Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12...

17
Enrique D. Ferreira, Shu-Jen Tsai, Christiaan J. J. Paredis, H. Benjamin Brown, Jr Institute for Complex Engineered Systems, Carnegie Mellon University, 1201 Hamburg Hall, Pitts- burgh PA, 15213-3890. Quantum Corporation, 333 South Street, Shrewsbury MA, 01760. The Robotics Institute, Carnegie Mellon University, Wean Hall 2305, Pittsburgh PA, 15213-3891. Abstract The Gyrover is a single wheel gyroscopically stabilized mobile robot developed at Carnegie Mellon University. An internal pendulum serves as a counter weight for a drive motor that causes fore/aft motion, while a large gyroscope on a tilt-mechanism provides for lateral balance and steering actuation. In this paper, we develop a detailed dynamic model for the Gyrover, and use this model in an extended Kalman filter to estimate the complete state. A linearized version of the model is used to develop a state feedback controller. The design methodology is based on a semi-definite programming procedure which optimize the stability region subject to a set of Linear Matrix Inequalities that capture stability and pole placement constraints. Finally, the controller design combined with the extended Kalman filter are verified on the robot prototype. Keywords: gyroscope, symbolic modeling, robot control, LMI 1 INTRODUCTION The concept of a single-wheel gyroscopically stabilized robot was originally proposed by Brown and Xu [3, 8, 11]. The idea is to take advantage of the inherent dynamic stability 1

Transcript of Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12...

Page 1: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

�������������� ���������������������������������� �"!#�����$������%�&�'��(��)�*�$�+�����,��-'����/.0��12����-3���

EnriqueD. Ferreira4, Shu-JenTsai5, ChristiaanJ.J.Paredis4,H. BenjaminBrown, Jr6

7Institutefor Complex EngineeredSystems,Carnegie Mellon University, 1201Hamburg Hall, Pitts-

burgh PA, 15213-3890.8QuantumCorporation,333SouthStreet,Shrewsbury MA, 01760.9TheRoboticsInstitute,CarnegieMellon University, WeanHall 2305,Pittsburgh PA, 15213-3891.

Abstract

The Gyrover is a singlewheelgyroscopicallystabilizedmobile robot developedat

CarnegieMellon University. An internalpendulumservesasacounterweightfor adrive

motorthatcausesfore/aftmotion,while a largegyroscopeon a tilt-mechanismprovides

for lateralbalanceandsteeringactuation.In this paper, we developa detaileddynamic

modelfor theGyrover, andusethis modelin an extendedKalmanfilter to estimatethe

completestate. A linearizedversionof the model is usedto develop a statefeedback

controller. Thedesignmethodologyis basedon a semi-definiteprogrammingprocedure

which optimize the stability region subjectto a setof Linear Matrix Inequalitiesthat

capturestability andpoleplacementconstraints.Finally, thecontrollerdesigncombined

with theextendedKalmanfilter areverifiedontherobotprototype.

Keywords: gyroscope,symbolicmodeling,robotcontrol,LMI

1 INTRODUCTION

Theconceptof a single-wheelgyroscopicallystabilizedrobotwasoriginally proposedby

Brown andXu [3, 8, 11]. The ideais to takeadvantageof the inherentdynamicstability

1

cparedis
E.D. Ferreira, S.-J. Tsai, C.J.J. Paredis, H.B. Brown, "Control of the Gyrover: a Single-Wheel Gyroscopically Stabilized Robot," Advanced Robotics. Vol. 14, No. 6, pp. 459-475, 2000.
Page 2: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

of a singlewheel,but augmentit with a mechanicalgyroscopeto affect steeringandlow-

speedbalance.Theself-stabilizingdynamicsof a singlewheelcanbeillustratedasfollows.

Considera singlewheel rolling down a hill. Whenthe wheel leanslaterally, gyroscopic

precessioncausesit to turnin thedirectionit is leaning,andthe“centrifugal” forcesresulting

from the curved motion path tend to right the wheel. Brown andXu point out that it is

paradoxicalthat thosefactorsthatproducestaticstability mayactuallycontradictdynamic

stability [3]. A four-wheeledcarhasexcellentstaticstability but is proneto roll-over when

it hits a bumpor takesa curve athighvelocity.

Past researchon the Gyrover focussedentirely on the mechanicaldesign. After some

initial teststo verify the concept,a simplified dynamicmodelwasdevelopedto weigh the

differentdesigncharacteristics[3]: staticstability vs. high speeddynamicresponsiveness,

slopeclimbing ability, etc. Basedon this model,severalgenerationsof Gyrovershave been

built with graduallyincreasingsophistication,reliability, andperformance.

