Extra oefening hoofdstuk 1 -...

15
134 Extra oefening en Oefentoetsen helpdesk Extra oefening hoofdstuk 1 1a Invullen van a = 0 en t = 0 geeft B = 3 . Dus staat er 3,00 op de meter. b B = + + = 3 08 30 12 20 51 , , euro. c 25 3 08 12 15 = + + , , a 25 21 08 08 4 5 = + = = , , a a a Er is 5 km afgelegd. d Chauffeur X legt 10 km in bijvoorbeeld 10 minuten af. Dan is B = + + = 3 08 10 12 10 23 , , Chauffeur Y legt ook 10 km in 10 minuten af. Dan is B = + + = 3 08 10 12 20 35 , , De ritprijs van X is niet twee zo klein. 2a Een 80-voets container telt dubbel. b v t + = 2 100 c 80 100 60 40 20 0 30 40 50 20 10 0 t v d 3a V = + = + = 0 433 3 0 785 4 3 0 433 27 0 785 48 49 3 2 , , , , , 371 b,c V d d = + = + 0 433 5 0 785 5 54 125 3 925 3 2 2 , , , , V d d = + = + 0 433 10 0 785 10 433 7 85 3 2 2 , , , V d d = + = + 0 433 15 0 785 15 1461 375 11 775 3 2 2 , , , , 4 5 3 2 1 0 0 500 1000 1500 2000 2500 Vj d 8 7 6 10 9 t d V d d d d d = + = + = 0 433 0 785 0 433 0 785 1 218 3 2 3 3 , , , , , d 3 80 100 60 40 20 0 30 40 50 20 10 0 t v Moderne wiskunde 9e editie uitwerkingen havo A deel 2 © Noordhoff Uitgevers bv

Transcript of Extra oefening hoofdstuk 1 -...

Page 1: Extra oefening hoofdstuk 1 - wiskunde.stmichaelcollege.nlwiskunde.stmichaelcollege.nl/mw/ha/14_MW9_havo_A2_EO+OT_uitw.pdf · 135 Extra oefening en Oefentoetsen helpdesk Extra oefening

⁄134

Extra oefening en Oefentoetsen helpdesk

Extra oefening hoofdstuk 1

1a Invullen van a = 0 en t = 0 geeft B = 3 . Dus staat er € 3,00 op de meter. b B = + ⋅ + ⋅ =3 0 8 30 1 2 20 51, , euro. c 25 3 0 8 1 2 15= + + ⋅, ,a

25 21 0 8

0 8 4

5

= +=

=

,

,

a

a

a Er is 5 km afgelegd. d Chauffeur X legt 10 km in bijvoorbeeld 10 minuten af.

Dan is B = + ⋅ + ⋅ =3 0 8 10 1 2 10 23, , Chauffeur Y legt ook 10 km in 10 minuten af. Dan is B = + ⋅ + ⋅ =3 0 8 10 1 2 20 35, , De ritprijs van X is niet twee zo klein.

2a Een 80-voets container telt dubbel. b v t+ =2 100 c

80 1006040200

30

40

50

20

10

0

t

v

d

3a V = ⋅ + ⋅ ⋅ = ⋅ + ⋅ =0 433 3 0 785 4 3 0 433 27 0 785 48 493 2, , , , , 3371 b,c V d d= ⋅ + ⋅ ⋅ = +0 433 5 0 785 5 54 125 3 9253 2 2, , , ,

V d d= ⋅ + ⋅ ⋅ = +0 433 10 0 785 10 433 7 853 2 2, , , V d d= ⋅ + ⋅ ⋅ = +0 433 15 0 785 15 1461 375 11 7753 2 2, , , ,

4 532100

500

1000

1500

2000

2500

Vj

d876 109

t

d V d d d d d= ⋅ + ⋅ ⋅ = + =0 433 0 785 0 433 0 785 1 2183 2 3 3, , , , , dd3

80 1006040200

30

40

50

20

10

0

t

v

0pm_MW9_HAVOBB_WiskA_2-Uitw.indd 134 24-04-2008 09:33:27

Moderne wiskunde 9e editie uitwerkingen havo A deel 2 © Noordhoff Uitgevers bv© N

oord

hoff U

itgev

ers

bv

Page 2: Extra oefening hoofdstuk 1 - wiskunde.stmichaelcollege.nlwiskunde.stmichaelcollege.nl/mw/ha/14_MW9_havo_A2_EO+OT_uitw.pdf · 135 Extra oefening en Oefentoetsen helpdesk Extra oefening

⁄135

Extra oefening en Oefentoetsen helpdesk

Extra oefening hoofdstuk 2

1a Er blijft elke 10 minuten 97% over. De groeifactor per 10 minuten is 0,97. Het functievoorschrift is H t= ⋅840 0 97, mg met t in eenheden van 10 minuten. Je krijgt dan de volgende tabel:

tijd per 10 minuten hoeveelheid H in mg.0 840,001 814,802 790,363 766,654 743,655 721,346 699,707 678,71

b Kijk in de tabel bij t = 6 : 699 7, mg. c Hier hoort t = 9 bij en H( ) , ,9 840 0 97 638 599= ⋅ ≈ .

