Gevorderde Systeemidentificatie

download Gevorderde Systeemidentificatie

of 243

Transcript of Gevorderde Systeemidentificatie

  • 8/12/2019 Gevorderde Systeemidentificatie

    1/243

    1/243

    System Identification

    Rik Pintelon

    Vrije Universiteit Brussels, dept. ELEC

    Version 25 November 2011

  • 8/12/2019 Gevorderde Systeemidentificatie

    2/243

    2/243

    Table of Contents

    1. Preliminary Example 3

    3. Nonparametric models of LTI systems 294. Parametric models of LTI systems 715. Improved nonparametric models for LTI systems 1136. Estimation parametric plant model with known noise model 1467. Estimation parametric plant model with estimated nonparametric noise model 174

    8. Estimation parametric plant and/or noise models 2009. Guidelines 23210. Books on system identification 242

  • 8/12/2019 Gevorderde Systeemidentificatie

    3/243

    3/243

    1. Preliminary Example

    2.a Measurement of the value of a resistor 4

    2.b Least squares estimator of the output error problem 62.c Maximum likelihood estimator of the errors-in-variables problem 72.d Properties estimators 102.e Stochastic convergence estimators 112.f Asymptotic variance estimators 12

    2.g Asymptotic normality estimators 152.h Asymptotic efficiency estimators 172.i Robustness estimators 192.j Summary properties 212.k Extension to arbitrary currents 232.l References 28

  • 8/12/2019 Gevorderde Systeemidentificatie

    4/2434/243

    2. Preliminary Example

    2.a Measurement of the value of a resistor

    0

    5

    0 50 100

    Measuredresista

    nce()

    0

    2

    0 50 100

    Voltage(V

    )

    0

    2

    0 50 100

    Current(A

    )

    k

    kk

    i k( ) i0 ni k( )+=

    u k( ) u0 nu k( )+=

    ni k( ) N0 i2,( )

    nu k( ) N0 u2

    ,( )

    u k( ) i k( )

    R k( ) u k( ) i k( )=

    u k( )

    i k( )

    R0 1 =

    V

    A

  • 8/12/2019 Gevorderde Systeemidentificatie

    5/2435/243

    2. Preliminary Example

    2.a Measurement of the value of a resistor (contd)

    Observation: the estimate seems not to converge asQuestion: what is going wrong?

    0

    1

    2

    1 10 100 1000 10000

    EstimatedvalueR

    Number of measurements

    RSA N( ) 1

    N---- R k( )

    k 1=

    N

    1

    N----

    u k( )

    i k( )---------

    k 1=

    N

    = =

    N

  • 8/12/2019 Gevorderde Systeemidentificatie

    6/2436/243

    2. Preliminary Example

    2.b Least squares estimator of the output error problem

    Observation: the estimate converges to a too small value asQuestion: what is going wrong?

    0

    1

    2

    1 10 100 1000 10000

    EstimatedvalueR

    Number of measurements

    VLS R z,( ) u k( ) Ri k( )( )2

    k 1=

    N

    =

    RLS N( ) arg min

    R

    VLS R z,( )u k( )i k( )

    k 1=

    N

    i2 k( )k 1=N

    ---------------------------------= =

    N

  • 8/12/2019 Gevorderde Systeemidentificatie

    7/243

    7/243

    2. Preliminary Example

    2.c Maximum likelihood estimator of the errors-in-variables problem

    Call the vector of the measurements

    Gaussian iid random variables probability density function of the measurements

    Constrained negative log-likelihood function

    s.t.

    Maximum likelihood cost function

    Eliminate , and

    z

    z u1( ) u2( ) u N( ) i1( ) i2( ) i N( ), , , , , , ,[ ]T=

    z

    fz z R up ip, ,( ) fu k( ) u k( ) R up ip, ,( )fi k( ) i k( ) R up ip, ,( )k 1=N

    =

    1

    2ui( )N--------------------------exp

    1

    2---

    u k( ) up( )2

    u2

    ----------------------------i k( ) ip( )2

    i2

    -------------------------+

    k 1=

    N

    ( )=

    fz z R up ip, ,( )log constant 1

    2---

    u k( ) up( )2

    u2

    ----------------------------i k( ) ip( )2

    i2

    -------------------------+

    k 1=

    N

    += up Rip=

    VML R up ip z, , ,( ) 1

    2---

    u k( ) up( )2

    u2

    ----------------------------i k( ) ip( )2

    i2

    -------------------------+

    k 1=

    N

    up Rip( )+=

    up ip RML N( )

  • 8/12/2019 Gevorderde Systeemidentificatie

    8/243

    8/243

    2. Preliminary Example

    2.c Maximum likelihood estimator of the errors-in-variables problem (contd)

    Observation: estimate converges to the true value as

    RML N( )

    1

    N---- u k( )

    k 1=

    N

    1

    N---- i k( )

    k 1=

    N

    -----------------------------=

    0

    1

    2

    1 10 100 1000 10000

    E

    stimatedvalueR

    Number of measurements

    N

  • 8/12/2019 Gevorderde Systeemidentificatie

    9/243

    9/243

    2. Preliminary Example

    2.c Maximum likelihood estimator of the errors-in-variables problem (contd)

    Observation: estimate is different for each realisation stochastic process

    Questions: - point wise convergence ?

    - for almost all realisations?

    - ?

    - minimal uncertainty?

    RMLr[ ] N( )

    1

    N---- u r[ ] k( )

    k 1=

    N

    1N---- i r[ ] k( )

    k 1=

    N

    ----------------------------------=

    r 1 2 , ,=

    0.6

    0.8

    1

    1.2

    1.4

    0 20 40 60 80 100

    Resistance(

    )

    N

    RMLr[ ]

    N( )N lim RML

    r[ ]=

    RMLr[ ] RML=

    RML R0=

  • 8/12/2019 Gevorderde Systeemidentificatie

    10/243

    10/243

    2. Preliminary Example

    2.d Properties estimators

    stochastic convergence asymptotic variance asymptotic distribution asymptotic efficiency robustness

    Question: how to predict these properties?

    RML N( )

    1

    N

    ---- u k( )k 1=

    N

    1N---- i k( )

    k 1=

    N

    -----------------------------=

    0

    1

    2

    1 10 100 1000 10000

    Estimatedvalu

    eR

    Number of measurements

    RLS N( )u k( )i k( )

    k 1=N

    i2 k( )

    k 1=

    N

    ---------------------------------=

    RSA N( ) 1

    N----

    u k( )

    i k( )---------

    k 1=

    N

    =RSA N( )

    RLS N( )

    RML N( )

  • 8/12/2019 Gevorderde Systeemidentificatie

    11/243

    11/243

    2. Preliminary Example

    2.e Stochastic convergence estimators

    Basic tool: thelaw of large numbers

    then as

    Simple approach

    for

    no convergence Least squares

    convergence to the wrong value =inconsistent Maximum likelihood

    convergence to the true value = consistent

    S N( ) 1

    N---- x k( )

    k 1=

    N

    = S N( ) S N( ){ } 1

    N---- x k( ){ }

    k 1=

    N

    = N

    RSA N( ) 1

    N----

    u k( )

    i k( )---------

    k 1=

    N

    = 1

    N---- u k( ){ }

    1

    i k( )--------

    k 1=

    N

    = i k( ) N i0 i2,( )

    RLS N( )

    1

    N---- u k( )i k( )

    k 1=

    N

    1

    N---- i2 k( )

    k 1=

    N

    --------------------------------------=

    1

    N---- u k( ){ }E i k( ){ }

    k 1=

    N

    1

    N---- i2 k( ){ }

    k 1=

    N

    -----------------------------------------------------------

    u0i0

    i02 i

    2+----------------

    R0

    1 i2 i0

    2+-----------------------= =

    RML N( )

    1

    N---- u k( )

    k 1=

    N

    1

    N---- i k( )k 1=N

    -----------------------------=

    1

    N---- u k( ){ }

    k 1=

    N

    1

    N---- i k( ){ }k 1=N

    --------------------------------------- u0

    i0

    ----- R0= =

  • 8/12/2019 Gevorderde Systeemidentificatie

    12/243

    12/243

    2. Preliminary Example

    2.f Asymptotic variance estimators

    Basic tool: linearisation estimate around the limit value

    Least squares

    the asymptotic ( ) variance

    Notes:- valid for any voltage and current signal-to-noise ratio

    - asymptotic variance is an

    R

    LS N( )

    1

    N---- u k( )i k( )

    k 1=

    N

    1

    N---- i2 k( )

    k 1=

    N

    --------------------------------------

    u0i0 w 1[ ]+

    i02 w 2[ ]+-------------------------

    R0

    1 i2 i02+----------------------- 1 w 1[ ]

    u0i0---------

    w 2[ ] i2

    i02 i

    2+---------------------+

    = =

    w 1[ ]1

    N---- u0ni k( ) i0nu k( ) ni k( )nu k( )+ +( )k 1=

    N

    = with w 1[ ]{ } 0=

    w 2[ ]1

    N---- 2i0ni k( ) ni

    2 k( )+( )k 1=

    N

    = with w 2[ ]{ } i2=

    N

    var NRLS N( )( )

    R02

    1 i2 i0

    2+( )2------------------------------var N w 1[ ]

    u0i0---------

    w 2[ ] i2

    i02 i

    2+---------------------

    ( )

    O N 1( )

  • 8/12/2019 Gevorderde Systeemidentificatie

    13/243

    13/243

    2. Preliminary Example

    2.f Asymptotic variance estimators (contd)

    Maximum likelihood

    the asymptotic ( ) variance

    Notes:-valid for any voltage and current signal-to-noise ratio

    - asymptotic variance is an

    - expected value does not exist- variance does not exist

    RML N( )

    1

    N---- u k( )

    k 1=

    N

    1

    N

    ---- i k( )k 1=

    N

    -----------------------------

    u0 w 1[ ]+

    i0 w 2[ ]+--------------------- R0 1

    w 1[ ]

    u0---------

    w 2[ ]

    i0---------+

    = =

    w 1[ ]1

    N---- nu k( )

    k 1=

    N

    = with w 1[ ]{ } 0=

    w 2[ ]1

    N---- ni k( )

    k 1=

    N

    = with w 2[ ]{ } 0=

    N

    var NRML N( )( ) R02var N w 1[ ]

    u0---------

    w 2[ ]

    i0---------

    ( ) R02 i

    2

    i02

    ------u

    2

    u02

    ------+ =

    O N 1( )

    RML N( )

    RML N( )

  • 8/12/2019 Gevorderde Systeemidentificatie

    14/243

    14/243

    2. Preliminary Example

    2.f Asymptotic variance estimators (contd)

    0.001

    0.01

    0.1

    1

    0.01 0.1 1

    Standard deviation noise

    Standa

    rddeviationonR

    std RLS( )

    stdR

    ML( )

    0.001

    0.01

    0.1

    1

    0.01 0.1 1

    RMSerror

    Standard deviation noise

    rms RML( )

    rms RLS( )

    MSE R( ) E R R0

    ( )2

    { } var R( ) R{ } R0

    ( )2+= =

    uu0-----

    ii0----=

    uu0-----

    ii0----=

  • 8/12/2019 Gevorderde Systeemidentificatie

    15/243

    15/243

    2. Preliminary Example

    2.g Asymptotic normality estimators

    Basic tool: linearisation estimate around the limit value + the central limit theorem

    then as

    Least squares and maximum likelihood estimators

    Application CLT to , , are asymptotically normally distributed

    , are asymptotically normally distributed

    S N( ) 1

    N---- x k( )

    k 1=

    N

    = S N( ) S N( ){ }

    varS N( )( )-------------------------------------- AsN0 1,( ) N

    RLSN( )R0

    1 i2 i0

    2+----------------------- 1

    w 1[ ]

    u0i0---------

    w 2[ ] i2

    i02 i

    2+---------------------+

    RMLN( ) R0 1 w 1[ ]

    u0

    ---------w 2[ ]

    i0

    ---------+

    w 1[ ] w 2[ ] w 1[ ] w 2[ ]