So far, the Gyrover hasbeencontrolledusinga remotecontrol transmitterthat allows

the userto control the voltageof the drive motorandthe angleof the tilt-mechanism(see

Section2.2andFigure2). Dueto thecouplingbetweenthefore/aftandlateralmotionsand

thelackof attitudesensingontheGyrover, theuserhasto developafeelingfor thedynamics

of the robot,estimateits currentattitudeby visual inspection,andprovide the appropriate

input commands.Becauseof the self-stabilizingdynamicsof the Gyrover, it is relatively

easyfor a novice userto keepit from falling over, especiallywhenmoving at moderateand

high speeds.However, it is muchmorechallengingto tracka desiredtrajectory, andnearly

impossibleto controltherobotwhenit is outof sight.

To usethe Gyrover for inspectiontasksin which fine control in remotelocationsis re-

quired,we needto develop a controller that relieves the userfrom stability concernsand

providesan intuitive control interface.Au andXu [1] recentlydevelopeda decoupledlin-

earstatefeedbackcontrollerbasedon a simplifiedmodelof theGyrover. Simulationresults

demonstratethis controller’sability to balancetheGyrover laterally. Thispaperpresentsthe

developmentof a moregeneralcontrollerbasedona comprehensive dynamicmodel.

We approachthe problemin threestages.In the next section,we describethe Gyrover

robotanddevelopa detaileddynamicmodelof it. Thismodelliesat thebasisfor thesubse-

quentderivationsof thestateestimatorandcontrollerdescribedin detailin Sections3 and4.

Simulationandexperimentaldatato validatethemodelandcontrollerareshown in Section5.

2

Page 3: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

2 GYROVER SYSTEM

2.1 Overall Description

The Gyrover is a single-wheelrobot that is stabilizedandsteeredwith an internal,me-

chanicalgyroscope.Figure1 shows an overall view of the robot. The Gyrover canstand

andturn in place,movedeliberatelyat low speed,climb moderategrades,andmovestablyat

high speedsevenon roughterrain. It hasa relatively largerolling diameterwhich facilitates

motion over roughterrain,anda singletrackandnarrow profile for obstacleavoidance.It

canbecompletelyenclosedfor protectionfrom theenvironment.

As shown in Figures2 and2.2, the Gyrover consistsof four rigid bodiesconnectedto

eachother througha 3-degree-of-freedomkinematicchain: the wheel, the pendulum,the

tilt-mechanism,andthegyroscope.

Figure1: Sideviews of theGyroverprototype.

Tire and Wheel. The wheel is the only elementthat is in direct contactwith the environ-

ment. It consistsof a rim andtwo polycarbonatedomesthat connectthe rim to the

axle.TheGyroverusesa lightweight,16 inch rim, tire andinner-tubeof thetypeused

in racingwheelchairs.

Pendulum. Themainbodyof theGyroverhangsasapendulumfrom theaxleof thewheel.

Thependulumincludesa DC-motorandtransmissionthatdrive thewheelshaft.With

gravity actingasreactiontorque,thisdrivemechanismgeneratesforwardacceleration

andbrakingfor the Gyrover. The forward drive systemusesa 2-stage,toothedbelt

transmissionsystemwith anapproximategearratio of 13:1.

3

Page 4: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

Figure2: Componentdiagramof theGyrover.

Gyroscope. Thestabilizinggyroscopeis theheartof theGyrover mechanism.Theangular

momentumof therotatingmassprovidesstability, anda referenceagainstwhich the

Gyrover wheelcanbetilted by the tilt motoror “servo”. Thegyroscopeis housedin

a fiberglassandaluminumhousing,rotatingon precisionball bearingsandmounted

in rubbervibration isolators.An integratedbrushlessDC motorspinsthegyroscope

to operatingspeed,controlledby a speed-controlunit mountedoutsidethe housing.

It maintainsa constantangularvelocity of approximately:<;>=@?A?A? RPM. Becausethe

motor is too small to generateany suddenchangein angularvelocity, we do not use

this degree-of-freedomfor control purposes.In the remainderof the paper, we will

thereforeassumethat the angularvelocity of the gyroscopeis constant. The gyro

requiresaboutoneminuteto accelerateto operatingspeed(longeron recentversions

with higher-speedspinmotors),andabout20 minutesto spindown to a stopafterthe

power is removed.