Dus is er 840 – 638,59 = 201,41 mg verdwenen.

d

12 15963

300

400

500

600

700

800H

t242118 3027

900

Naar 0 want steeds verdwijnt er elke 10 minuten 3%. e Plot de grafieken van Y H1 = en Y 2 450= .

Met intersect vind je t ≈ 20 5, . Dus na 20 5 10 205, × = minuten is nog 450 mg aanwezig.

2a Groeifactor is 1,3 per half jaar. b Groeifactor per maand is 1 3 1 0447

16, ,≈ en dus is het groeipercentage 4,47% per

maand. c A t t( ) ,= ⋅250 1 0447 d A( ) ,− = ⋅ ≈−12 250 1 0447 14812 dus meer dan 100. e Twee jaar is 24 maanden en A( ) ,24 250 1 0447 71424= ⋅ ≈ ratten

3a Na 20 dagen. b De toename eindigt bij 31 dagen. Vlak daarvoor is de toename het grootst want het

gaat dan in duizendtallen. Dus op dag 30. c Van dag 16 tot dag 29 is de groei van 2 naar 4000.

In 13 dagen is dat de factor 2000. De groeifactor per dag is dan 2000 1 8113 ≈ , .

d Van dag 32 tot dag 40 is er een afname van 6000 naar 600. Per 8 dagen is dat de factor 0,1. Per dag is de groeifactor 0 1 0 75

18, ,≈ .

Per dag verdwijnt er 25%.

0pm_MW9_HAVOBB_WiskA_2-Uitw.indd 135 24-04-2008 09:33:27

Moderne wiskunde 9e editie uitwerkingen havo A deel 2 © Noordhoff Uitgevers bv© N

oord

hoff U

itgev

ers

bv

Page 3: Extra oefening hoofdstuk 1 - wiskunde.stmichaelcollege.nlwiskunde.stmichaelcollege.nl/mw/ha/14_MW9_havo_A2_EO+OT_uitw.pdf · 135 Extra oefening en Oefentoetsen helpdesk Extra oefening

⁄136

Extra oefening en Oefentoetsen helpdesk

Oefentoets hoofdstuk 1 en 2

1a Havik: M = ≈1 250 26

6 02,

,,

Slechtvalk: M = ≈1 060 13

8 62,

,,

b Dit klopt niet, als M kleiner wordt bij dezelfde oppervlakte wordt de spanwijdte kleiner en de vleugels naar verhouding breder.

c,d,e

20 251510500

20

40

60

80

100

x

y

30

M = 3

parawing

glider

F-50

zweefvl.

M = 7

M = 12

M = 21

f Het visdiefje en de Fokker F50 hebben ongeveer dezelfde waarde van M.

2a Bijvoorbeeld T U= =17 30en . Tg = − ⋅ − ⋅ − =17 0 4 17 10 1 15 0430

100, ( ) ( ) , De uitspraak klopt.

b Neem op grafiek 2: T U= − =10 60en . Tg = − − ⋅ − − ⋅ − = −10 0 4 10 10 1 5 240

100, ( ) ( ) , Neem op grafiek 3: T U= =35 60en . Tg = − ⋅ − ⋅ − =35 0 4 35 10 1 3160

100, ( ) ( ) Bij grafiek 2 hoort Tg = −5 en bij grafiek 3 hoort Tg = 30 . c De laagste waarde voor Tg = 25 en de hoogste waarde voor Tg = 35 . d De gevoelstemperatuur wordt bij 10 °C niet beïnvloed door de luchtvochtigheid. e Klopt!

3a Acht jaar sparen dus 8% premie. Omdat 8% van 500 gelijk is aan 40 is het totale premiebedrag 8 40 320× = euro.

b Dan moet je nagaan of de premie voor elk jaar langer sparen met een vaste factor toeneemt.

Er geldt bijvoorbeeld 180125

1 44= , en 245180

1 36≈ , . Dus is er niet een vaste factor en is

er geen sprake van exponentieel toenemen van de premie.

0pm_MW9_HAVOBB_WiskA_2-Uitw.indd 136 24-04-2008 09:33:27

Moderne wiskunde 9e editie uitwerkingen havo A deel 2 © Noordhoff Uitgevers bv© N

oord

hoff U

itgev

ers

bv

Page 4: Extra oefening hoofdstuk 1 - wiskunde.stmichaelcollege.nlwiskunde.stmichaelcollege.nl/mw/ha/14_MW9_havo_A2_EO+OT_uitw.pdf · 135 Extra oefening en Oefentoetsen helpdesk Extra oefening

⁄137

Extra oefening en Oefentoetsen helpdesk

c Steeds moet je na een jaar het saldo vermenigvuldigen met 1,04 en er 250 optellen. Na zes jaar moet er nog 90 euro premie bij geteld worden.

1 januari van saldo

2000 250,00

2001 250 1 04 250 510 00× + =, ,

2002 510 1 04 250 780 40× + =, ,

2003 780 40 1 04 250 1061 62, , ,× + =

2004 1061 62 1 04 250 1354 08, , ,× + =

2005 1354 08 1 04 250 1658 24, , ,× + =

2006 1658 24 1 04 90 1814 57, , ,× + =

d 1814 57 1500 90 224 57, ,− − = euro e Stel groeifactor g per jaar. Dan moet gelden: 750 750 314 576⋅ = +g ,

Dus moet g g6 1064 57750

1064 57750

1 06

16

= ⇔ =

≈, , ,

Dus moet de rente dan 6% per jaar zijn. f Stel B is het bedrag wat je moet storten. Dan moet B ⋅ =1 04 20006, .

