Analytische Studie van Buffergroottes in Productielijnen met...

98
UNIVERSITEIT GENT FACULTEIT ECONOMIE EN BEDRIJFSKUNDE ACADEMIEJAAR 2009 – 2010 Analytische Studie van Buffergroottes in Productielijnen met Kitting Masterproef voorgedragen tot het bekomen van de graad van Master in de Toegepaste Economische Wetenschappen: Handelsingenieur Valerie Sweldens onder leiding van Prof. Dr. ir. H. Bruneel Prof. Dr. ing. D. Fiems Dr. ir. S. De Vuyst

Transcript of Analytische Studie van Buffergroottes in Productielijnen met...

Page 1: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

UNIVERSITEIT GENT

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE

ACADEMIEJAAR 2009 – 2010

Analytische Studie van Buffergroottes inProductielijnen met Kitting

Masterproef voorgedragen tot het bekomen van de graad van

Master in de Toegepaste Economische Wetenschappen: Handelsingenieur

Valerie Sweldens

onder leiding van

Prof. Dr. ir. H. BruneelProf. Dr. ing. D. Fiems

Dr. ir. S. De Vuyst

Page 2: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes
Page 3: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

UNIVERSITEIT GENT

FACULTEIT ECONOMIE EN BEDRIJFSKUNDE

ACADEMIEJAAR 2009 – 2010

Analytische Studie van Buffergroottes inProductielijnen met Kitting

Masterproef voorgedragen tot het bekomen van de graad van

Master in de Toegepaste Economische Wetenschappen: Handelsingenieur

Valerie Sweldens

onder leiding van

Prof. Dr. ir. H. BruneelProf. Dr. ing. D. Fiems

Dr. ir. S. De Vuyst

Page 4: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

PERMISSION

Ondergetekende verklaart dat de inhoud van deze masterproef mag

geraadpleegd en/of gereproduceerd worden, mits bronvermelding.

Valerie Sweldens

Page 5: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

Woord Vooraf

Bij deze leest u de eerste woorden van de masterproef die ik schreef als eindwerk in de

vijfjarige opleiding tot Handelsingenieur. Toen ik begon aan deze opleiding leek het een

eeuwigheid te duren vooraleer ik mijn diploma zou halen. Nu het bijna zover is, kijk ik terug

naar mijn eerst dag aan de universiteit alsof het gisteren was. Ik wil dan ook enkele mensen

bedanken die mijn studies mogelijk gemaakt hebben, alsook het schrijven van deze masterproef.

Eerst en vooral mijn ouders en mijn broertje voor hun onvoorwaardelijke liefde en steun die van

mij de persoon maken die ik vandaag ben. Ik bedank in het bijzonder mijn moeder voor alles wat

ze gedaan en gelaten heeft voor mij.

Dan wil ik graag mijn vrienden bedanken voor de leuke tijden die we samen doorgebracht

hebben. We hebben samen hard gewerkt en konden altijd op mekaar steunen. Jullie zijn de

ideale groepsleden én vrienden. Bedankt!

Voor het verwezenlijken van deze masterproef wil ik graag Stijn De Vuyst bedanken. Hij stond

open voor mijn ideeën en suggesties, ik mocht hem altijd lastig vallen met vragen, … . Ondanks

het vele werk dat hij zelf had, heb ik altijd beroep kunnen doen op hem, waarvoor dank. Verder

wil ik graag mijn promotor en co-promotor Prof. Dr. ir. H. Bruneel en Prof. Dr. ing. D. Fiems

bedanken voor het mogelijk maken van deze masterproef.

Tot slot bedank ik graag mijn broer Thomas en goede vriendin Lien Denoo voor hun hulp bij de

laatste loodjes van deze masterproef, de opmaak.

Page 6: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

ii

Inhoudsopgave

Inleiding ........................................................................................................................................................... 1

Hoofdstuk 1: Kitting..................................................................................................................................... 4

1 Literatuur .................................................................................................................................................................4

2 Wachtlijntheorie ...................................................................................................................................................6

3 Kitting ........................................................................................................................................................................7

3.1 Aankomstproces onderdelen .................................................................................................................8

3.2 Gelimiteerde buffers ............................................................................................................................... 10

3.3 Kitting wiskundig voorgesteld............................................................................................................ 11

3.4 Oplossingsmethode................................................................................................................................. 12

Hoofdstuk 2: Analyse van Productielijnen met Kitting.................................................................16

1 Prestatiematen.................................................................................................................................................... 16

1.1 Gemiddelde bufferbezetting ................................................................................................................ 17

1.2 De kans dat een buffer leeg/vol is .................................................................................................... 18

1.3 Throughput................................................................................................................................................. 19

1.4 Verlies ........................................................................................................................................................... 19

2 Optimaliseren van de prestatiematen....................................................................................................... 20

2.1 Gemiddelde bufferbezetting ................................................................................................................ 21

2.1.1 Systeembelasting......................................................................................................................... 23

2.1.2 Optimalisatie ................................................................................................................................. 24

2.2 Kans dat buffer vol is .............................................................................................................................. 24

2.2.1 Systeembelasting......................................................................................................................... 26

2.2.2 Optimalisatie ................................................................................................................................. 27

Page 7: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

iii

2.2.3 Het effect van ongelijke buffergroottes.............................................................................. 27

2.3 Kans dat buffer leeg is ............................................................................................................................ 28

2.3.1 Systeembelasting......................................................................................................................... 29

2.3.2 Optimalisatie ................................................................................................................................. 30

2.3.3 Het effect van ongelijke buffergroottes.............................................................................. 31

2.4 Throughput................................................................................................................................................. 32

2.4.1 Systeembelasting......................................................................................................................... 33

2.4.2 Optimalisatie ................................................................................................................................. 34

2.4.3 Het effect van ongelijke buffergroottes.............................................................................. 34

2.5 Verlies ........................................................................................................................................................... 36

2.5.1 Systeembelasting........................................................................................................................ 38

2.5.2 Optimalisatie ................................................................................................................................. 38

3 Het effect van ongelijke gemiddelde aankomstsnelheden................................................................ 39

4 Ongelijke buffergroottes gecombineerd met ongelijke gemiddelde aankomstsnelheden .. 43

5 Optimalisatie van het kitting systeem....................................................................................................... 45

Hoofdstuk 3: Uitbreidingen op het basis kitting proces ...............................................................47

1 Kitting proces met tweeledige server........................................................................................................ 47

1.1 Throughput................................................................................................................................................. 49

1.2 Kans dat buffer vol/leeg is.................................................................................................................... 51

1.3 Het effect van ongelijke buffergroottes........................................................................................... 52

2 Kitting proces met drempels......................................................................................................................... 53

2.1 Basismodel kitting versus kitting met drempels ........................................................................ 54

2.2 Optimaliseren kitting systeem met drempels .............................................................................. 57

2.2.1 Gemiddelde bufferbezetting................................................................................................... 57

Page 8: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

iv

2.2.2 Kans op een lege buffer............................................................................................................. 60

2.2.3 Throughput.................................................................................................................................... 63

Hoofdstuk 4: Numeriek Voorbeeld.......................................................................................................66

1 Opstellen van de winstfunctie....................................................................................................................... 66

1.1 Opbrengsten............................................................................................................................................... 66

1.2 Kosten ........................................................................................................................................................... 67

1.3 Winstfunctie ............................................................................................................................................... 68

2 De invloed van verschillende parameters ............................................................................................... 69

2.1 Basisscenario ............................................................................................................................................. 69

2.1.1 Systeembelasting......................................................................................................................... 71

2.2 Stilleggen kitting....................................................................................................................................... 73

2.2.1 Systeembelasting......................................................................................................................... 74

2.3 Variabele voorraadkosten .................................................................................................................... 75

2.3.1 Systeembelasting......................................................................................................................... 77

2.4 Stilleggen aanvoer onderdelen........................................................................................................... 79

2.4.1 Systeembelasting......................................................................................................................... 80

3 Maximale winst................................................................................................................................................... 81

Besluit .............................................................................................................................................................84

Bibliografie....................................................................................................................................................88

Page 9: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

v

Lijst van Grafieken

1. E[Q] voor verschillende scenario’s.............................................................................................................. 21

2. E[Q] in functie van C met =µ=1 .................................................................................................................. 22

3. E[Q] bij verschillende systeembelasting................................................................................................... 23

4. P[vol] voor verschillende scenario’s........................................................................................................... 24

5. P[vol] bij verschillende systeembelasting................................................................................................ 26

6. P[vol] bij ongelijke buffergroottes bij =µ=1 ......................................................................................... 27

7. P[leeg] voor verschillende scenario’s......................................................................................................... 28

8. P[leeg] bij verschillende systeembelasting.............................................................................................. 29

9. P[leeg1] bij ongelijke buffergroottes.......................................................................................................... 31

10. P[leeg2] bij ongelijke buffergroottes.......................................................................................................... 31

11. TP voor verschillende scenario’s ................................................................................................................. 32

12. TP bij verschillende systeembelasting....................................................................................................... 33

13. TP bij verschillende buffergroottes met =µ=1 ..................................................................................... 35

14. TP met grenzen.................................................................................................................................................... 36

15. Verlies voor verschillende scenario’s......................................................................................................... 37

16. Verlies bij verschillende systeembelasting.............................................................................................. 38

17. TP bij ongelijke aankomstsnelheden.......................................................................................................... 39

18. P[vol1] en P[vol2] bij ongelijke aankomstsnelheden.......................................................................... 40

19. P[leeg1] en P[leeg2] bij verschillende aankomstsnelheden............................................................. 42

20. TP in functie van q met =µ=1 ...................................................................................................................... 49

21. TP in functie van q bij verschillende systeembelasting ...................................................................... 50

22. P[vol] en [leeg] in functie van q met =µ=1............................................................................................. 51

23. TP bij verschillende buffergroottes met q=0,5 en =µ=1 .................................................................. 52

24. TP van basis vs. drempels ............................................................................................................................... 54

25. E[Q] van basis vs. drempels............................................................................................................................ 55

26. TP in functie van T voor verschillende scenario’s................................................................................. 56

27. E[Q] voor verschillende scenario’s.............................................................................................................. 57

28. E[Q] in functie van C.......................................................................................................................................... 58

29. E[Q] bij verschillende buffergroottes......................................................................................................... 59

30. P[leeg] voor verschillende scenario’s......................................................................................................... 60

31. P[leeg] in functie van C..................................................................................................................................... 61

32. P[leeg] bij verschillende buffergroottes.................................................................................................... 62

33. TP voor verschillende scenario’s ................................................................................................................. 63

Page 10: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

vi

34. TP in functie van C.............................................................................................................................................. 64

35. TP bij verschillende buffergroottes............................................................................................................. 65

36. Winst basisscenario........................................................................................................................................... 69

37. Winst bij verschillende systeembelasting................................................................................................ 71

38. Kosten bij verschillende systeembelasting.............................................................................................. 72

39. Opbrengsten bij verschillende systeembelasting.................................................................................. 72

40. Winst als stilleggen kitting duurder is ....................................................................................................... 73

41. Winst bij verschillende systeembelasting................................................................................................ 74

42. Winst als variabele voorraadkosten duurder zijn ................................................................................ 75

43. Winst bij verschillende systeembelasting................................................................................................ 77

44. Kosten bij verschillende systeembelasting.............................................................................................. 78

45. Opbrengsten bij verschillende systeembelasting.................................................................................. 78

46. Winst als stilleggen aanvoer onderdelen duurder is ........................................................................... 79

47. Winst bij verschillende systeembelasting................................................................................................ 80

48. Winst in functie van de buffergrootte ........................................................................................................ 81

49. Winst in functie van de gemiddelde aankomstsnelheid..................................................................... 82

50. Winst in functie van de gemiddelde verwerkingssnelheid ............................................................... 83

Page 11: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

INLEIDING

In een productieomgeving wordt frequent gebruik gemaakt van productielijnen die

verschillende onderdelen maken om daarna geassembleerd te worden tot een bepaalde

component of het eindproduct. Het verzamelen van de nodige onderdelen voor assemblage is

wat men noemt kitting. Meer algemeen beoogt kitting het vormen van een kit bestaande uit een

welbepaalde hoeveelheid diverse onderdelen.

De relevantie van kitting in het dagdagelijkse leven kan worden geïllustreerd aan de hand van

enkele voorbeelden. Steeds meer bedrijven kiezen ervoor om een gedeelte van hun operaties uit

te besteden aan bedrijven die deze operatie beter kunnen uitvoeren dan zij zelf. Beter betekent

vaak goedkoper. Vooral bedrijven die een fysiek product produceren, besteden de productie van

onderdelen steeds vaker uit. Grote bedrijven kunnen ervoor kiezen om een productiefaciliteit op

te richten in het buitenland vanwege de goedkope loonkost, belastingvoordelen of tal van andere

overwegingen. Kleinere bedrijven daarentegen kunnen gedwongen worden om de productie

gedeeltelijk uit te besteden aan gespecialiseerde bedrijven omdat zij niet voldoende

schaalvoordelen halen om het zelf te produceren. Ondanks de stijgende trend van uitbesteden,

gebeurt de assemblage van de onderdelen wel nog vaak in eigen land. Denk maar aan de auto-

industrie. Om een auto te produceren, moeten de juiste onderdelen verzameld worden om te

assembleren tot een auto. Men doet dus aan kitting.

