2730

-268.1

41. 687

°c

°c

kg/m 3

mN/m

J/kg. oe

J /kg. oe

kJ/mole

kJ/mole

kJ/mole

°c

kPa

mPa.s

°c

wt-%

pS/m

°c oe

kg/m 3

J/kg. oe

J/kg. oe

kJ/mole

kJ/mole

Page 77: Mek from n butene.pdf

-Critical temperature 265 °c -Critical pressure 4850 kPa -Viscosity at 15°C 42.10 mPa.s -Flash point 24.4 °c -Solubi1ity in water at 30°C 18 wt-%

71

Page 78: Mek from n butene.pdf

n-Butene (2 % l-butene. 89 % trans-2-butene.

9 % cis-2-butene)

-Molecular weight

-Boiling point at 1 atm

-Freezing point -25 -Refractive index, nD

-Density of liquid at 25°C

-Density of gas at OoC and 1 atm

-Surface tension at 20°C

-Specific heat of vapor at 25°C

-Heat of combustion at 25°C and

constant pressure

-Heat of formation at constant

pressure

-Latent heat of vaporization at

lOC and 1 atm.

-Critical temperature

-Critical pressure

Sulfuric acid

-Molecular weight

-Boiling point at 1 atm

-Melting point

-Density of liquid at 25°C

-Surface tension at 20°C

-Specific heat of liquid at 20°C

-Heat of formation at constant

pressure

-Critical temperature

-Critical pressure

56.11

0.99

-110.1

1.3868

602.09

2.591

0.01356

1550

647.1

-9.443

21. 60

155.9

4147

98.08

338

3.0

1.841

50

1443

-811.2

655

8208

°c

°c

kg/m 3

kg/m 3

mN/m

J /kg. °c

kJ/mole

kJ/mole

kJ/mole

°c

kPa

°c

°c

kg/m 3

mN/m

J/kg.oC

kJ/mole

°c

kPa

Page 79: Mek from n butene.pdf

A-2 Stream data compressor Cl

VERSION 0484 ***********:::

SM PROCESS INPUT LISIING - PAGE 1

GENERAL DATA TITLE USER=A\ AND R ,PROBlEM=CCMP,PROJECl=FABONI,DAIE=FEB87 DIMENSION SI,TEMP=C,PRESS=BAR PRINT \.lTO fIletl

COMPONENT DAIA LIBID 1,BUI1/2,BTC2/3,BTT2

THERMODYNAMIC DATA TYPE SYSTEM=SRK

STREAH DATA PROPERTY STRM=1,TEMP=25,PRESS=1.0,PHASE=V,*

COMP (M)=1,2.0/2,9.0/3,89.0,NOCHECK,RAIE(M)=66.7 UNIT OPERATICt\S

COMPRESSOR UID=Cl,NAME=BUT-CO~PRESSOR,KPRINT FEED 1 PRODUCT L=2 OPER PIN=1.O,POUT=3.2~,PCLY=76,TESl=40 COOLER DP=Q.25,TOUl=25

Page 80: Mek from n butene.pdf

VERSION C484 SIMULAIION SCIENCES, INC. PROJECT FAEONI PROBLEt1 Cm1P

SM PRCCESS

SCLUTION

PAGE 7 A. Ar~D R FEB87

SUMMARY OF COMPRESSOR/EXPANDER/PUMP/IURBINC UNIIS

1 UNIT Cl , BUI-COHPHESS, IS A CCMPRESSCR *** FEED STREAHS ARE 1 *** LICUID PRODUCT IS SIREAM 2

*** OEERAIING CONDITICNS

TEHPERAIURE, DEG C PRESSURE, BAR ENTHALPY, MM KJ . /HR ENTROPY, KJ j~OLE DEG C MOLE PERCENT LIQUID ADIABAIIC EFFICIENCY, PERCENT POLYTRCPIC EFFICIENCY, PERCENT ISENTROPIC COEFFICIENT, K POLYTROPIC COEFFICIENI, N HEAD,M

ADIABATIC PGLYT:lOPIC ACTUAL

'WORK, KW THECRETICAL POLYTROPIC ACTUAL

COHPONEt\TS

INLET

25.00 1.0000 2.6381

216.3610 0.0000

ISENTRC!?IC

60.82 3.2500 2.8359

216.3510 0.0000

- CC~PCNE~T KVALUES -1 THRU 3 2.6640E+00 2.1374E+00 2.2247E+00

AFTERCCCLER DUTY, MM KJ /HR TEHPERATURE, DEG C PRESSURE, EAR

1 THRU 3 9.9483E-01 7.3218E-01 7.7219E-01

90

OUlLE!

71.01 3.2500 2.9035

219.3471 0.0000

74.56 76.00

1.1121 1.1529

5391.95 5496.42 7232.14

54.98 56.04 73.74

1.7624 25.00

3.0000

Page 81: Mek from n butene.pdf

VERSION C484 SIMUlAIICN SCIENCES, INC. PROJECI F tWONl PROBlEM Cm·1P

SM PROCESS

SOLUTION

SIREAr1 SUMMARY

STREAM ID. NAtiE PHASE

FROM Ul\IT/TRAY TO UNIT/TRAY

FROM SlREM1

KG MOlS/HR TEMPERAlURE, rEG C PRESSURE, BAR H, MM KJ /HR

M KJ /KG MOlE KJ IKG

MOlE FRACT LIÇUID

M KGS/HR MOLECULAR ~EI(HT

STD lIQ M3/HR

UOP K

DEG API SP GR KGS/M3

REDUCED TEMP REDUCED PRESS ACENTRIC FACTOR **VAPCRl)*

M KGS/HR MOLECULAR ~EIGHT STn LIQ M3/HR SID ~ M3/HR ACTUAL H M3/HR

KGS/fo! M3 z CP,KJ IKG MOL C

**LIQUID** M KGS/HR MOLECULAR ~EIGHI SID lIQ r13/HR ACTUAI GPB

Z

~13/HR ~GS/~3

CP,KJ IKG MOL C

1

VAPOR Ol 0 1/ 0

66.700 25.000 1.000 2.638

39.551 104.913 0.00000

3.742 56.108

6.134 99.965 0.6113

610.0669 12.926

0.695 0.025 0.217

3.742 56.108

6.134 1.495 1.610

2323.841 0.97403

8.9201E+01

0.000 0.000 0.000

0.0000 0.000 0.000

0.00000 O.OOOOE+OO

2

LIQUID 11 0 Ol 0

66.700 25.000

3.000 --1.141

17.107 304.893 1.00000

3.742 56.108 6.134

99.965 0.6113

610.0669 12.926

0.695 0.075 0.217

0.000 0.000 0.000 0.000 0.000 0.000

0.00000 C.COOOE+OO

3.742 56.108 6.134

30.4500 6.916

541.125 0.01255

1.3545E+02

PAGE 10 A. AND F .. FEB87

r;

Page 82: Mek from n butene.pdf

A-3 Stream data SBA stripper T14

N 0484 SH SIHULATION SCIENCES, INC. PROCESS PAGL 12 PROJECT FAI30NT A AND H PROBLEM ACID SOLUTION Jl\N87

STREAtl COl1PONENT FLOU RAIES - KG 11OLS/HH

STRSAM ID 1 2 J q NArE

PHASE LIQUID 'JAPOR '/APOR LIQUIU

1 WATER 827.6753 164.0000 99.7643 891.9106 2 SBUOH 65.4740 0.0000 65.'1085 0.0655 3 SULFURIC 65.4740 0.0000 0.0000 65.4740