Dus is B = ≈20001 04

1580 636,

, euro.

4a Omdat de aantallen blankvoorns ver uit elkaar liggen (van 5 tot 400). b Ongeveer 40. c Lees voor elk jaar het gemiddelde aantal af. Dan krijg je de volgende tabel: jaar 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979

aantal 400 60 200 20 40 100 180 15 10 18

jaar 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990aantal 32 60 100 180 20 40 5 8 15 20 60

In 1972 is het aantal het meest toegenomen (+140). d In 1973. e De groeifactor over deze vijf jaar is 180

1018= .

Per jaar is de groeifactor 18 1 7815 ≈ , .

0pm_MW9_HAVOBB_WiskA_2-Uitw.indd 137 24-04-2008 09:33:27

Moderne wiskunde 9e editie uitwerkingen havo A deel 2 © Noordhoff Uitgevers bv© N

oord

hoff U

itgev

ers

bv

Page 5: Extra oefening hoofdstuk 1 - wiskunde.stmichaelcollege.nlwiskunde.stmichaelcollege.nl/mw/ha/14_MW9_havo_A2_EO+OT_uitw.pdf · 135 Extra oefening en Oefentoetsen helpdesk Extra oefening

⁄138

Extra oefening en Oefentoetsen helpdesk

Extra oefening hoofdstuk 3

1a 25 24 23 22 21 6 375600⋅ ⋅ ⋅ ⋅ =

b 25

525

5 2053130

=⋅

=!! !

c Het aantal combinaties vind je door het aantal permutaties door 5! te delen.

2a De volgorde is nu niet van belang. Dus 20

220

2 18190

=⋅

=!! !

b 20

520

5 1515504

=⋅

=!! !

3a Je kunt dit zien als 8 stappen in een rooster met 5 naar rechts en 3 omhoog.

Daarvoor zijn er 8

5

8

356

=

= mogelijkheden.

b Van 0 – 0 naar 3 – 1 zijn er 4

14

= scoreverlopen mogelijk.

Van 3 – 1 naar 5 – 3 zijn er 4

26

= scoreverlopen mogelijk.

Totaal zijn er 4 6 24× = mogelijke scoreverlopen.

4a 10 10 10 10 26 26 6 760 000⋅ ⋅ ⋅ ⋅ ⋅ = mogelijke postcodes b 9 10 10 10 21 21 3969 000⋅ ⋅ ⋅ ⋅ ⋅ = mogelijke postcodes c 9 10 10 9 21 21 3572100⋅ ⋅ ⋅ ⋅ ⋅ = postcodes voor adressen

5a Per vakje kun je wel of niet een gaatje prikken. Dus zijn er in eerste instantie 2 409612 = verschillende patronen. Het patroon zonder een gaatje telt niet mee. Dus zijn er 4095 patronen met één of meer gaatjes mogelijk.

b Je kiest uit 12 vakjes er 6. De volgorde is niet van belang. Dus zijn er nu 12

6924

= patronen mogelijk.

c In de 9 vakjes moeten dan nog 5, 6 of 7 gaatjes worden geprikt.

Dit geeft 9

5

9

6

9

7126 84 36 246

+

+

= + + = verschillende codes.

0pm_MW9_HAVOBB_WiskA_2-Uitw.indd 138 24-04-2008 09:33:27

Moderne wiskunde 9e editie uitwerkingen havo A deel 2 © Noordhoff Uitgevers bv© N

oord

hoff U

itgev

ers

bv

Page 6: Extra oefening hoofdstuk 1 - wiskunde.stmichaelcollege.nlwiskunde.stmichaelcollege.nl/mw/ha/14_MW9_havo_A2_EO+OT_uitw.pdf · 135 Extra oefening en Oefentoetsen helpdesk Extra oefening

⁄139

Extra oefening en Oefentoetsen helpdesk

Extra oefening hoofdstuk 4

1a In de derde week gaan er 220 dood. Dus is de kans 2201000

0 22≈ , . b Elke week gaan er insecten dood. Zo gaan er in de eerste week al 100 insecten dood.

Als benadering kun je zeggen dat deze 100 een halve week hebben geleefd. Op dezelfde manier hebben 50 insecten 1 1

2 week geleefd, hebben 550 insecten 2 12 week

geleefd, 220 insecten hebben 3 12 week geleefd. En hebben de laatste 80 zo’n 4 1

2 week geleefd.

na …weken 1

21 1

22 1

23 1

24 1

2

kans 0,10 0,05 0,55 0,22 0,08

c Levensverwachting: 12

12

12

12

120 10 1 0 05 2 0 55 3 0 22 4 0 08× + × + × + × + ×, , , , , == 2 63,

weken d Van de 850 insecten van twee weken oud zijn gaan er in de week daarna 550 dood.

Gemiddeld leven die nog een halve week. Zo leven er 220 nog anderhalve week en de laatste 80 leven gemiddeld nog twee en een halve week. De kansen hierop zijn

achtereenvolgens: 550850

0 65≈ , ; 220850

0 26≈ , en 80850

0 09≈ , .

na 2+ weken 1

21 1

22 1

2

kans 0,65 0,26 0,09

De totale levensverwachting van deze 850 insecten is dan 2 0 65 1 0 26 2 0 09 2 941

212

12+ × + × + × =, , , , weken.