Een andere sector dan de productiesector waar kitting een hoge relevantie heeft, is de logistieke

sector. Een van de voornaamste taken van logistieke centra is het verdelen van grote

binnenkomende volumes over kleinere uitgaande volumes. Zij moeten ‘onderdelen’ verzamelen

om een ‘kit’ te vormen die dan wordt getransporteerd naar zijn bestemming. Bijvoorbeeld in een

logistiek centrum van een grootwarenhuisketen komen vrachtwagens toe geladen met een

specifiek product. Die producten worden dan verdeeld over de vrachtwagens die naar specifieke

winkels zullen rijden zodat ze de juiste mengeling van producten bevatten die de winkels nodig

hebben.

Page 12: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

INLEIDING 2

Voor welke situatie dan ook, is het belangrijk dat de doorstroom van goederen zo efficiënt en

effectief mogelijk verloopt. De bedrijven die een gedeelte van hun productie uitbesteden moeten

er bijvoorbeeld voor zorgen dat ze te allen tijde beschikken over onderdelen om te assembleren

of hun hele productie komt stil te liggen. Het niet beschikbaar zijn van onderdelen kan

verscheidene oorzaken hebben gaande van een productiefout waardoor de levering onderdelen

vertraging oploopt, of een schip onderdelen dat door een staking enkele dagen later vertrekt, tot

een brand in de productiehal waardoor voor zeer lange tijd geen onderdelen kunnen geleverd

worden door die productiehal.

Het stilvallen van de aanvoer van grondstoffen of onderdelen heeft zware gevolgen voor vele

sectoren. Het risico is nog veel groter voor bedrijven die gebruik maken van kitting omdat zij alle

onderdelen gelijktijdig nodig hebben om een kit te maken. Als de toevoer van een onderdeel

stilvalt, kan er niet geassembleerd worden zelfs als alle andere onderdelen wel beschikbaar zijn.

Bovendien zou het kunnen dat de productie van de andere onderdelen ook moeten worden

stopgezet. Dit risico kan men bufferen met bijvoorbeeld een extra grote voorraad van dat

onderdeel, zodat het bedrijf een korte periode zonder toevoer kan doorstaan zonder problemen.

Het modeleren van de doorstroom van goederen kan gebruikt worden om de mogelijke gevolgen

van zulke problemen na te gaan alsook om maatregelen om het risico te verminderen te

evalueren. In de realiteit is de toevoer van goederen een stochastisch proces waardoor het

oplossen van een model een complexe en tijdrovende taak is. Daarom zullen we in deze

masterproef het kitting proces modeleren door gebruik te maken van wachtlijnen. Dit resulteert

in snelle benaderingen van de te onderzoeken factoren.

In deze masterproef starten we met de verdere situering van kitting in productielijnen door een

kort literatuuroverzicht te geven. Om het effect van de buffergroottes na te gaan, is het nodig dat

we het kitting systeem wiskundig voorstellen. Hiertoe gebruiken we termen en technieken uit de

wachtlijnen theorie. Met de nodige vakkennis kunnen we dan starten met het wiskundig

modeleren van het kitting proces. Om het eerste hoofdstuk te besluiten, bekijken we de

gebruikte oplossingsmethode. In het tweede hoofdstuk maken we gebruik van de resultaten in

hoofdstuk 1 om een antwoord te vinden op de onderzoeksvraag van deze masterproef; wat is

het effect van buffergroottes in productielijnen met kitting? Om het effect te kwantificeren,

definiëren we enkele prestatiematen en gaan we na hoe we die moeten berekenen. Door de

verschillende parameters van het kitting systeem te laten variëren, analyseren we het effect van

elke parameter op de prestatie van het kitting systeem.

Page 13: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

INLEIDING 3

In een derde hoofdstuk bekijken we twee uitbreidingen op het basis kitting proces uit hoofdstuk

2. Eerst bekijken we het kitting systeem met twee seriële servers. Dit betekent dat de kit nu twee

fases moet doorlopen om een geassembleerde kit te bekomen. Daarna bekijken we het kitting

systeem met drempels. In deze uitbreiding werken we niet met een aanvoer van onderdelen

volgens een bepaald aankomstproces maar bestellen we een bepaalde hoeveelheid onderdelen

wanneer de voorraadpositie daalt onder een gekozen drempelwaarde. In het laatste hoofdstuk

bekijken we een numeriek voorbeeld om de resultaten uit hoofdstuk 2 te toetsen. We gaan voor

de verschillende prestatiematen na welke opbrengsten, kosten en risico’s ze met zich

meebrengen. Op die manier kunnen we een winstfunctie opstellen die ons zal helpen bij de

keuze van de verschillende parameterwaarden. Door het gewicht van bepaalde kosten of

opbrengsten te verhogen, kunnen we het effect van elke prestatiemaat nagaan op de totale winst

van het systeem. We besluiten deze masterproef met de belangrijkste resultaten uit de

verschillende hoofdstukken.

Page 14: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

HOOFDSTUK 1KITTING

Zoals gezegd in de inleiding wordt in een productieomgeving frequent gebruik gemaakt van

productielijnen die verschillende onderdelen maken om daarna geassembleerd te worden tot

een bepaalde component of het eindproduct. Het verzamelen van de nodige onderdelen voor

assemblage is wat men noemt kitting. Meer algemeen beoogt kitting het vormen van een kit

bestaande uit een welbepaalde hoeveelheid van onderdelen.

We starten met een kort overzicht uit de literatuur om een beter beeld te krijgen van de mate

waarin kitting reeds bestudeerd werd in het verleden. Daar het doel van deze masterproef is om

een systeem met kitting wiskundig te bekijken, hebben we ervoor gekozen dit gedeelte beperkt

te houden.

1 LITERATUUR

Wanneer we zoeken op het woord ‘kitting’ zien we dat er relatief weinig onderzoek gedaan is

naar deze manier van werken, wat verrassend is gezien de zeer relevante toepassingen

besproken in de inleiding. Na wat zoeken vinden we echter literatuur die handelt over kitting

maar waar die term nergens vermeld is. In 1988 spraken W. J. Hopp en J. T. Simon over

“assembly-like queues”. Zij trachten grenzen en heuristieken te vinden voor systemen met

kitting en verwijzen in hun studie naar andere literatuur over “assembly-like queues” (Hopp &

Simon, 1988).

In een productieomgeving is kitting een alternatieve manier van werken dan het traditionele

lijn-voorraad-systeem (Bozer & McGinnis, 1992). In dit laatste systeem gebeurd de assemblage

stap voor stap. Alle productieposten staan op een lange lijn en voegen elk een onderdeel toe. Er

Page 15: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

1. KITTING 5

worden containers onderdelen geplaatst langs de productielijnen op elke plaats dat de

onderdelen gebruikt worden. Bij kitting daarentegen worden er eerst kits gevormd met alle

onderdelen nodig om een bepaalde component of eindproduct te maken. De kits met onderdelen

worden aangebracht bij het begin van de assemblage. Er is dus 1 machine of arbeider die de

gehele assemblage voor zijn rekening neemt. Bozer en McGinnis analyseerden door middel van

bedrijfsbezoeken de voor- en nadelen van kitting versus line-stocking. Ze zagen dat bij kitting

minder containers onderdelen in beweging zijn op een dag, dat de benodigde plaats in de

productiehal voor die containers aanzienlijk minder is, dat de WIP niveaus lager zijn, dat de

zichtbaarheid en controle over de voorraden en componenten groter zijn, … . De nadelen van

kitting handelen over hoe, waar en wanneer de kits gemaakt worden. Ze stellen zich de vraag of

het maken van die kits wel waarde toevoegt, of ze niet nog extra plaats nodig hebben om de kits

tijdelijk te stockeren, wat er gebeurt wanneer een onderdeel stuk blijkt te zijn, … .

H. Brynzér and M.I. Johansson bespraken in hun paper de afwegingen die men moet maken bij

een kitting systeem en de mogelijke voordelen. Zo halen ze enkele factoren aan die men moet in

acht nemen bij het ontwerpen van een systeem met kitting; “batching policy”, “picking policy”,

“storage policy”, de geografische locatie van het kitting proces, de layout van de productiehal, … .

Deze hebben dus duidelijk betrekking op de mogelijke nadelen of bedenkingen die Bozer en

McGinnis maakten. Brynzér en Johansson analyseerden verschillende cases en kwamen tot de

conclusie dat er zeer veel verschillende systemen geïmplementeerd waren met kitting en dat er

dus een gebrek is aan algemeen advies daaromtrent. Verder stelden ze vast dat er grote

verschillen waren tussen de tijd dat het bedrijf dacht dat het kitting proces duurde en de tijd die

ze waarnamen op de werkvloer (Brynzér & Johansson, 1995). Beide conclusies impliceren dat

er totnogtoe onvoldoende onderzoek gedaan is naar systemen met kitting.

De laatste jaren begint het belang van kitting, en meer bepaald het modeleren van kitting, door

te dringen. Zo stellen Ramakrishnan en Krishnamurthy dat kitting in vele productiebedrijven

gebruikt wordt en dat men in het verleden getracht heeft het tempo van het systeem op te

drijven. Er was echter weinig aandacht voor de risico’s die kitting met zich meebrengt. Voor een

kit gevormd kan worden moeten alle nodige onderdelen ter beschikking zijn. Door het

stochastische aankomstproces is dit echter niet steeds gegarandeerd. Zulke stock-outs leiden tot

kostelijke onderbrekingen en vertragingen van de productie (Ramakrishnan & Krishnamurthy,

2007). In hun onderzoek gaan Ramakrishnan en Krishnamurthy op zoek naar analytische

benaderingen voor systemen met kitting. Zij meten de prestatie van het systeem op basis van

throughput, gemiddelde grootte van de wachtlijn en vertragingen. Het is in deze lijn dat deze

masterproef zal verlopen, al gaan we niet op zoek naar heuristische benaderingen en grenzen.

Page 16: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

1. KITTING 6

We formuleren onze eigen prestatiematen en trachten deze zo accuraat mogelijk te berekenen,

gebruik makende van de wachtlijn theorie.

2 WACHTLIJNTHEORIE

Voor we een kitting systeem bekijken, hebben we eerst enkele basisbegrippen nodig uit de

wachtlijn theorie. Dat brengt ons al meteen bij het eerste begrip: wachtlijn. Ieder van ons staat

regelmatig in een wachtlijn. Tijdens het aanschuiven aan de kassa, terwijl je wacht aan de check-

in balie op de luchthaven, … . Een wachtlijn vormt zich dus waar personen, producten of andere

entiteiten wachten op een soort van dienstverlening.

We leggen alle componenten van een wachtlijn uit aan de hand van een voorbeeld: de tandarts.

De patiënten van de tandarts noemt men in wachtlijntermen ‘klanten’. De ‘klanten’ komen aan in

het wachtlijnsysteem volgens een bepaald ‘aankomstproces’. Dit geeft weer met welke

gemiddelde snelheid de klanten aankomen, alsook met welk patroon ze dat doen. Het patroon

bepaalt hoe de aankomsttijdstippen verspreid liggen op de tijdsas. Dit betekent dus dat er

bijvoorbeeld gemiddeld elke 20 minuten een nieuwe patiënt binnenkomt. Uit het patroon

kunnen we bijvoorbeeld zien dat in de voor- en namiddag de patiënten meer gespreid zijn,

terwijl na 16u de patiënten kort op elkaar volgen.

De ‘klanten’ komen terecht in de wachtlijn of buffer waar ze wachten tot ze bediend worden. Bij

de tandarts is die wachtlijn de wachtkamer, voorzien van een aantal stoelen en de gekende

weekbladen. De bediening gebeurt door de tandarts en die noemt men de ‘server’. De ‘server’

bedient zijn ‘klanten’ aan een bepaalde gemiddelde snelheid en volgens een bepaald patroon. Dit

patroon bepaalt in welke volgorde de ‘klanten’ bediend worden. De tandarts heeft bijvoorbeeld

gemiddeld 15 minuten nodig per patiënt. Als het vrije consultatie is, roept de tandarts de patiënt

binnen die er het eerst was. De dagen dat hij op afspraak werkt echter, kijkt de hij in zijn agenda

wie de volgende is, ongeacht hoe lang die ‘klant’ al zit te wachten. De bediende ‘klanten’ verlaten

het wachtlijnsysteem.

De ‘klanten’ die toekomen terwijl de ‘server’ bezig is met de bediening van een andere ‘klant’,

moeten wachten tot de ‘server’ weer beschikbaar is. Indien de wachtlijn vol zit, kunnen er geen

nieuwe klanten bij en zijn ze ‘verloren’ voor het systeem. Het zou kunnen dat de 5 stoelen in de

wachtkamer volzet zijn, en dat een ‘klant’ die toekomt besluit om niet te wachten en zonder

bediening de praktijk verlaat. De ‘capaciteit’ van de wachtlijn is hier 5. De ‘toestandsruimte’ is de

Page 17: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

1. KITTING 7

verzameling van mogelijke waarden die het systeem kan aannemen. In dit voorbeeld bestaat de

toestandsruimte uit een deelverzameling van de natuurlijke getallen {0,1,2,3,4,5}.

Hetzelfde verhaal kan verteld worden met een onderdeel dat wacht tot de machine beschikbaar

is om verdere productiestappen op het onderdeel toe te passen. Het verhaal van het onderdeel

en de machine gebruiken we om kitting verder uit te leggen in het volgende deel.