IOTALS 958.6230 164.0000 165.1728 957.4500 IEHPERATU~E, ~EG C 51.4'.)00 190.0000 9:.0728 101.5943 PRESSURE, BAR 1. 0000 3.0000 1.0000 1.0uOO H, MM KJ /HR 4.3971 8.2191 0.9086 7.7576 HOLE FRACT LIQUID 1.0000 0.0000 :J. 0000 1.0000 RECYCLE CONVERGENCE 0.0000 0.0000 0.0000 0.0000

Page 83: Mek from n butene.pdf

A-4 Data azeotropic distillation unit

SYSTEM H20-SBA-DiiB at 760 mm Hg

NUMBER OF COMPONENTS 3

COMPONENTS 1 H20 2 SBA 3 DiiB

ACTIVITY COEFFICIENT: O=NONE, 4=UNIQUAC 4

UNIQUAC BINARY 0.000

-73.656 331.969

INTERACTION 259.551

0.000 105.468

PARAMETERS 779.367 259.935

0.000

UNIQUAC SURFACE AND VOLUME PARAMETERS 5.616 3.924 0.920 4.920 3.664 1.400

ANTOINE COEFFICIENTS 15.737 2932.149 17.210 3026.030 18.585 3984.922

8s

-52.545 -86.660 -39.734

Page 84: Mek from n butene.pdf

NUMBER OF STAGES 16

NUMBER OF FEEDS 2

THE STAGE ~T WHICH FEED 1 IS INTRODUCED 8

THE VAPOR FRACTION OF FEED 1 0.000000000000000

COMPONENT FLOW RATES IN FEED 1 26.920000000000000 18.170000000000000

THE STAGE AT WHICH FEED 2 IS INTRODUCED 12

THE VAPOR FRACTION OF FEED 2 0.000000000000000

COMPONENT FLOW RATES IN FEED 2 4.660000000000000 12.990000000000000

CONDENSER ( YIN)? Y

THE DISTILLATE RATE 77.120000000000000

THE REFLUX RATIO 4.200000000000000

NUMBER OF LIQUID SIDE STREAMS o

NUMBER OF VAPOR SIDE STREAMS o

THE PRESSURE 760.000000000000000

ESTIMATE THE TOP AND BOTTOM STAGE TEMPERATURES IN DEGREES CELSIUS

77.000000000000000 99.000000000000000

THE MAXIMUM CHANGE IN TEMPERATURE BETWEEN ITERATIONS ( DEGREES CELSIUS) - OFTEN 10

2.000000000000000

THE MAXIMUM FRACTIONAL CHANGE IN FLOW RATES BETWEEN ITERATIONS - OFTEN 0.5

0.100000000000000

0.0000000000000

31.5700000000000

Page 85: Mek from n butene.pdf

EQUILIBRIUM STAGE DISTILLATION SIMULATION

COMPONENTS:

1:H20 2:SBA 3:DiiB

NUMBER OF STAGES 16 DISTIl,LATE RATE 77.120 RE FLUX RATIO 4.200 TOTA1 PRESSURE 760.000

STREAM FLOW RATE TeC) COMPONENT FLOWS

BOTTOMS 17.19 99.6 0.0000 17.1896 0.0004 DISTILLATE 77.12 73.7 31.5800 13.9704 31.5696

STAGE T(C) LIQUID FLOW COMPONENT FLOWS

1 99.60 17.19 0.000 17.190 0.000 2 99.60 418.21 0.002 418.175 0.037 3 99.58 418.21 0.009 418.070 0.134 4 99.51 418.21 0.037 417.687 0.490 5 99.25 418.21 0.147 416.288 1.779 6 98.37 418.21 0.580 411.242 6.392 7 95.60 418.21 2.269 393.887 22.059 8 89.25 418.21 8.611 342.718 66.886 9 84.85 373.12 4.443 222.825 145.856

10 84.26 373.12 1.900 153.336 217.888 11 84.24 373.12 1. 488 138.482 233.154 12 83.95 373.12 1. 759 138.637 232.728 13 83.94 323.90 1. 633 123.504 198.767 14 83.89 323.90 1.674 123.294 198.936 15 82.91 323.90 2.525 122.902 198.477 16 73.66 323.90 17.144 115.989 190.771

FLOW CONFIGURATION

I FL FV SL SV FKV FEEDSTREAMS

1 17.2 401.0 0.0 0.0 0.0 0.0 0.0 0.0 2 418.2 401.0 0.0 0.0 0.0 0.0 0.0 0.0 3 418.2 401. 0 0.0 0.0 0.0 0.0 0.0 0.0 4 418.2 401.0 0.0 0.0 0.0 0.0 0.0 0.0 5 418.2 401.0 0.0 0.0 0.0 0.0 0.0 0.0 6 418.2 401.0 0.0 0.0 0.0 0.0 0.0 0.0 7 418.2 401.0 0.0 0.0 0.0 0.0 0.0 0.0 8 418.2 401.0 0.0 0.0 0.0 26.9 18.2 0.0 9 373.1 401.0 0.0 0.0 0.0 0.0 0.0 0.0

10 373.1 401.0 0.0 0.0 0.0 0.0 0.0 0.0 11 373.1 401.0 0.0 0.0 0.0 0.0 0.0 0.0 12 373.1 401.0 0.0 0.0 0.0 4.7 13.0 31.6 13 323.9 401.0 0.0 0.0 0.0 0.0 0.0 0.0 14 323.9 401.0 0.0 0.0 0.0 0.0 0.0 0.0 15 323.9 401.0 0.0 0.0 0.0 0.0 0.0 0.0 16 323.9 77.1 0.0 0.0 0.0 0.0 0.0 0.0

85

Page 86: Mek from n butene.pdf

* * * * * * * * * * * * * * * * * * * * K-FACTOR PROFILE IN COLUMN 72.'3

1 4.141 1.000 3.805 ') 4.141 1.000 3.804 .:...

3 4.140 0.999 3.801 4 4.136 0.996 3.789 5 4.123 0.987 3.746 6 4.079 0.955 3.599 ,.,

3.958 0.862 3.162 , 8 3.798 0.681 2.274 9 6.035 0.644 1.390

10 13.911 0.846 0.996 11 17.937 0.938 0.929 12 17.568 0.923 0.921 13 16.444 0.898 0.937 14 16.457 0.897 0.934 15 15.588 0.854 0.905 16 7.737 0.506 0.695

Page 87: Mek from n butene.pdf

NUMBER OF STAGES 12

NUMBER OF FEEDS 1

THE STAGE AT WHICH FEED 1 IS INTRODUCED 6

THE VAPOR FRACTION OF FEED 1 0.000000000000000

COMPONENT FLOW RATES IN FEED 1 28.250000000000000 0 . 880000000000000

CONDENSER ( YI N)? Y

THE DISTILLATE RATE 3.840000000000000

THE RE FLUX RATIO 4.200000000000000

NUMBER OF LIQUID SIDE STREAMS o

NUMBER OF VAPOR SIDE STREAMS o

THE PRESSURE 760.000000000000000

ESTIMATE THE TOP AND BOTTOM STAGE TEMPERATURES I N DEGREES CELSIUS

73.660000000000000 99.600000000000000

THE MAXIMUM CHANGE IN TEMPERATURE BETWEEN ITERATIONS ( DEGREES CELSIUS ) - OFTEN 10

2.000000000000000

TH E MAXIMUM FRACTIONAL CHANGE IN FLOW RATES BETWEEN ITERATIONS - OFTEN 0.5

0.100000000000000

1.4700000000000

Page 88: Mek from n butene.pdf

EQUILIBHIUM STAGE DISTILLATION SIMULATION

COMPONENTS:

1:H20 2:SBA 3:DiiB

NUMBEH OF STAGES 12 DISTILLATF. HATE 3.840 HEFLlJX HATIO 4.200 TOTAL PHESSUHE 760.000

STHEAM FLOW HATE T (G) COMPONENT FLOWS

BOTTOMS 26.76 101.5 26.7579 0.0021 0.0000 DISTILLATE 3.84 77.2 1.4921 0.8779 1.4700

STAGE T(C ) LIQUID FLOW COMPONENT FLOWS

1 101.46 26.76 26.758 0.002 0.000 2 101.43 46.73 46.717 0.011 0.000 3 101.35 46.73 46.697 0.031 0.000 4 101. J5 46.73 46.646 0.082 0.000 5 100.54 46.73 46.514 0.208 0.006 6 97.10 46.73 46.117 0.508 0.103 M 96.96 16.13 15.901 0.191 0.036 , 8 96.22 16.13 15.813 0.277 0.038 9 93.24 16.13 15.361 0.720 0.047

10 87.84 16.13 13.557 2.475 0.096 11 84.42 16.13 10.326 5.467 0.335 12 77.19 16.13 8.332 6.187 1.609

FLOW CONFIGUHATION

I FL FV SL SV FKV FEEDSTHEAMS

1 26.8 20.0 0.0 0.0 0.0 0.0 0.0 0.0 2 46.7 20.0 O. 0 0.0 0.0 0.0 0.0 0.0 3 46.7 20.0 0.0 0.0 0.0 0.0 0.0 0.0 4 46.7 20.0 0.0 0.0 0.0 0.0 0.0 0.0 5 46.7 20.0 0.0 0.0 0.0 0.0 0.0 0.0 6 46.7 20.0 0.0 0.0 0.0 28.3 0.9 1.5 7 16.1 20.0 0.0 0.0 0.0 0.0 0.0 0.0 8 16.1 20.0 0.0 0.0 0.0 0.0 0.0 0.0 9 16.1 20.0 0.0 0.0 0.0 0.0 0.0 0.0

la 16.1 20.0 0.0 0.0 0.0 0.0 0.0 0.0 11 16. 1 20.0 0.0 0.0 0.0 0.0 0.0 0.0 12 16.1 3.8 0.0 0.0 0.0 0.0 0.0 0.0

Page 89: Mek from n butene.pdf

* * * * * * * * * * * * * * * * * * * * K-FACTOR PROFILE IN COLUMN T'2...J

1 1.000 5.986 40.837 2 0.999 5.976 40.778 3 0.997 5.951 40.627 4 0.991 5.888 40.238 5 0.974 5.705 39.128 6 0.883 4.923 34.341 7 0.879 4.880 34.069 8 0.861 4.658 32.659 9 0.791 3.761 26.850

10 0.704 2.071 15.221 11 0.768 1.044 7.431 12 0.752 0.596 3.837

Page 90: Mek from n butene.pdf

A-5 Program listing and output for

MEK convers ion reactor

Page 91: Mek from n butene.pdf

----------------------------------------Listing of MEK . PAS, page 1 at U1:~3pm U~/l1/~4

1: proeram MEK_conversion; 2: 3: const 4: MS 74.123;

= ?2.10?; = 2.016;

= 8.3144; = 0.32;

5: MM 6: MH 7: R 8: E 9:

10: Var 1 1 : 12: 13 : 14: 15: 16: 17: 18 : 19: 20: 21 :

T,Dk,Dp,Ks,Km,Kh,Kp,KO,W,dW, Xs,Xm,Xh, F,FO,Fs,Fm,Fh,FsO, P,PO,Ps,Pm,Ph, Ue,Conv,Rho,Ra,TubeLength, TubeDia,Tau,G,H,S,Gr i,j,N PrinterEcho Choice

22: Procedure Initialisation; 23: Beein 24: T:=273.16+310; 25: H:=53429.0+3*T; 26 : 5 : = 1 1 . 54 + 6 . 908':\- In ( T) I In ( 1 0) ; 27: G:=H-T*S; 28: Ok:=0.0005; 29: Ks:=5.25e-14*exp( 15.74e3/T); 30: Km:=0.226*exp(0.87e3/T); 31: Kh:=5.25e-14*exp( 15.74e3/T); 32: Kp:=-2790/T+1.510*ln( T) I1n( 10) +1.865; 33: Kp:=exp(ln(10)i~Kp);

34: KO:=1.3/3.6; {mol/kg . s.atm} 35: W:=TubeLength*pi/4*sqr(TubeDia)*718.8; 36: dW:=W/N; 37: End j 38: 39: Procedure Input; 40: Beein

Real; Integer; Boolean; Char;

41: TubeLength:=0.85;FO:=0 . 71;PO:=2.4;Xs:=0.998; 42: Xm:=0.002;N:=1000;TubeDia:=0.10j 43: ClrScr; 44: GotoXYC5,4) ;WriteC 'Tube diameter (m) ') ;ReadCTubeDia); 45: GotoXYC5,5);WriteC'Tube length Cm) ');Read(TubeLength); 46: GotoXY(5,6) ;WriteC 'Initial flow (molis) ') ;Read(FO); 47: GotoXYC5,7) ;Write( 'Initial pressure Catm)') ;ReadCPO); 48: GotoXYC5,8) ;Write( 'Molf'raction SBA ') ;ReadCXs); 49: GotoXYC5,9) ;WriteC 'Molf'raction MEK ') ;ReadCXm); 50: GotoXY(5,10);Write('# steps ');ReadCN); 51: GotoXY(5, 11) ;Write( 'Printout? C YIN)'); 52: Repeat read(kbd,Choice) Until UpcaseCChoice) in ['Y', 'N']; 53: If' Upcase(Choice)='Y' then PrinterEcho:=True else PrinterEcho:=False; 54: P:=PO; 55: F:=FO; 56: FsO:=FO*Xs; 57: Ps:=Xs*P; 58: Pm:=Xm*P; 59: Xh:=O; 60 : Ph:=O; 61: Fs:=Xs*F; 62: Fm:=Xm*F; 63: Fh:=O; 64: If PrinterEcho Then 65: Begin 66: Writeln(lst);

Page 92: Mek from n butene.pdf

67: 68: 69: 70: 71 : 72: ?3: 74: ?S: 76: 77: 78: 79: 80: 81 : 82: 83: 84: 85: 86: 87: 88: 89: 90: 91 : 92: 93: 94: 9S: 96: 97: 98: 99:

100: 101 : 102: 103: 104: 10S: 106: 107: 108: 109: '10 : 111 : 1 12 : 1 13: , 14 : 11S: 1 16 : 117: 118 : 119: 120: 121 : 122: 123: 124: 12S: 126: 127: 128 :

- -- _._---_. ------------

Listing of MEK.PAS, page 2 at 01:33pm 07/11/84

Writeln( lst, ' Writeln( lst, ' Writeln( lst, , Writeln( lst,' Writeln( lst, , Writeln( lst, '