2 Ze heeft vier tests nodig bij de volgorden: LLVV, LVLV en VLLV. P 4 testen( ) ,= ⋅ ⋅ ⋅ ⋅ ≈3 0 16974

123

118

1079

3a Er zijn vier mogelijke volgorden. P drie bruin( ) ( , ) , ,= ⋅ ⋅ ≈4 0 75 0 25 0 42193

b P P P P P( ) ( ) ( ) ( ( ) ( )) ( , ,2 3 4 1 0 1 1 0 25 4 0 24+ + = − + = − + ⋅ 55 0 75 0 94923 ⋅ ≈, ) ,

c P( ) , , ,24

20 25 0 75 0 21092 2=

⋅ ⋅ ≈

4a De kans op een goede buis is 0,97.

P goede( ) , , ,810

80 97 0 03 0 03178 2=

⋅ ⋅ ≈

b P goede( ) , , ,910

90 97 0 03 0 22819=

⋅ ⋅ ≈ en P goede( ) , ,10 0 97 0 737410= ≈

c P 8 of meer goede( ) , , , ,= + + =0 0317 0 2281 0 7374 0 99972 d P goede P 8 goede( ) ( ) , ,< = − ≥ = − =8 1 1 0 9972 0 0028

5a P ABB P BAB P BBA( ) ( ) ( ) ,= = = ⋅ ⋅ ≈1016

616

616 0 0879

b P ABB P BAB P BBA( ) ( ) ( ) ,= = = ⋅ ⋅ ≈1016

615

515 0 0893

c P ABB( ) ,= ⋅ ⋅ ≈1016

810

79 0 3889 ; P BAB( ) ,= ⋅ ⋅ ≈6

167

1089 0 0667 ; P BBA( ) ,= ⋅ ⋅ ≈6

168

1029 0 0667

dus niet gelijk.

0pm_MW9_HAVOBB_WiskA_2-Uitw.indd 139 24-04-2008 09:33:28

Moderne wiskunde 9e editie uitwerkingen havo A deel 2 © Noordhoff Uitgevers bv© N

oord

hoff U

itgev

ers

bv

Page 7: Extra oefening hoofdstuk 1 - wiskunde.stmichaelcollege.nlwiskunde.stmichaelcollege.nl/mw/ha/14_MW9_havo_A2_EO+OT_uitw.pdf · 135 Extra oefening en Oefentoetsen helpdesk Extra oefening

⁄140

Extra oefening en Oefentoetsen helpdesk

6a Maak een tabel met daarin het verschil.

verschil 1 2 3 4 5 61 0 1 2 3 4 52 1 0 1 2 3 43 2 1 0 1 2 34 3 2 1 0 1 25 4 3 2 1 0 16 5 4 3 2 1 0

Er zijn 6 paren met verschil 0, 10 met verschil 1, 8 met verschil 2, 6 met verschil 3, 4 met verschil 4 en 2 paren met verschil 5. Dus krijg je de kansverdeling:

verschil 0 1 2 3 4 5

kans 636

1036

836

636

436

236

b P Verschil groter dan 2( ) = =+ +6 4 236

13

c minimum 1 2 3 4 5 61 1 1 1 1 1 12 1 2 2 2 2 23 1 2 3 3 3 34 1 2 3 4 4 45 1 2 3 4 5 56 1 2 3 4 5 6

De kansverdeling is:

minimum 1 2 3 4 5 6

kans 1036

836

736

536

336

136

d P Minimum minstens 4( ) = + + =5 3 136

14

0pm_MW9_HAVOBB_WiskA_2-Uitw.indd 140 24-04-2008 09:33:28

Moderne wiskunde 9e editie uitwerkingen havo A deel 2 © Noordhoff Uitgevers bv© N

oord

hoff U

itgev

ers

bv

Page 8: Extra oefening hoofdstuk 1 - wiskunde.stmichaelcollege.nlwiskunde.stmichaelcollege.nl/mw/ha/14_MW9_havo_A2_EO+OT_uitw.pdf · 135 Extra oefening en Oefentoetsen helpdesk Extra oefening

⁄141

Extra oefening en Oefentoetsen helpdesk

Extra oefening hoofdstuk 5

1a

effect

geen

eff

ect

4 532100

1

2

3

4

5

6

6

b Op 6

415

= manieren.

c Er zijn steeds twee uitkomsten mogelijk: wel of geen effect. d n p= =6 0 75; ,

e P( ) , , ,X = =

⋅ ⋅ ≈46

40 75 0 25 0 29664 2

2a

0 2 4 6 8 10 121 3 5 7 9 11

X ≤ 5

X ≤ 8

5 < X ≤ 8

P P P( ) ( ) ( ) , , ,5 8 8 5 0 9983 0 8821 0 1162< ≤ = ≤ − ≤ ≈ − =X X X

b

0 2 4 6 8 10 121 3 5 7 9 11

X = 0

X ≥ 1

P P( ) ( ) , , ,X X≥ = − = ≈ − =1 1 0 1 0000 0 0138 0 9862 c

0 2 4 6 8 10 121 3 5 7 9 11

X = 4

X ≤ 4

X ≤ 3

P P( ) ( ) , , ,X X≥ = − = ≈ − =1 1 0 1 0000 0 0138 0 9862

3a Stel X is het aantal zure sinaasappels in de steekproef. X is binomiaal verdeeld met n p= =10 0 20en , . P niet kopen P P( ) ( ) ( ) , ,= > = − ≤ ≈ − =X X2 1 2 1 0 6778 0 32222