3 KITTING

Zoals eerder gezegd, is kitting het verzamelen van een welbepaalde hoeveelheid onderdelen

voor assemblage. Dit betekent dat, in tegenstelling tot de voorgaande voorstelling van een

wachtlijnsysteem, we nu te maken hebben met meerdere wachtlijnen. Bij kitting is er namelijk

een wachtlijn voor elk onderdeel dat nodig is om de kit te vormen. Het kitting proces kan op

verschillende manieren worden voorgesteld. In deze masterproef zal ik werken met de

voorstelling in de onderstaande figuur. Dit is de meest eenvoudige vorm van een kitting proces

waarbij er slechts twee onderdelen zijn.

Dit proces geeft weer dat een product

geassembleerd wordt uit twee verschillende

onderdelen. De onderdelen worden toegeleverd

uit andere deelprocessen in het bedrijf aan een

gemiddelde snelheid 1 en 2 respectievelijk voor

onderdeel 1 en 2. Deze belanden dan in hun eigen

wachtlijn die zich vlak voor de assemblage

bevindt. De wachtlijn voor elk onderdeel is

gelimiteerd tot respectievelijk C1 en C2. Het

assemblageproces neemt een bepaalde tijd in beslag die processpecifiek is. Belangrijk is dus de

gemiddelde snelheid waarmee het product de assemblage verlaat, namelijk .ߤ We merken hier

op dat het belangrijk is dat er steeds een onderdeel aanwezig is in elke buffer, opdat het kitting

proces zou kunnen assembleren.

Zoals gezegd is het voor een kitting systeem belangrijk dat de doorstroom zo effectief en

efficiënt mogelijk verloopt. Door het wiskundig modeleren van het systeem, zijn we in staat de

parameters zo te kiezen dat het proces geoptimaliseerd wordt. Om kitting wiskundig te

benaderen, is het noodzakelijk de parameters van het wachtlijnsysteem te kennen. Ten eerste

moeten we weten met welk aankomstproces de onderdelen worden aangebracht en wat dus de

gemiddelde aankomstsnelheid is. Verder moet de capaciteit van de buffer voor elk onderdeel

FIGUUR 1: HET PRINCIPE VAN KITTING

Page 18: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

1. KITTING 8

gekend zijn. Tot slot moeten we weten wat de gemiddelde snelheid is waarmee het product het

wachtlijnsysteem verlaat. Deze 5 parameters vormen dus de basis van de wiskundige analyse.

3.1 AANKOMSTPROCES ONDERDELEN

In de realiteit zou het kunnen dat het aankomstproces van de onderdelen zeer verschillend is

per onderdeel en moeilijk te modeleren. Om deze oefening niet onnodig moeilijk te maken,

wordt er in de literatuur vaak gekozen voor een Markovketen als aankomstproces. In deze

masterproef zal ik werken met de Poissonverdeling, wat ook een Markovketen is. Dit betekent

dus dat we het aankomstproces van elk afzonderlijk onderdeel kunnen voorstellen als een

Poissonverdeling met zijn eigen parameter die gelijk of verschillend kan zijn. Deze

veronderstelling is bovendien niet zo ver gezocht als we ervan uitgaan dat de onderdelen

worden aangeleverd uit andere deelprocessen van het bedrijf.

De reden waarom men in de literatuur vaak kiest voor een Markovketen is om zijn specifieke

eigenschappen. In de Markovketen beweegt de toevalsveranderlijke zich tussen een aantal

toestanden. Wat deze keten zo bijzonder maakt is de karakteristiek dat “de toekomst gegeven

het heden niet afhangt van het verleden”. De toekomstige waarden van de toevalsveranderlijke

hangen dus enkel af van de huidige toestand, en niet van de waarden in het verleden. Nog anders

gezegd betekent dit dat de toekomstige waarden niet afhangen van de weg die gevolgd werd om

tot de huidige toestand te komen. Deze eigenschap maakt een Markovketen “geheugenloos”

(Bruneel).

Een Poissonproces betekent dat de tijd tussen de aankomsten exponentieel verdeeld is met een

parameter . Een Poissonproces heeft enkele merkwaardige eigenschappen die de reden van

gebruik zullen ondersteunen. Een Poissonproces is ook een Markovketen maar dan met slechts 1

toestand. Dit betekent dat ook het poisson proces “geheugenloos” is. In het specifieke geval van

het Poissonproces betekent dit dat de waarschijnlijkheid om een aankomst te hebben tijdens het

tijdsinterval (t,t+dt) altijd gelijk is aan dt en de waarschijnlijkheid om er geen te hebben altijd

gelijk is aan 1– dt. Anders gezegd betekent dit dat de kans dat een onderdeel aankomt, zal

plaatsvinden op een tijdstip dat onafhankelijk is van het tijdstip van de voorgaande aankomst, of

de ligging van het tijdstip t op de tijdsas. Kortom, de aankomsten gebeuren onafhankelijk van

elkaar. Een andere eigenschap is de “superpositie”. Dit betekent dat de som van n onafhankelijke

Poisson processen met parameter i opnieuw een poisson proces is met parameter ∑ i

(Bruneel).

Een zeer belangrijke deelklasse van Markovketens zijn de zogenaamde “Birth-Death-processen”,

BD-processen. Deze processen hebben als toestandsruimte de verzameling van de natuurlijk

Page 19: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

1. KITTING

getallen of een deelverzameling daarvan, en zijn gekenmerkt door het feit

toevalsveranderlijke vanuit een toestand enkel naar naburige toestanden kan verplaatsen. Een

overgang van k naar k+1 noemt men een geboorte (“birth”), terwijl een overgang van k naar k

wordt gedefinieerd als een overlijden (“death”). Wanneer de t

heeft aangenomen, dan vinden de overgangen plaats met respectievelijke intensiteiten λ

geboorte-intensiteit, en μk, sterfte

tijdsinterval tussen t en t + dt i

dan 1 geboorte en/of sterfte in datzelfde tijdsinterval verwaarloosbaar klein is

Een BD-proces wordt grafisch voorgesteld door het volgende toestandsdi

FIGUUR 2: TOESTANDSDIAGRAM BIRTH

De bewegingsvergelijkingen leggen relaties tussen de verschillende geboorte

intensiteiten, en beschrijven de toestand van het systeem.

Stel dat de waarschijnlijkheid dat het proces zich in een toestand k bevindt op tijdstip t gegeven

wordt door Pk (t) = P[X(t) = k], k

De bewegingsvergelijkingen bekomt men dan door uit te drukken dat de toename per

tijdseenheid van de totale probabiliteit binnen

gelijk moet zijn aan het netto waarschijnlijkheidsdebiet doorheen dit oppervlak, van buiten naar

binnen toe. Beschouw bijvoorbeeld een gesloten oppervlak dat toestand 1 omvat, toepassing van

deze regel geeft dan voor deze toestand:

Met de geschikte beginvoorwaarde { Pk(0) , k

te samen met de normeringsvoorwaarde dan oplossen, en vindt men de verdelingen {Pk(t),k

voor alle t ≥ 0. Dit kan echter zeer

een poisson proces.

getallen of een deelverzameling daarvan, en zijn gekenmerkt door het feit

toevalsveranderlijke vanuit een toestand enkel naar naburige toestanden kan verplaatsen. Een

overgang van k naar k+1 noemt men een geboorte (“birth”), terwijl een overgang van k naar k

wordt gedefinieerd als een overlijden (“death”). Wanneer de toevalsveranderlijke de waarde k

heeft aangenomen, dan vinden de overgangen plaats met respectievelijke intensiteiten λ

, sterfte-intensiteit. De kans op precies 1 geboorte of sterfte in het

tijdsinterval tussen t en t + dt is gelijk aan respectievelijk λkdt en μkdt, terwijl de kans op meer

dan 1 geboorte en/of sterfte in datzelfde tijdsinterval verwaarloosbaar klein is

proces wordt grafisch voorgesteld door het volgende toestandsdiagram.

IRTH-DEATH PROCES

De bewegingsvergelijkingen leggen relaties tussen de verschillende geboorte

intensiteiten, en beschrijven de toestand van het systeem.

waarschijnlijkheid dat het proces zich in een toestand k bevindt op tijdstip t gegeven

(t) = P[X(t) = k], k≥0.

De bewegingsvergelijkingen bekomt men dan door uit te drukken dat de toename per

tijdseenheid van de totale probabiliteit binnen een willekeurig gesloten gebied in het diagram

gelijk moet zijn aan het netto waarschijnlijkheidsdebiet doorheen dit oppervlak, van buiten naar

binnen toe. Beschouw bijvoorbeeld een gesloten oppervlak dat toestand 1 omvat, toepassing van

an voor deze toestand:

Met de geschikte beginvoorwaarde { Pk(0) , k ≥ 0} kan men het stelsel bewegingsvergelijkingen

te samen met de normeringsvoorwaarde dan oplossen, en vindt men de verdelingen {Pk(t),k

≥ 0. Dit kan echter zeer gecompliceerd zijn, tenzij in enkele speciale gevallen, zoals

9

getallen of een deelverzameling daarvan, en zijn gekenmerkt door het feit dat een

toevalsveranderlijke vanuit een toestand enkel naar naburige toestanden kan verplaatsen. Een

overgang van k naar k+1 noemt men een geboorte (“birth”), terwijl een overgang van k naar k-1

oevalsveranderlijke de waarde k

heeft aangenomen, dan vinden de overgangen plaats met respectievelijke intensiteiten λk, de

intensiteit. De kans op precies 1 geboorte of sterfte in het

dt, terwijl de kans op meer

dan 1 geboorte en/of sterfte in datzelfde tijdsinterval verwaarloosbaar klein is (Bruneel).

agram.

De bewegingsvergelijkingen leggen relaties tussen de verschillende geboorte- en sterfte-

waarschijnlijkheid dat het proces zich in een toestand k bevindt op tijdstip t gegeven

De bewegingsvergelijkingen bekomt men dan door uit te drukken dat de toename per

een willekeurig gesloten gebied in het diagram

gelijk moet zijn aan het netto waarschijnlijkheidsdebiet doorheen dit oppervlak, van buiten naar

binnen toe. Beschouw bijvoorbeeld een gesloten oppervlak dat toestand 1 omvat, toepassing van

≥ 0} kan men het stelsel bewegingsvergelijkingen

te samen met de normeringsvoorwaarde dan oplossen, en vindt men de verdelingen {Pk(t),k≥0}

gecompliceerd zijn, tenzij in enkele speciale gevallen, zoals

Page 20: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

1. KITTING

In veel gevallen is men echter in plaats van het volledig gedrag meer geïnteresseerd in het

regimegedrag en in de limietgrootheden:

en de voorwaarden waaronder deze een gel

limietdistributie zou bestaan, moet het bestudeerde systeem “stabiel” zijn. Wanneer

µ=µk voor alle k, dan betekent dat de geboorte

intensiteit. In de andere gevallen

geboorte- of sterfte-intensiteit. Voor de meeste praktische belangrijke BD

regimebedrag bepaald door de

bekomt door in de bewegingsvergelijkingen

samen met de normeringvoorwaarde:

Deze normeringvoorwaarde zegt dat aangezien het systeem zich in minstens 1 en hoogstens 1

toestand kan bevinden, de kansen dat het systeem zich

sommeren tot 1. Het oplossen van de evenwichtsvergelijkingen samen met de

normeringvoorwaarde resulteert dus in het vinden van de evenwichtswaarschijnlijkheden P

Deze geven weer wat de kans is dat het systeem zich, i

3.2 GELIMITEERDE BUFFERS

De buffers worden gelimiteerd gekozen omdat een systeem met aankomstprocessen die

onafhankelijke Markovketens zijn onstabiel zijn wanneer de buffers niet gelimiteerd zijn

(Harrison, 1973, pp. 354-367)

zoals de aankomstsnelheden afhankelijk maken van het aantal elementen in de buffer

(Ramachandran & Delen, 2003)

gelimiteerde buffers.

In veel gevallen is men echter in plaats van het volledig gedrag meer geïnteresseerd in het

regimegedrag en in de limietgrootheden:

en de voorwaarden waaronder deze een geldige distributie vormen. Opdat er een

limietdistributie zou bestaan, moet het bestudeerde systeem “stabiel” zijn. Wanneer

voor alle k, dan betekent dat de geboorte-intensiteit kleiner moet zijn dan de sterfte

intensiteit. In de andere gevallen geldt dit niet aangezien er dan geen sprake is van “de”

intensiteit. Voor de meeste praktische belangrijke BD-processen wordt dit

regimebedrag bepaald door de evenwichtsvergelijkingen. Dit zijn de vergelijkingen die men

de bewegingsvergelijkingen Pk(t) te vervangen door pk en

samen met de normeringvoorwaarde:

Deze normeringvoorwaarde zegt dat aangezien het systeem zich in minstens 1 en hoogstens 1

toestand kan bevinden, de kansen dat het systeem zich in 1 van de toestanden bevindt moeten

sommeren tot 1. Het oplossen van de evenwichtsvergelijkingen samen met de

normeringvoorwaarde resulteert dus in het vinden van de evenwichtswaarschijnlijkheden P

Deze geven weer wat de kans is dat het systeem zich, in regime, in toestand k bevindt.