Gyroscope Tilt Servo. Thetilt servo controlstherelative angleof the gyroscopespinaxis

with respectto thewheelaxisandpendulum.This rotationaxisis perpendicularto the

mainaxle andis locatedbelow the axleon the sagittalplane,asshown in Figure2.

The servo is a very high torqueunit that providesthe torqueto causethe wheel to

leanrelativeto thegyroscope.Thistorque,actingto balancethewheelagainstgravity,

is what leadsto the yaw precessionthat producesthe steeringeffect. For example,

whenthe forward velocity is zero,onecanrotatethe Gyrover to the left by leaning

it slightly to the left. The gyroscopiceffect stopsthe Gyrover from falling over and

4

Page 5: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

simultaneouslyinducesapositiverotationaroundtheverticalaxissteeringtherobotto

theleft.

Computer and Custom I/O Board. A custom-built circuit boardcontainsthecontrolcom-

puterandflashdisk,theinterfacecircuitry for theradiosystemandservos,components

andlogic to controlpower for theactuatorsandaninterfacefor theon-boardsensors.

Theon-boardcomputer, a CardioTM 486PC 100MHz, canbeoperatedasa conven-

tionalPCby connectingastandardkeyboard,monitorandmouse.It operatesusingthe

QNXTM real-timeoperatingsystem.It alsoincludesa radiosystemfor remotecontrol

(JRModelXP783A),thatcanoperateindependentlyof thecomputercontrolsystem.

Sensors and Instrumentation. A numberof on-boardsensorshave beeninstalledon the

Gyrover to measureits state.Theseare:

B A potentiometerto measuretheGyroscopetilt angle.B An Opticalencoderto sensethedrivemotorpositionandvelocity.B A Hall-effect sensorto measuretheGyroscopeangularvelocity.B A Three-axisrategyro to sensetheangularvelocity of thependulum.

All thesesignals,plusthecontrolinputsfrom theradiotransmitter, canbereadby the

computer.

Battery. Thebatteryunit compriseseight,2800mAh Nickel-CadmiumC-cells,plusa bat-

teryholdermadeoutof lead,toincreasethemaximumdrivetorqueandkeepthecenter-

of-masslow. The batterypackmay be fast-chargedat 5 ampsfor about45 minutes,

andprovidesabout20minutesof runningtime.

2.2 Dynamics

The developmentof the stateestimatorandcontrollerof the Gyrover builds on the dy-

namic equations. The dynamicsof the Gyrover is describedby a set of highly coupled

nonlineardifferentialequations.The derivationof the dynamicequationsfor the Gyrover

presentedhereis basedon the Newton-Eulerapproach[6, 9]. Previous derivationsof the

dynamicequationswerebasedonaLagrangianapproach[8, 11] with simplifying geometric

assumptionsfor simulationpurposes.In ourderivation,wemakethefollowingassumptions:

5

Page 6: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

B all thecomponentsarerigid bodies,

B thewheelrolls withoutslipping,

B the friction modelfor the contactbetweenthe wheelandthe floor, andbetweenthe

drivemotorandtransmissionincludesCoulombandviscousfriction,

B theangularvelocityof thegyroscopeis constant,

B thewheelandgyroscopeareaxially symmetric,

B thefloor is flat andhorizontal,

B thewheelremainsin contactwith theground.

Unlike theNewton-Eulerdynamicsfor fixedbasemanipulators,theGyrover dynamicscan-

not be calculatednumericallyin an iterative fashion. For fixed basemanipulators,the ac-

celerationof the baseis known andfixed, so that the accelerationsof the distal links can

becomputedsequentially. Onceall theaccelerationsareknown, thereactionforcescanbe

computedin aninwarditerationfrom theend-effectortowardsthebase.However, sincethe

accelerationsof thewheelof theGyroverarenotfixedbut dependontheaccelerationsof the

internaldegrees-of-freedom,onecannotevaluatethe Newton-Eulerequationsnumerically.

Instead,thecompletedynamicsneedto bederivedsymbolicallyafterwhichthecontactcon-

straintscanbeimposed.

Both kinematicandforceconstraintsneedto beconsideredat thecontactpoint. Rolling

without slipping imposesconstraintson thewheelaccelerations.With thenotationlisted in

Table1 andrepresentedin Figure2.2,theaccelerationconstraintsaregivenby:

CDFE G CH0E+IKJMLONPERQSIKDFEN ERQ G TUN EWV = N EWX = N EWXZY\[A]_^<Ea`cb (1)

Rolling without slipping also imposesconstraintson the torquesactingon the wheel. If

thereis no friction, thetorquesexertedontothewheelat thepointof contact,dfe V =@e X =@e+gih ,arezero[7].