b E aantal zuur( ) ,= × =10 0 2 2

4a Stel X is aantal defecte vullingen in een doosje. X is binomiaal verdeeld met n p= =20 0 05en , . P P( ) ( ) , ,X X≥ = − = ≈ − =1 1 0 1 0 3585 0 6415

b Nu geldt n p= =20 0 05en , . P( ) ,X ≤ ≈2 0 1183

5a X is aantal voorstanders. 10 12 23 17 20 22 5 52

1805590180

31⋅ + ⋅ + ⋅ + + ⋅ = ≈...... ,,1

P P( ) ( ) , ,X X≥ = − ≤ ≈ − =175 1 174 1 0 4689 0 5311

0pm_MW9_HAVOBB_WiskA_2-Uitw.indd 141 24-04-2008 09:33:28

Moderne wiskunde 9e editie uitwerkingen havo A deel 2 © Noordhoff Uitgevers bv© N

oord

hoff U

itgev

ers

bv

Page 9: Extra oefening hoofdstuk 1 - wiskunde.stmichaelcollege.nlwiskunde.stmichaelcollege.nl/mw/ha/14_MW9_havo_A2_EO+OT_uitw.pdf · 135 Extra oefening en Oefentoetsen helpdesk Extra oefening

⁄142

Extra oefening en Oefentoetsen helpdesk

b Nu Bin(250, p) en P P( ) ( ) ,X X≥ = − ≤ >175 1 174 0 95 TI: Y1 = 1 – Binomcdf(250; X, 174) en lees in de tabel af wanneer deze kans groter is dan 0,95. Casio: Y1 = 1 – BINM Bcd(174: 250: X) en lees in de tabelfunctie af wanneer deze kans groter is dan 0,95. In beide gevallen vind je p ≈ 0 75, .

0pm_MW9_HAVOBB_WiskA_2-Uitw.indd 142 24-04-2008 09:33:28

Moderne wiskunde 9e editie uitwerkingen havo A deel 2 © Noordhoff Uitgevers bv© N

oord

hoff U

itgev

ers

bv

Page 10: Extra oefening hoofdstuk 1 - wiskunde.stmichaelcollege.nlwiskunde.stmichaelcollege.nl/mw/ha/14_MW9_havo_A2_EO+OT_uitw.pdf · 135 Extra oefening en Oefentoetsen helpdesk Extra oefening

⁄143

Extra oefening en Oefentoetsen helpdesk

Oefentoets hoofdstuk 3, 4 en 5

1a Voor de gasten zijn 10 plaatsen beschikbaar en dus zijn er 10 3628 800! = mogelijkheden.

b Dit kan op 12 479 001600! = manieren. c Laat de gastvrouw als eerste gaan zitten. Dan kan zij kiezen uit 12 mogelijkheden.

Daarna de gastheer, die heeft geen keuze! De 10 gasten kunnen daarna vrij kiezen. Dit alles geeft 12 1 10 43545600⋅ ⋅ =! manieren.

2a aantal in bus 1 (≤55) aantal in bus 2 (≤ 45)55 4254 4353 4452 45

b Voor de grote bus moet je 48 kiezen uit 82 bewoners. Dit kan op 82

481 30 1023

≈ ⋅, manieren.

c Om zeven begeleiders uit 15 te kiezen kan op 15

76435

= .

In totaal kun je dan op 82

48

15

78 35 1026

≈ ⋅, manieren een verdeling maken.

d De bewoners kunnen in 48 1 24 1061! ,= ⋅ volgorden instappen.

3a P 4 goed( ) , ,= ⋅ ⋅ ⋅ ≈ ⋅ ≈−440

339

238

137

1 094 10 0 00005 11

b P goed( ) ,3 4 440

339

238

3637

0 00158= ⋅ ⋅ ⋅ ⋅ ≈

c P goed( ) ,2 6 440

339

3638

3537

0 04136= ⋅ ⋅ ⋅ ⋅ ≈

P goed( ) ,1 4 440

3639

3538

3437

0 31251= ⋅ ⋅ ⋅ ⋅ ≈

P goed( ) ,0 3640

3539

3438

3337

0 64455= ⋅ ⋅ ⋅ ≈

aantal goed 0 1 2 3 4kans 0,64455 0,31251 0,04136 0,00158 0,00001

d E aantal goed( ) , , ,= × + × + ×0 0 64455 1 0 31251 2 0 041366 + 3 0 00158 4 0 00001 0 40001× + × =, , , e E uitbetaling per lot( ) , ,= × + ×25 0 04136 100 0 001558 + + × =10 000 0 00001 2 192, ,

Dus zal hij minimaal € 2,20 per lot laten betalen.