ELIMITEERDE BUFFERS

De buffers worden gelimiteerd gekozen omdat een systeem met aankomstprocessen die

onafhankelijke Markovketens zijn onstabiel zijn wanneer de buffers niet gelimiteerd zijn

367). Deze limitering zou niet nodig zijn met controle mechanismes

zoals de aankomstsnelheden afhankelijk maken van het aantal elementen in de buffer

Delen, 2003). Wij maken het echter niet onnodig moeilijk en kiezen dus voor

10

In veel gevallen is men echter in plaats van het volledig gedrag meer geïnteresseerd in het

dige distributie vormen. Opdat er een

limietdistributie zou bestaan, moet het bestudeerde systeem “stabiel” zijn. Wanneer =k en

intensiteit kleiner moet zijn dan de sterfte-

geldt dit niet aangezien er dan geen sprake is van “de”

processen wordt dit

. Dit zijn de vergelijkingen die men

en dPk(t)/dt door 0,

Deze normeringvoorwaarde zegt dat aangezien het systeem zich in minstens 1 en hoogstens 1

in 1 van de toestanden bevindt moeten

sommeren tot 1. Het oplossen van de evenwichtsvergelijkingen samen met de

normeringvoorwaarde resulteert dus in het vinden van de evenwichtswaarschijnlijkheden Pk.

n regime, in toestand k bevindt.

De buffers worden gelimiteerd gekozen omdat een systeem met aankomstprocessen die

onafhankelijke Markovketens zijn onstabiel zijn wanneer de buffers niet gelimiteerd zijn

. Deze limitering zou niet nodig zijn met controle mechanismes

zoals de aankomstsnelheden afhankelijk maken van het aantal elementen in de buffer

. Wij maken het echter niet onnodig moeilijk en kiezen dus voor

Page 21: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

1. KITTING 11

3.3 KITTING WISKUNDIG VOORGESTELD

In dit deel wordt het kitting proces wiskundig bekeken. We starten met het definiëren van de

toestandsruimte en stellen ons dus de vraag: “welke waarde kan het systeem aannemen?”. Wat

het kitting proces speciaal maakt, is het feit dat de toestandsruimte hier geen deelverzameling is

van de natuurlijke getallen. De reden is dat er niet 1 maar meerdere wachtlijnen zijn, 1 voor elk

onderdeel.

Hoewel de toestandsruimte voor

elk onderdeel apart bestaat uit

natuurlijke getallen, wordt die

van het systeem weergegeven

door een koppel van natuurlijke

getallen: het aantal onderdelen

in de wachtlijn op een bepaald

tijdstip wordt weergegeven door

respectievelijk Q1 en Q2, wat we

noteren als (Q1,Q2). Bij de opstart

van de productie zijn de

wachtlijnen leeg en bevinden we

ons dus in het punt (0,0).

Onderdeel 1 komt toe in het systeem met een gemiddelde snelheid 1 en zo belanden we in het

punt (1,0). Het is ook mogelijk dat onderdeel 2 eerder toekomt dan onderdeel 1. Dan belanden

we in het punt (0,1). Als in beide wachtlijnen een onderdeel zit, kan er geassembleerd worden.

De voorraadpositie zal dan verminderen van (1,1) naar (0,0) met een gemiddelde snelheid µ.

Samengevat zien we dat de voorraadpositie Q1 zal toenemen met een gemiddelde snelheid 1 en

dit wordt weergegeven door de verticale pijlen in de matrix. De horizontale pijlen geven weer

dat de voorraadpositie Q2 toeneemt met een gemiddelde snelheid 2. Tot slot zijn er de diagonale

pijlen die aanduiden dat bij assemblage de voorraadpositie van Q1 en Q2 daalt met een

gemiddelde snelheid µ. De grootte van de matrix wordt bepaald door de grootte van C1 en C2.

De matrix vertoont gelijkenissen met de Birth-Death-processen besproken in het voorgaande

deel. Het kitting proces is echter geen zuiver BD-proces omdat er ook transities mogelijk zijn

naar niet naburige toestanden. Bijvoorbeeld bij het vormen van een kit gaat het systeem van

toestand (1,1) naar (0,0). Hoewel het mogelijk is dit te interpreteren als een naburige toestand,

FIGUUR 3:TOESTANDSDIAGRAM KITTING

Page 22: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

1. KITTING 12

kan men er niet geraken door de bewerking +1 of -1. De reden hiervoor is dat de

toestandsruimte niet bestaat uit natuurlijke getallen maar uit een koppel (Q1,Q2) van natuurlijke

getallen.

Toch zal deze masterproef het kitting proces benaderen als een veralgemeend BD-proces. Naast

het toestandsdiagram weergegeven door de matrix, wordt er ook gebruik gemaakt van de

evenwichtsvergelijkingen om de limietwaarden in regime te vinden.

3.4 OPLOSSINGSMETHODE

Veronderstel een kitting proces waarbij de buffer voor het eerste onderdeel 2 plaatsen telt, en

de buffer voor het tweede onderdeel 3 plaatsen. Het aantal onderdelen in een buffer kan

variëren van 0 tot de capaciteit, 2 en 3 respectievelijk voor onderdeel 1 en 2. Dit betekent dat de

toestandsruimte van de buffer van het eerste onderdeel 3 mogelijke waarden kent (0,1,2). De

buffer voor het tweede onderdeel heeft een toestandsruimte met 4 mogelijke waarden (0,1,2,3).

Dit leidt tot een toestandsruimte voor de koppels (Q1,Q2) van 12 mogelijke waarden, gaande van

(0,0) tot (2,3). Dit zeer kleine kitting proces resulteert reeds in 12 bewegingsvergelijkingen. Het

is duidelijk dat een meer realistisch proces meteen noodzaakt tot het oplossen van zeer grote,

complexe stelsels van bewegingsvergelijkingen. Bijvoorbeeld 3 onderdelen met een elk een

buffer van 20 onderdelen resulteert in 9261 vergelijkingen. Als men bedenkt uit hoeveel

onderdelen een auto bestaat, zien we dat deze oplossingsmethode veel te omslachtig is.

Als we het toestandsdiagram van het kitting proces bekijken, merken we echter op dat elke

toestand slechts relaties heeft met een beperkt aantal andere toestanden. Er zijn heel wat

toestanden waartussen geen directe relatie bestaat. Door hiervan gebruik te maken in het

wiskundig modeleren, kan men het aantal vergelijkingen aanzienlijk reduceren en wordt het

vinden van de evenwichtswaarschijnlijkheden Pk eenvoudiger.

We hebben voor deze masterproef gebruik gemaakt van Matlab om het kitting proces wiskundig

te modeleren. Dit programma is ontwikkeld om te rekenen met matrices. Door gebruik te maken

van “sparse matrices” modeleren we enkel de toestanden waartussen een relatie is en

veronderstellen we de rest gelijk aan 0. Bij een BD-proces is het de bedoeling om te vinden met

welke intensiteit de ene toestand overgaat in de andere. Als we dit toepassen op het kitting

proces, betekent dit dat we de onderstaande matrix willen invullen.

Page 23: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

1. KITTING 13

De invulling van deze matrix zal bestaan uit een combinatie van 1, 2 en µ, afhankelijk van de

relatie tussen 2 toestanden. Bij toestanden waartussen geen relatie is, is de overgangsintensiteit

gelijk aan 0. Zoals gezegd is het modeleren aan de hand van de bewegingsvergelijkingen

omslachtig en complex. Om die reden gebruiken we in Matlab een alternatieve

oplossingsmethode om bovenstaande matrix te bekomen.

Wat het kitting proces zo anders maakt dan een gewoon wachtlijnsysteem is het feit dat de

toestandsruimte bestaan uit koppels van natuurlijke getallen. De matrix voorstelling van het

aankomstproces voor onderdeel 1 ziet er uit als volgt wanneer we veronderstellen dat C1=2 en

C2=3.

De kolomen van links naar rechts geven de huidige toestand van buffer 1,

de huidige toestand van buffer 2, de toekomstige toestand van buffer 1,

de toekomstige toestand van buffer 2 en de gemiddelde aankomst-

snelheid. De eerste en tweede kolom vormen dus een koppel (Q1,Q2),

alsook de derde en vierde kolom. Dit kunnen we nu makkelijk modeleren

in Matlab door gebruik te maken van het Kronecker product.

Page 24: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

1. KITTING 14

Het Kronecker product wordt weergegeven door het symbool en is toepasbaar tussen

matrixen van willekeurige grootte. A B wordt dan weergegeven door:

Gebruik makende van het kronecker product vinden we een uitdrukking voor elke kolom in de

voorgaande matrix. Nemen we bijvoorbeeld de tweede kolom dan ziet het er als volgt uit.

Dit kunnen we nu in matlab programmeren. Hiervoor

merken we op dat de eerste matrix bestaat uit C1 eentjes

en dat de tweede matrix de getallen 0 tot C2 weergeeft. In

Matlab wordt dit:

kron(ones(C1,1),(0:C2)’)

We passen hetzelfde principe toe om tot de 5 kolommen

te komen. We doen daarna hetzelfde voor het

aankomstproces van onderdeel 2 en voor het vertrekproces van het product (“sterfte”).

Vervolgens plaatsen we de 3 matrices onder mekaar; die het aankomstproces van onderdeel 1

weergeeft, die het aankomstproces van onderdeel 2 weergeeft en die het vertrekproces van de

kits weergeeft.

Om de evenwichtswaarschijnlijkheden te vinden moeten we nu van het koppel en dus van 2

dimensies overgaan naar 1 dimensie. Hiervoor zoeken we een formule die aan het koppel (0,0)

de waarde 1 toekent en zo incrementeel oploopt tot bijvoorbeeld (2,3) die het getal 12 krijgt. De

formule die we daarvoor vonden is de volgende:

i * (C2 + 1) + j + 1 waarbij i en j de getallen van het koppel (i,j) voorstellen.

Page 25: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

1. KITTING 15

De laatste stap om tot de ingevulde matrix A te komen heeft alles te maken met de specifieke

oplossingsmethode die we kozen voor deze masterproef. Hiervoor verwijzen we dan ook naar

de literatuur (Tijms, 2003) aangezien dat het doel van de masterproef overstijgt.

Het resultaat van deze berekeningen is de ingevulde matrix A. Tot slot berekenen we nu de

evenwichtswaarschijnlijkheden in regime πk. Dit doen we door het volgende stelsel op te lossen;

πk * A = 0

∑ πk = 1

De oplossing van dit stelsel geeft de rijmatrix πk die weergeeft wat de kans is dat het systeem

zich in toestand k bevind, in regime, waarbij k de mogelijke koppels van de toestandsruimte

voorstelt gaande van (0,0) tot (C1,C2).

Page 26: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

Hoofdstuk 2

Analyse van

Productielijnen met

Kitting

1 Prestatiematen

Het doel van een kitting proces is om zo effectief en efficiënt mogelijk te werken. Om de prestatie

van een systeem met kitting te evalueren, bekijken we het in economische termen van kosten en

opbrengsten. Een kitting systeem levert opbrengsten door de onderdelen te assembleren tot een

product. Hoe meer producten tijdens een bepaald tijdsinterval geassembleerd worden, hoe

hoger de opbrengsten die het systeem genereert. De kosten bestaan uit verschillende

componenten waaronder de operationele kost t.t.z. de kost om de assemblage machine te laten

draaien en/of de kost van de arbeider die assembleert. De andere kosten zijn

opportuniteitskosten. Als de buffer van een van de onderdelen leeg is, kunnen we niet

assembleren en verliezen we de mogelijkheid om opbrengsten te generen gedurende de tijd dat

de buffer leeg is. Als daarentegen de buffer van een onderdeel vol zit, moet de machine die dat

Page 27: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 17

onderdeel aanlevert worden stil gelegd. Ook dit vormt een opportuniteitskost. Tot slot is er het

verlies dat een echte kost kan zijn doordat het weergeeft hoeveel onderdelen verloren gaan

omdat de buffers vol zitten of een opportuniteitskost doordat het weergeeft hoeveel onderdelen

we potentieel hadden kunnen verwerken.

Hieruit kunnen we de prestatiematen afleiden die ik zal onderzoeken; de gemiddelde

bufferbezetting, de kans dat een buffer leeg/vol is, de throughput en het verlies.

1.1 Gemiddelde bufferbezetting

Veronderstel een wachtlijnsysteem dat een klassiek BD-proces is, dus met 1 wachtlijn. Door

gebruik te maken van de besproken oplossingsmethode vindt men de evenwichts-

waarschijnlijkheden Pk in regime.

P=[P0 P1 … Pn]

In dat geval kan de gemiddelde bufferbezetting worden weergegeven als volgt.

E[Q]=0P0+1P1+…+nPn

In het kitting proces dat wij bespreken zijn er 2 wachtlijnen. Ook hiervan hebben we de

evenwichtswaarschijnlijkheden gevonden, weergegeven door πk. We trachten nu de Pk van elke

wachtlijn afzonderlijk te vinden. We zoeken dus de kans dat buffer 1 zich in toestand {0,1,2,..,C1}

bevindt, ongeacht de toestand van buffer 2. De Pk van elke wachtlijn afzonderlijk kan makkelijk

gevonden worden door het sommeren van de juiste πk.

Bijvoorbeeld: P0= π00 + π01 + π02 + …+ π0C2

Nu we de Pk van elke wachtlijn kennen, berekenen we de gemiddelde bufferbezetting zoals

uitgelegd hierboven.

Als prestatiemaat op zich, uitgedrukt in kosten of opbrengsten, kunnen we de gemiddelde

bufferbezetting zien als de WIP (work in progress) en is dus een kost voor de onderneming.