6

Page 7: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

θ

jθk

ωm

ω

ω

ω n

o

p

G

o

Figure3: Simplifieddiagramof the Gyrover showing the wheel,pendu-

lum, gyroscopeandtheir relationshipto thevariableschosen.

In summary, thedynamicsof theGyrover takestheform:qrrrrrrrrrrrrs

t<ut\vt@we Ve Xe g

xzyyyyyyyyyyyy{G}| d ^ h

qrrrrrrrrrrrrs

CH~uCH0vCH�wCN EWV�� �����CN EWXF� �@���CN E g � �@���

xzyyyyyyyyyyyy{L

qrrrrrrrrrrrrs

t<u@� �������������R���t\vU� �������������R���t@w<� �������������R���e V�� �����A�������W�@�e XF� �����A�������W�@�e g � ���������c���R�@�

xzyyyyyyyyyyyy{

(2)

However, due to the rolling without slipping constraint,someindependentvariables( e V ,e X , e+g ) occuron theleft-handsideof (2) while somedependentvariables( NPERV�� ����� , NaEWXF� �@��� ,NaE g � ����� ) appearontheright-handside.This illustratesagaintheneedfor symbolicderivation

of thedynamicequations.

Although(2) capturesthedynamicbehavior of theGyrover completely, it is not in state

spaceform asis requiredfor estimationandcontrol purposes.Thestatevector � consists

of ( ^iE = ^�u = ^iv = H u = H v = N EWV = N EWX = N E g ). Thederivativesof eachof thesevariablesareobtained

from Equations(1) and(2).

C^iE G N EWV (3)

7

Page 8: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

Variable Definition^iE Leanangleof thewheelmeasuredbetweentherotationaxis

andthevertical.N EWV Roll angularvelocity.N EWX Yaw angularvelocity.N E g Pitchangularvelocity.N EWQ Rotationalvelocityof thewheelframe(this is differentfromN E becausethe frameis definedashaving its � -axis hori-

zontal;it doesnot rotatewith thewheel).DFE Translationvelocityof thewheel.^ u = H~u Angleandangularvelocity of thependulumwith respectto

thewheel.^<v = H v Angle andangularvelocity of the tilt mechanism.with re-

spectto thependulum.H w Angular velocity of the gyroscopewith respectto the tilt

mechanism.t<u Torqueexertedby thedrivemotor.^ vU� ����� Referencepositionfor thetilt mechanism.

e V Contacttorquein theglobal � -axis.

e X Contacttorquein theglobal � -axis.

e g Contacttorquein theglobal � -axis.

Table1: Descriptionof kinematicanddynamicvariablesof theGyrover.

C^ u�G H~u�L�NPE g0� NaEWX Y\[�]_^ E (4)C^iv G H v (5)CH~u�G CH~u (6)CH0v�G H v� df� v � ^ v h�� H �\  ¡ H0v (7)CN EWV G CN EWV�� ����� � N EWX N E g L�N ERX N EWX¢Y\[�]_^iE (8)CN EWX G CN EWXF� �@��� LON ERV N E g � N ERV N EWX¢YU[A]_^<E (9)CN E g G CN E g � ����� (10)

8

Page 9: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

wherethevariablesCN EWV�� ����� , CN EWXF� ����� , CN E g � �@��� , and

CH u arecomputedby solving(2). (7) models

the dynamicsof the tilt-servo system. The inputs to the systemare given by the vector

� G d t<u = ^ vU� ����� h . In the next two sections,this statespacerepresentationwill be usedto

developa stateestimatorandastatefeedbackcontroller.

3 STATE ESTIMATOR

With the sensorsmountedon the Gyrover, describedin Section2.1, five independent

variablescanbemeasured.Sincethereareeight statevariable,we needto useanobserver

to determinethe full statevector. The variationof the linear KalmanFilter for nonlinear

systems,calledExtendedKalmanFilter or EKF [4], is appliedto estimatethestatevectorof

theGyrover. TheEKF maximizestheinformationthatis extractedfrom multiplesensorsin

a noisyenvironment,by takingthedynamicsof thesysteminto account.Table2 describes

thenotationusedin theEKF formulationof theobserver problem.Thefollowing equations

summarizetheEKF algorithm.