4a werkelijk test

0,0032 · 0,85 = 0,0027

0,0032 · 0,15 = 0,0005

0,9968 · 0,01 = 0,0100

0,9968 · 0,99 = 0,9868

0,9968

0,0032

0,85

0,15

0,85

0,15

ziek

gezond

ziek

gezond

ziek

gezond

b P verkeerde uitslag P ziek en test gezond( ) ( )= ++ =P gezond en test ziek( ) 0 0005 0 0100 0 0105, , ,+ =

0pm_MW9_HAVOBB_WiskA_2-Uitw.indd 143 24-04-2008 09:33:28

Moderne wiskunde 9e editie uitwerkingen havo A deel 2 © Noordhoff Uitgevers bv© N

oord

hoff U

itgev

ers

bv

Page 11: Extra oefening hoofdstuk 1 - wiskunde.stmichaelcollege.nlwiskunde.stmichaelcollege.nl/mw/ha/14_MW9_havo_A2_EO+OT_uitw.pdf · 135 Extra oefening en Oefentoetsen helpdesk Extra oefening

⁄144

Extra oefening en Oefentoetsen helpdesk

c P test gezond en toch ziek( ) , , ,= × =0 0032 0 15 4 8 ⋅⋅ −10 4 Als er 100 000 mensen onderzocht worden dan zijn er naar verwachting 100 000 4 8 10 484× ⋅ =−, zieke mensen die te horen krijgen dat ze gezond zijn.

d 0 0032 0 85 0 85 0 9968 0 01 0 01 0 00241, , , , , , ,× × + × × = Het onderzoek bij 100 000 mensen geeft dan naar verwachting zo’n 241 mensen met

einduitslag ziek.

5a Het vullen van de eerste netten kun je zien als een relatief kleine steekproef uit een grote populatie. Dan maakt het vrijwel niet uit of je die opvat als een steekproef met of zonder terugleggen. Tegen het eind is het geen steekproef meer uit een grote populatie. Er zijn op den duur minder dan 100 appels over. Dus dan maakt het wel degelijk uit.

b n p= =12 0 85en ,

c P( ) , , ,X = =

⋅ ⋅ ≈1012

100 85 0 15 0 292410 2

d P P P( ) ( ) ( ) , , ,6 10 10 6 0 2642 0 0046 0 25< ≤ = ≤ − ≤ ≈ − =X X X 996 e P P P( ) ( ) ( ) , , ,6 11 10 5 0 5565 0 0007 0 55≤ < = ≤ − ≤ ≈ − =X X X 558

6a Er zijn 0 9 1500 1350, ⋅ = loten verkocht.

P 1e prijs, dus winst( )1196 11350

= ; P e prijs, dus winst( )2 746 11350

= ;

P e prijs, dus winst( )3 46 11350

= : P geen prijs, dus winst( )− =4 13471350

winst w 1196 746 46 –4

kans 11350

11350

11350

13471350

b E Winst( ) = ⋅ + ⋅ + ⋅ + − ⋅1196 746 46 411350

11350

11350

133471350 2 52= − , euro.

c Inkomsten: 1350 4 5400× = Uitgaven: 1200 750 50 800 2800+ + + = Dus is er dan voor de organisatoren 5400 2800 2600− = euro winst.

d Stel X is het aantal prijzen dat Ellen wint. Dan is X binomiaal verdeeld met n p= =8 3

1350en . P P( ) ( ) ,X X≥ = − ≤ = ⋅ −3 1 2 6 09 10 7

e n p= =onbekend en 31350

Bedenk verder dat als P( ) ,X ≥ >1 0 10 dat P( ) ,X = <0 0 90 en gebruik dit laatste en de rekenmachine. TI: Y1=Binomcdf (X; 3

1350; 0)

Casio: Y1=BINM Bpd(0; X; 31350 )

In beide gevallen vind je met de tabelfunctie n ≈ 48 . f Vaste kosten en prijzen zijn samen altijd 2800 euro.

Winst 4000 dus moet er totaal 6800 euro inkomsten zijn. Dit bereik je door 6800: 4 = 1700 loten te verkopen.

0pm_MW9_HAVOBB_WiskA_2-Uitw.indd 144 24-04-2008 09:33:28

Moderne wiskunde 9e editie uitwerkingen havo A deel 2 © Noordhoff Uitgevers bv© N

oord

hoff U

itgev

ers

bv

Page 12: Extra oefening hoofdstuk 1 - wiskunde.stmichaelcollege.nlwiskunde.stmichaelcollege.nl/mw/ha/14_MW9_havo_A2_EO+OT_uitw.pdf · 135 Extra oefening en Oefentoetsen helpdesk Extra oefening

⁄145

Extra oefening en Oefentoetsen helpdesk

Extra oefening hoofdstuk 6

1a Als q = 100 dan is GK = + =315000

100153 euro.

Als q = 500 dan is GK = + =315000

50033 euro.

Als q = 1000 dan is GK = + =3150001000

18 euro.

De gemiddelde kosten dalen als de productie toeneemt omdat de vaste kosten € 15 000 dan over meer artikelen worden verdeeld. b Dan worden de vaste kosten over heel veel artikelen verdeeld. Dus blijft eigenlijk

alleen € 3 over. Horizontale asymptoot GK = 3

c De productie is erg laag. d Als GK < 3 50, dan moet 15000

0 50q

< , . 0 50 15000 30 000, q q> ⇒ > Dus moeten er dan meer dan 30 000 stuks worden geproduceerd.