Daarnaast, zullen we uit de waarden van deze bezetting belangrijke conclusies kunnen afleiden

voor de andere prestatiematen. Dit wordt duidelijk wanneer we het kitting proces strakd

analyseren.

Page 28: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 18

1.2 De kans dat een buffer leeg/vol is

In het vorig stuk berekenden we Pk van elke wachtlijn. Het is evident dat de kans dat een buffer

leeg/vol is wordt weergegeven door respectievelijk P0 en PC, waarbij C de capaciteit van de

buffer is.

Deze prestatiematen zijn zeer belangrijk voor de vlotte doorstroom in het volledige

productieproces. Als 1 van de buffers leeg is, kunnen er geen kits gevormd worden. De

assemblage machine ligt dus stil en genereert geen opbrengsten. Dit kunnen we voorkomen

door bijvoorbeeld de aanvoer van dat onderdeel op te voeren. We merken op dat een kitting

proces veel gevoeliger is aan een lege buffer dan een traditioneel lijn-voorraad-systeem. Daar

liggen de nodige onderdelen bij de bijhorende productiepost langs de lijn. Voor elke

productiepost bevindt zich voldoende voorraad van het onderdeel, na elke post vinden we een

voorraad van het onderdeel na de bewerking van die post. Deze laatste voorraad vormt dus de

beginvoorraad van de volgende post. Omdat er zoveel voorraden verspreid liggen tussen de

werkposten, kan het hele systeem gerust een tijdje doorwerken wanneer de buffer van 1

onderdeel leeg zou zijn. Immers, de posten ervoor en erachter hebben hun eigen voorraden

waarmee ze tijdelijk verder kunnen. Dit heeft dan ook tot gevolg dat er veel WIP verspreid ligt in

de productiehal, wat zeer kostelijk is voor een productiebedrijf. Bij een kitting systeem is er 1

assemblagepost die alle nodige onderdelen verzamelt en assembleert. De onderdelen worden

rechtstreeks aangevoerd door de machines die ze produceren, met een gelimiteerde buffer voor

elk onderdeel. Wanneer nu 1 onderdeel een lege buffer heeft, valt het gehele proces stil. De

kosten van WIP zijn laag, maar de doorstroom van onderdelen wordt des te belangrijker.

Zoals gezegd zijn de buffers voor elk onderdeel gelimiteerd, wat betekent dat er ook een kans is

dat de buffer vol komt te zitten. Als 1 van de buffers vol is, dan zijn er 2 mogelijk scenario’s.

Ofwel blijft de machine produceren en gaan de onderdelen die niet in de buffer kunnen

“verloren” en dan spreken we van “verlies”. Ofwel moet de machine die dat onderdeel aanvoert

stil gelegd worden. Het stilleggen en opstarten van een machine is vaak erg duur en men streeft

dan ook naar een continue stroom. Een volle buffer kan vermeden worden door de

aanvoersnelheid te verminderen.

We zien onmiddellijk dat het verminderen van het ene risico, het andere risico verhoogt. Het

doel is dus een goede balans te vinden die beide kansen afweegt. Hiervoor zullen de eigenlijke

kosten van lege en volle buffers moeten worden afgewogen.

Page 29: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 19

1.3 Throughput

De throughput is het gemiddeld aantal kits dat per tijdseenheid wordt gemaakt. Een verandering

in throughput heeft een directe impact op de opbrengsten die het systeem genereert. De

throughput kan worden berekend door de kans dat de server zich in een toestand bevindt van

waaruit het kan bedienen te delen door de verwachtingswaarde van de assemblage tijd (1/µ).

Om deze eerste term te vinden maken we de volgende redenering. De server is ofwel bezig met

het vormen van een kit ofwel wacht het op onderdelen om een kit te vormen. Aangezien de

server enkel deze toestanden kan aannemen, is de som van beide kansen gelijk aan 1 t.t.z. de

kans dat de server bezig is en de kans dat de server aan het wachten is. Deze laatste kans kennen

we aangezien die overeen komt met de kans dat 1 van de buffers leeg is. Hiervoor sommeren we

de kans dat elke buffer afzonderlijk leeg is (P0) en corrigeren voor de dubbeltelling door de kans

dat beide buffers leeg zijn in vermindering te brengen.

P[server=wachten] = P[Q1=0] + P[Q2=0] - P[Q1=0 & Q2=0]

Nu we de kans kennen dat de server aan het wachten is, kunnen we makkelijk de kans vinden

dat de server bezig is of m.a.w. de kans dat de server zich in een toestand bevindt van waaruit

het kan bedienen.

P[server=bezig] = 1 - P[server=wachten]

De throughput kan nu berekend worden als volgt:

TP =[ୱୣ ୰୴ ୰ୣୀୠ ୣ୧]

ଵ/ஜ

TP = µ * P[server=bezig]

1.4 Verlies

Het verlies van een buffer is het gemiddeld aantal onderdelen dat verloren gaat per tijdseenheid.

Omdat we werken met een Poisson aankomstproces geldt de PASTA eigenschap. PASTA staat

voor “Poisson Arrival See Time Averages” en komt erop neer dat de eigenschappen van het

systeem statistisch identiek zijn of we nu kijken vlak voor een aankomst of op een totaal

willekeurig tijdstip. Dit betekent dat het verlies rechtstreeks gerelateerd is aan de kans dat de

buffer vol zit. Meer bepaald vinden we het verlies door de kans op een volle buffer te

vermenigvuldigen met de gemiddelde aankomstsnelheid : verlies = P[vol] × .

Page 30: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 20

Ook vinden we een relatie tussen het verlies en de throughput. Immers, wanneer =1=2 dan

geldt: TP + verlies = . We weten bovendien ook dat de throughput begrensd is: TP <

min(µ,1,2). Rekening houdend met al deze eigenschappen, kunnen we nagaan hoe we TP

kunnen maximaliseren en het verlies minimaliseren.

We kunnen nu dit verlies op 2 manieren interpreteren. Als de aanvoer van een onderdeel niet

stil gelegd wordt, al dan niet door vrije keuze, wanneer de buffer van dat onderdeel vol zit, dan

worden er onderdelen aangevoerd waarvoor geen plaats is in de buffer. Deze onderdelen gaan

verloren. Dit is bijvoorbeeld het geval bij bederfbare producten. Echter, wanneer de aanvoer wel

wordt stil gelegd, dan geeft het verlies weer hoeveel onderdelen we hadden kunnen verwerken

indien de buffer nooit vol had gezeten. Dit vormt een opportuniteitskost. Hoe we er ook naar

kijken, verlies is dus steeds een kost die in rekening moet gebracht worden.

2 Optimaliseren van de prestatiematen

We trachten nu na te gaan welke combinatie parameters de beste resultaten geeft voor de

besproken prestatiematen. Hiervoor manipuleren we de 5 parameters van het kitting proces C1,

C2, 1, 2 en µ. De eerste 2 parameters geven de buffercapaciteit weer van de wachtlijn voor

respectievelijk onderdeel 1 en onderdeel 2. De volgende 2 parameters geven de gemiddelde

snelheden weer waarmee de onderdelen zich aanbieden. Deze zijn verbonden aan het

aankomstproces, wat in deze masterproef een Poissonproces is. De laatste parameter tot slot is

de gemiddelde snelheid waarmee de kits de server verlaten. Deze is gerelateerd aan de

gemiddelde assemblagetijd: E[S] = 1/µ.

Bij het kiezen van de optimale parametercombinatie voor het kitting systeem, moeten we de

afweging maken tussen opbrengsten, kosten en risico’s. We zeggen “kiezen” in de

veronderstelling dat men kan instellen hoe groot de buffers zijn, hoe snel de onderdelen moeten

aankomen en hoe snel de machine moet werken. Dit zal in vele gevallen in de realiteit weinig

waarschijnlijk zijn of in veel beperktere mate. Toch is deze veronderstelling nodig om algemene

trends te ontdekken.

Aangezien we op zoek zijn naar trends, is het voldoende om elke variabele te laten wijzigen

tussen 1 en 5. We bekijken het effect op de prestatie van het kitting systeem ten gevolge

wijzigingen in de verschillende parameters. We representeren een kitting systeem als volgt:

C1C212µ. Bijvoorbeeld: 43445.

Page 31: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 21

De mate waarin de prestatiematen veranderen bij wijzigingen in een parameter is sterk

afhankelijk van de waarden van de andere parameters. We bekijken eerst de prestatiematen

afzonderlijk en hoe we die kunnen optimaliseren. Hoewel alle prestatiematen samenhangen, is

het toch nuttig ze afzonderlijk te bespreken om stap voor stap de redenering op te bouwen.

Bovendien, kunnen we zo straks makkelijker begrijpen wat er gebeurt met de winst ten gevolge

wijzigingen in de verschillende parameters. Tot slot van dit hoofdstuk, bekijken we hoe we het

kitting proces kunnen optimaliseren met alle prestatiematen in acht genomen.

2.1 Gemiddelde bufferbezetting

De eerste prestatiemaat die we bekijken is de gemiddelde bufferbezetting. Zoals later zal blijken,

hangen vele andere prestatiematen samen met deze. Een goed inzicht hier zal later dus van pas

komen. We kiezen 4 combinaties van parameterwaarden waarbij we trachten een zo breed

mogelijk gamma aan combinaties te dekken. We combineren hoge en lage buffers met snelle en

trage gemiddelde aankomstsnelheden en dit in functie van de gemiddelde verwerkingssnelheid.

Aangezien we zowel de buffercapaciteiten als de gemiddelde aankomstsnelheid gelijk kiezen

voor beide onderdelen, is de gemiddelde bufferbezetting dezelfde voor beide onderdelen.

GRAFIEK 1: E[Q] VOOR VERSCHILLENDE SCENARIO’S

Veralgemeend kunnen we stellen dat de gemiddelde bufferbezetting groter wordt wanneer de

buffercapaciteit of de gemiddelde aankomstsnelheid stijgen maar kleiner wordt met

toenemende gemiddelde verwerkingssnelheid. Rekening houdend met deze veralgemening is

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1 2 3 4 5

E[Q]

m

1111m

1155m

5511m

5555m

Page 32: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 22

het dan ook logisch dat scenario 1 (1111µ) de kleinste en scenario 4 (5555µ) de grootste

gemiddelde bufferbezetting hebben.

Vergelijken we scenario 1 en 2 dan zien we dat de gemiddelde bufferbezetting hoger ligt

wanneer de gemiddelde aankomstsnelheid groter is. Dit is intuïtief makkelijk te begrijpen

aangezien de onderdelen gemiddelde sneller toekomen bij ongewijzigde buffercapaciteit en

verwerkingssnelheid in scenario 2. Dit kunnen we ook waarnemen wanneer we scenario 3 en 4

naast mekaar leggen. Hier zien we bovendien dat het concave verloop verandert in een licht

convexe curve. Dit heeft tot gevolg dat in scenario 3 de gemiddelde bufferbezetting propor-

tioneel gezien steeds minder sterk daalt, terwijl dit in scenario 4 meer dan proportioneel is met

toenemende µ. In het vervolg van dit hoofdstuk zullen we nagaan wat het effect hiervan is op de

andere prestatiematen.

De buffercapaciteit groter maken resulteert in een hogere gemiddelde bufferbezetting. Dit

vinden we door het vergelijken van scenario 1 en 3 alsook 2 en 4. We zien dus dat de gemiddelde

bufferbezetting toeneemt hoewel zowel de gemiddelde aankomstsnelheid als de gemiddelde

verwerkingssnelheid dezelfde blijven. De reden hiervoor ligt in het stochastische karakter van

het aankomstproces. Stochastisch betekent dat de onderdelen niet aankomen op welbepaalde

tijdstippen, bijvoorbeeld elke 3 seconden. Echter, in een stochastisch proces spreekt met over de

kans dat een onderdeel toekomt binnen een bepaald tijdsinterval. Wanneer we de eigenlijke

tijdstippen waarop de onderdelen aankomen zouden uitzetten op een grafiek, dan zouden we

zien dat de aankomsten mekaar soms snel opvolgen, dan weer een periode met weinig

aankomsten, … . Het gevolg hiervan is dat er zich rond de gemiddelde bufferbezetting pieken en

dalen voordoen. Hoe groter de buffer, hoe groter de kans dat de buffer deze pieken kan

opvangen. Deze bevinding kunnen we bevestigen in onderstaande grafiek. De curve geeft de

gemiddelde bufferbezetting voor beide buffers wanneer we de buffergrootte opdrijven van 1 tot

5, met 1=2=µ=1.

GRAFIEK 2: E[Q] IN FUNCTIE VAN C MET =µ=1

0,00

1,00

2,00

3,00

4,00

1 2 3 4 5

E[Q]

C

Page 33: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 23

We merken op dat de gemiddelde bufferbezetting toeneemt wanneer de buffercapaciteit groter

wordt, en dit met een lineair verband. Dit betekent dat de procentuele bezettingsgraad van de

buffers steeds dezelfde is. Echter, in absolute termen zijn er steeds meer onderdelen ter

beschikking van het systeem.

2.1.1 Systeembelasting

In de grafiek met de 4 scenario’s kozen we =1 en =5 bij variërende waarden voor µ. Wat nu

eigenlijk belangrijk is voor het kitting systeem zijn niet de absolute waarden voor deze twee

parameters maar wel de verhouding ervan. Wanneer =µ spreken we van gelijkbelasting. Er

komen gemiddelde evenveel onderdelen binnen dan er kits buiten gaan. Is <µ dan hebben we

te maken met onderbelasting aangezien de server gemiddeld gezien onderbelast, onderbenut is.