Symbol Description£ =@� Plantstateandcontrolinput vector.¤£ df¥¢¦ §fh Estimatedplantstateat time ¥ givenmeasurementsup to timestep§ .¨ d�¥>h Plantmeasurementsat time ¥ .© df¥>h Covariancematrix for processnoise.ª d�¥>h Covariancematrix for outputnoise.« d £ =���=@¥>h Nonlineardiscrete-timemodelfunction.¬ « V df¥­h Jacobianof« dW®�=i®�=<® h with respectto thestatevector £ at time ¥ .¯ V d £ =�¥>h Outputfunctionat time ¥ .¬ ¯ V df¥>h Jacobianof theplantoutputwith respectto thestatevector £ at time ¥ .° df¥¢¦ §fh Stateerrorpredictioncovarianceat time ¥ givenmeasurementsup to time § .± df¥­h Observationerrorcovariancematrix.² df¥­h Kalmangainmatrix.

Table2: Notationusedin theEKF algorithm.

9

Page 10: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

Prediction step.

¤£ df¥�¦ ¥,�³:ih G « d ¤£ d�¥,�3:�¦ ¥+��:ihU=���df¥´�3:<h\=<df¥´�3:<hRh° df¥�¦ ¥´��:ih G ¬ « V df¥>h ° df¥,�³:�¦ ¥,� :ih ¬ « V b df¥>h L ©Correction step.

± df¥>h G ¬ ¯ V df¥­h ° d�¥¢¦ ¥&�³:ih ¬ ¯ V b df¥­h L ª d�¥>h² d�¥>h G ° df¥�¦ ¥´� :<h ¬ ¯ V b d�¥>h ±¶µ u df¥>h° df¥¢¦ ¥>h G ° df¥�¦ ¥´� :<hZ� ² d�¥>h ± d�¥>h ² b df¥­h¤£ d�¥¢¦ ¥>h G ¤£ df¥�¦ ¥´��:ih L ² d�¥>h T�¨ df¥>ha� ¯ d ¤£ df¥¢¦ ¥,� :<hRh `Combiningthe expressionfor the torquesin (2) with the dynamicequations(3) to (10) we

arrive at theexpressionfor« d £ =���=@¥>h :

¤£ df¥¢¦ ¥´�3:<h G

qrrrrrrrrrrrrrrrrrrs

^iE^Fu^ivH uH0vNaEWVNaEWXNPE g

xzyyyyyyyyyyyyyyyyyy{

G

qrrrrrrrrrrrrrrrrrrs

^<E L%·/¸WN EWV^�u L%·/¸ d H u LON E g � N EWX¢Y\[�]¹^<E h^<v LO·¹¸UH v

H u LO·¹¸ CH uH0vPLO· ¸ CH0v

NaEWVºL»· ¸ d CNaEWVA� �@��� � NPEWX\NPE g L�NaEWX<NPERX Y\[A]¼^ E hNaEWX0L»· ¸ d CNPERX�� ������LONaEWV<NaE g0� NaEWVFNPERX Y\[A]¼^ E hNaE g L�· ¸ CNPE g � �@���

xzyyyyyyyyyyyyyyyyyy{

Theoutputfunction¯ d ¤£ =�¥>h , to beusedin thecorrectionstepof theEKF, is givenby:

¯ d ¤£ =@¥>h Gqrrrrrrrrrs

H uN u�VN u�XN u g^iv

x yyyyyyyyy{Gqrrrrrrrrrs

H uN ERVZY\[�½_^�u L¾N EWX¢½W¿cÀº^�u� N EWVZ½R¿�Àº^Fu L»N EWX¢Y\[�½¹^�uN E g L�H u^iv

x yyyyyyyyy{

Computing the Jacobians. In order to usethe EKF algorithm,we needto computethe

Jacobiansof« d £ =���=�¥­h and

¯ d £ =�¥­h with respectto the stateand input vectors. While the

Jacobian,¬ ¯ V d�¥>h , is relatively simple,finding theJacobianof thedynamics,

¬ « V df¥>h , is a

non-trivial problem. We have implementeda computationallyefficient schemethat relies

10

Page 11: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

onsymbolicpre-computationandnumericrun-timecomputations.Thederivationof thedy-

namicequationsinvolvedtheinversemassmatrix | d ^ h from (2). Computingthederivative

of thedynamicequationthereforeinvolvesthecomputationof thederivativeof themassma-

trix andits inverse.Insteadof computingthis derivative symbolically, we usethe following

property. Let thematrix function ÁÂd £ h benon-singular, thenà Á µ uà £ G �ºÁ µ u à Áà £ Á µ uNoise. Thedynamicandmeasurementnoisein thesystemis modeledin theEKF through

the covariancematrices©

andª

, respectively. They areassumedto beuncorrelatedzero-

meanGaussiannoise. The following estimatesfor©

andª

wereselectedbasedon sensor

capabilitiesanddatafrom therealsystem:

© G :<? µ¹Äqs ®�: vPÅ w ?? Æ Å\Ç

x{ = ª G :i? µ_È

qs ®�É vPÅ È ?? :

x{

whereÅ � is the Ê -orderidentitymatrix.