    RLSN( ) RMLN( )

  • 8/12/2019 Gevorderde Systeemidentificatie

    16/243

    16/243

    2. Preliminary Example

    2.g Asymptotic normality estimators (contd)

    0

    25

    0.5 1 1.5 2 0

    25

    0.5 1 1.5 2 0

    25

    0.5 1 1.5 2

    pdfR

    R R R

    pdfR

    pdfR

    N 10= N 100= N 1000=

    RLS

    R

    ML

  • 8/12/2019 Gevorderde Systeemidentificatie

    17/243

    17/243

    2. Preliminary Example

    2.h Asymptotic efficiency estimators

    Basic tool: comparison asymptotic uncertainty with the Cramr-Rao lower bound

    Gaussian iid random variables probability density function of the measurements

    with

    he Cramr-Raolower bound

    with

    the corresponding Fisher information matrix

    z

    fz z ( ) fu k( ) u k( ) ( )fi k( ) i k( ) ( )k 1=N

    =

    1

    2ui( )N--------------------------exp

    1

    2---

    u k( ) Rip( )2

    u2

    ------------------------------i k( ) ip( )2

    i2

    -------------------------+

    k 1=

    N

    ( )=

    ip R,[ ]T=

    Cov( ) Fi 1 0( ) Fi 0( ) 2 fz z ( )log

    02-------------------------------

    =

    Fi 1 0( ) 1

    N----

    i2 u0

    i2

    i02

    ------

    u0i

    2

    i02------ R02

    i2

    i02------

    u2

    u02------+

    = Fi 1 R0( )

    R02

    N------

    i2

    i02

    ------u

    2

    u02

    ------+ =

  • 8/12/2019 Gevorderde Systeemidentificatie

    18/243

    18/243

    2. Preliminary Example

    2.h Asymptotic efficiency estimators (contd)

    Conclusion: ML-estimate is asymptotically efficient

    std RML( )

    + CR R0( ) Fi 1 2/ R0( )=

    0.001

    0.01

    0.1

    1

    0.01 0.1 1Standard deviation noise

    uu0-----

    ii0----=

  • 8/12/2019 Gevorderde Systeemidentificatie

    19/243

    19/243

    2. Preliminary Example

    2.i Robustness estimators

    Basic question: are the (asymptotic) properties of the estimator sensitive to the (noise)assumptions made to construct the estimator?

    Maximum likelihood estimator- basic assumption: zero mean Gaussian iid noise on current and voltage

    measurements- relax assumption: zero mean non-Gaussian mixing noise on current and

    voltage measurementsconsequences on the properties:

    - consistency, asymptotic normality, convergence rate still valid- asymptotic efficiency is lost- expression asymptotic variance still valid for independently distributed noise

    Least squares estimator

    - basic assumption: zero mean iid noise on voltage measurements, andcurrent known exactly- relax assumption:(i) zero mean non-Gaussian mixing noise on voltage measurements, andcurrent known exactly still consistent(ii) also noise on input inconsistent

  • 8/12/2019 Gevorderde Systeemidentificatie

    20/243

    20/243

    2. Preliminary Example

    2.i Robustness estimators (contd)

    Note:

    0.6

    0.8

    1

    1.2

    1.4

    0 100 200 300 400 500

    Resistance()

    N

    RML N( )

    RLS N( )

    RSA N( )

    u0 1 V=

    i0 1 A=

    nu k( ) 0.5 V 0.5 V,[ ]uniformlyni k( ) 0.5 A 0.5 A,[ ]uniformly

    u k( ) u0 nu k( )+=

    i k( ) i0 ni k( )+=

    RSA N( ){ } R0i0

    2 3i---------------

    1 3i i0+

    1 3i i0-----------------------------

    log 1.1

  • 8/12/2019 Gevorderde Systeemidentificatie

    21/243

    21/243

    2. Preliminary Example

    2.j Summary properties

    Goal asymptotic analysis- what happens with the estimate if more data are gathered?- hypothesis: the asymptotic behaviour reflects the finite sample behaviour- true finite sample behaviour is in general very difficult to establish

    (exception: linear least squares) Consistency

    - convergence in stochasticsense to the true value- does not exclude divergence for some realisations

    - guarantees with high probability that the estimate is close to the true value- consistency does not imply asymptotic unbiasedness- proof: law of large numbers

    Asymptotic unbiasedness

    - asymptotically the expected value equals the true value- does not guarantee that the estimate is close to the true value- in general very difficult to verify (exception: linear least squares)

    Asymptotic normality- allows to construct uncertainty bounds with a given confidence level- proof: linearisation around limit value + central limit theorem

  • 8/12/2019 Gevorderde Systeemidentificatie

    22/243

    22/243

    2. Preliminary Example

    2.j Summary properties (contd)

    Asymptotic variance- measure of the convergence rate- construction of uncertainty bounds- proof: linearisation around limit value

    Asymptotic efficiency- minimal uncertainty within the class of asymptotically unbiased estimators- in practice applied to the class of consistent estimators- Cramr-Rao lower bound does not always exist (e.g. uniformly distributed

    noise), or may be too conservative (minimal uncertainty may be higher thanthe CR-bound)- proof: comparison asymptotic variance with Cramr-Rao lower bound

    Robustness- sensitivity (asymptotic) properties to the noise assumptions made toconstruct the estimator

    - proof: validity law of large numbers and central limit theorem under relaxednoise assumptions

  • 8/12/2019 Gevorderde Systeemidentificatie

    23/243

    23/243

    2. Preliminary Example

    2.k Extension to arbitrary currents

    Zero mean Gaussian iid random variables maximum likelihood cost function

    Elimination , , , gives

    which is a weighted nonlinear least squares problem

    - starting values via linear least squares- iterative Newton-Gauss minimization procedure

    u k( ) u0 k( ) nu k( )+=

    i k( ) i0 k( ) ni k( )+=

    ni k( ) N0 i2 k( ),( )

    nu k( ) N0 u2 k( ),( )

    u k( )

    i k( )

    R0 1 =

    VML R up ip z, , ,( ) 1

    2---

    u k( ) up k( )( )2

    u2 k( )

    ----------------------------------i k( ) ip k( )( )2

    i2 k( )

    --------------------------------+

    k 1=

    N

    k up k( ) Rip k( )( )k 1=

    N

    +=

    up k( ) ip k( ) k k 1 2 N, , ,=

    VML R z,( ) 1

    2---

    u k( ) Ri k( )( )2

    u2 k( ) R2i

    2 k( )+--------------------------------------

    k 1=

    N

    =

  • 8/12/2019 Gevorderde Systeemidentificatie

    24/243

    24/243

    2. Preliminary Example

    2.k Extension to arbitrary currents (contd)

    Consistency

    Difficulty: no explicit expression for the minimizer of exists

    Strong law of large numbers applied to

    Expected value cost function is minimal in consistent

    R VML R z,( )

    VN R z,( ) VML R z,( ) N=

    VN R z,( ) VN R( ) VN R z,( ){ } 1

    2N-------

    u0 k( ) Ri0 k( )( )2{ }u

    2 k( ) R2i2 k( )+

    -------------------------------------------------

    k 1=

    N

    1

    2---+= =

    VN R( ) R R0=

    2 P li i E l

  • 8/12/2019 Gevorderde Systeemidentificatie

    25/243

    25/243

    2. Preliminary Example

    2.k Extension to arbitrary currents (contd)

    Asymptotic variance and asymptotic normality

    Mean value theorem on derivative cost function

    with ,

    Use(by definition of )

    as (consistency)

    as (law of large numbers)

    then

    with

    Asymptotic variance

    Asymptotic normality

    (central limit theorem on )

    VN' R z,( ) VN' R0 z,( ) VN'' R1 z,( ) R R0( )+= R1 tR 1 t( )R0+= t 0 1,[ ]

    VN' R z,( ) 0= R

    R1 R0 N

    VN

    '' R1

    z,( ) VN

    '' R0

    ( ) N

    R R0 R VN'' 1 R0( )VN' R0 z,( )= R{ } 0=

    var R( ) var R( ) VN'' 2 R0( ) VN' R0 z,( )( )2{ }=

    N R R0( ) AsN0 var NR( ),( ) VN' R0 z,( )

    2 P li i E l

  • 8/12/2019 Gevorderde Systeemidentificatie

    26/243

    26/243

    2. Preliminary Example

    2.k Extension to arbitrary currents (contd)

    Asymptotic efficiencyGaussian iid random variables probability density function of the measurements

    with

    he Fisher information matrixequals

    Conclusion

    - the ML estimate is in general inefficient- asymptotically efficient if current is known exactly

    z

    fz z ( ) fu k( ) u k( ) ( ) fi k( ) i k( ) ( )k 1=N

    =

    12( )N u k( )i k( )k 1=

    N

    -------------------------------------------------------exp 1

    2--- u k( ) Rip k( )( )2

    u2 k( )

    ------------------------------------- i k( ) ip k( )( )2i

    2 k( )--------------------------------+

    k 1=

    N

    ( )=

    ip1( ) ip2( ) ip N( ) R, , , ,[ ]T=

    Fi 0( ) 2 fz z ( )log

    02-----------------------------

    = Fi 1 R0( ) 1

    N----VN''

    1 R0( )=

    VN' R0 z,( )( )2{ } VN'' R0( ) N= var R( ) Fi 1 R0( )=

    2 P li i E l

  • 8/12/2019 Gevorderde Systeemidentificatie

    27/243

    27/243

    2. Preliminary Example

    2.k Extension to arbitrary currents (contd)

    Notes- inefficiency ML estimate is not in contradiction with general ML properties because aninfinitenumber of parameters are estimated

    - uncertainty on does not decrease as

    - in practice a good approximation of the variance of is given by

    where

    with

    - the variance of the estimate follows as a by product of the Newton-Gaussminimization procedure

    ip1( ) ip2( ) ip N( ), , , N

    R

    1

    N----VN''

    1 R0( ) R z0,( )

    R0---------------------

    T R z0,( )

    R0---------------------

    1 R z,( )

    R------------------

    T R z,( )

    R------------------

    1=

    R z,( )

    1[ ] R z,( )

    2[ ] R z,( )

    N[ ] R z,( )

    = k[ ] R z,( ) u k( ) Ri k( )

    u2 k( ) R2i

    2 k( )+------------------------------------------=

    2 Preliminary Example

  • 8/12/2019 Gevorderde Systeemidentificatie

    28/243

    28/243

    2. Preliminary Example

    2.l References

    Billingsley, P. (1995). Probability and Measure. Wiley, New York.Brillinger, D. R. (1981). Time Series: Data Analysis and Theory. McGraw-Hill, New York.Caines, P. E. (1988). Linear Stochastic Systems. Wiley, New York.Chow, Y. S. and H. Teicher (1988). Probability Theory: Independence, Interchangeability,Martingales (2nd edition).Springer-Verlag, New York.

    Fuller, W. A. (1987). Measurement Error Models. Wiley, New York.Lukacs, E. (1975). Stochastic Convergence. Academic Press, New York.Pintelon, R. and J. Schoukens (2012). System Identification: a Frequency Domain

    Approach.IEEE Press, Piscataway, New Jersey (second edition).