Als >µ wordt de server tot zijn uiterste gedreven aangezien er nu overbelasting is. In de

volgende grafieken vergelijken we gelijkbelasting(1=2=1; µ=1) met een onderbelasting van

50% (1=2=0,5; µ=1) en met een overbelasting van 200% (1=2=2; µ=1). De buffergrootte van

beide buffers kiezen we gelijk en laten we variëren van 1 tot 5.

GRAFIEK 3: E[Q] BIJ VERSCHILLENDE SYSTEEMBELASTING

Zoals verwacht zien we dat de gemiddelde bufferbezetting hoger is bij overbelasting dan bij

onderbelasting. Immers, hoe meer onderdelen gemiddeld toekomen met een zelfde gemiddelde

bedieningssnelheid, hoe meer onderdelen gemiddeld in de buffers zullen zitten. Dit zal zijn

impact hebben op de andere prestatiematen; throughput, verlies, kans op een volle buffer en

kans op een lege buffer.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4 5

E[Q]

C

50%

100%

200%

=0.5 µ=1

=1 µ=1

=2 µ=1

Page 34: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 24

2.1.2 Optimalisatie

De prestatiemaat ‘gemiddelde bufferbezetting’ optimaliseren heeft eigenlijk geen betekenis

aangezien het niet goed of slecht is dat deze waarde hoog of laag is. In het begin van dit

hoofdstuk hebben we de gemiddelde bufferbezetting echter gekoppeld aan de WIP. Dit zou

betekenen dat een lage bufferbezetting gunstig is. Echter, we zouden ook de procentuele

benutting van de buffer kunnen maximaliseren. We zeggen dat de gemiddelde bufferbezetting

optimaliseren niet veel betekenis heeft omdat die gerelateerd is aan prestatiematen die we veel

meer uitgesproken kunnen optimaliseren, en dat trachten we dan ook te doen in het vervolg van

dit hoofdstuk.

2.2 Kans dat buffer vol is

In dit deel trachten we de prestatiemaat met betrekking tot de kans op een volle buffer te

optimaliseren. Voor deze prestatiemaat betekent dit een zo laag mogelijk kans bekomen door de

juiste keuze parameterwaarden. De kans op een volle buffer is gelijk voor beide onderdelen

aangezien we de buffercapaciteiten en gemiddelde aankomstsnelheden gelijk kiezen.

GRAFIEK 4: P[VOL] VOOR VERSCHILLENDE SCENARIO’S

Zoals gezegd belemmert een volle buffer de vlotte doorstroom doorheen de productie aangezien

de aanvoer van onderdelen moet worden stil gelegd indien de buffer van dat onderdeel vol zit.

We nemen dit risico dus in beschouwing omdat het een invloed heeft op het gehele systeem,

hoewel het voor het kitting proces op zich niet uitmaakt of die buffer vaak vol zit of niet. Immers,

zolang er een onderdeel in de buffer zit, kan het kitting proces blijven werken. We zien uit

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5

P[vol]

m

1111m

1155m

5511m

5555m

Page 35: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 25

bovenstaande grafiek dat de kans op een volle buffer daalt als µ stijgt. Het is ook onmiddellijk

duidelijk dat scenario 3 de beste resultaten geeft m.a.w. in dat scenario zijn de

opportuniteitskosten het laagst. Scenario 2 daarentegen kent zeer hoge opportuniteitskosten

aangezien de laagste kans 60% bedraagt, wat nog steeds zeer hoog is. Merk op dat de kans op

een volle buffer bij µ=1 in scenario 1 gelijk is aan 60% Dit is niet toevallig gelijk aan de kans op

een volle buffer bij µ=5 in scenario 2. Immers, die twee punten geven allebei gelijkbelasting weer

bij C=1. Gaan we vanaf dat punt naar rechts op de curve van scenario 1 dan gaan we naar

onderbelasting, gaan we naar links op de curve van scenario 2 dan gaan we naar overbelasting.

Hetzelfde geldt voor scenario 3 en 4 maar dan bij C=5.

Vergelijken we scenario 1 en 2 dan zien we dat het opvoeren van de gemiddelde snelheid

waarmee de componenten aangeleverd worden, resulteert in een hogere kans op een volle

buffer. Dit is logisch aangezien er op eenzelfde tijdspanne gemiddeld meer onderdelen

toekomen terwijl er gemiddeld evenveel producten het kitting proces verlaten. De kans op een

volle buffer daalt iets sneller in scenario 2 wanneer µ toeneemt, in vergelijking met scenario 1.

De reden hiervoor ligt in het feit dat niet de absolute waarden van en µ belangrijk zijn, dan wel

de verhouding ervan. In scenario 1 vertrekken we met gelijke en µ om daarna te gaan naar een

toestand van onderbelasting m.a.w. er komen gemiddeld minder onderdelen toe dan er

gemiddeld vertrekken. In scenario 2 daarentegen vertrekken we van overbelasting met =5 en

µ=1 en gaan we naar evenredige belasting met =5=µ. De kans op een volle buffer daalt dus

sneller van overbelasting naar evenredige belasting dan van evenredige belasting naar

onderbelasting bij toenemende µ.

Als we scenario 1 en 3 samen leggen, merken we op dat de kans op een volle buffer aanzienlijk

daalt. Waarom de kans op een volle buffer daalt wanneer de buffergrootte toeneemt, wordt

hieronder uitgelegd in 2.2.1. Systeembelasting.

Hoewel scenario 4 uiteraard niet de mathematische optelsom is van scenario 2 en 3, zijn de

effecten van beide scenario’s wel cumulatief. Zoals daarnet beschreven, betekent het opdrijven

van de gemiddelde aankomstsnelheid een toename in de kans op een volle buffer terwijl het

groter maken van de buffercapaciteit een tegengesteld effect heeft. Wanneer we in scenario 4

dus beide combineren, zien we dat de kans op een volle buffer aanvankelijk stijgt tengevolge de

toename in gemiddelde aankomstsnelheid. De stijging is minder groot dan wanneer we enkel de

gemiddelde aanvoersnelheid opdrijven (scenario2) omdat de grotere buffers tegengewicht

bieden. Naarmate µ groter wordt, neemt het gunstige effect van de grotere buffers de overhand

van het negatieve effect van snellere aankomst.

Page 36: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 26

2.2.1 Systeembelasting

We herinneren ons uit de vorige prestatiemaat dat de gemiddelde bufferbezetting het hoogst is

voor overbelasting en het kleinst voor onderbelasting. In onderstaande grafiek gaan we de

verschillende niveaus van systeembelasting bekijken voor prestatiemaat omtrent de kans op een

volle buffer.

GRAFIEK 5: P[VOL] BIJ VERSCHILLENDE SYSTEEMBELASTING

Ook hier geen verrassingen. De kans op een volle buffer is het hoogst wanneer er overbelasting

is en het kleinst wanneer er sprake is van onderbelasting. We zien dat de kans op een volle

buffer daalt met afnemende minderkosten. We zagen daarnet dat E[Q] toeneemt met de

buffercapaciteit. We merkten op dat het aantal onderdelen ter beschikking van het systeem

toenam maar dat de procentuele bezettingsgraad van de buffer ongeveer dezelfde bleef. Nu zien

we dat de kans op een volle buffer afneemt bij groter wordende buffercapaciteit. Dit lijkt op het

eerste zicht onlogisch aangezien we daarnet vertelden dat de buffers procentueel gezien

ongeveer even vol zitten. We kunnen de dalende kans als volgt verklaren. Stel dat we zitten in

een systeem met C=2 aan de ene kant en een systeem met C=5 aan de andere kant. Verder

veronderstellen we dat de gemiddelde aankomstsnelheid voor beide systemen dezelfde is,

alsook de gemiddelde verwerkingssnelheid. Wanneer we ons nu het tijdsverloop proberen voor

te stellen, wordt het duidelijk dat het systeem met C=2 veel sneller en veel vaker vol zal zitten

dan het systeem met C=5. Vandaar dat de kans op een volle buffer daalt bij toenemende

buffergroottes.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 2 3 4 5

P[vol]

C

50%

100%

200%

=0.5 µ=1

=1 µ=1

=2 µ=1

Page 37: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJN

2.2.2 Optimalisatie

Voor deze prestatiemaat is het meest optimale scenario dat met g

aanlevering van componenten, ongeacht de waarde van µ. Afhankelijk van hoe het kitting

systeem er nu uit zien, zijn meer of minder kostelijke ingrepen nodig. Het verlagen van de

aankomstsnelheid lijkt op het eerste zicht misschie

optimaal benutten van het potentieel van een machine is steeds een verlies. Indien het kitting

systeem in de huidige toestand een snelle aankomst kent en men deze om welke reden dan ook

niet verlaagt, is het zeker verstandig om µ zo te kiezen dat er geen overbelasting. Dit systeem

kan verder verbeteren door de buffercapaciteit groter te maken. Het verhogen van µ en C, en de

bijhorende kosten, moet echter goed worden afgewogen met de opbrengsten of de vermindering

in opportuniteitskosten.

2.2.3 Het effect van ongelijke buffergroottes

GRAFIEK

In bovenstaande grafiek analyseren we het effect van verschillende combinaties buffergroottes

op de kans dat een buffer vol zit. Bij gelijke buffergroottes van 1 vinden we de hoogste kans,

namelijk 60%. Bij gelijke buffergroottes van 5 bedraagt deze kans 2

laagste kans die we kunnen bekomen, gegeven dat

gelijke buffergroottes zouden verbinden, zouden we zien dat we in het dal van het oppervlak

zitten. De beste resultaten worden dus behaald door

1

3

5

5

C2

RODUCTIELIJNEN MET KITTING

Voor deze prestatiemaat is het meest optimale scenario dat met grote buffers en een trage

aanlevering van componenten, ongeacht de waarde van µ. Afhankelijk van hoe het kitting

systeem er nu uit zien, zijn meer of minder kostelijke ingrepen nodig. Het verlagen van de

aankomstsnelheid lijkt op het eerste zicht misschien een goedkope oplossing maar het niet

optimaal benutten van het potentieel van een machine is steeds een verlies. Indien het kitting

systeem in de huidige toestand een snelle aankomst kent en men deze om welke reden dan ook

standig om µ zo te kiezen dat er geen overbelasting. Dit systeem

kan verder verbeteren door de buffercapaciteit groter te maken. Het verhogen van µ en C, en de

bijhorende kosten, moet echter goed worden afgewogen met de opbrengsten of de vermindering

Het effect van ongelijke buffergroottes

GRAFIEK 6: P[VOL] BIJ ONGELIJKE BUFFERGROOTTES BIJ =µ=1

In bovenstaande grafiek analyseren we het effect van verschillende combinaties buffergroottes

op de kans dat een buffer vol zit. Bij gelijke buffergroottes van 1 vinden we de hoogste kans,

namelijk 60%. Bij gelijke buffergroottes van 5 bedraagt deze kans 22% en dit is meteen de

laagste kans die we kunnen bekomen, gegeven dat 1 = 2 =µ = 1. Wanneer we de punten met

gelijke buffergroottes zouden verbinden, zouden we zien dat we in het dal van het oppervlak

zitten. De beste resultaten worden dus behaald door de combinaties met gelijke buffergroottes.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

12

34

P[vol]

C1

27

rote buffers en een trage

aanlevering van componenten, ongeacht de waarde van µ. Afhankelijk van hoe het kitting

systeem er nu uit zien, zijn meer of minder kostelijke ingrepen nodig. Het verlagen van de

n een goedkope oplossing maar het niet

optimaal benutten van het potentieel van een machine is steeds een verlies. Indien het kitting

systeem in de huidige toestand een snelle aankomst kent en men deze om welke reden dan ook

standig om µ zo te kiezen dat er geen overbelasting. Dit systeem

kan verder verbeteren door de buffercapaciteit groter te maken. Het verhogen van µ en C, en de

bijhorende kosten, moet echter goed worden afgewogen met de opbrengsten of de vermindering

In bovenstaande grafiek analyseren we het effect van verschillende combinaties buffergroottes

op de kans dat een buffer vol zit. Bij gelijke buffergroottes van 1 vinden we de hoogste kans,

2% en dit is meteen de

=µ = 1. Wanneer we de punten met

gelijke buffergroottes zouden verbinden, zouden we zien dat we in het dal van het oppervlak

de combinaties met gelijke buffergroottes.

Page 38: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 28

De rest van het oppervlak ligt symmetrisch rond dit dal. Immers, de kans op een volle buffer is

dezelfde voor C1-C2 = 2-3 dan voor 3-2.

2.3 Kans dat buffer leeg is

De kans op een lege buffer is zoals gezegd een zeer belangrijke prestatiemaat voor het kitting

systeem aangezien dit proces moet worden stil gelegd indien een onderdeel niet meer voorradig

is.

GRAFIEK 7: P[LEEG] VOOR VERSCHILLENDE SCENARIO’S

De algemene tendens die we op deze grafiek waarnemen is dat de kans op een lege buffer

toeneemt naarmate µ groter wordt. Bovenstaande grafiek toont dat scenario 1 de slechtste

resultaten geeft voor deze prestatiemaat, met kansen die variëren tussen 40% en 59%.