4 CONTROLLER

Thecontrolof theGyrover is achievedthroughthefirst two degrees-of-freedom:thedrive

motor, andthetilt servo. As wewill show in theremainderof this paper, thesetwo degrees-

of-freedomallow usto control theforwardvelocity aswell astherotationalvelocity around

theverticalaxis.A controlleris designedto stabilizetheGyroveraroundits uprightposition^<E G#Ë/Ì ¡ . Linear statefeedbackbasedon the linearizedplant aroundthe desiredpoint is

used.

4.1 LinearizationAnalysis

Linearizingthe nonlineardynamicequationsof motion aboutthe unstableequilibrium

point ^iE GÍË/Ì ¡ = ^Fu G ?­® ?�?FÆ�É>= ^iv G ?­= H � G ¡ ? ËN EWV G%N ERX G³N E g G}H u GH v G ?>= H w G :i;�?A?A?�ÎWÏ>Ð�=resultsin thefollowingdecoupledstatespacerepresentationfor thesystem:C� � G�Ñ � � � L³Ò � � � = � � GÓ � � � Ô G :A= ¡ ®

11

Page 12: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

where,

� uMGÖÕ ^ u = H~u = NPE g�× b = � uMGÖÕFH~u = N�u gF× b = � uMG}tØu� v GÙÕ ^<E = ^iv = H v = N EWV = N EWX × b =Ú� v GÙÕ\N uÛV = N u�X = ^<v × b =Ü� v G ^<vU� �����

The statevectors � u and � v representthe longitudinalandlateralmotion of the Gyrover

respectively. Theconstantmatricesaregivenby:

Ñ,u�Gqrrrs

? :Ý:�0ÆAÆ_®�Þ ¡ ?Ý?�&:A:A®�ß­:�?Ý?

xzyyy{

Ñàv~Gqrrrrrrrrrs

? ? ? : ?? ? : ? ?? �0Æ�?�? Ë v �ºáAá­® á�É ? ?;>:A®�; �0Æ�ß>®�Þ É>®�; �âá­®�ã ¡ Þ­® Þ�ã:iß>®�:<ã � ¡ á>®�Þ :<? ¡ ® ; �&:i?�Þ>®�ã á>®�ã

xzyyyyyyyyy{

Ò u GäT ?>=å:\Ƽ®�; ¡ =��â?­®�ÞAã ` bÒ v GäT ?>=æ?­=çÆ�?A? Ë v =çÆ�ß­®�Þ>= ¡ á>®�Þ ` b

Ó u G qs ?ä:�??ä:Ö:x{ = Ó v G

qrrrs??Ö? : ?>®�?A?�Æ�É??Ö?Ö�º?­® ?�?FÆ�É :?ä:�? ? ?

x yyy{

Thesystemis completelycontrollableandobservablebut non-minimumphase.It hasfour

polesat theorigin, a pair of polesat �0ÆAƼ® Æ_dR:�è%éAh andanotherpair at è~Æ�áØé . The transfer

functionfrom � v to N u�X hasthreezeroesat ?>=U�âá and L ã .4.2 StateFeedback Controller

To designthecontrollerweoptimizethesizeof thestability region subjectto constraints

on the inputs,states,andclosedloop poles. The optimizationis carriedout usinga semi-

definiteprogrammingprocedure.Stability andconstrainedregionsaredefinedin termsof

Linear Matrix Inequalities(LMI) [2]. Closedloop polesareconstrainedto a prespecified

convex region± d�êM= J =@ë/h [5] asshown in thefigurebelow. By constrainingthepolesto lie

in a prescribedregion, we canachieve a satisfactorytransientresponse.Theconstraintson

12

Page 13: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

φ

r

α

Re

Im

Figure4: Poleplacementregion.

thestatesarederivedfrom themechanicaldesign.We optimizethevolumeof theellipsoid

containedin the stability region using semi-definiteprogramming(sdp) [10] andfind the

statefeedbackgainmatrix. Thelinearizeddynamicsystemcanbedescribedas:

C£SGìÑ'£&L�Ò �¢= í GÓ»£where £ representsstatesof thesystem,� representsthe inputsto thesystem,and Ñ = Ò = Óareconstantmatrices.