    3 Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    29/243

    29/243

    3. Nonparametric models of LTI systems

    3.a Problem statement 30

    3.b Periodic excitations - errors-in-variables problem 323.c Measurement example: octave bandpass filter 373.d Arbitrary excitations - output error problem 383.e Simulation example: FRF and variance estimate using arbitrary input 413.f Nonlinear systems - introduction 43

    3.g Nonlinear systems - noisy output measurements 483.h Simulation example: FRF estimate in the presence of nonlinear distortions 523.i Nonlinear systems - noisy input/output measurements 543.j Measurement example: the open loop gain of an operational amplifier 563.k Multivariable systems - periodic excitations 57

    3.l MIMO experiment: identification d-axis synchronous machine 613.m MIMO experiment: vibrating mechanical structure 653.n Multivariable systems - random excitations 673.o MIMO simulation example: discrete-time system 683.p References 70

    3 Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    30/243

    30/243

    3. Nonparametric models of LTI systems

    3.a Problem statement

    Noisy observations

    - periodic signals

    and

    - arbitrary signals

    and

    Ng k( )

    Ug k( )

    MU k( )

    U k( ) Y k( )

    MY k( )

    Np k( )

    G0 j( )

    Ng k( ) generator noise

    Np k( ) process noise

    MU k( ) input measurement noise

    MY k( ) output measurement noise

    Y k( ) Y0 k( ) NY k( )+=

    U k( ) U0 k( ) NU k( )+=

    Y0 k( ) G0 jk( )U0 k( )=

    U0 k( ) Ug k( )= NYk( ) G0 jk( )Ng k( ) Np k( ) MY k( )+ +=

    NUk( ) Ng k( ) MUk( )+=

    Y0 k( ) G0 jk( )U0 k( )=U0 k( ) Ug k( ) Ng k( )+=

    NY k( ) Np k( ) MY k( )+=

    NU k( ) MU k( )=

    3 Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    31/243

    31/243

    3. Nonparametric models of LTI systems

    3.a Problem statement (contd)

    Nonparametric representation

    Frequency response function,

    (Co-)variances circular complex distributed noise

    ,

    and

    G0 jk( ) k 1 2 , ,=

    Y2 k( ) var NY k( )( ) NY k( )

    2{ }= =

    U2 k( ) var NU k( )( ) NU k( )

    2{ }= =

    YU2 k( ) covar NY k( ) NU k( ),( ) NY k( )NU k( ){ }= =

    k 1 2 , ,=

    NY2 k( ){ } 0=

    NU2 k( ){ } 0=

    NY k( )NU k( ){ } 0=

    3 Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    32/243

    32/243

    3. Nonparametric models of LTI systems

    3.b Periodic excitations - errors-in-variables problem

    Noisy input-output measurements

    Observe consecutive periods of the steady state response

    Sample means

    ,

    Sample (co-)variances

    , ,

    M

    m 1= 2 M

    NT M N= data points

    N data points

    Y k( ) 1

    M----- Y m[ ] k( )

    m 1=

    M

    = U k( ) 1

    M----- U m[ ] k( )

    m 1=

    M

    =

    Y2

    k( ) 1

    M M 1( )------------------------ Y m[ ] k( ) Y k( )

    2

    m 1=

    M

    = U2

    k( ) 1

    M M 1( )------------------------ U m[ ] k( ) U k( )

    2

    m 1=

    M

    =

    YU2

    k( ) 1

    M M 1( )------------------------ Y m[ ] k( ) Y k( )( ) U m[ ] k( ) U k( )( )m 1=M

    =

    3 Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    33/243

    33/243

    3. Nonparametric models of LTI systems

    3.b Periodic excitations - errors-in-variables problem (contd)

    Maximum likelihood estimate frequency response function

    is independent (over ), circular complex normally distributed Gaussian probability density function of the measurements

    with

    , and

    Gaussian ML cost function

    Eliminate ,

    Z m[ ] Y m[ ] k( ) U m[ ] k( ),[ ]T= mZ

    fZ

    Z( ) fZ

    m[ ] Z m[ ] ( )m 1=

    M

    =

    1

    2M det CZ( )m 1=M

    --------------------------------------------exp Z m[ ] Zp( )HCZ1 Z m[ ] Zp( )m 1=

    M

    ( )=

    ZpT G jk( ),[ ]T= Zp

    Yp k( )

    Up k( )= CZ Cov Z

    m[ ]( ) Y

    2 k( ) YU2 k( )

    YU2 k( ) U

    2 k( )= =

    VML G jk( ) Zp Z, ,( ) Z m[ ] Zp( )HCZ1 Z m[ ] Zp( )m 1=M

    1 G jk( ),[ ]Zp+=

    Zp

    GML jk( ) Y k( )U k( )-----------

    M 1 Y m[ ] k( )m 1=

    M

    M 1 U m[ ] k( )m 1=

    M

    -------------------------------------------= =

    3 Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    34/243

    34/243

    3. Nonparametric models of LTI systems

    3.b Periodic excitations - errors-in-variables problem (contd)

    Maximum likelihood estimate frequency response function (contd)

    Properties ML estimate FRF

    - consistent ( )

    - asymptotically circular complex normally distributed- asymptotically efficient

    - robust w.r.t. independence and normality assumptions- expected value exists bias expression

    - variance does not exist

    Cramr-Rao lower bound

    where

    GML jk( ) Y k( )

    U k( )-----------

    1

    M----- Y m[ ] k( )

    m 1=

    M

    1

    M----- U m[ ] k( )

    m 1=

    M

    ---------------------------------------= =

    M

    varG jk

    ( )( ) G0

    jk

    ( ) 2

    Y2 k( )

    Y0 k( ) 2-----------------

    U2 k( )

    U0 k( ) 2------------------ 2Re

    YU2 k( )

    Y0 k( )U0 k( )-------------------------( )+

    X

    2 O 1

    M-----( )=

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    35/243

    35/243

    3. Nonparametric models of LTI systems

    3.b Periodic excitations - errors-in-variables problem (contd)

    Maximum likelihood estimate frequency response function (contd)Relative bias on FRF estimate

    where

    if

    Asymptotic ( ) variance

    with

    b k( ) G jk( ){ }

    G0

    jk( )

    ---------------------------- 1 exp U0 k( )

    2

    U2

    k( )

    ------------------( ) 1

    YU2 k( )

    U

    k( )Y

    k( )--------------------------

    U0 k( ) U k( )

    Y0

    k( ) Y

    k( )------------------------------

    = =

    b k( ) 1 410< min U0 k( )

    U k( ) Y0 k( )

    Y k( ),( ) 10 dB>

    M GML jk( ) G0 jk( ) G k( )+

    G k( ) G0 jk( ) 1

    M-----

    NYm[ ] k( )

    Y0 k( )-----------------m 1=M

    1

    M-----

    NUm[ ] k( )

    U0 k( )-----------------m 1=M

    =

    varG k( )( ) G0 jk( ) 2

    Y2 k( )

    Y0 k( )2

    -----------------

    U2 k( )

    U0 k( )2

    ------------------ 2Re

    YU2 k( )

    Y0 k( )U0 k( )-------------------------( )+

    =

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    36/243

    36/243

    3. Nonparametric models of LTI systems

    3.b Periodic excitations - errors-in-variables problem (contd)

    Maximum likelihood estimate frequency response function (contd)Uncertainty bounds

    with

    % confidence region = circle with radius

    Notes:- uncertainty bound accurate if

    - radius

    - decrease uncertainty FRF estimate: large for a given

    - increase frequency resolution : small for a given

    GML jk( ) G0 jk( ) AsNc0 G2

    k( ),( )

    G2

    k( ) GML jk( )2 Y

    2k( )

    Y k( )2

    ---------------

    U2

    k( )

    U k( )2

    ---------------- 2Re

    YU2

    k( )

    Y k( )U k( )

    ---------------------( )+

    =

    1 p( )log G k( )

    U0 k( ) U

    k( ) 20 dB>

    0.95= 3 G k( )

    M NT M N=

    s N M NT M N=

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    37/243

    37/243

    p y

    3.c Measurement example: octave bandpass filter

    - multisine excitation , and- points per period, periods

    -120

    -100

    -80

    -60

    -40

    -20

    0

    0 300 600 900 1200 1500 1800

    Amp

    litude

    (dB)

    Frequency (Hz)

    -180

    -90

    0

    90

    180

    0 300 600 900 1200 1500 1800

    P

    hase

    (deg.)

    Frequency (Hz)

    [[[

    [[[[[[

    [

    [[

    [[[

    [

    [

    [

    [

    [[

    [

    [[

    [

    [

    [[[[[[[

    [[

    [

    [

    [

    [[[[

    [

    [

    [

    [[[

    [

    [[[

    [[[

    [

    [[

    [[[

    [[[[[

    [

    [

    [[[[[

    [

    [

    [[

    [

    [

    [

    [

    [

    [

    [[[[[[

    [[

    [[[[

    [

    [

    [

    [

    [

    [

    [[[

    [

    [

    [

    [[[[[[

    [

    [

    [

    [

    [

    [[[

    [

    [

    [[[[[[

    [

    [[[[

    [

    [[

    [

    [[[[[[

    [[

    [

    [

    [[[

    [

    [[[[[

    [

    [

    [

    [

    [[

    [

    [[

    [

    [[[[[[[[

    [[

    [[[[[[

    [

    [

    -100

    -80

    -60

    -40

    -20

    0

    20

    0 300 600 900 1200 1500 1800

    Amplitude(dB)

    Frequency (Hz)

    [[[

    [

    [[[[[[[

    [

    [[[

    [[[[[[[

    [[[[[[[[[

    [

    [

    [[

    [[[

    [[[[[[

    [

    [[[[[[[[[[[[

    [

    [

    [[[

    [

    [[

    [

    [[[[

    [

    [[[[[

    [[

    [

    [[[

    [

    [[[[

    [[[

    [

    [

    [

    [

    [

    [

    [[

    [

    [[

    [

    [

    [[

    [[

    [[

    [

    [[

    [

    [

    [[[

    [

    [

    [[[

    [[[

    [

    [

    [[

    [[[

    [

    [

    [

    [

    [

    [[[[

    [[

    [

    [

    [[

    [[

    [[

    [[

    [[

    [

    [

    [

    [[[

    [[

    [

    [

    [[

    [[[[

    [

    [

    [[

    [

    [

    [

    [

    [

    [

    -100

    -80

    -60

    -40

    -20

    0

    20

    0 300 600 900 1200 1500 1800

    Amplitude(dB)

    Frequency (Hz)

    kf0 k 1 3 9 11 17 19 737, , , , , , ,= 0 fs 211 2.38 Hz=N 2048= M 8=

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    38/243

    38/243

    p y

    3.d Arbitrary excitations - output error problem

    Noisy output measurements, known input Divide the input-output records in segments

    Leakage reduction (Schoukens et al.,2006)- as small as possible for a given

    - (better than Hann window!)

    Sample auto- and cross-power spectra

    , ,

    M

    m 1= 2 M

    NT M N= data points

    N data points

    M NT

    YDm[ ] diffY m[ ]( )= UD

    m[ ] diffU m[ ]( )=,

    SYD k( ) 1

    M----- YD

    m[ ] k( )2

    m 1=

    M

    = SUD k( ) 1

    M----- UD

    m[ ] k( )2

    m 1=

    M

    =

    S

    YD

    UD k( )

    1

    M----- YDm[ ]

    k( )UDm[ ]

    k( )m 1=

    M

    =

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    39/243

    39/243

    p y

    3.d Arbitrary excitations - output error problem (contd)

    Least squares estimator

    Minimise w.r.t.