Daarentegen, scenario 4 scoort het best met een maximale kans van 12%. Scenario 4 is

bovendien het enige van de 4 scenario’s dat toenemende meerkosten vertoont. Dit betekent dat

het risico en dus de opportuniteitskosten op een lege buffer proportioneel steeds groter wordt

naarmate we µ verhogen. Bij de andere 3 scenario’s daarentegen vermindert de proportionele

toename m.a.w. de kans op een lege buffer stijgt proportioneel meer indien we µ verhogen van 1

naar 2 dan dat we µ zouden verhogen van 4 naar 5. Dit is belangrijk wanneer we de kosten en

opbrengsten vergelijken van een ingreep om deze opportuniteitskosten te verminderen.

Aangezien scenario 1 het minst goed scoort, kunnen we de kans op een lege buffer verlagen door

zowel het groter maken van de buffercapaciteit als het verhogen van de gemiddelde

aankomstsnelheid. Op het eerste zicht is het intuïtief onlogisch dat het groter maken van de

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5

P[leeg]

m

1111m

1155m

5511m

5555m

Page 39: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 29

buffers de kans op een lege buffer verkleint. De reden hiervoor ligt in het eerder besproken

stochastische karakter van het aankomstproces. Doordat de buffers groter zijn, kunnen ze beter

de pieken opvangen van de onderdelen die zich aanbieden. Dit betekent dat er, absoluut gezien,

meer onderdelen in de buffer kunnen worden toegelaten, dat er dus minder onderdelen

geweigerd worden en dus dat de kans op een lege buffer kleiner is. Dat het verhogen van de

kans op een lege buffer doet dalen is daarentegen intuïtief makkelijk te begrijpen. Indien de

componenten sneller toekomen zonder de andere parameters van het kitting proces te

veranderen, dan zitten de buffers voller en daalt de kans op een lege buffer.

Over het algemeen is een snellere aanvoer gunstiger voor het verlagen van de

opportuniteitskosten dan de grotere buffers. Dit zien we in de grafiek aangezien de curve van

scenario 2 voor de meeste waarden van µ onder de curve van scenario 3 ligt. Het kan echter zijn

dat scenario 3 en dus het groter maken van de buffers geïmplementeerd wordt omdat deze

ingreep goedkoper zou kunnen zijn dan het opvoeren van de aankomstsnelheid. Na een kosten-

baten analyse zou scenario 3 er dus beter kunnen uitkomen dan scenario 2. Het effect van beide

maatregelen wordt echter gedempt wanneer µ groter wordt. Zoals gezegd zien we dit in de

grafiek aan het convexe verloop van deze scenario’s. Het combineren van beide maatregelen

resulteert in de meest optimale situatie, namelijk scenario 4.

2.3.1 Systeembelasting

GRAFIEK 8: P[LEEG] BIJ VERSCHILLENDE SYSTEEMBELASTING

In bovenstaande grafiek vinden we de kans op een lege buffer voor scenario’s met verschillende

belastingniveaus. Aangezien de hoogste kans op volle buffer voor het scenario met overbelasting

0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4 5

P[leeg]

C

50%

100%

200%

=0.5 µ=1

=1 µ=1

=2 µ=1

Page 40: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 30

weggelegd is, is het logisch dat dit scenario nu de in laagste kans op een lege buffer resulteert.

We zien dat de kans op een lege buffer daalt met toenemende buffergroottes. Dit is logisch

aangezien er absoluut gezien meer onderdelen ter beschikking zijn van het systeem als C groter

wordt en dus daalt de kans op een lege buffer.

2.3.2 Optimalisatie

Om tot een optimale configuratie van het kitting systeem te komen voor deze prestatiemaat, zijn

er 3 mogelijke acties die men afzonderlijk of gecombineerd kan toepassen: µ laten dalen, doen

toenemen en C vergroten. Indien we ervoor zouden opteren om de gemiddelde snelheid

waarmee de producten de lijn verlaten te verlagen, betekent dit dat de assemblage machine

onderbenut wordt. Dit vormt altijd een verlies voor de onderneming en zij zal terughoudend zijn

deze weg te bevaren. Bovendien zien we in de grafiek dat om de kans op een lege buffer

verminderen van 59% naar 40% (scenario 1) vereist dat µ daalt van 5 naar 1. Een gelijkaardig

resultaat of zelfs een beter resultaat kan bekomen worden wanneer men, gegeven µ, de

gemiddelde aankomstsnelheid van de componenten opvoert of de buffercapaciteit vergroot. Zo

ligt de curve van scenario 2 steeds onder het beste resultaat van scenario 1 namelijk 40%. Indien

uit de kosten-baten analyse blijkt dat men zowel de grotere buffers als de snellere aanvoer

kunnen implementeren, komen we in scenario 4 terecht, dat het best scoort ongeacht de

waarden voor µ.

Tot slot merken we op dat bij een µ van 5 de kans op een lege buffer proportioneel veel sterker

daalt van scenario 1 naar scenario 4 dan bij een lage µ. Indien µ gelijk is aan 1, brengt het

implementeren van een tweede maatregel dus proportioneel minder verbetering dan bij een

hoge µ.

Page 41: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 31

2.3.3 Het effect van ongelijke buffergroottes

In bovenstaande grafieken vinden we de kans dat de buffer leeg is, links geeft de kans op een

lege buffer voor onderdeel 1, rechts voor onderdeel 2. In elke curve is de buffercapaciteit voor

buffer 1 vast en veranderen we de waarden voor buffer 2 van 1 tot 5. De curve C1=C2 verbind de

punten waarbij de buffercapaciteit van beide onderdelen gelijk zijn. Net zoals bij de vorige

analyse concluderen we ook hier dat de combinaties met gelijke buffergroottes de beste

resultaten geven. Immers, bij elke lage kans in de linker grafiek correspondeert en hoge kans in

de rechter grafiek. De beste afweging bekomen we dus bij gelijke buffergroottes. Merk op dat de

curve C1=C2 dezelfde is zowel links als rechts.

0

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4 5

P[leeg1]

C2

1C111

2C111

3C111

4C111

5C111

C1=C20

0,1

0,2

0,3

0,4

0,5

0,6

1 2 3 4 5

P[leeg2]

C2

GRAFIEK 9: P[LEEG1] BIJ ONGELIJKE BUFFERGROOTTES GRAFIEK 10: P[LEEG2] BIJ ONGELIJKE BUFFERGROOTTES

Page 42: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 32

2.4 Throughput

De volgende prestatiemaat die we bespreken is de throughput. Zoals zal blijken in hoofdstuk 4,

is de throughput de enige prestatiemaat die opbrengsten genereert. Alle andere prestatiematen

brengen kosten, opportuniteitskosten en risico’s met zich mee.

GRAFIEK 11: TP VOOR VERSCHILLENDE SCENARIO’S

We zien dat in elk scenario de throughput stijgt met afnemende meeropbrengsten. Dit betekent

dat de winst in throughput proportioneel kleiner wordt naarmate men de µ steeds meer

verhoogt. We zien ook onmiddellijk dat scenario 1 de kleinste opbrengsten met zich mee brengt

en scenario 4 de grootste. Dit is geen verassing aangezien we weten dat de throughput stijgt

wanneer de gemiddelde aanvoersnelheid opgedreven wordt en de buffercapaciteit vergroot.

De throughput is begrensd met de kleinste gemiddelde snelheid: TP < min(µ,1,2). Het opvoeren

van µ verhoogt de throughput en dat zien we door de curven afzonderlijk te bekijken. Het

opvoeren van zal de throughput ook verhogen en dit zien we door het vergelijken van

verschillende curven bij een bepaalde µ, bijvoorbeeld scenario 1 en 2. We merken dus op dat

hoewel een stijging in en µ de throughput verhoogt, deze nooit sterker zal stijgen dan de grens

opgelegd door de kleinste gemiddelde snelheid µ, 1 of 2. Dit heeft gevolgen voor het verlies dat

we later zullen bespreken.

Wanneer we scenario 1 en 2 vergelijken alsook 3 en 4, zien we dat de procentuele throughput

stijging aanzienlijk hoger wordt bij stijgende µ wanneer de gemiddelde aankomstsnelheid hoog

ligt. Dit is intuïtief makkelijk te begrijpen. Immers, als de machine sneller zal werken en dus de

gemiddelde snelheid waarmee de producten het systeem verlaten hoger ligt, zullen er meer

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4 5

TP

m

1111m

1155m

5511m

5555m

Page 43: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 33

producten per tijdseenheid het systeem verlaten. Dit is begrensd aangezien de machine enkel

kan werken als er onderdelen ter beschikking zijn. Als dus naast µ ook de aanvoer sneller wordt,

kunnen we meer throughput realiseren dan wanneer de aanvoersnelheid niet mee verandert.

Ook het groter maken van de buffercapaciteiten heeft tot gevolg dat de throughput stijgt. De

reden hiervoor ligt in het stochastische karakter van het aankomstproces. Zoals gezegd in het

deel over de gemiddelde bufferbezetting, is het gevolg hiervan dat er zich rond de gemiddelde

bufferbezetting pieken en dalen voordoen. Hoe groter de buffer, hoe groter de kans dat de buffer

deze pieken kan opvangen, hoe hoger de gemiddelde bufferbezetting, hoe groter de kans dat er

steeds een onderdeel in de buffers zit, hoe groter de throughput.

Het verhogen van C (scenario3) heeft aanvankelijk dezelfde impact als een stijging in

(scenario2). Dit is belangrijk aangezien het in praktijk vaak makkelijker en goedkoper is om de

buffer met een factor 5 te vergroten, dan het is om de onderdelen 5 maal zo snel te laten

toekomen. Naarmate µ toeneemt echter, verkleint het effect van de grotere buffer (scenario3)

terwijl het effect van snellere aankomstsnelheid toeneemt (scenario2). Dit is zichtbaar op de

grafiek aangezien de afstand tussen de curven van scenario’s 1 en 3 kleiner wordt terwijl die

tussen scenario’s 1 en 2 groter wordt. De reden hiervoor is wederom het feit dat TP <

min(1, 2, µ).

2.4.1 Systeembelasting

GRAFIEK 12: TP BIJ VERSCHILLENDE SYSTEEMBELASTING

In bovenstaande grafiek zien we dat de throughput in overbelasting hoger is dan in

onderbelasting. We zien dat de throughput bij 50% belasting begrensd is door 0,5 en bij 200%

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5

TP

C

50%

100%

200%

=0.5 µ=1

=1 µ=1

=2 µ=1

Page 44: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 34

belasting begrensd is door 1, aangezien TP < min(1, 2, µ). Merk op dat bij 100% belasting TP

ook begrensd is door 1 maar ver van die grens blijft in vergelijking met het scenario met

overbelasting. We zullen straks dus waarschijnlijk zien dat het verlies bij overbelasting kleiner is

dan bij gelijkbelasting.

2.4.2 Optimalisatie

Scenario 4 brengt duidelijk de hoogste throughput niveaus met zich mee en is dus optimaal. Dit

betekent echter niet noodzakelijk dat men scenario 4 zal implementeren. Immers, een kosten-

baten analyse zal uitmaken of het opvoeren van de gemiddelde snelheid waarmee de producten

het systeem verlaten (µ) de moeite waard is op zich zelf maar ook in combinatie met het

verhogen van de buffercapaciteit en/of het verhogen van de gemiddelde aankomstsnelheden. De

baten bestaan uit het groter worden van de throughput. Elk product dat er per tijdseenheid

meer van de band loopt resulteert rechtstreeks in meer opbrengsten. Het implementeren van

snellere µ, snellere en/of grotere C brengt 2 soorten kosten met zich mee, namelijk de

implementatiekosten en de opportuniteitskosten of verlies. Het verlies is een belangrijke kosten-

factor om in acht te nemen bij het kiezen van de parameters van het kitting systeem.

2.4.3 Het effect van ongelijke buffergroottes

We zagen daarnet dat het groter maken van de buffercapaciteiten een positieve invloed heeft op

de throughput. De reden daarvan schreven we toe aan het stochastische karakter van het

aankomstproces. Merk bovendien op dat de throughput steeds begrensd blijft door het

minimum van 1, 2 en µ.

Page 45: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJN

GRAFIEK 139

In bovenstaande grafiek zien we het effect van verschillende buffercapaciteiten op de

throughput. We variëren de buffers van 1 tot 5 en bekomen zo verschillende combinaties en de

resulterende throughput, met de veronderstelling dat

De kleinste en grootste throughput wordt behaald bij gelijke buffercapaciteiten van

respectievelijk 1 en 5. We zien dat als we in gedachten de identieke buffercapaciteiten zouden

verbinden, we de hoogste punten van

verloopt het oppervlak symmetrisch wat betekent dat de throughput hetzelfde is voor

buffercapaciteiten 2-3 en 3-2. Deze grafiek bevestigt de bevindingen dat het verhogen van de

buffercapaciteiten een gunstig effect heeft op de throughput omwille van het stochastische

aankomstproces.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

12

TP

RODUCTIELIJNEN MET KITTING

9: TP BIJ VERSCHILLENDE BUFFERGROOTTES MET =µ=1

In bovenstaande grafiek zien we het effect van verschillende buffercapaciteiten op de

throughput. We variëren de buffers van 1 tot 5 en bekomen zo verschillende combinaties en de

de veronderstelling dat 1 = 2 =µ = 1.