End; End;

Procedure Output; Begin

ClrScr;

Tube diameter Tube length Initial flow Initial pressure Molfraction SBA # steps

" TubeOia:7:4,' m'); ',TubeLength:7:4,' m'); ',FO:7:4,' mol/s'); ',PO:7:4,' atm'); ',Xs:7:4); , ,N:7);

GotoXY(S,4);Write(j,' pressure = ',P:7:4,' atm'); GotoXY(5,S);WriteC' convers ion ',CFO-Fs)/FO:7:4); GotoXY(S,6) ;WriteC' rho = ',Rho:7:4,' kg/m3'); GotoXY(S,7) ;Write(' flow ' ,F:7:4,' mol/s'); GotoXY(S,8) ;WriteC 'reaction enthalpy = ',Gr/1000:7:4,' kW'); GotoXY(S,9) ;WriteC' x(SBA) = ',Xs:7:4); GotoXY(S,10);Write(' x(MEK) = ',Xm:7:4); GotoXY(5,11);Write(' xCH2) = ',Xh:7:4); GotoXY(S,20) ;WriteC' Press key to continue '); If Not PrinterEcho then repeat until keypressed; GotoXY(S,20) ;WriteC' '); If PrinterEcho Then Begin Writeln( lst); Writeln( lst,' Write(lst,' Writeln( lst,' Write(lst,' Writeln( lst, ' WriteCIst,' WritelnC lst, ' WritelnC lst, , End;

j*(N div S):4,': pressure = ',P:7:4, conversion = ',Fh/FsO:7:4);

x(SBA) = ' ,Xs:7:4); rho = ' ,Rho:7:4,' kg/m3');

x(MEK) = ',Xm:7:4); flow = ' ,F:7:4,' mol/s');

x(H2) = ',Xh:7:4); reaction enthalpy = ' ,Gr/1000:7:4,' kW');

End;

Procedure Kinetics; Begin

Ra:=KO*(Ps-(Pm*Ph/Kp))/( 1+Ks*Pm+Km*Pm*Kh*Ph); Conv:=dW*Ra;

End;

Procedure GasOensitYi {kg/m3} Begin

P: =P-:l-1 0 132S . 0; Rho:=P/R/T*CXs*Ms+Xm*Mm+Xh*Mh)/1000; P:=P/10132S.0;

End;

Procedure GasVelocity; {superficial} Begin

Ug:=F/(pi/4i~sqrCTubeOia))*(Xs*Ms+Xm*Mm+Xh*Mh)/Rho/1000;

End;

Procedure PressureOrop; Begin

GasOensity; GasVelocity; Op:=1.7S*( 1-E)/(E*E*E)*Rho*sqr(Ug)*TubeLength/N/Ok/10132S.0;

End;

129: Begin 130: Input; 131: Initialisation; 132: Clr5cr;

Page 93: Mek from n butene.pdf

133: 134: 135: 136: 13?: 138: 139: 140: 141 : 142: 143: 144: 145: 146: 14?: 148: 149: 150: 151 : 152:

Listin2 of MEK.PAS, pa2e 3 at 01:33pm 0?/11/84

For j:=1 to 5 do Begin

For i:=1 to (N div 5) do Begin

GasDensity; GasVelocity; Tau:=TubeLength/N/Ug; Kinetics; Fs:=Fs-Conv;Fm:=Fm+Conv;Fh:=Fh+Conv; F:=Fs+Fh+Fm; Gr:=G*Fh; Xs:=Fs/F;Xm:=Fm/F;Xh:=Fh/F; Xs:=Fs/F;Xm:=Fm/F;Xm:=Fm/F; PressureDrop; P:=P-dP; Ps:=P*Xs;Ph:=P*Xh;Pm:=P*Xm;

End; Output;

End; End.

Page 94: Mek from n butene.pdf

Tube diameter O. 1000 m Tube length 0.8500 m Initial flow 0.?100 mol/s Initial pressure 2.4000 atm Molfraction S8A 0.9980 # steps 1000

200: pressure 2.2419 atm conversion 0.5613 x(5BA) = 0.28o?

rho = 2.226? kg/m3 x(MEK) = 0.3603 flow 1 . 1o?? mol/s x( H2) 0.3590

reaction enthalpy = 14.83?0 kW

400: pressure 2.0294 atm conversion = 0 . ?456 x(SBA) = O. 1456

rho 1 .8034 kg/m3 x( MEK) = 0 . 42?8 flow = 1.2383 mol/s x( H2) 0.4266

reaction enthalpy = 19.?086 kW

600: pressure = 1 . ??26 atm conversion = 0 . 8310 x( S8A) 0 . 0922

rho = 1 . 5021 kg/m3 x( MEK) = 0.4544 flow = 1 .2988 mol/s x( H2) = 0 . 4533

reaction enthalpy 21.9661 kW

800 : pressure = 1 . 4602 atm conversion = 0 . 8?62 x( S8A) 0.0659

rho 1 . 2080 kg/m3 x( MEK) 0.46?6 flow = 1 .3308 mol/s x( H2) 0.4665

reaction enthalpy = 23.1615 kW

1000: pressure = 1 .0505 atm conversion = 0.9020 x(S8A) = 0.0515

rho 0.8583 kg/m3 x(MEK) 0.4?48 flow 1 . 3491 mol/s x( H2) = 0 . 4?3?

reaction enthalpy = 23 . 8442 kW

34

Page 95: Mek from n butene.pdf

Tube diameter O. '000 m Tube length 0.8500 m Initial flow 1 .4200 mol/s Initial pressure 4.4000 atm Molfraction BBA 0 . 9980 # steps 1000

200: pressure = 4.0596 atm conversion = 0.5209 xC BBA) = 0.3146

rho = 4.1394 Iq~/m3 xC MEK) = 0.3434 flow = 2. 1582 mol/s xC H2) = 0.3420

reaction enthalpy = 27.5389 kW

400: pressure = 3 . 5986 atm conversion = 0.6965 xC BBA) = 0.1787

rho = 3.2905 kg/m3 xC MEK) = 0.4113 flow = 2.4071 mol/s xC H2) = 0.4101

reaction enthalpy 36.8259 kW

600: pressure 3.0254 atm conversion = 0 . 7816 xC BBA) = 0.1224

rho 2 . 6354 kg/m3 xC MEK) = 0.4393 flow 2.5277 mol/s xC H2) 0 . 4382

reaction enthalpy 41 .3232 kW

800: pressure 2.2844 atm conversien = 0.8289 xC BBA) 0.0935

rho = 1 .9401 kg/m3 x C MEK) 0 . 4538 flow 2.5947 mol/s x( H2) = 0.4527

reaction enthalpy = 43 . 8227 kW

1000: pressure = 1 .0998 atm conversion = 0.8556 x( BBA) = 0.07?8

rhe = 0.9265 kg/m3 x( MEK) = 0.4617 flow = 2.6325 mol/s x( H2) = 0.4606

reaction enthalpy = 45.2333 kW

Page 96: Mek from n butene.pdf

A-6 Stream data MEK purification column T43

VERSION 0484

SM PROCESS INPUT LISTING - PAGe 1

GENERAL DATA TIlLE USER=]\ AND R' , PROBLEM=MEK PURIF. ,PROJECT=FVO, DATE=E'ED87 DIMENSION SI,TEMP=C,PRESS=BAR P RINl WTO PTION