    Sample variance

    Asymptotic ( ) properties LS estimate FRF forknown fixed input- consistent

    - asymptotically circular complex normally distributed- asymptotically efficient- expected value and variance exist- not robust w.r.t. input measurement noise

    VLS G jk 1 2+( ) Z,( ) YDm[ ] k( ) G jk 1 2+( )UD

    m[ ] k( ) 2

    m 1=

    M

    =

    G jk 1 2+( )

    GLS jk 1 2+( ) SYDUD k( )

    SUD k( )--------------------=

    Y2 k 1 2+( ) M

    2 M 1( )---------------------- SYD k( )

    SYDUD k( )2

    SUD k( )-------------------------

    =

    M

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    40/243

    40/243

    3.d Arbitrary excitations - output error problem (contd)

    Least squares estimator (contd)Uncertainty bounds for fixed input

    with

    % confidence region = circle with radius

    Notes:- decrease leakage error: small for a given

    - decrease uncertainty FRF estimate: large for a given- frequency resolution FRF estimate

    GLS jk( ) G0 jk( ) AsNc0 G2

    k( ),( )

    G2

    k 1 2+( ) YD

    2k( ) M

    SUDUD k( )------------------------

    2 Y2

    k 1 2+( ) M

    SUDUD k( )-----------------------------------------= =

    1 p( )log G k( )

    M NT M N=

    M NT M N=

    s N

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    41/243

    41/243

    3.e Simulation example: FRF and variance estimate using arbitrary input

    0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

    -4

    -2

    0

    2

    4

    input

    number of points

    0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000-6

    -4

    -2

    0

    2

    4

    6

    output

    number of points

    N 5000= M, 2=

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    42/243

    42/243

    3.e Simulation example: FRF estimate using arbitrary input (contd)

    Note: variance estimate averaged over 30 frequencies

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-30

    -25

    -20

    -15

    -10

    -5

    0

    5

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2-30

    -25

    -20

    -15

    -10

    -5

    0

    5

    10

    15

    FRF Variance output noise

    estimate

    true value

    var(G)

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    43/243

    43/243

    3.f Nonlinear systems - introduction

    Class of excitation signals with the samepower spectrum:- Gaussian noise- periodic Gaussian noise- random phase multisine

    with, and independent of

    user defined, and

    power is independent of

    y0 t( )

    yS t( )

    y0 t( )yR t( )

    Gaussian noise WienerSystems

    u t( ) GBLA j( ) =

    G0 j( ) GB j( )+

    u t( ) F 1 2/

    Ukej 2kfs N( )t

    k F= k 0,

    F

    =

    F N 2< F N N

    Uk ej Uk{ } 0=

    N 1 u2 nTs( )n 0=N 1

    N

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    44/243

    44/243

    3.f Nonlinear systems - introduction (contd)

    Wiener systems:

    - steady state response has same period as input (PISPO)- saturation, discontinuities (e.g. relays) are allowed- no chaos nor bifurcations

    y0 t( )

    yS t( )

    y0 t( )yR t( )

    Gaussian noise WienerSystems

    u t( ) GBLA j( ) =

    G0 j( ) GB j( )+

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    45/243

    45/243

    3.f Nonlinear systems - introduction (contd)

    :- true underlying linear system (if it exists)

    :- bias contribution- depends on input power spectrum and odd nonlinear distortions only- smooth function of the frequency

    :- best linear approximationor related linear dynamic systemor LTI secondorder equivalent

    - can be approximated very well by a rational form in

    yS t( )

    y0 t( )yR t( )u t( ) GBLA s( ) =

    G0 s( ) GB s( )+

    Ys k( )

    Y0 k( )U k( )

    GBLA jk( )YR k( )

    G0 s( )

    GB s( )

    GBLA s( )

    s

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    46/243

    46/243

    3.f Nonlinear systems - introduction (contd)

    :- periodic signal

    - depends on input power spectrum and the even and odd nonlinearities- zero mean

    - uncorrelated with - but not independent of -

    - not normally distributed

    yS t( )

    y0 t( )yR t( )u t( ) GBLA s( ) =

    G0 s( ) GB s( )+

    Ys k( )

    Y0 k( )U k( )

    GBLA jk( )YR k( )

    ys t( )

    u t( )

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    47/243

    47/243

    3.f Nonlinear systems - introduction (contd)

    :

    - uncorrelated with but notindependent of

    -

    - is asymptotically uncorrelated over (cumulant mixing over )

    - asymptotically normally distributed

    - is a smooth function of the frequency

    Note: expectations are taken over the different random realisations of the excitation

    yS t( )

    y0 t( )yR t( )u t( ) GBLA s( ) =

    G0 s( ) GB s( )+

    Ys k( )

    Y0 k( )U k( )

    GBLA jk( )YR k( )

    Ys k( )

    Ys k( )U k( ){ } 0= Ys k( ) U k( )

    Ys k( ){ } 0=

    Ys k( ) k k

    Ys k( ) 2{ }

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    48/243

    48/243

    3.g Nonlinear systems - noisy output measurements

    :

    - independent of-

    - asymptotically normally distributed

    - asymptotically independent over

    - is a smooth function of the frequency

    Question- distinction between and ?

    GBLA s( )

    Gaussian noiseyS t( )

    yR t( )

    ny t( )

    y t( )y0 t( )u0 t( )

    NY k( )

    U0 k( )

    NY k( ){ } 0=

    k

    NY k( )2{ }

    ys t( ) ny t( )

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    49/243

    49/243

    3.g Nonlinear systems - noisy output measurements (contd)

    FRF measurement using random phase multisine

    FRF measurement using Gaussian noise

    periodstransient

    1 2 P

    U0p[ ]

    U0= Ysp[ ]

    Ys= NYp[ ], ,

    GML GBLA Ys U0 N Y U0+ +=

    varGML( ) var NYp[ ]( ) P U0

    2( )=

    segments

    1 2 P

    U0p[ ]

    Ysp[ ]

    NYp[ ], ,

    GLS GBLA SYsU0 S

    U0U0 SNYU0 SU0U0+ +=

    varGLS( ) var NYp[ ]

    ( ) var Ysp[ ]

    ( )+( ) PSU0U0( )=

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    50/243

    50/243

    3.g Nonlinear systems - noisy output measurements (contd)

    FRF measurement using random phase multisine (contd)

    ...

    Mr

    ealizations

    transient Pperiods

    ...

    ...

    ...

    G m p,[ ] Y m p,[ ]

    U0

    m[ ]------------- GBLA

    YSm[ ]

    U0

    m[ ]----------

    NYm p,[ ]

    U0

    m[ ]--------------+ += =

    G 1[ ] n2 1[ ],

    G 2[ ]

    n2 2[ ],

    G M[ ]

    n2 M[ ],

    GML n2,

    ML2

    G 1 1,[ ] G 1 2,[ ] G 1 P,[ ]

    G 2 1,[ ]

    G 2 2,[ ]

    G 2 P,[ ]

    G 2 P,[ ]

    G M 1,[ ]

    G M 2,[ ]

    G M P,[ ]

    3. Nonparametric models of LTI systems

  • 8/12/2019 Gevorderde Systeemidentificatie

    51/243

    51/243

    3.g Nonlinear systems - noisy output measurements (contd)

    FRF measurement using random phase multisine (contd)Sample mean and sample variance of each realisation

    Sample mean and sample variance of the mean values

    Properties

    Note the asymmetric averaging of and

    G m[ ] 1

    P--- G

    m p,[ ]

    p 1=

    P

    =

    n2 m[ ] 1

    P P 1( )--------------------- G

    m p,[ ] G m[ ] 2

    p 1=

    P

    = n2 1

    M2------- n

    2 m[ ]m 1=

    M

    =,

    GML1

    M

    ----- G m[ ]

    m 1=

    M

    =

    ML2 1

    M M 1( )------------------------ G

    m[ ]GML

    2

    m 1=

    M

    =

    n2

    { } varN

    Y

    ( )

    MP U02---------------------=

    ML2{ }

    varYs( )

    M U02

    -----------------varNY( )

    MP U02

    ---------------------+=

    Ys NY

    3. Nonparametric models of LTI systems

    3 h Si l i l FRF i i h f li di i

  • 8/12/2019 Gevorderde Systeemidentificatie

    52/243

    52/243

    3.h Simulation example: FRF estimate in the presence of nonlinear distortions

    Multisine

    - , , period length-

    Gaussian noise- record length same measurement time

    - segment length same averaging of the stochastic NL distortions- same power spectrum

    u t( )5tanh

    x

    5---

    x t( ) z t( )

    Gaussian noise

    1 2 1 2 P1

    2

    M

    multisine

    M

    M P N( ) data points

    ny t( )y t( )

    M 4= P 2= N 12500=stdu t( )( ) 1=

    M P N

    N P

    3. Nonparametric models of LTI systems

    3 h Si l ti l FRF ti t i th f li di t ti ( td)

  • 8/12/2019 Gevorderde Systeemidentificatie

    53/243

    53/243

    3.h Simulation example: FRF estimate in the presence of nonlinear distortions (contd)

    Note:

    - random noise is times more averaged for the multisine experiment

    0 200 400 600 800 1000 1200 1400 1600 1800 2000-60

    -50

    -40

    -30

    -20

    -10

    0

    10

    0 200 400 600 800 1000 1200 1400 1600 1800 2000-60

    -50

    -40

    -30

    -20

    -10

    0

    10

    Random phase multisine Gaussian noise

    FRFtotal variance (noise + NL distortions)

    noise variance

    P 2=

    3. Nonparametric models of LTI systems

    3 i Nonlinear systems noisy input/output measurements

  • 8/12/2019 Gevorderde Systeemidentificatie

    54/243

    54/243

    3.i Nonlinear systems - noisy input/output measurements

    Noisy input/output measurements

    Two cases1. reference signal is not available

    2. reference signal is available

    Gaussian noise

    GBLA s( )

    yS t( )

    yR t( )

    ny t( )

    y t( )y0 t( )u0 t( )

    nu t( )

    u t( )

    A s( )r t( )

    y t( ) yR t( ) yS t( ) ny t( )+ +=

    u t( ) u0 t( ) nu t( )+=

    r t( )

    r t( )

    3. Nonparametric models of LTI systems

    3 i Nonlinear systems noisy input/output measurements (contd)

  • 8/12/2019 Gevorderde Systeemidentificatie

    55/243

    55/243

    3.i Nonlinear systems - noisy input/output measurements (cont d)

    Case 1- different realisations of periods each

    - for each realisation: sample mean and sample variance input/output spectraover the periods FRFs + noise variance (see section 3.b, p. 32-35)

    - sample mean and sample variance FRFs over the realisations (see section3.g, p. 51)

    Case 2- different realisations of periods each

    - calculate the input, output, and reference DFT spectra of each period- projection step

    or

    - variance analysis of the set of projected input/output DFT spectra

    , ,

    - calculate uncertainty on FRF (see section 3.b, p. 35)

    M P

    M P

    URm p,[ ] U

    m p,[ ]

    R m[ ]

    --------------= YRm p,[ ] Y

    m p,[ ]

    R m[ ]

    -------------=, URm p,[ ] U

    m p,[ ]

    ej R m[ ]

    ---------------= YRm p,[ ] Y

    m p,[ ]

    ej R m[ ]

    ---------------=,

    UR2

    varNU( ) YR2

    varNY( ) var Ys( ), YRUR2

    covarNY NU,( )

    3. Nonparametric models of LTI systems

    3 j Measurement example: the open loop gain of an operational amplifier

  • 8/12/2019 Gevorderde Systeemidentificatie

    56/243

    56/243

    3.j Measurement example: the open loop gain of an operational amplifier

    101

    102

    103

    104

    105

    -80

    -40

    0

    40

    80

    Frequency (Hz)

    Amplitude(dB)

    Open loop gain

    101

    102

    103

    104

    105

    -80

    -40

    0

    40

    80

    Frequency (Hz)

    Amplitude(dB)

    Open loop gain

    101

    102

    103

    104

    105

    -100

    -60

    -20

    20

    Frequency (Hz)

    Phase()

    Open loop gain

    101

    102

    103

    104

    105

    -100

    -60

    -20

    20

    Frequency (Hz)

    Phase()

    Open loop gain

    v- 6.1 mVrms=

    v- 12.3 mVrms=

    M 25 P, 5= =

    3. Nonparametric models of LTI systems

    3 k Multivariable systems - periodic excitations

  • 8/12/2019 Gevorderde Systeemidentificatie

    57/243

    57/243

    3.k Multivariable systems - periodic excitations

    Difficulty: from one experiment one cannot calculate the frequency response matrixSolution: perform experiments

    with:

    :

    , : -th input/output signal of the -th experiment

    regular? FRM

    Problem: which experiments guarantee that is regular and well conditioned?