Let theobserver-basedstatefeedbackcontrollaw be

C¤£SG�Ñ ¤£,L�Ò � L�î dfí,� Ó ¤£ hU=Ü� G}ï ¤£where

¤£ is the estimateof the statevector, î is the observer gain matrix, and ï is the

controllergainmatrix. We definetheLyapunov function ð as

ð G£ b ° u_£&L d £ � ¤£ h b ° v d £ � ¤£ h\=with

° u = ° v both symmetricandpositive definite. The Lyapunov function definesthe el-

lipsoid ñFò by ðæó Ó . The volume of the ellipsoid is proportionalto d"ô>õ ] ° u h µ uRö@v Id�ô­õ ] ° v h µ uRö@v . Maximizing thevolumeof ñØò is equivalentto minimizing

÷ [Aø ô>õ ] ° u L ÷ [Aø ô>õ ] ° v (11)

13

Page 14: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

Stability is guaranteedif andonly if© u@Ñ b L%Ñ © u�L � bu ÒìL�Ò � uaL ¡ ê © u ó ? (12)© v d Ñ�L î¶Ó h b L d Ñ�L³îPÓ h © vPL ¡ ê © v ó ? (13)

where© u G ° µ uu ,

© v G ° µ uv and

� u Gï © u (14)

Inputconstraintsof thetype ù<�¢ù~ó³ú arespecifiedbyqs © u � bu� u ú v<Å

x{³û ?>® (15)

Stateconstraintsof theform ¦ ü b £ ¦�ó�: arehandledby

ü b © u ü*ó�:�= (16)

while± dfê�= J = ^ h addthefollowing LMIsq

s � J © u Ñ © u L Ò � u© u Ñ b L � bu Ò b � J © ux{ ó3? (17)

qs ½R¿�À ëKdf� L � b h Y\[�½ ëKdf�3�¾� b hY\[A½ ëKdf� b ���ºh ½R¿�À ëKd�� L � b h

x{ ó3? (18)

where � G³Ñ © u L³Ò � u .Thepackagesdpsol [10] wasusedto minimizetheobjective function(11). It solvesthe

convex minimizationproblemusingan interior-pointalgorithmin termsof© u = © v and � u .

Afterwards, ï canbecomputedfrom (14). For this optimization, î is takenasthe steady

stateKalmanFilter gainmatrixandtheparametersthatdefinethepoleplacementregion are

selectedas

ê G ?­®c:�= J~G ;�?>=æë G Æ�;0ô>õ ø ®In summary, to find the state-feedbackgain,we performa convex optimizationprocedure,

minimizing (11) subjectto the constraintsspecifiedby Equations(12) to (18). The opti-

mizationproceduredescribedgive us the following controlrow vectorsfor eachdecoupled

subsystem: ï�u�G T �&:iá>® Æ�Æ_=��ºÞ>®�Þ>:�=P:A®�:iÉ `ïSvåG T �º?>®�?A?�ãAã>=Z:�® ?�?>:�=¹?­®�?A?>:<ß>=¢?­®�?>:iã�ß>=��º?>®�?A? ¡A¡ `with closed-looppoles in { �0Æ_:A®�Þ , �ºÞ>®�;�ßýè ¡ ®�ãAÉ Ô } for the longitudinal motion and

{ �ºÞFƼ® Æ�;»è ¡ ;>®�:<á Ô , -10.34,-1.37,-0.1 } for thelateralmotion.

14

Page 15: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

5 EXPERIMENTAL RESULTS

Makinguseof dynamicsystemsimulationlibrariesdevelopedin C++,observer andcon-

troller simulationswereperformed.ResultswereanalyzedusingMATLABTM. To assessthe

performanceof the modelandof the ExtendedKalmanFilter, input-outputdatasetsfrom

the prototypewerecollectedin several runsoutdoors,on tiled-floor, andfed into the EKF

algorithm.Figure5 showsthebehavior of theEKF estimatescomparedto therealdatafrom

theGyrover. Figure6 shows a controlexperimentin simulation,usingthenonlinearmodel

0 2 4 6 8 10 12 14 16−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

time(s)

θ 2 (ra

d)

Exp. data EKF estimate

0 2 4 6 8 10 12 14 16−1

0

1

2

3

4

5

6

7

time(s)

w1y

(ra

d/se

c)

Exp. data EKF estimate

Figure5: Observerbehavior comparedto datatakenfrom physicalsystem

(tilt angleandyaw rate).

of thesystemandtheobserver-basedcontrolschemediscussedin Section4. Thissimulation

alsoallows to testtheconvergenceof all the statesof theEKF to theonesin thenonlinear

model,eventhosethatcannotbeobservedin a realexperiment.