COMPOriENl DATA LIBID 1,MEK/2,SBUOH/3,~ATER

THERHODYNAMIC DATA TYPE SYSTEH=SRK

SlREAM DATA PROPERTY STRM=FD,PRESS=1.0,PHASE=L,* COMP(M)=1,89.46/2,10.04/3,O.SO,NOCHECK,RATE(M)=72.07

UNIl OPERATIONS COLUMN UID=ACOL,KPRINT

PARAMETER TRAY=20,FAST=5,SURE=30,DKDX FEED FD,7 PRODUCT OVHD=ATOP,65,BTMS=ABOT,7.8 HEATER 1,20,4/2,1,-3 CONDENSER TYPE=3,PRESSURE=1.0 PSPEC TOP=1.01,DP=O.01 SPEC STRM=ATOP,COMP=1,1,FRACIION(Y) =0.99 VARIA3LE HEAT=1 PRIrJT TRAY=20 PLOT PROFIL~,XCOMP=1/2/3,YCOHP=1/2/3 ESTIMATE TTEMP=7S.0,CTEMP=7S.0,BTEMP=100,RTEMP=100

Page 97: Mek from n butene.pdf

VERSION 0404 P~GE 8 SIMULATION SCIENCES, INC.

PROJECT FVO

SM PROCESS

UNIT 1 - ACOl SOlUTION

A, AND H PROBLEM MSK PURIF. FE.JJ7

I SUHMARY FOR COLUMN

1 TOT Al Nut1BER OF ITERATIONS FAST METHOD SURE !1ETHOD

2 cOlurm SUMMARY

UNIT 1 - ACOL"

o 7

TRAY TEMP PRESSURE NET FLO~ RATES, KG MOLS/Ha HEAT (COOL) ER LIQUID VAPOR DUTIES

DEG C BAR PHASE(L) PHASE(V} FEED PRODUCT MM KJ /HH

1. 2 3 4 5 6 7 8 9

10 11 12 13 14 15 1.6 11 18 19 20

18.3 79.5 80.1 80.6 81.1 81.7 82.3 82.7 83.0 83.3 83.6 83.9 84.2 84.5 84.8 85.1 85.4 85.8 66.5 81.7

1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.1.1 1.18 1.19

59.7 59.7 59.5 59.3 59.1 58.9 ) /

131.7 . 1.31.8 131.9 132.1 132.2 132.3 132.4 132.5 132.5 132.5 132.5 132~3 131.8

3 FEED Arm PRCDUCT STREAMS * FEED STREAMS:

FD TO TRAY 7 IS LIQUID * PRODUCT STREAMS:

92.1 92.1 92.0 91.8 91.6 91.3 92.1 92.2 92.3 92.5 92.6 92.7 92.8 92.8 92.9 92.9 92.9 92.7 92.2

ABOT IS lIQUID STREAM FROM TRAY 20 ATOP IS lIQUID STREAM FROM TRAY 1

32.5L

72.1L

39.6L

MASS RATES KG MOlS/HR

0.72070E+02

0.39603E+02 0.32467E+02

O.OOOOOE+OO

-3.0000

3.0331

HEAT RAIES MM KJ /Hf<

0.91590E+00

o .58 0 7 9E +00 0.37439E+00

OVERALL HASS BAlANCE, (FEEDS - PRCDS) OVERALL HEAT BALANCE" (HIN - HOUT) -0.62237E-02

4 SPECIFICATION VAlUES

PARA!1ETER TRAY COMP. SPECIFICATION TYPE NO NO TYPE

STRM ATOP 1 1 \J.F •

:17

SPECIFIED VALUE

0.9900E+00

CALCULATED VALUE

0.9896E+00

Page 98: Mek from n butene.pdf

VERSION 0404 SM SIMULATION SCIENCES. INC. PROCESS PA GI:: 9 PROJECT FVO UNIT 1 - ACOL A. ANC R. PROBLEN MeK PURIF. SOLUTION FEB67

IIA TRAY COMPOSITIONS

TRAY -------- 1 -------- -------- 2 --------COMPONENT X Y X Y 1 MEK 0.98l5E+OO O.9615E+OO o .9626E+00 o .9611E+00 2 SBUOH 0.7347E-02 O.7347E-02 0.l466E-Ol 0.7344E-02 3 YATER 0.11l0E-Ol o .1110E-Ol 0.2763E-02 O.lllOE-Ol

KG t10LS/HR O.5967E+02 0.3247E+02 o .5966E+02 O.9213E+02

TRAY -------- 3 ------- -------- 4 -------COMPOHENT X Y X y . 1 MEK 0.9747E+00 O.9617E+OO 0.9636E+00 O. 9766E +00 2 SBUOB 0.2367E-OI O.1209E-Ol O.3S25E-Ol O.1603E-01 3 \.lATER o .1412E-02 O.5699E-Q2 o .l19SE-02 O.4629E-02

KG HOLS/HR O.59S0E+02 0.92l2E+02 0.5930E+02 0.9l97E+02

TRAY -------- 5 ------- -------- 6 --------COHPONENT X Y X Y 1 MEK 0.9497E+00 0.9696E+OO O.9333E+00 0.9606E+00 2 SBUOH O.4909E-Ol O.2S37E-Ol 0.6SS8E-Ol O.3429E-Ol 3 WATER o .ll60E-02 0.4697E-02 o .llSSE-02 O. 4663E -02

KG HOLS/HR O.S909E+02 0.9l77E+02 o .5666E+02 O. 9lS5E +02

TRAY -------- 7 -------- -------- e -------COMPONENT X Y X Y 1 HEK 0.9l4IE+OO O.9504E+OO 0.9148E+OO O.9531E+OO 2 SBUOH O.647lE-Ol 0.4469E-Ol 0.6460E-01 O.4Sl6E-01 3 WATER 0.ll53E-02 O.4669E-02 o .405lE-03 o .1649E-02

KG MOLS/BR 0.l317E+03 0.9133E+02 0.l3l6E+03 O. 9207E +02

TRAY -------- 9 -------- -------- 10 --------COHPONENT X Y X Y. 1 MEK 0.9l50E+OO 0.9540E+00 0.9l50E+00 0.9542E+00 2 SBUOH o .6466E-Ol 0.4534E-Ol 0.6493E-Ol 0.4S49E-01 3 WATER 0.l424E-03 0.579lE-03 o .SOO7E-04 0.2034E-03

KG ~10LS/HR 0.13l9E+03 O.922lE+02 O.l32lE+03 O.9233E+02

TRAY -------- 11 -------- -------- 12 --------COMPONENT X Y X Y 1 MEK 0.9l50E+OO O.9542E+OO O.9l49E+OO o .954lE+00 2 SBUOH o .6S00E-Ol O.4563E-Ol o .6Sl0E-Ol O.4579E-01 3 WATER O.l763E-04 O.7l53E-04 o .621SE-05 O.2517E-04

KG HOLS/HR o .1322E+03 O.9246E+02 o .1323E+03 0.9257E+02

Page 99: Mek from n butene.pdf

VERSION 0484 SH SIHULATION SCIENCES, INC. PROCESS PAGE 10 PROJECT FVO UNIT 1 - ACOl A. AND R PROBLEM MSK PURIF. SOlUIION fEB87