2a Stel h is de hoogte. Dan geldt voor de inhoud: 2 242 ⋅ =h en dus is h = 6 . De oppervlakte van de vier zijwanden samen is dan 4 2 6 48⋅ ⋅ = dm2.

b Stel weer dat de hoogte h is. Voor de inhoud geldt dan b h hb

22

24 24⋅ = ⇒ = .

Voor de oppervlakte OW van de vier wanden geldt dan: OW b h bb b

= ⋅ ⋅ = ⋅ =4 4 24 962

. En voor de oppervlakte OB van de bodem geldt: OB b b b= ⋅ = 2

c De hoogte h is dan erg klein, zelfs kleiner dan 2415

0 112

≈ , en de oppervlakte van de

zijwanden is dan kleiner dan 9615

6 4≈ , .

Naarmate b nog groter wordt neemt de oppervlakte van de zijwanden verder af en zal deze kleiner en kleiner worden. Dus zal zelfs gelden OW ≈ 0 .

Dan geldt O OB OW OB OB= + ≈ + =0 .

3a Invullen in de formule geeft: Q = ⋅ ⋅ ≈30 650 40 17 6680 7 0 5, , stuks. b Invullen in de formule geeft: 40 000 30 650 7 0 5= ⋅ ⋅K , ,

K K0 70 5 0 5

40 00030 65

40 00030 65

10

,, ,

,

=⋅

⇒ =⋅

77

1476 591≈ ,

Dus moet er dan bijna 1,5 miljoen euro worden geïnvesteerd. c Verdubbel het kapitaal van opdracht a.

Dan is de productie Q = ⋅ ⋅ ≈30 1300 40 28 7020 7 0 5, , stuks. Dit duidelijk minder dan een verdubbeling.

d Als Q A= ⋅ ⋅30 5000 7 0 5, , is de grafiek van Q afnemend stijgend omdat de exponent van A kleiner is dan 1.

0pm_MW9_HAVOBB_WiskA_2-Uitw.indd 145 24-04-2008 09:33:28

Moderne wiskunde 9e editie uitwerkingen havo A deel 2 © Noordhoff Uitgevers bv© N

oord

hoff U

itgev

ers

bv

Page 13: Extra oefening hoofdstuk 1 - wiskunde.stmichaelcollege.nlwiskunde.stmichaelcollege.nl/mw/ha/14_MW9_havo_A2_EO+OT_uitw.pdf · 135 Extra oefening en Oefentoetsen helpdesk Extra oefening

⁄146

Extra oefening en Oefentoetsen helpdesk

Extra oefening hoofdstuk 7

1a 40 412 0

3612

3 0−−

= = , kg/jaar

b In het eerste levensjaar en in haar twaalfde levensjaar: 5 kg.

c 12 42

4− = kg/jaar: 40 2312 7

175

3 4−−

= = , kg/jaar

2a Voor de oppervlakte van het bad geldt: 1800 30= × l dus is l = 60 meter. De afmetingen van het geheel zijn dan 40 meter bij 80 meter. De oppervlakte hiervan is 40 80 3200 2× = m .

b TO = ⋅ + ⋅ + = + + =18 000 130

20 30 2000 600 600 2000 3200

c Invoeren in de rekenmachine van de formule voor TO en bepaal voor welke waarde van b de waarde van TO minimaal is geeft b = 30 .

3a m 0,5 1 2 3 4 5 6 7O 42,00 55,00 69,00 76,24 80,00 81,53 81,46 80,20

b O O( ) ( ) , , ,2 1 69 00 55 00 14 00− = − = ; O O( ) ( ) ( )11 10 70 11 15 11 70 10 15 10

12

12− = ⋅ − ⋅ − ⋅ − ⋅ ≈ −44 20,

c De snelheid van verandering is bij m = 1 positief dus neemt O toe en omdat de snelheid van verandering negatief is bij m = 10 neemt daar O af. Er moet dus een maximum zijn tussen m = 1 en m = 10 .

d Met de tabel kun je inzien dat er een maximum ligt tussen 5 en 6. Ook is er maar een kleine stijging van 4 naar 5 kg. Waarschijnlijk stopt de boer al bij 4 kg.

4a 3600 50 72: = bestellingen b Dan zijn er gemiddeld 25 koffers op voorraad. De kosten hiervan zijn

0 10 55 25 137 50, ,× × = euro. c Dan moet er 3600 200 18: = keer besteld worden en is de gemiddelde voorraad

100 koffers. Dit klopt met 1800 18 180018

1001⋅ = =− .

d VK b= × × = ⋅ ⋅ ⋅−0 10 55 1800 0 10 551, ,gem.voorraad e TK = =Bestelkosten+Voorraadkosten 660 1800 0 1 55 660 99001 1⋅ + ⋅ ⋅ ⋅ = +− −b b b b, Invoeren van de formule voor TK in de rekenmachine en het minimum opzoeken

geeft b ≈ 3 9, . Dus bij 4 bestellingen zijn de totale kosten het laagst.