    U k( )G jk( )

    Y k( )

    nu 1ny nu

    ny 1

    nu

    Y k( ) G jk( )U k( )=

    Y k( ) ny nu

    U k( ) nu nu

    U p q,[ ] k( ) Y p q,[ ] k( ) p q

    U k( )

    G jk( ) Y k( )U 1 k( )=

    U k( )

    3. Nonparametric models of LTI systems

    3 k Multivariable systems - periodic excitations (contd)

  • 8/12/2019 Gevorderde Systeemidentificatie

    58/243

    58/243

    3.k Multivariable systems periodic excitations (cont d)

    Guaranteed well conditioned MIMO experiments1. cyclic shifts of multisines with interleaved frequency grid,

    for example,

    Notes:- in theory one experiment is enough

    - generators interact perform experiments

    - loss in frequency resolution of a factor

    - elimination interaction generators by precompensation

    nu nu

    nu 3=

    U k( )

    U1 k( ) U3 k( ) U2 k( )

    U2 k( ) U1 k( ) U3 k( )

    U3 k( ) U2 k( ) U1 k( )

    =

    U1

    U2

    U3

    nu

    nu

    3. Nonparametric models of LTI systems

    3.k Multivariable systems - periodic excitations (contd)

  • 8/12/2019 Gevorderde Systeemidentificatie

    59/243

    59/243

    3.k Multivariable systems periodic excitations (cont d)

    Guaranteed well conditioned MIMO experiments (contd)2. with an orthogonal matrix

    ,

    for example,

    Notes:- maximal frequency resolution

    - different power for each input

    - nonlinear systems

    with , ,

    - elimination interaction generators by precompensation

    U k( ) U k( )W= W

    Wp q,[ ]1

    nu

    ---------exp j2 p 1( ) q 1( )

    nu-----------------------------------------( )= p q, 1 2 nu, , ,=

    nu 3=

    U k( ) U k( )

    3

    -----------

    1 1 1

    1 ej

    23

    ------e

    j2

    3------

    1 ej2

    3------

    ej

    23

    ------

    =

    U k( ) U k( )diag A1 k( ) A2 k( ) Anu k( ), , ,[ ]( )W=

    k( ) diag U1 k( ) U2 k( ) Unu k( ), , ,[ ]( )Wdiag 1 ej2 k( ) e jnu k( ), , ,[ ]( )=

    ej

    rk( ){ } 0= r 2 3 nu, , ,= k 1 2 F, , ,=

    3. Nonparametric models of LTI systems

    3.k Multivariable systems - periodic excitations (contd)

  • 8/12/2019 Gevorderde Systeemidentificatie

    60/243

    60/243

    3.k Multivariable systems periodic excitations (cont d)

    Variance analysis- over consecutive periods disturbing noise- over different realisations of full MIMO experiments stochastic NL

    distortions + disturbing noise

    3. Estimation parametric plant model with estimatednonparametric noise model

  • 8/12/2019 Gevorderde Systeemidentificatie

    61/243

    61/243

    3.l MIMO experiment: identification d-axis synchronous machine

    3x220V3x220V

    HP1430A/D-convertor

    HP1445AW-generator

    HP1430A/D-convertor

    HP1430A/D-convertor

    HP1430A/D-convertor

    HP1445AW-generator

    MX

    Icontroller

    Computer

    VXImeasurement

    system

    Armature Field

    Currentcontroller

    Thyristorrectifier

    +

    -

    Currentcontroller

    +

    -

    Thyristorrectifier

    ia

    if

    efea

    3. Estimation parametric plant model with estimatednonparametric noise model

  • 8/12/2019 Gevorderde Systeemidentificatie

    62/243

    62/243

    3.l MIMO experiment: identification d-axis synchronous machine (contd)

    -80

    -60

    -40

    -20

    0

    0.0

    05

    0.0

    10.1 1 1

    0

    1

    00

    3

    00

    Ia(dBA)

    f(Hz)

    -80

    -60

    -40

    -20

    0

    0.005

    0

    .01

    0.1 1 1

    0

    100

    300

    f(Hz)

    If

    (dBA)

    -120

    -100

    -80

    -60

    -40

    0.0

    05

    0.0

    10.1 1 1

    0

    1

    00

    3

    00

    f(Hz)

    Ea(dBV)

    -120

    -100

    -80

    -60

    -40

    0.005

    0

    .01

    0.1 1 1

    0

    100

    300

    f(Hz)

    Ef(dBV)

    M 8=

    N 65536=

    0.1 Hz 230 Hz,[ ]

    periods

    3. Estimation parametric plant model with estimatednonparametric noise model

  • 8/12/2019 Gevorderde Systeemidentificatie

    63/243

    63/243

    3.l MIMO experiment: identification d-axis synchronous machine (contd)

    102

    101

    100

    101

    102

    120

    80

    40

    0

    102

    101

    100

    101

    102

    120

    80

    40

    0

    102

    101

    100

    101

    102

    120

    80

    40

    0

    102

    101

    100

    101

    102

    120

    80

    40

    0

    measurednoise variance

    Z11dB( ) Z12dB( )

    Z22dB( )

    f(Hz)

    Z21dB( )

    f(Hz)

    impedance

    3. Estimation parametric plant model with estimatednonparametric noise model

  • 8/12/2019 Gevorderde Systeemidentificatie

    64/243

    64/243

    3.l MIMO experiment: identification d-axis synchronous machine (contd)

    0.01 0.1 1 10 100 0

    25

    50

    75

    100

    0.01 0.1 1 10 100 0

    25

    50

    75

    100

    0.01 0.1 1 10 100 0

    25

    50

    75

    100

    0.01 0.1 1 10 100 0

    25

    50

    75

    100

    Z11( )arg ( ) Z12( ) ( )arg

    Z22( ) ( )arg

    f(Hz)

    Z21( ) ( )arg

    f(Hz)

    3. Nonparametric models of LTI systems

    3.m MIMO experiment: vibrating mechanical structure

  • 8/12/2019 Gevorderde Systeemidentificatie

    65/243

    65/243

    u1

    u2

    r1

    r2

    y1

    y2

    nu ny 2= =

    Shaker Al-plate

    r1, r2: full random orthogonal multisines

    3. Nonparametric models of LTI systems

    3.m MIMO experiment: vibrating mechanical structure (contd)

  • 8/12/2019 Gevorderde Systeemidentificatie

    66/243

    66/243

    0 200 400 600 800 1000-100

    -50

    0

    50G11

    0 200 400 600 800 1000-100

    -50

    0

    50G12

    0 200 400 600 800 1000-100

    -50

    0

    50G21

    0 200 400 600 800 1000-100

    -50

    0

    50G22

    FRF

    total variance

    noise variance

    M 25 P, 100= =

    3. Nonparametric models of LTI systems

    3.n Multivariable systems - random excitations

  • 8/12/2019 Gevorderde Systeemidentificatie

    67/243

    67/243

    FRM measurement,

    where

    Noise variance measurement,

    segments

    1 2 M

    data pointsM N

    M nu

    G jk 1 2+( ) SYDUD k( )SUDUD1

    k( )=

    SXY1

    M----- X m[ ]Y m[ ]H

    m 1=

    M

    =

    M nu 1+CY k 1 2+( )

    M

    2 M nu( )------------------------ SYDYD k( ) S

    YDUD k( )SUDUD

    1k( )SYDUD

    Hk( )( )=

    Cov vec G jk 1 2+( )( )( ) 1

    M-----SUDUD

    Tk( ) C YD k( )

    2

    M-----SUDUD

    Tk( ) C Y k 1 2+( )= =

    3. Nonparametric models of LTI systems

    3.o MIMO simulation example: discrete-time system

  • 8/12/2019 Gevorderde Systeemidentificatie

    68/243

    68/243

    0 0.5 1 1.5 2-40

    -20

    0

    20

    0 0.5 1 1.5 2-20

    -10

    0

    10

    20

    0 0.5 1 1.5 2-40

    -20

    0

    20

    40

    0 0.5 1 1.5 2-20

    0

    20

    40

    0 0.5 1 1.5 2-40

    -20

    0

    20

    40

    0 0.5 1 1.5 2-40

    -20

    0

    20

    40

    true value

    estimate

    ny 3=

    nu 2=

    M nu 1+=

    N 5000=

    FRM

    3. Nonparametric models of LTI systems

    3.o MIMO simulation example: discrete-time system (contd)

  • 8/12/2019 Gevorderde Systeemidentificatie

    69/243

    69/243

    true value

    estimate

    0 1 2-5

    0

    5

    10

    0 1 2-10

    -5

    0

    5

    10

    0 1 2-5

    0

    5

    10

    0 1 2-10

    -5

    0

    5

    10

    0 1 2-20

    -10

    0

    10

    20

    0 1 2-10

    0

    10

    20

    0 1 2-5

    0

    5

    10

    0 1 2-10

    0

    10

    20

    0 1 2-10

    0

    10

    20

    ny 3=

    nu 2=

    M nu 1+=

    N 5000=

    noise power spectrum

    averaged over30 frequencies

    3. Nonparametric models of LTI systems

    3.p ReferencesBendat J S and A G Piersol (1980) Engineering Applications of Correlations and

  • 8/12/2019 Gevorderde Systeemidentificatie

    70/243

    70/243

    Bendat, J. S. and A. G. Piersol (1980). Engineering Applications of Correlations andSpectral Analysis. Wiley, New York.Brillinger, D. R. (1981). Time Series: Data Analysis and Theory. McGraw-Hill, New York.Dobrowiecki, T. and J. Schoukens (2007). Measuring a linear approximation to weaklynonlinear MIMO systems,Automatica, vol. 43, no. 10, pp. 1737-1751.Guillaume, P., I. Kollar and R. Pintelon (1996). Statistical Analysis of Nonparametric

    Transfer Function Estimates, IEEE Trans. Instrum. Meas.,vol. IM-45, no. 2, pp. 594-600.Guillaume, P., R. Pintelon and J. Schoukens (1996). Accurate Estimation of MultivariableFrequency Response Functions, Proceedings of the 13th IFAC Triennial World Conference,San Fransisco (USA), June 30 - July 5, pp. 423-428.Pintelon, R. and J. Schoukens (2012). System Identification: a Frequency Domain

    Approach.IEEE Press: Piscataway, New Jersey (second edition).Pintelon R. and J. Schoukens (2001). Measurement of frequency response functions usingperiodic excitations, corrupted by correlated input/output errors, IEEE Trans. Instrum. andMeas.,vol. 50, no. 6, pp. 1753-1760.Pintelon, R., Y. Rolain and W. Van Moer (2003). Probability density function for frequency

    response function measurements using periodic signals, IEEE Trans. Instrum. and Meas.,vol. 52, no. 1, pp. 61-68.Schoukens, J., R. Pintelon, T. Dobrowiecki, and Y. Rolain (2005). Identification of linearsystems with nonlinear distortions,Automatica, vol. 41, no. 2, pp. 491-504.Schoukens, J., Y. Rolain, and R. Pintelon (2006). Analysis of window/leakage effects in

    frequency response function measurements.Automatica, vol. 42, no. 1, pp. 27-38.