TRAY -------- 13 -------- -------- 14 --------COMPONENT X Y X Y 1 HEK 0.9147E+00 0.9539E+00 0.9144E+00 0.9536E+00 2 SDUOH o .8527E-01 0.4597E-01 0.8559E-01 0.4624E-Ol 3 WATER 0.2193E-05 O.8870E-05 0.7747E-06 o. 3129E -05

KG 110lS/HR 0.1324E+03 0.9267E+02 0.1325E+03 0.9277E+02

TRAY -------- 15 -------- -------- 16 --------CDt1PONENT X Y. X Y 1 HEK 0.9137E+00 0.9531E+00 0.9121E+OO 0.9520E+00 2 SBUOH 0.8628E-Ol O.4673E-Ol 0.8791E-01 O.477SE-Ol 3 WATER 0.2739E-06 O.110SE-05 o .9682E-07 0.3900E-06

KG ~1OlS/HR 0.1325E+03 0.9285E+02 0.1325E+03 O. 9291E+ 02

TRAY -------- 17 ------- -_._----- 18 --------COHPONEN! X Y X Y 1 HEK 0.9082E+00 0.9497E+00 O.8986E+00 0.9440E+00 2 SBUOH 0.9185E-01 o .5009E-01 o .1014E+00 0.5569E-Ol 3 WATER 0.3416E-07 0.1375E-06 0.1196E-07 0.4816E-07

KG HOlS/HR 0.1325E+03 0.9294E+02 0.1323E+03 0.9288E+02

TRAY -------- 19 -------- -------- 20 --------COt1PONENT X Y X Y 1 MEK 0.8758E+00 0.9307E+00 0.8234E+00 O. 8989E +00 2 SBUOH o .1242E+00 0.6924E-01 o .1766E+00 o .1017E +00 3 ~ATER o .40 84E-08 o .1651E-07 o .1293E-08 0.5285E-08

KG 110LS/HR 0.1318E+03 0.9269E+02 0.3960E+02 0.9216E+02

Page 100: Mek from n butene.pdf

VERS ION 0484 SIMULATION SCIENCES, INC. PROJECT FVO PROBLEH HEK PURIF.

SH PROCESS

SOLUIION

STREAH SUMMARY

STREAH ID. NAHE PHASE

FROM UNIT/TRAY Ta UNIT/TRA Y

FROM STREAt1

KG MOlS/HR I~1PERATURE, DEG C PRESSURE, BAR H, MM KJ /HR

H KJ /KG MOlE KJ /KG

MOlE FRACT LIQUIO

11 KGS/HR MOLECULAR ~EIGHT STO LIQ IB/HR

UOP K

OEG API SP GR KGS/l-!3

REOUCEO TEMP REOUCED PRESS ACENIRIC FACTOR *:::VAPOR**

\JEIGHT M3/HR

M3/HR

M KGS/HR t10lECULAP. STO LIQ STO M ACIUAL H H3/HR

KGS/H 113 Z CP,KJ /KG MOL C

::::::~IQUID**

t1 KGS/BR MOLECULAR \JEIGHT STO LIQ M3/HR ACTUAL GPl1

Z

H3/HR KGS/H3

CP,KJ /KG Mal C

FO

LIQUID Ol 0 11 7

72.070 60.413 1.060 0.916

12.706 176.409 1.00000

5.192 72.040

6.423 43.193 0.6100

806.3293 10.632

0.659 0.025 0.350

0.000 0.000 0.000 0.000 0.000 0.000

0.00000 O.OOOOE+OO

5.192 72.040

6.423 37.3663

6.487 611.761 0.00425

1.7423E+02

/00

ABOT

LIQUID 1/ 20 Ol 0

39.603 87.652 1.190 0.581

14.665 202.361 1.00000

2.670 72.464

3.551 43.231 0.6096

806.1536 10.649

0.674 0.029 0.369

0.000 0.000 0.000 0.000 0.000 0.000

0.00000 O.OOOOE+OO

2.670 72.464 3.551

20.7729 4.716

606.261 0.00473

1.7913E+02

ATOP

:IQUID 1/ 1 0/ 0

32.467 76.313 1.000 0.374

11.532 1G1.231 1.00000

2.322 71.522

2.672 'D.145 0.6102

808.5463 10.611

0.655 0.023 0.326

0.000 0.000 0.000 0.000 0.000 0.000

0.00000 O.OOOOE+OO

2.322 71.522

2.872 16.7752

3.610 609.462 0.00402

1.6861E+02

PAGE 17 Al . At~D Fr FEB67

Page 101: Mek from n butene.pdf

----- ._.--_.-- - --------------

A-7 Stream data MEK purification column T5l

VERSION 0484

SM PROCESS INPUT LISTING - PAGE 1

GENERAL DATA TITLE USER=A AND R ,PROBLEM=MEK PURIF.,PROJECT=FVO,DATE=FED87 OlMEN SION S1,TEMP=C,PRESS=BAR PRINT WTOPTION

COMPONENT DATA L1BIO 1,MEK/2,SBUOH

THERMOOYNAMIC DATA TYPE SYSTEM=SRK

STREAM DATA PROPERTY STRM=FD,PRESS=1.0,PHASE=L,~ COMP(M)=1,82.338/2,~7.662,NOCHECK,RATE(M)=39.6032 UNIT OPERATIONS

COLUMN UID=BCOL,KPR1NT PARAMETER TRAY=25,FAST=5,SURE=30,DKDX FEED FD,7 _ PRO DUCT OVHD=ATOP, 32.6085, BTMS =ABOT , 6 .99" 7 HEATER 1,25,3/2,1,-4.0 CONDENSER TYPE=3,PRESSURE=1.0 PSPEC TOP=1.01,DP=0.Ol SPEC STRM=ABOT,COMP=2,2,FRACTION(W) =0.99 VARIABLE HEAT=l PRINT TRAY=25 PLOT PROFILC,XCOMP=1/2,YCOMP=1/2 ESIINATE ITEMP=75.0,CTEMP=75.0,BTEMP=100,RTEMP=100

lOl

Page 102: Mek from n butene.pdf

VERSION 0484 SIMULATION SCIENCES, INC. PROJECT FVO PROBLEM MEK PURIF.

I SUMMARY FOR COLUMN

1 TOTAL NUMBER OF ITERATIONS FAST HETHOO SURE METHOO

2 COLUMN SUMMARY

SM PROCESS

UNIT 1 - BCOL SOLUTION

UNIT 1 - BCOL,

PAGE 8 A AND R FEB87

o 4

TRAY TEMP PRESSURE NET FLOU RATES, KG MOLS/HR HEAT(COOL)ER LIQUIO VAPOR DUTIES

DEG C BAR PHASE(L) PHASE(V) FEED pnODUCT MM KJ IHR

1 79.4 2 79.8 3 80.3 4 80.8 5 81.4 6 82.1 7 82.9 8 83.2 9 83.6

10 84.1 11 84.6 12 . 85.4 13 86.4 14 87.9 15 89.9 16 92.3 17 95.0 18 97.5 19 99.7 20 101.4 21 102.6 22 103.5 23 104.2 24 104.7 25 105.1

1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 1.15 1.16 1.17 1.18 1.19 1.20 1.21 1.22 1.23 1.24

90.6 90.4 90.2 89.9 89.5 89.0

128.9 128.9 128.8 128.6 128.2 127.4 126.2 124.4 122.0 119.~

116.9 114.8 113.3 112.3 111.7 111.3 111.1 111.0

3 FE EO AND PRODUCT STREAMS * FEED STREAMS:

FD TO TRAY 7 IS LIQUID * PRODUCT STREAMS:

123.4 ' 123.2 123.0 122.7 122.3 121.7 122.1 122.1 122.0 121.8 121.3 120.6 119.4 117.5 115.2 112.5 110.0 108.0 106.5 105.5 104.8 104.5 104.3 104.2

ABOT IS LIQUIO STREAM FROM TRAY 25 ATOP IS LIQUIO STREAM FROM IRAY 1

OVERALL MASS BALANCE, (FEEOS - PROOS) OVERALL HEAT BALANCE, (HIN - HOUI)

10'2..