6 SUMMARY

This paperpresentsthedevelopmentof a dynamicmodelandimplementationof a con-

troller for the Gyrover. The Gyrover is a gyroscopicallystabilizedsingle-wheelrobot. Its

dynamicsis describedby a setof highly nonlinearcoupleddifferentialequations.However,

our analysishasshown thataroundanoperatingpoint with theGyrover uprightandthegy-

roscopeaxishorizontal,thedynamicscanbelinearizedinto two decoupledsystems:fore/aft

motion andlateralmotion. The decoupledsystemis controllable,andobservablebut non-

minimum-phase.We have derived andimplementedan ExtendedKalmanFilter andstate

feedbackcontrollerusingsemi-definiteprogrammingmethodsandhave demonstratedaccu-

15

Page 16: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

0 1 2 3 4 5 6 7 80.5

1

1.5

2

time(s)

θ 0 (ra

d)

Sim. data EKF estimate

0 1 2 3 4 5 6 7 8−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

time(s)

θ 1, θ2 (

rad)

θ1

θ2

Sim. data EKF estimate

0 1 2 3 4 5 6 7 8−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time(s)

roll rate

pitch rate

Sim. data EKF estimate

Figure6: Observer-basedcontrollerexperiment.

rateestimationusingexperimentaldataandcontrolin simulationexperiments.Furtherwork

needsto addressthedevelopmentof a coupledcontrollerto takeinto accountotherconfigu-

rationsfor theGyrover, e.g.,describingacircleataconstantangularvelocityandleanangle.

Futurework alsoincludesthe designof a trackingcontrollerto guidethe Gyrover alonga

desiredtrajectoryonanon-planarsurface.

ACKNOWLEDGEMENTS

We would like to thankRandyCasciola,who developedtheonboardcomputerhardware

andinterfaceelectronicsandArneSuppe,whoimplementedthecommunicationandcontrol

algorithmsunderQNXTM. Fundingfor this researchis provided in part by DARPA under

contractDABT63-97-1-0003,andby theInstitutefor Complex EngineeredSystems.

16

Page 17: Enrique D. Ferreira, Shu-JenTsai, Christiaan J. J. Paredis ...paredis/pubs/AdvRob00.pdf · /.0 12 -3 Enrique D. Ferreira 4, Shu-JenTsai 5, Christiaan J. J. Paredis, H. Benjamin Brown,

REFERENCES

[1] K. W. Au andY. Xu, “DecoupledDynamicsandStabilizationof SingleWheelRobot”,

Proc. IEEE/RSJInt. Conf. on IntelligentRobotsandSystems, pp. 197-203,Kyongju,

Korea,Oct.1999.

[2] S. Boyd, L. E. Ghaoui,E. FeronandV. Balakrishnan,Linear Matrix Inequalitiesin

SystemandControl TheoryPhiladelphia:SIAM 1994.

[3] H. B. Brown, Jr. andY. Xu, "A single-wheel,gyroscopicallystabilizedrobot", IEEE

RoboticsandAutomationMagazine, Vol. 4, No. 3, pp.39-44,1997.

[4] C. K. ChuiandC. Chen,KalmanFilter Berlin: Springer-Verlag,1987.

[5] M. Chilali and P. Gahinet," þSÿ Designwith Pole PlacementConstraints:an LMI

Approach,"IEEE Trans.Aut. Contr., Vol. 41,No.3,pp.358-367,1996.

[6] J.J.Craig,Introductionto Robotics:MechanicsandControl. Addison-Wesley, 1989.

[7] L. Meirovitch, Methodsof AnalyticalDynamics.McGraw-Hill 1988.

[8] G.C.NandyandY. Xu, "Dynamicmodelof agyroscopicwheel",Proc.IEEEInt. Conf.

onRoboticsandAutomation, pp.2683-88,Leuven,Belgium,May 1998.

[9] W. T. Thomson,Introductionto SpaceDynamicsNew York:Wiley 1961.

[10] S.-P. Wu andS.Boyd,A Parser/Solverfor SemidefiniteProgrammingandDeterminant

MaximizationProblemswith Matrix Structure. User’sGuide,BetaVersion., May 1996.

[11] Y. Xu, K. W. Au, G. C. NandyandH. B. Brown, “Analysisof ActuationandDynamic

Balancingfor a SingleWheelRobot”,Proc. IEEE/RSJInt.Conf. on IntelligentRobots

andSystems, pp.1789-94,Victoria,B.C.,Canada,Oct.1998.

17