    4. Parametric models of LTI systems

    4.a Band-limited versus zero-order-hold measurement set up 724 b Band limited versus zero order hold signal assumption 77

  • 8/12/2019 Gevorderde Systeemidentificatie

    71/243

    71/243

    4.b Band-limited versus zero-order-hold signal assumption 77

    4.c Measurement example: first order system 784.d Band-limited versus zero-order-hold noise models 834.e Lumped versus distributed LTI systems 914.f Lumped systems 934.g Relation between input/output DFT spectra - plant model only 954.h Simulation example: 4th order discrete-time Butterworth filter 984.i Simulation example: 2nd order continuous-time system 1024.j Measurement example: octave bandpass filter 1034.k Measurement example: reduction of iron 104

    4.l Relation between input/output DFT spectra - plant and noise model 1054.m Plant and noise model structures 1064.n Parametrizations LTI systems 1084.o Multivariable systems 1114.p References 112

    4. Parametric models of LTI systems

    4.a Band-limited versus zero-order-hold measurement set up

  • 8/12/2019 Gevorderde Systeemidentificatie

    72/243

    72/243

    Zero-order-hold (ZOH)

    input known exactly output error problem actuator is part of the model perfect ZOH set up

    - , from DC to absolute calibration

    -

    Actuator

    y1 t( )

    +

    y kTs( )

    my t( )

    yAA t( )

    u t( )

    +

    np t( )

    Generator/

    udk( )

    ZOH

    uzoh t( )

    Gy

    s(

    )Gc s( )

    GZOH z 1( )

    G s( )Gact s( )controller

    Gact j( ) 1= Gy j( ) 1=

    GZOH z 1( ) 1 z 1( )Z L 1 G s( ) s{ }{ }=

    4. Parametric models of LTI systems

    4.a Band-limited versus zero-order-hold measurement set up (contd)

  • 8/12/2019 Gevorderde Systeemidentificatie

    73/243

    73/243

    Band-limited (BL)

    errors-in-variables problem actuator is not modelled perfect BL set up

    - for relative calibration

    - for

    y1 t( )u1 t( )

    +

    +

    +

    y kTs( )

    ng t( )

    mu t( ) my t( )uAA t( ) yAA t( )

    ug t( )

    +

    np t( )

    Generator

    udk( )

    ZOH

    uzoh t( )

    Gu

    s(

    )

    Gy

    s(

    )

    u kTs( )

    G s( )Gact s( )

    Gu j( ) Gy j( )= f fs 2

    4. Parametric models of LTI systems

    4.g Relation between input/output DFT spectra - plant model only (contd)

    Summary

    Y k( ) G ( )U k( ) T ( )+=

  • 8/12/2019 Gevorderde Systeemidentificatie

    97/243

    97/243

    with

    ,

    where

    and

    Y k( ) Gk ,( )U k( ) TG k ,( )+=

    G ,( ) B ,( )

    A ,( )------------------

    brrr 0=nb

    arrr 0=

    na--------------------------= = TG ,( )

    IG ,( )

    A ,( )-------------------

    igrr

    r 0=

    nig

    arrr 0=

    na---------------------------= =

    z 1 nig

    max na nb,( ) 1=

    s s, nig max na nb,( ) 1>

    =

    TG k ,( )0 for periodic and time-limited signals

    O N

    1 2/

    ( ) arbitrary signals

    =

    4. Parametric models of LTI systems

    4.h Simulation example: 4th order discrete-time Butterworth filter

    input output

  • 8/12/2019 Gevorderde Systeemidentificatie

    98/243

    98/243

    Cut off frequency

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 100 200 300n (samples)

    0

    0.2

    0.4

    0.6

    0.8

    1

    0 100 200 300n (samples)

    excitationu(nT

    s)

    responsey(nT

    s)

    p p

    fs 4

    4. Parametric models of LTI systems

    4.h Simulation example: 4th order discrete-time Butterworth filter (contd)

  • 8/12/2019 Gevorderde Systeemidentificatie

    99/243

    99/243

    Note:- random behaviour error on FRF due to random behaviour

    [[[[[[[[[[

    [

    [[[[[[[[[[[

    [[[[

    [[[[

    [

    [[[[[[[

    [

    [

    [[[[[[[[[[[[[[[[[

    [

    [[[[[[

    [

    [[[

    [[[[[[[

    -160

    -120

    -80

    -40

    0

    40

    0 0.1 0.2 0.3 0.4 0.5

    amplitude(dB)

    f/fs

    [

    [

    [

    [[[[[

    [[[

    [[

    [[

    [

    [

    [

    [[

    [[

    [

    [[

    [

    [

    [

    [

    [

    [[

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [[

    [

    [

    [

    [

    [

    [

    [

    [[

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    [

    -180

    -90

    0

    90

    180

    0 0.1 0.2 0.3 0.4 0.5

    phase()

    f/fs

    amplitude phase

    true value

    [

    Y k( )

    U k( )-----------

    TG zk1 ,( ) U k( ) U k( )

    4. Parametric models of LTI systems

    4.h Simulation example: 4th order discrete-time Butterworth filter (contd)

    difference true value and model

  • 8/12/2019 Gevorderde Systeemidentificatie

    100/243

    100/243

    -350

    -300

    -250

    -200

    -150

    -100

    -50

    0

    0 0.1 0.2 0.3 0.4 0.5

    error(dB)

    f/fs

    without transient

    with transient

    difference true value and model

    4. Parametric models of LTI systems

    4.h Simulation example: 4th order discrete-time Butterworth filter (contd)

  • 8/12/2019 Gevorderde Systeemidentificatie

    101/243

    101/243

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0 50 100 150

    transient

    response

    n (samples)

    impulse response TG z 1( )

    IG z 1( )

    A z 1( )---------------=

    4. Parametric models of LTI systems

    4.i Simulation example: 2nd order continuous-time system

    60

  • 8/12/2019 Gevorderde Systeemidentificatie

    102/243

    102/243

    true FRF

    error model

    without transient

    error estimate

    nig10=

    with transient

    -120

    -90

    -60

    -30

    0

    30

    60

    0 10 20 30 40 50 60 70

    amplitude(dB)

    f (Hz)

    4. Parametric models of LTI systems

    4.j Measurement example: octave bandpass filter

    plant modelna 6 nb, 4= =

  • 8/12/2019 Gevorderde Systeemidentificatie

    103/243

    103/243

    measured FRF(multisine excit.)

    error model withtransient nig

    6=

    error model

    error model

    without transient

    (multisine excit.)

    (arbitr. excit.)

    (arbitr. excit.)X

    X

    X

    X

    X

    X

    X

    X

    XXX

    X

    XXX

    X

    X

    XXXXX

    X

    XXXX

    X

    XX

    X

    XX

    XXXXXXXXXXXXXXXXXXX

    XXXXXXXXXXXXXXXXXX

    X

    X

    X

    X

    XXXXXXX

    X

    XX

    XX

    X

    X

    X

    X

    X

    XXXX

    XX

    X

    XXX

    XXXX

    X

    XX

    XX

    XX

    X

    X

    X

    XXX

    XXXXX

    XXXX

    X

    XX

    XXX

    X

    X

    XXXXX

    X

    XX

    X

    X

    XXX

    XX

    X

    X

    XX

    X

    X

    XXXX

    XX

    XX

    X

    XX

    X

    X

    XX

    X

    X

    XX

    XXX

    XXXXXXXXXXX

    XX

    X

    XX

    XXXX

    X

    XXXXXXXXXXXXXXXXXXXXXXX

    X

    XXXXXX

    X

    X

    XXXXXXXXXXXX

    X

    XXXXXXXXXXXXXXXXXX

    X

    X

    XXXX

    XXXXXX

    XXXXXXXXX

    X

    XXXX

    XX

    X

    X

    XXX

    X

    XXXX

    X

    XXXXXX

    X

    XX

    X

    X

    XXXX

    X

    X

    X

    X

    XX

    XX

    X

    X

    X

    X

    XX

    X

    X

    XXX

    X

    X

    XX

    X

    X

    X

    XXXXXX

    X

    X

    XX

    X

    XX

    X

    X

    X

    X

    XXXXXXXXX

    X

    X

    XX

    X

    XX

    X

    X

    X

    XX

    X

    XX

    X

    X

    X

    X

    X

    X

    XX

    XX

    X

    X

    X

    XX

    XXXX

    X

    XXXX

    X

    X

    X

    XX

    XXX

    XXXXXXXX

    XXXXX

    X

    XX

    X

    X

    XX

    XXX

    XX

    X

    X

    X

    X

    XXXXXXXXXX

    XXXX

    X

    X

    X

    XXX

    XXX

    X

    X

    X

    X

    X

    X

    XX

    X

    X

    X

    X

    X

    XX

    X

    X

    X

    X

    XX

    X

    X

    XX

    X

    X

    XX

    X

    X

    XX

    XXXXXXXXXXX

    -120

    -100

    -80

    -60

    -40

    -20

    0

    20

    0 0.5 1 1.5 2 2.5

    am

    plitude(dB)

    f (kHz)

    4. Parametric models of LTI systems

    4.k Measurement example: reduction of iron

    050

    amplitude phase

  • 8/12/2019 Gevorderde Systeemidentificatie

    104/243

    104/243

    -30

    -20

    -10

    0.01 0.1 1 10 100

    Phase()

    Frequency (Hz)

    -50

    0

    0.01 0.1 1 10 100

    Amp

    litude(dB

    )

    Frequency (Hz)

    -50

    0

    50

    0.01 0.1 1 10 100

    Amplitude(dB

    )

    Frequency (Hz)

    -30

    -20

    -10

    0

    0.01 0.1 1 10 100

    Phase

    ()

    Frequency (Hz)

    -domain modelwithout transient term

    -domain modelwith transient term

    model

    error

    + sine measurement

    standard deviation sine measurement

    na nb 3= =nig5=

    na nb 3= =

    s

    s

    4. Parametric models of LTI systems

    4.l Relation between input/output DFT spectra - plant and noise model

    e t( )

  • 8/12/2019 Gevorderde Systeemidentificatie

    105/243

    105/243

    where, , ,

    v t( )

    y t( )u t( )

    G ,( )

    H ,( )

    Y k( ) Gk ,( )U k( ) TG k ,( ) Hk ,( )E k( ) THk ,( )+ + +=

    G ,( ) B ,( )A ,( )------------------= TG ,( )

    IG ,( )A ,( )-------------------= Hk ,( )