32.8L

39.6L

6.8L

MASS RAIES KG MOLS/HR

0.39603E+02

0.68389E+01 0.32764E+02

O.OOOOOE+OO

-4.0000

4.0153

HEAT RATES MM KJ IHR

0.54223E+00

o .17689E+00 o .3B061E+OO

0.15914E-04

Page 103: Mek from n butene.pdf

VERSION 0484 SM SIMULATION SCIENCES, INC. PROCESS PAGE 10 PROJECT FVO UNIT 1 - BCOL A. AND R PROBLEH MEK PURIF. SOLUTION FEB87

IIA TRAY COMPOSITIONS

TRAY -------- 1 -------- -------- 2 --------COHPONENT X Y X Y 1 MEK 0.9931E+OO 0.9931E+00 0.9864E+00 0.9931E+00 2 SBUOH 0.6903E-02 0.6903E-02 0.1365E-01 0.6903E-02

KG MOLS/HR 0.9059E+02 0.3276E+02 o .9045E+02 0.1234E+03

TRAY -------- 3 ------- -------- 4 --------COMPONENT X Y X Y 1 MEK 0.9767E+OO 0.9881E+00 o .9633E+OO O.9811E+OO 2 SBUOH O.2326E-01 O.1185E-01 0.3673E-01 O.1890E-01

KG MOLS/HR O.9023E+02 O.1232E+03 0.8993E+02 0.1230E+03

TRAY -------- 5 ------- -------- 6 --------COHPONENT X Y X Y 1 MEK 0.9448E+00 0.9712E+00 0.9202E+OO O. 9578E +00 2 SBUOH 0.5518E-01 o .2876E-01 0.1915E-01 0.4225E-01

KG HOLS/HH 0.8951E+02 O.1221E+03 0.8896E+02 0.1223E+03

TRAY -------- 7 -------- -------- 8 --------COHPONENT X Y X Y 1 MEK O.8887E+OO O.9399E+00 0.8856E+OO O.9379E+OO 2 SBUOH 0.1113E+00 0.6015E-01 o .1144E+OO 0.6207E-01

KG MOLS/HH 0.1289E+03 0.12l1E+03 0.l289E+03 0.l22lE+03

TRAY -------- 9 ------- -------- 10 --------COt1PONENT X Y X Y 1 MEK 0.8802E+00 0.93Q7E+00 0.8101E+00 0.9290E+OO 2 SBUOH 0.1l98E+OO 0.6535E-01 0.l293E+00 o .1l05E-01

KG MOLS/HR 0.l288E+03 0.l22lE+03 o .l286E+03 o .1220E +03

TRAY -------- 11 ------- -------- 12 --------COMPONENT X Y X Y 1 MEK 0.8543E+00 0.9l90E+00 0.8261E+00 0.9019E+OO 2 SBUOH 0.1457E+OO O.8097E-Ol o .l133E+00 0.98l0E-Ol

KG MOLS/HR 0.l282E+03 o .l2l8E+03 0.l27QE+03 0.12l3E+03

TRAY -------- 13 ------- -------- 14 --------COMPONENT X Y X Y 1 MEK O.7818E+00 0.8130E+00 0.7l36E+OO O.8260E+OO 2 SBUOH 0.2182E+OO o .1210E+00 o .2864E+OO O.1140E+OO

KG MOLS/HR 0.1262E+03 o .1206E+03 o .l2Q4E+03 o .1194E+03

103

Page 104: Mek from n butene.pdf

VERSION 0484 SM SIMULATION SCIENCES. INC. PROCESS PAGE 11 PROJECT FVO UNIT 1 - BCOL A AND R PROBLEH HEK PURIF. SOLUTION FEB87

TRAY -------- 1S -------- -------- 16 --------COMPONEN:: X Y X Y 1 MEK 0.619SE+00 0.7S46E+00 o .SOSOE+OO O.6SS7E+OO 2 SBUOH 0.380SE+OO O.24S4E+OO O.49S0E+00 O.3443E+OO

KG HOLS/HR 0.1220E+03 O.117SE+03 O.1194E+03 o .11S2E+03

TRAY -------- 17 ------- -------- 18 --------COHPONENT X Y X Y 1 MEK O.3843E+00 O.S3S1E+OO O.2142E+OO O.407SE+00 2 SBUOH o .61S7E+OO 0.4649E+00 O.72SBE+00 O.S924E+OO

KG .HOLS/HR 0.1169E+03 0.112SE+03 o .1lC~8E+03 O.1100E+03

TRAY -------- 19 -------- -------- 20 --------CQt'1PONENT X Y X Y 1 MEK 0.18SSE+00 0.2909E+OO 0.1206E+00 0.1961E+00 2 SBUOH o .814SE+00 0.7091E+00 0.8194E+OO o .8032E+00

KG ~mLS/HR 0.1133E+03 0.1080E+03 o .1123E+03 o .106SE+03 ·

TRAY -------- 21 -------- -------- 22 --------COHPONENT X Y X Y 1 MEK 0.7622E-01 O.1277E+00 O.4125E-01 O. 80S2E -01 2 5BUOH 0.9238E+00 0.8723E+OO O.9S27E+OO O. 9195E+ 00

KG l·10LS/HR 0.1117E+03 o .105SE+03 o .1113E+03 0.1048E+03

TRAY -------- 23 -------- -------- 24 --------COMPONENT X Y X Y 1 MEK o .288SE-01 O.4967E-01 0.1731E-01 0.3007E-01 2 5BUOH 0.9711E+00 0.9S03E+OO 0.9826E+00 0.9699E+00

KG MOL5/HR 0.1111E+03 O.104SE+03 0.1110E+03 O.1043E+03

TRAY -------- 25 --------COMPONENT X Y 1 MEK o .l027E-Ol o .1783E-Ol 2 5BUOH 0.9897E+OO O.9822E+00

KG MOLS/HR O.6839E+01 O.10Q2E+03

Page 105: Mek from n butene.pdf

VERSION 0484 SIMULATION SCIENCES, INC. PROJECT FVO

SM PROCESS

PROBLEM MEK PURIF.