0pm_MW9_HAVOBB_WiskA_2-Uitw.indd 146 24-04-2008 09:33:29

Moderne wiskunde 9e editie uitwerkingen havo A deel 2 © Noordhoff Uitgevers bv© N

oord

hoff U

itgev

ers

bv

Page 14: Extra oefening hoofdstuk 1 - wiskunde.stmichaelcollege.nlwiskunde.stmichaelcollege.nl/mw/ha/14_MW9_havo_A2_EO+OT_uitw.pdf · 135 Extra oefening en Oefentoetsen helpdesk Extra oefening

⁄147

Extra oefening en Oefentoetsen helpdesk

Oefentoets hoofdstuk 6 en 7

1a Plot voor q > 0 de grafiek van de functie

MKTK q TK q q= + − = ⋅ + −( , ) ( )

,, ( , ) ,0 01

0 010 002 0 01 0 43 ⋅⋅ + + ⋅ + − − +( , ) ( , ) ( , , )q q q q q0 01 30 0 01 0 002 0 4 302 3 2

00 01,

Deze grafiek ligt geheel boven de horizontale as en is dus overal positief en dus is de grafiek van TK overal stijgend.

b TK( ) , ,80 0 002 80 0 4 80 30 80 8643 2= ⋅ − ⋅ + ⋅ = euro

c 86480

10 80= , euro per stuk

d TO q= 25 e TW TO TK q q q q q= − = − − + = − +25 0 002 0 4 30 0 002 03 2 3( , , ) , ,,4 52q q− Met de rekenmachine vind je dat TW positief is voor 13 4 186 6, ,< <q .

Dus is er winst als er 14 tot en met 186 stuks worden geproduceerd. f TW is maximaal bij q ≈ 126 76, . Bedenk dat er alleen een geheel aantal kan worden

geproduceerd. Met de rekenmachine vind je dat de winst maximaal € 1719,83 is als er 127 stuks worden geproduceerd.

2a Plot de grafieken van Y X X1 2 49 2 3= × −, ^( / ) en Y 2 2= Dan zijn er twee snijpunten. De eerste ligt bij X = 2 2, gram. b Gebruik weer de plot van de vorige opdracht. Dan vind je dat de maximale

opbrengst 2,3 liter is als er 4,6 gram preparaat wordt toegediend.

c ∆∆Mg

= ⋅ − − ⋅ −−

≈ −2 49 20 20 2 49 15 1520 15

0 323

23, ( , )

,

Dus neemt de melkproductie verder af als de hoeveelheid preparaat wordt verhoogd van 15 naar 20 gram. De gemiddelde afname is dan 0,3 liter/gram.

3a A( ),

0 5001 499 0 75

5001 499

10

=+ ⋅

=+

= m2.

b Dan komt de waarde van 0 75, t onbeperkt dicht bij 0 en dus krijgt de noemer vrijwel de waarde 1. En dus zal A de waarde 500 vrijwel aannemen.

Het meertje zal 500 m2 groot zijn. c Maak met je rekenmachine een tabel van Y A t A t1 1= + −( ) ( ) .

Dan vind je A A( ) ( ) ,11 10 5 5− ≈ m2. En A A( ) ( ) ,26 25 26 6− ≈ m2 en A A( ) ( ) ,41 40 0 6− ≈ m2. d Rond t = 22 . e De groeisnelheid wordt op den duur vrijwel 0. Dat zie je al aan het laatste antwoord

van opdracht c. De grafiek heeft horizontale asymptoot A = 500 .

4a a V B= ⋅ −4 3, invullen van verschillende jaren geeft de waarden: 0,001541: 0,001566: 0,001561: 0,001546 en 0,001532 voor a. Het gemiddelde hiervan en afronden geeft a ≈ 0 00155, .

b B Bnieuw oud= ⋅2 invullen geeft Dus als B verdubbelt dan neemt V toe met de factor 19,7. c V = ⋅ ≈0 00155 15 6 209 34 3, , ,,

Dus is het jaar 2000 is het personenvervoer zo’n 209 miljard reizigerskilometers geweest.

V a B a B a Bnieuw nieuw oud= ⋅ = ⋅ = ⋅ ⋅4 3 4 3 4 3 4 32 2, , , ,( ) ooud V≈ ⋅19 7, oud

0pm_MW9_HAVOBB_WiskA_2-Uitw.indd 147 24-04-2008 09:33:29

Moderne wiskunde 9e editie uitwerkingen havo A deel 2 © Noordhoff Uitgevers bv© N

oord

hoff U

itgev

ers

bv

Page 15: Extra oefening hoofdstuk 1 - wiskunde.stmichaelcollege.nlwiskunde.stmichaelcollege.nl/mw/ha/14_MW9_havo_A2_EO+OT_uitw.pdf · 135 Extra oefening en Oefentoetsen helpdesk Extra oefening

⁄148

Extra oefening en Oefentoetsen helpdesk

5a De gemiddelde voorraad is 25 banken. De kosten hiervan zijn 150 euro. b Nu is de voorraad na 0,6 maand op. Dus is gedurende 0,4 maand de voorraad 0.

De gemiddelde voorraad per maand is nu 30 0 6 0 0 42

9× + × =, , banken.

De kosten hiervan zijn 54 euro. c Er moeten elke maand 20 banken worden nageleverd. Dit kost 80 euro. d TK b b= − +0 06 4 603502, deze zijn minimaal als b = 33 .

0pm_MW9_HAVOBB_WiskA_2-Uitw.indd 148 24-04-2008 09:33:29

Moderne wiskunde 9e editie uitwerkingen havo A deel 2 © Noordhoff Uitgevers bv© N

oord

hoff U

itgev

ers

bv