    C ,( )D ,( )-------------------= TH ,( )

    IH ,( )D ,( )-------------------=

    4. Parametric models of LTI systems

    4.m Plant and noise model structures

    Frequency domain

    Y k( ) G ( )U k( ) H ( )E k( ) T ( ) T ( )+ + +=

  • 8/12/2019 Gevorderde Systeemidentificatie

    106/243

    106/243

    Model structures

    ARX: , ,

    ARMAX: , ,

    ARMA: ,

    BJ:

    Notes:- AR = autoregressive

    - MA = moving average- X = exogenous input- BJ = Box-Jenkins- hybrid BJ = CT plant + DT noise model- AR or MA or ARMA parametric noise modelling = time series analysis or

    spectral estimation (DT and CT)

    Y k( ) Gk ,( )U k( ) Hk ,( )E k( ) TG k ,( ) THk ,( )+ + +=

    C 1= D A= TH 0=

    D A= TH 0= nigmax na nb nc, ,( ) 1

    G 0= TG 0=

    D A

    4. Parametric models of LTI systems

    4.m Plant and noise model structures (contd)

    DT domain

    y t( ) G q ( )u t( ) H q ( )e t( )+=

  • 8/12/2019 Gevorderde Systeemidentificatie

    107/243

    107/243

    with the backward shift operator:

    and where

    CT domain

    with the derivative operator:

    and where

    y t( ) G q ,( )u t( ) H q ,( )e t( )+

    q z 1= qx t( ) x t 1( )=

    G q( )x t( ) g r( )qrr 0=

    ( )x t( ) g r( )x t r( )r 0=

    = =

    y t( ) G p ,( )u t( ) H p ,( )e t( )+=

    d

    dt

    -----= x t( ) dx t( )

    dt

    -----------=

    G p( )x t( ) g ( )x t ( )d

    0

    =

    4. Parametric models of LTI systems

    4.n Parametrizations LTI systems

    Plant model

    Rational form

  • 8/12/2019 Gevorderde Systeemidentificatie

    108/243

    108/243

    with

    Partial fraction expansion

    for

    with

    G ,( ) B ,( )A ,( )------------------

    brrr 0=nb

    arrr 0=

    na

    --------------------------= = T a0a1anab0b1bnb[ ]=

    G ,( )Lr

    r---------------

    r p=

    r 0

    p

    Sr

    r----------------

    r 1=

    q

    W w,( )+ += s s,=

    G z 1 ,( )Lrz

    1

    1 rz 1

    ---------------------

    r p=r 0

    p

    Srz

    1

    1 rz 1

    ---------------------

    r 1=

    q

    W z 1 w,( )+ +=

    T 1qRe 1( )Im 1( )Re p( )Im p( )[=

    S1SqRe L1( )Im L1( )Re Lp( )Im Lp( )w0wnw ]

    4. Parametric models of LTI systems

    4.n Parametrizations LTI systems (contd)

    Plant model (contd)

    State space representation for proper transfer functions ( )nb na

  • 8/12/2019 Gevorderde Systeemidentificatie

    109/243

    109/243

    p p p p ( )

    with

    Pole/zero representation

    disadvantage: ill conditioned for multiple poles/zeroes

    Systems with time delay

    b a

    G s ,( ) C sIna A( ) 1 B D+=

    G z 1 ,( ) z 1 C Ina

    z 1 A( ) 1 B D+=

    T vecTA( ) BTCD[ ]=

    G ,( ) K r( )r 1=

    nb

    r( )r 1=

    na

    ------------------------------------=

    G ,( ) e s B ,( )A ,( )------------------=

    G z 1 ,( ) z Ts B z 1 ,( )

    A z 1 ,( )--------------------=

    4. Parametric models of LTI systems

    4.n Parametrizations LTI systems (contd)

    Noise model

    Similar as plant model

  • 8/12/2019 Gevorderde Systeemidentificatie

    110/243

    110/243

    p

    Note

    Starting value problem parametrizations (see chapter 6)

    - rational form linear least squares- state space subspace methods

    - other parametrizations via rational form + back transformation

    4. Parametric models of LTI systems

    4.o Multivariable systems

    Left matrix fraction (LMF) description

    with , andG ,( ) A 1 ,( )B ,( )= A ny ny B ny nu

  • 8/12/2019 Gevorderde Systeemidentificatie

    111/243

    111/243

    Right matrix fraction (RMF) descriptionwith , and

    Common denominatorwith , and

    State spacesame form as SISO with , , , and

    Partial fraction expansionare residue matrices

    Notes:

    - advantage LMF: - common denominator: rank residue matrices cannot be imposed(too many parameters if residue matrices are not of full rank)

    - LMF, RMF, and state space: rank one residue matrices

    ( with )

    G ,( ) B ,( )A 1 ,( )= A nu nu B ny nu

    G ,( ) B ,( ) A ,( )= A 1 1 B ny nu

    A n n B n nu C ny n D ny nu

    Lr Sr, ny nu

    Y k( ) G ,( )U k( )= A ,( )Y k( ) B ,( )U k( )=

    F n n F 1 adjF( ) det F( )= det adjF( )( ) detF( )( )n 1=

    4. Parametric models of LTI systems

    4.p ReferencesBox, G. E. P. and G. M. Jenkins (1976).Time Series Analysis: Forecasting and Control.

    Holden-Day, Oakland.Hannan, E. J. and M. Deistler (1988). Linear Systems.Wiley: New York.Henrici P (1974) Applied and Computational Complex Analysis Wiley: New York vol 1

  • 8/12/2019 Gevorderde Systeemidentificatie

    112/243

    112/243

    Henrici, P. (1974).Applied and Computational Complex Analysis.Wiley: New York, vol. 1.Kailath, T. (1980). Linear Systems. Prentice Hall, Englewood Cliffs.Ljung, L. (1999). System Identification: Theory for the User. Prentice Hall: Upper Saddle

    River, New Jersey (second edition).Oldham, K. B., and J. Spanier (1974). The Fractional Calculus.Academic Press: New York.Peeters F., R. Pintelon, J. Schoukens and Y. Rolain (2001). Identification of Rotor-BearingSystems in the Frequency Domain. Part II: Estimation of Modal Parameters, MechanicalSystems and Signal Processing,vol. 15, no. 4, pp. 775-788.

    Pintelon, R. and J. Schoukens (2012). System Identification: a Frequency DomainApproach.IEEE Press: Piscataway, New Jersey (second edition).Pintelon R. and J. Schoukens (1997). Identification of Continuous-Time Systems UsingArbitrary Signals,Automatica,vol. 33, no. 5, pp. 991-994.Pintelon R., J. Schoukens and G. Vandersteen (1997). Frequency Domain System

    Identification Using Arbitrary Signals, IEEE Trans. Autom. Contr., vol. AC-42, no. 12, pp.1717-1720.Pintelon R., J. Schoukens, L. Pauwels, and E. Van Gheem (2005). Diffusion systems:stability, modeling and identification, IEEE Trans. Instrum. Meas.,vol. 54, no. 5, pp. 2061-2067.

    Sderstrm, T. and P. Stoica (1989). System Identification.Prentice Hall: Englewood Cliffs.

    5. Improved nonparametric models for LTI systems

    5.a Arbitrary excitations generalised output error 1145.b Simulation example: comparison LPM and SA 121

    5.c Measurement example: nonlinear electrical circuit 1235.d Arbitrary excitations errors-in-variables 1255 e Measurement example: flexural vibrations of a steel beam 127

  • 8/12/2019 Gevorderde Systeemidentificatie

    113/243

    113/243

    5.e Measurement example: flexural vibrations of a steel beam 1275.f Periodic excitations steady state 1305.g Measurement example: longitudinal vibrations of a plexiglass beam 140

    5.h Periodic excitations transient regime 1415.i Measurement example: flexural vibrations of a steel beam 1425.j Summary local polynomial methods 1445.k References 145

    5. Improved nonparametric models for LTI systems

    5.a Arbitrary excitations generalised output error

    e t( ) Y k( ) Gk( )U k( ) Tk( ) V k( )+ +=

  • 8/12/2019 Gevorderde Systeemidentificatie

    114/243

    114/243

    Goal: starting from and obtain a nonparametric estimate of

    - the frequency response function- the noise covariance matrix

    Difficulties: the presence of

    - for estimating- and for estimating

    Property:

    - and are smooth functions of the frequency

    G( )u t( ) y t( )

    v t( )

    H( ) V k( ) Hk( )E k( )=

    Tk

    ( ) TH

    k

    ( ) TG

    k

    ( )+=

    U k( ) Y k( ),

    G( )CV k( ) Cov V k( )( )=

    Tk( ) Gk( )

    Tk( ) Gk( )U k( ) CV k( )

    G( ), H( ), T( )

    5. Improved nonparametric models for LTI systems

    5.a Arbitrary excitations generalised output error (contd)

    e t( ) Y k( ) Gk( )U k( ) Tk( ) V k( )+ +=

  • 8/12/2019 Gevorderde Systeemidentificatie

    115/243

    115/243

    Basic idea solution: local polynomial approximation of and

    with Taylor series expansion

    and

    G( )u t( ) y t( )

    v t( )

    H( ) V k( ) Hk( )E k( )=

    Tk( ) THk( ) TG k( )+=

    G( ) T( )

    Y k r+( ) Gk r+( )U k r+( ) Tk r+( ) V k r+( )+ +=

    Gk r+( ) Gk( ) gs k( )rss 1=

    R

    O r N( ) R 1+( )( )+ +=

    Tk r+( ) Tk( ) ts k( )rss 1=R N 1 2/ O r N( ) R 1+( )( )+ +=

    Gk( ) gs k( )

    ts k( )Tk( )

    r n n 1+ 1 0 1 n 1 n, , , , , , , ,=

    Gk( ) g1 k( ) g2 k( ) gR k( ) Tk( ) t1 k( ) t2 k( ) tR k( )=

    5. Improved nonparametric models for LTI systems

    5.a Arbitrary excitations generalised output error (contd)

    ( )

    e t( ) Y k( ) Gk( )U k( ) Tk( ) V k( )+ +=

  • 8/12/2019 Gevorderde Systeemidentificatie

    116/243

    116/243

    Local polynomial model in the band :

    where

    and

    with

    G( )u t( ) y t( )

    v t( )

    H( ) V k( ) Hk( )E k( )=

    Tk( ) THk( ) TG k( )+=

    k n k n+,[ ]

    Yn Kn Vn+=

    Xn X k n( ) X k n 1+( ) X k( ) X k n+( )=

    K k r+( ) K1 r( ) U k r+( )

    K1 r( )= K1 r( )

    1

    r

    rR

    =

    5. Improved nonparametric models for LTI systems

    5.a Arbitrary excitations generalised output error (contd)

    H ( )

    e t( ) Y k( ) Gk( )U k( ) Tk( ) V k( )+ +=

  • 8/12/2019 Gevorderde Systeemidentificatie

    117/243

    117/243

    Local polynomial model

    Linear least squares estimate

    Residual linear least squares estimate

    with

    the degrees of freedom of the residuals

    G( )u t( ) y t( )

    v t( )

    H( ) V k( ) Hk( )E k( )=

    Tk( ) THk( ) TG k( )+=

    Yn Kn Vn+=

    YnKnH KnKnH( ) 1= G k( )

    V n Yn Kn= CV k( ) 1

    q---V nV n

    H=

    q 2n 1 R 1+( ) nu 1+( )+=

    dof

    5. Improved nonparametric models for LTI systems

    5.a Arbitrary excitations generalised output error (contd)