STREAH 10. NAtiE PHASE

FROM UNIT/TRA Y TO UNIT/TRAY

FROM STREAM

KG l-tOLS/HR rEMPERATURE. DEG C PRESSURE, BAR H, MM KJ /HR

M KJ /KG MOLE KJ /KG

MOLE FRACT LIQUID

M KGS/HR MOLECULAR WEIGHI STO LIQ M3/HR

UOP K

OEG API SP GR KGS/M3

REDUCEO IEMP REDUCEO PRESS ACENIRIC FACTOR **VAPOR**

M KGS/HR MOLECULAR WEIGHT SlO L1Q H3/HR SlO M M3/HR ACIUAL M M3/HR

KGS/M M3 Z CP,KJ /KG MOL C

*::rLIQUIO~

M KGS/HR MOLECULAR WEIGHT SlO LIQ M3/HR ACIUAL GPM

Z

M3/HR KGS/M3

CP,KJ /KG MOL C

SOLUI10N

FO

STREAM SUMMARY

ABOT

LIQUIO 0/ 0 1/ 7

39.603 82.184

1.060 0.5'12

13.692 188.94'1 1.00000

2.870 72.464

3.551 "3.231 0.8098

808.1538 10.6'19

0.663 0.025 0.369

0.000 0.000 0.000 0.000 0.000 0.000

0.00000 O.OOOOE+OO

2.870 72."64

3.551 20.5947

".678 613.525 0.00424

1.7730E+02

/05

LIQUID 1/ 25 0/ 0

6.839 105.093

1.240 0.177

25.865 3"9.041 1.00000

0.507 74.103 0.627

"3.195 0.8100

.808.3179 10.805 0.706 0.030 0.576

0.000 0.000 0.000 0.000 0.000 0.000

0.00000 O.OOOOE+OO

0.507 74.103 0.627

3.56"0 0.809

626.063 0.00467

2.1822E+02

ATOP

LIQUIO 1/ 1 0/ 0

32.76" 79.378 1.000 0.381

11.617 161.068 1.00000

2.363 72.122

2.92" tB.238 0.8098

800.1187 10.616

0.658 0.024 0.326

0.000 0.000 0.000 0.000 0.000 0.000

0.00000 O.OOOOE+OO

2.363 72.122

2.92" 17.0973

3.883 608.521 0.0040"

1.7023E+02

PAGE 22 A. _ AND R' FEB87

Page 106: Mek from n butene.pdf

A-8 Utility costs

It is assumed that utility costs exists of cooling water, steam,

electricity and natural gas costs.

Cooling water: Available at a temperature of 20°C.

Steam:

Electricity:

Natural gas:

Maximum allowed temperature 40°C.

Costs: f 0.06/m 3 •

Available at 190°C and 3 bar. Enthalpy change

when condensed to water (100°C and 1 bar) is

2365.4 kJ/kg. Costs: f 40.-/ton.

Costs: f 0.19/kWh.

Lower heating value 37.68 MJ/kg.

Costs: f 14.40/GJ.

Table (1): Cooling water demand

Equipment

no.

H2

T3

H4

H18

H27

H32

H38

H40

H47

H55

H57

H58

Total

Capacity

kW

489

5416

506

1889

",2700

220

302

21

832

1123

59

57

C.w. rate

m3 /hr

21. 064

232.992

21. 758

81. 281

116.172

9.464

12.974

0.891

35.777

48.312

2.556

2.448

585.689

Total annual cooling water costs: f 253,018 3

• /0

Page 107: Mek from n butene.pdf

Table (2): Steam demand

Equipment

no.

H13

T14

H19

H24

H30

H44

H52

Total

Capacity

kW

1305

27

",1500

",1200

843

1115

Steam rate

ton/hr

1.987

2.952

0.041

2.283

1. 825

1. 282

1. 697

12.067

Total annual steam costs: f 3,475,296

For electricity demand only compressor Cl is taken in acount.

The power demand of 105.3 kW requires annual f 144,050.

For the demand of natural gas two cases have been regarded: in

case 1 the acid-reconcentration unit is fully supported by hot flue

gases (no natural gas demand) while in case 2 this unit is fully

supported by natural gas combustion.

Table (3): Natural gas demand

Equipment

no.

F36

R37

Total case 1

Capacity

kW

225

668

acid-reconc. 9736

Gas flow rate

kg/hr

21. 50

63.82

85.32

930.20

- ---------------------------------

Page 108: Mek from n butene.pdf

Total case 2 1015.52

Total gas casts: case 1 : f 333,310

Total gas casts: case 2: f 3,967,253

The total annual utility casts for case 1 : f 4,205,674

The total annual utility casts for case 2: f 7,839,617

In the used economic model the utility casts are estimated as

10% of the total production casts of f 51,835,530/yr. This estima­

tion can only be justified wh en at least 73% of the required energy

for acid reconcentration is supplied by flue gases.

/o~

Page 109: Mek from n butene.pdf

H32

V33

C , GAS COMPRESSOfI H 2 CONDENSOR T 3 8UTENE A8SOReER H 4 AC/O COOLER P!I AC/O ~

R_G ..

11 8 RECONCEHTRAT1ON IIUSEl C)o1 GAS-UOUO SE_OR 11 8 RECONCENTRATIOH IlESSEl 11 11 HYDAOLYSIS TANK PlO ACID PUMP .. " IlENTUIII SCR~R

F .... '

~ HUnR Sec. 8UTANOI. STRIPPER PUMP STOIIAGE CAUSTIC SCRU8eER CONlEHSOR . PREHUTER l'O.-l'O. SE""'RATOR . ~

T 23 OISTUATIQH C~ H24 REIIOIl.ER P2!1 REFlUX PUMP 1128 UO. ·l/O. SEP""'ATOR H21 COI;OENSOR P28 PUMP Uil OISTUATIOH CCU~

~~~ER H32 COOLER 1133 AlCOHol. SlORAGE

: -: re : 1"'116 1- :----~::J

• to Sewer

:~~oy~, , H19

[!!~

Pl~ PUMP Hl!l HEAT EXCHANGER F3e FUANACE Rl7 MUlT'TUBUlAR REACTOR Hle CONDENSOR

C)o GAS·llOiAO SEPARATQII H ~ CONDENSOR H"' O)NDf.N!iOII P42 ~ Hl O'STIL'. AT'ON COLUMN H~~ RE8ou. ER

D;~ B ~

T23

St •• m

I :::ftl: nc ... '

P", RE FL UX PUMP v~e VESSEL ~7 CONDENSOR P~8 PUMP P"II PUMP P~ REC'lClE PUMP T~l DlSTIllATtON CQl.1"II.4N H!l2 RE80ILER P~l REFl.UX PUMP V~ lIESSEL H!I CONDENSOR

Hydrogen

Ing Wat.,.

PROCESS SCHEME FOR PROOUCnoN OF METHYL ETHYL KETONE

A.H. Amer F: V O. no. 2e8J R.F" .de Ruiter April 1~81

OStreom na. [IJ ~ In -C @Pr ..... In ar

P!III PUMP H~7 COOLER H COOLER

~Yltem~ nol gI .... Is' 80r

Page 110: Mek from n butene.pdf

Errata

on flow sheet F.V.O. no. 2693:

1 To prevent an inert-build up in T3, a part of stream 7 must be purged.

2 Butene absorber T3 is not a jacketed vessel but a vessel with multitubular internal cooling.

3 Gas-liquid separators Cy7 and Cy39 are not cyclones but horizontal separation tanks.

4 NaOH for acid removal can be exchanged with Ca(OH)z, which is + -

cheaper. CaS04 removal is easier than Na /SO~ removal. 5 Brine-cooling for but ene liquification is only necessary when

normal cooling water is not able to reduce the temperature to 25°C.

6 Liquid-liquid separator V20 is a horizontal vessel.

Page 111: Mek from n butene.pdf

,//