    Repeat the previous procedure at frequency for all the other frequencies , , k k 1+ k 2+

  • 8/12/2019 Gevorderde Systeemidentificatie

    118/243

    118/243

    Consequence

    the FRF and noise covariance estimates are correlated over thefrequency

    the correlation length is

    k 1+kk n 1 k n k n 1+ k 1 k n+ k n 1+ + k n 2+ +

    G

    k( ) C

    V k( )

    2n

    5. Improved nonparametric models for LTI systems

    5.a Arbitrary excitations generalised output error (contd)

    H ( )

    e t( ) Y k( ) Gk( )U k( ) Tk( ) V k( )+ +=

  • 8/12/2019 Gevorderde Systeemidentificatie

    119/243

    119/243

    Bias errorlocal polynomial method(LPM)

    Bias error spectral analysis approach

    with for win = diff, half sine; and for win = hann

    G( )u t( ) y t( )

    v t( )

    H( ) V k( ) Hk( )E k( )=

    Tk( ) THk( ) TG k( )+=

    G k( ){ } G0k( ) G0R 1+( ) k( )OintG n N( ) R 1+( )( ) OleakG n N( ) R 2+( )( )+ +=

    CV k( ){ } CV k( ) CV1( ) k( )OintH n N( ) G0R 1+( ) k( )OintG n N( )2 R 1+( )( ) G0R 1+( ) k( )( )H+ +=

    Gwin

    k( ){ } G0k( ) winG01( ) k( )OintG M N( )2( ) OleakG M N( )2( )+ +=

    CVwin

    k( ){ } CV k( ) win

    2----------CV

    2( ) k( )OintH M N( )2( ) win

    2----------G0

    1( ) k( )OintG M N( )2( ) G01( ) k( )( )H+ +=

    win 1 4= win 1 3=

    5. Improved nonparametric models for LTI systems

    5.a Arbitrary excitations generalised output error (contd)

    H ( )

    e t( ) Y k( ) Gk( )U k( ) Tk( ) V k( )+ +=

  • 8/12/2019 Gevorderde Systeemidentificatie

    120/243

    120/243

    Local polynomial approach Spectral analysis method

    smaller bias error larger bias error

    smaller uncertainty larger uncertainty

    larger frequency resolution smaller frequency resolution

    larger calculation time smaller calculation timev

    correlation length correlation length (rect),

    (diff, half sine), or (hanning)

    G( )u t( ) y t( )

    v t( )

    H( ) V k( ) Hk( )E k( )=

    Tk( ) THk( ) TG k( )+=

    2n 0

    1 2

    5. Improved nonparametric models for LTI systems

    5.b Simulation example: comparison LPM and SA

    50 50

    LPM and SA (hanning window): same dofnoise covariance estimates

  • 8/12/2019 Gevorderde Systeemidentificatie

    121/243

    121/243

    0 0.5 1 1.5 2100

    50

    0

    Frequency (Hz)

    FRF

    (dB)

    0 0.5 1 1.5 2100

    50

    0

    Frequency (Hz)

    FRF

    (dB)

    0 0.5 1 1.5 2100

    50

    0

    50

    Frequency (Hz)

    FRF(dB)

    0 0.5 1 1.5 2100

    50

    0

    50

    Frequency (Hz)

    FRF(dB)

    G0 G

    SA G0 G

    LPM G

    0

    5. Improved nonparametric models for LTI systems

    5.b MIMO simulation example: comparison LPM and SA (contd)

    LPM and SA (hanning window): same dofnoise covariance estimates 20 0

  • 8/12/2019 Gevorderde Systeemidentificatie

    122/243

    122/243

    0 0.5 1 1.5 260

    40

    20

    0

    Frequency (Hz)

    Noise

    var.(dB)

    0 0.5 1 1.5 240

    30

    20

    10

    Frequency (Hz)

    Noise

    var.(dB)

    0 0.5 1 1.5 240

    30

    20

    10

    0

    Frequency (Hz)

    N

    oisevar.(dB)

    0 0.5 1 1.5 260

    40

    20

    0

    Frequency (Hz)

    N

    oisevar.(dB)

    true value SA LPM

    5. Improved nonparametric models for LTI systems

    5.c Measurement example: nonlinear electrical circuit

    C 9.4 F=R 16 =

  • 8/12/2019 Gevorderde Systeemidentificatie

    123/243

    123/243

    White noise excitation with bandwidth of

    samples at :

    split in 20 blocks of samples each

    spectral analysis and local polynomial estimates on each block of samples

    sample means and sample variances over the 20 blocks

    y3 t( )u t( ) y t( ) L 1 H=

    1000 V 2

    200 Hz

    10400 s 20 MHz 215 600 Hz=

    N 520=

    N 520=

    5. Improved nonparametric models for LTI systems

    5.c Measurement example: nonlinear electrical circuit (contd)

    20

  • 8/12/2019 Gevorderde Systeemidentificatie

    124/243

    124/243

    0 50 100 150 200 25080

    60

    40

    20

    0

    20

    Freq. (Hz)

    FRF(dB)

    0 50 100 150 200 250120

    100

    80

    60

    40

    20

    Freq. (Hz)

    Noisevar.(

    dB) hann, diff

    LPM

    hann, diff

    LPM

    BJ BJ

    full lines: FRF

    dashed lines: std FRF full lines: noise var.dashed lines: std noise var.

    5. Improved nonparametric models for LTI systems

    5.d Arbitrary excitations errors-in-variables

    nc t( )

    Controller

  • 8/12/2019 Gevorderde Systeemidentificatie

    125/243

    125/243

    Indirect methodfor measuring the FRF (two possible cases):

    Linearplant and (non)linearactuator and controller:

    Nonlinearplant andlinearactuator and controller:

    Solution:

    Reference signal needed + modeling from to

    Plant

    np t( )

    r t( )

    my t( )

    y t( )

    mu t( )

    u t( )

    Actuator

    ng t( )

    G0 jk( ) Syr jk( )Sur1 jk( )=

    GBLA jk( ) Syr jk( )Sur1 jk( )=

    r t( ) r t( ) z t( ) yT t( ) uT t( )[ ]T=

    5. Improved nonparametric models for LTI systems

    5.d Arbitrary excitations errors-in-variables (contd)

    nc t( )

    Controller

  • 8/12/2019 Gevorderde Systeemidentificatie

    126/243

    126/243

    Modeling from reference to input and output:

    with

    Note: applicable to both spectral analysis and local polynomial methods

    Plant

    np t( )

    r t( )

    my t( )

    y t( )

    mu t( )

    u t( )

    Actuator

    ng t( )

    Z k( ) Gry k( )Gru k( )

    R k( ) THY k( )THU

    k( )VZ k( )+ += Z k( ) Y k( )

    U k( )=

    G k( ) Gry k( )Gru1 k( )=

    5. Improved nonparametric models for LTI systems

    5.e Measurement example: flexural vibrations of a steel beam

    0 x 0 Lx

  • 8/12/2019 Gevorderde Systeemidentificatie

    127/243

    127/243

    Beam parameters: length 61 cm, height 2.47 cm, width 4.93 mm, density 7800 kg/m3

    Excitation in the band [0 Hz, 6 kHz]:

    random binary sequence

    random phase multisine

    samples of the reference, force (input), and acceleration (output) signals at:

    spectral analysis and local polynomial estimates

    generalised output error and errors-in-variables estimates

    u t( )

    y t x,( )

    N 50 1024=

    s 10 MHz 29 19.53 kHz=

    5. Improved nonparametric models for LTI systems

    5.e Measurement example: flexural vibrations of a steel beam (contd)

    50 50

    OE-LPM EIV-LPM

    random binary sequence

  • 8/12/2019 Gevorderde Systeemidentificatie

    128/243

    128/243

    0 2 4 6

    -50

    0

    50

    Frequency (kHz)

    FRF

    (dB)

    0 2 4 6

    -50

    0

    50

    Frequency (kHz)

    FRF

    (dB)

    0.92 0.93 0.94 0.95

    40

    60

    80

    Frequency (kHz)

    FRF(

    dB)

    0.92 0.93 0.94 0.95

    40

    60

    80

    Frequency (kHz)

    FRF(

    dB)

    5. Improved nonparametric models for LTI systems

    5.e Measurement example: flexural vibrations of a steel beam (contd)

    20 50

  • 8/12/2019 Gevorderde Systeemidentificatie

    129/243

    129/243

    4.12 4.14 4.16 4.18 4.2

    -60

    -40-20

    0

    Frequency (kHz)

    FRF

    (dB)

    0.16 0.18 0.2-50

    0

    Frequency (kHz)

    FRF

    (dB)

    +local polynomial approachmultisine

    spectral analysis

    FRF std(FRF)

    olocal polynomial approachmultisine

    spectral analysis

    5. Improved nonparametric models for LTI systems

    5.f Periodic excitations steady state

    nc t( )

    Controller

  • 8/12/2019 Gevorderde Systeemidentificatie

    130/243

    130/243

    Two possible cases:

    Linearplant and (non)linearactuator and controller: Nonlinearplant andlinearactuator and controller:

    Required signals:

    (for multi-input and/or nonlinear plant only), and

    Plant

    np t( )

    r t( )

    my t( )

    y t( )

    mu t( )

    u t( )

    Actuator

    ng t( )

    G0 jk( ) Syr jk( )Sur1

    jk( )=GBLA jk( ) Syr jk( )Sur1 jk( )=

    r t( ) u t( ) y t( )

    5. Improved nonparametric models for LTI systems

    5.f Periodic excitations steady state (contd)

    withZ k( ) Z0 k( ) HZk( )EZ k( ) THZ k( )+ += Z k( ) Y k( )

    ( )=

  • 8/12/2019 Gevorderde Systeemidentificatie

    131/243

    131/243

    Noise transients (leakage) errors

    Smooth functions of the frequencies

    Increase the variability of the FRF measurement

    Introduce a correlation between consecutive signal periods

    Important for lightly damped systems (e.g. mechanical vibrating structures)

    k Z kU k( )

    THZk( ),

    5. Improved nonparametric models for LTI systems

    5.f Periodic excitations steady state (contd)

    noiseless signal noisy signal

    P 2=DFT spectrum of consecutive periods

  • 8/12/2019 Gevorderde Systeemidentificatie

    132/243

    132/243

    1 2 3 DFT bin 1 2 3 DFT bin

    noiseless signal noisy signal

    signal noise transientnoise

    Z k( ) Z0 k( ) HZk( )EZ k( ) THZ

    k( )+ += HZk( )EZ k( ) THZ

    k( )

    5. Improved nonparametric models for LTI systems

    5.f Periodic excitations steady state (contd)

  • 8/12/2019 Gevorderde Systeemidentificatie

    133/243

    133/243

    Basic idea solution: local polynomial expansion at the non-excited DFT lines

    with Taylor series expansion for ( is not used!)

    and

    kP 5+kP 3+kP 1+kP 3 kP 1kP

    DFT bin

    kP 2+ kP 4+kP 2

    THZ ( )

    Z kP mi( ) HZkP mi( )EZ kP mi( ) THZ kP mi( )+= HZkP mi( )EZ kP mi( ) THZ kP mi( )

    i 1 2 n, , ,= kP

    THZkP mi( ) THZ kP( ) trk( ) mi( )

    r

    r 1=

    R

    1

    PN------------O

    mi

    PN--------

    R 1+( )

    ( )+ += THZkP( ) trk( )

    THZ

    k

    ( ) t1

    k( ) t2

    k( ) tR

    k( )=

    5. Improved nonparametric models for LTI systems