De kleinste en grootste throughput wordt behaald bij gelijke buffercapaciteiten van

respectievelijk 1 en 5. We zien dat als we in gedachten de identieke buffercapaciteiten zouden

verbinden, we de hoogste punten van het oppervlak verbinden. Links en rechts van deze maxima

verloopt het oppervlak symmetrisch wat betekent dat de throughput hetzelfde is voor

2. Deze grafiek bevestigt de bevindingen dat het verhogen van de

gunstig effect heeft op de throughput omwille van het stochastische

1

3

5

34

5

C2

C1

35

In bovenstaande grafiek zien we het effect van verschillende buffercapaciteiten op de

throughput. We variëren de buffers van 1 tot 5 en bekomen zo verschillende combinaties en de

De kleinste en grootste throughput wordt behaald bij gelijke buffercapaciteiten van

respectievelijk 1 en 5. We zien dat als we in gedachten de identieke buffercapaciteiten zouden

het oppervlak verbinden. Links en rechts van deze maxima

verloopt het oppervlak symmetrisch wat betekent dat de throughput hetzelfde is voor

2. Deze grafiek bevestigt de bevindingen dat het verhogen van de

gunstig effect heeft op de throughput omwille van het stochastische

Page 46: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 36

2.5 Verlies

We weten dat de throughput (TP) stijgt ten gevolge van wijzigingen in C1, C2, 1, 2 en µ. Dit

hebben we hierboven besproken en zag eruit zoals de grafiek hieronder. We weten ook dat

wanneer =1=2 het verlies gegeven wordt door -TP. Bovendien weten we dat

TP < min(1, 2,µ).

Wanneer we nu op de grafiek de “grenzen” aanduiden, bekomen we volgende figuur.

GRAFIEK 14: TP MET GRENZEN

De grenzen van TP worden weergegeven door de curven =1, =5 en µ. Het verlies voor scenario

4 wordt aangegeven door de zwarte verticale lijnen want verlies = - TP. Voor scenario’s 2 en 4

kijkt men naar =5 en voor scenario’s 1 en 3 naar =1 om het verlies te berekenen. Wanneer we

nu de verliezen uitzetten voor elk scenario, bekomen we onderstaand figuur.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4 5

TP

m

1111m

1155m

5511m

5555m

Page 47: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 37

GRAFIEK 15: VERLIES VOOR VERSCHILLENDE SCENARIO’S

We zien dat scenario 2 en 4, die daarstraks de hoogste throughput niveaus met zich

meebrachten, ook de grootste absolute verliezen kennen. Als we scenario 4 eruit kiezen, zien we

dat de waarden voor verlies variëren van 4,00 tot 1,11. Dit betekent dat van de 5 onderdelen die

gemiddeld aankomen per tijdseenheid, er gemiddeld 1,11 tot 4 verloren gaan. Immers, voor µ=1

zien we dat er gemiddeld 5 onderdelen toekomen per tijdseenheid, en dat er gemiddeld 1

product het systeem verlaat. Dit veroorzaakt een grote opportuniteitskost aangezien er 5

onderdelen beschikbaar waren, waarvan we slechts 1 gebruikt hebben.

Dit kunnen we enkel verbeteren doordat we de machine sneller laten werken en dus µ verhogen.

De kleinste verliezen zijn voor scenario 3 omdat die curve dicht tegen zijn grens van =1 aanligt

in de voorgaande grafiek. Merk bovendien op dat scenario 2 en 4 te maken hebben met

overbelasting terwijl scenario 1 en 3 met onderbelasting. We zien ook dat wanneer we scenario

2 en 4 van links naar rechts bekijken, we gaan van overbelasting (>µ) naar gelijke belasting

(=µ) en dat het verlies daalt. Bekijken we daarentegen scenario 1 en 3 van links naar rechts dan

gaan we van gelijke belasting (=µ) naar onderbelasting (<µ) en het verlies daalt verder. We

zouden dus kunnen besluiten dat hoe groter de belasting van een systeem, hoe groter de

verliezen die dat systeem met zich meebrengt. Om dit te na te gaan, kiezen we een vergelijkbare

basis µ=1 en variëren om over- en onderbezetting te bekomen.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

1 2 3 4 5

Verlies

m

1111m

1155m

5511m

5555m

Page 48: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 38

2.5.1 Systeembelasting

Om het verlies te vinden voor de verschillende graden van systeembelasting, gebruiken we

volgende formule: verlies = TP - . Voor onder-, gelijke en overbelasting is de waarde van gelijk

aan respectievelijk ½, 1 en 2.

GRAFIEK 16: VERLIES BIJ VERSCHILLENDE SYSTEEMBELASTING

Bij de analyse van de throughput zagen we dat de gelijkbelasting verder van de grens lag dan de

overbelasting. Echter, om het verlies te berekenen moeten we kijken naar de waarde van . Voor

overbelasting is =2. Dit verklaart waarom het verlies bij overbelasting groter is dan bij

gelijkbelasting, ondanks het feit dat overbelasting minder ver zijn de TP-grens ligt. Uit deze

grafiek kunnen we concluderen dat het verlies groter wordt naarmate de belastingsgraad

toeneemt.

2.5.2 Optimalisatie

Het verlies hangt sterk samen met de andere prestatiematen. Immers, verlies = - TP alsook

verlies = *P[vol]. Om het verlies te minimaliseren moeten we dus TP zo groot mogelijk maken

en de kans op een volle buffer zo klein mogelijk. We verwijzen voor de optimalisatie dan ook

naar deze prestatiematen.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1 2 3 4 5

Verlies

C

50%

100%

200%

=0.5 µ=1

=1 µ=1

=2 µ=1

Page 49: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 39

3 Het effect van ongelijke gemiddelde aankomst-

snelheden

In de voorgaande analyses gingen we er steeds van uit dat =1=2. Ongelijke

aankomstsnelheden zijn immers minder interessant om te onderzoeken aangezien zij nooit

optimaal zijn. Dit kunnen we nagaan aan de hand van volgende grafieken.

GRAFIEK 17: TP BIJ ONGELIJKE AANKOMSTSNELHEDEN

We onderzoeken nu wat er gebeurt met de throughput wanneer de gemiddelde

aankomstsnelheid van het ene onderdeel veel groter is dan die van het andere onderdeel. Hierbij

maken we een onderscheid tussen scenario a met kleiner buffercapaciteit en scenario b met

hoge buffercapaciteit voor beide buffers. Op de grafiek vinden we scenario’s 1, 2 en 4 van de

voorgaande analyses, alsook scenario’s a en b. Door scenario’s 2 en a, alsook 4 en b te

vergelijken, kunnen we het effect bestuderen van de ongelijke gemiddelde aanvoersnelheid van

de componenten.

We zien meteen dat de throughput over het algemeen aanzienlijk lager is wanneer de ene

component veel sneller toekomt dan de andere component. Als we scenario 1 en 2 vergelijken,

zien we dat de throughput toeneemt met een factor 1,92 en 3,4 bij respectievelijk µ=1 en µ=5.

Indien we de gemiddelde aanvoersnelheid van slechts 1 onderdeel kunnen verhogen, neemt de

throughput slechts toe met factoren 1,22 en 1,37. Dit vinden we door het naast mekaar leggen

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4 5

TP

m

1111m

1155m

5555m

1151m

5551m

Page 50: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 40

van scenario 1 en a. Indien deze compositie het huidige systeem weergeeft, is het zeker de

moeite waard te onderzoeken wat de kosten zouden zijn van het opvoeren van de

aankomstsnelheid van de andere component aangezien dit de throughput aanzienlijk kan

verhogen. Zelfs indien het systeem in scenario 1 zit, is het nuttig de kosten-baten analyse uit te

voeren van het verhogen van de gemiddelde aankomstsnelheid van een onderdeel vermits een

throughput verhoging van 22% tot 37% in de praktijk reeds erg winstgevend kan zijn. In het

geval dat de buffercapaciteit groot is, zijn de voorgaande bevindingen nog versterkt. De

throughput vermeerdering van scenario 1 naar 4 gebeurt met factoren 2,5 en 6,6 bij

respectievelijk lage en hoge waarden voor µ. Indien er een groot verschil is in aankomstsnelheid

tussen de componenten echter, dalen deze factoren naar 2,1 en 1,7! Het verschil tussen

scenario’s 1 en b verkleint hier zelfs omdat de throughput van scenario b naar boven begrensd is

met een waarde 1 terwijl de throughput in scenario 1 nog lichtjes blijft stijgen. Dit betekent dus

dat de kleinste gemiddelde aankomstsnelheid 1 is, alsook de gemiddelde snelheid waarmee de

producten het systeem verlaten. Hieruit besluiten we dat de server steeds beschikbaar is

wanneer er een component toekomt in de tweede buffer. De kitting machine wordt dus

onderbenut aangezien het vermoedelijk vaak moet wachten tot alle componenten beschikbaar

zijn. Dit betekent waarschijnlijk ook dat de kans op een volle buffer daalt en de kans op een lege

buffer stijgt voor het onderdeel met de laagste gemiddelde aankomstsnelheid. Dit gaan we na in

volgende grafieken.

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5

P[vol1]

m

1111m

1155m

5555m

1151m

5551m0

0,2

0,4

0,6

0,8

1

1 2 3 4 5

P[vol2]

m

GRAFIEK 18: P[VOL1] EN P[VOL2] BIJ ONGELIJKE AANKOMSTSNELHEDEN

Page 51: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 41

We onderzoeken nu wat het effect is op de prestatiemaat ‘kans dat een buffer vol zit’ indien de

aankomstsnelheid van het ene onderdeel veel groter is dan het andere onderdeel. Het snelle

onderdeel is onderdeel 1 en de linkse grafiek geeft dan ook de kans dat buffer 1 vol zit. Analoog

geeft de rechtse grafiek de kans op een volle buffer weer van het trage onderdeel 2. We

vergelijken deze kansen met de eerder besproken scenario’s 1, 2 en 4 waarbij we de gemiddelde

aankomstsnelheid van beide componenten even sterk opdreven.

In de vorige analyse stelden we vast dat het versnellen van de gemiddelde aankomstsnelheid tot

gevolg heeft dat de kans op een volle buffer toeneemt. Nu zien we dat die kans zelfs nog groter is

indien we slechts 1 onderdeel sneller laten toekomen. In de linkse grafiek zien we dat wanneer

een onderdeel sneller toekomt dan het andere, de kans dat die buffer vol zit zeer hoog is en blijft.

In scenario 2 variëren de kansen tussen 85% en 60% terwijl diezelfde kansen in scenario a

variëren tussen 90% en 84%. De buffer van de snelle component zit zo goed als altijd vol. Dit

heeft nefaste gevolgen voor de doorstroom van het gehele productieproces aangezien de

aanvoer van die component vaak stil zal liggen. De machine die onderdeel 1 aanlevert kan

immers enkel een onderdeel produceren wanneer er een plaats is in de buffer van dat onderdeel.

Voor vele machines is het instellen en opstarten van een machine zeer kostelijk in vergelijking

met een machine die constant kan produceren.

Om de prestatiemaat van de snelle component te verbeteren, brengt het opvoeren van de

buffercapaciteit weinig verbetering aangezien de kansen hier variëren tussen 83% en 80%.

Bovendien zien we in de curve van scenario b dat die 80% de ondergrens vormt dus het verder

opvoeren van µ zal deze prestatiemaat niet verbeteren. We merken op dat we die 80% ook

vinden als 1-2/1. Verder merken we op dat de waarden van 80% gehaald wordt omdat de kans

op een volle buffer van onderdeel 2 nagenoeg gelijk is aan nul.

Er blijven 3 opties over om de kans op een volle buffer te verminderen. De eerste optie bestaat

eruit de gemiddelde aankomstsnelheid van beide componenten laag te zetten. Hierdoor komen

we terecht in de curve van scenario 1 en deze biedt aanzienlijke verbetering, ongeacht de

waarde van µ. Een tweede optie houdt in dat men de gemiddelde aankomstsnelheid van beide

componenten hoog zetten. Zo belanden we in scenario 2 en we zien dat dit scenario vooral

gunstig is bij hoge µ. In de laatste optie kiezen we de aanvoersnelheid van beide onderdelen

hoog, alsook de buffercapaciteit. Ook dit scenario is het meest gunstig bij hoge µ.

Welk van deze scenario’s men zal implementeren hangt uiteraard af van een kosten-baten

analyse. Immers, het verlagen van de aankomstsnelheid zal waarschijnlijk goedkoper zijn dan

Page 52: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 42

het opvoeren van de snelheid en resulteert bovendien in lagere kansen maar de invloed op de

throughput kan het voordeel van het ene scenario omwerpen in een voordeel voor het andere

scenario. Bovendien is het onderbenutten van het potentieel van een machine steeds een verlies.

Bekijken we de rechtse grafiek dan vinden we de kans op een volle buffer van de trage

component. Hier zien we dat de kansen van scenario’s a en b lager liggen dan alle andere

scenario’s. Hoewel dit op het eerste zicht een positieve vaststelling lijkt, moeten we dit

nuanceren. Als we de curve van scenario b bestuderen zien we dat de kans op een volle buffer

snel 0% wordt. We stellen ons hierbij de vraag of de buffer dan niet té leeg is. M.a.w. we moeten

nagaan of de kans op een lege buffer niet te hoog is. Dit zullen we nagaan in de analyse van de

prestatiemaat ‘kans op een lege buffer’.

Afgezien daarvan zelfs, is het belangrijk beide grafieken samen te bekijken. Het is immers niet

OF maar EN. Het veranderen van de parameters om de ene prestatiemaat te verbeteren heeft

rechtstreeks gevolgen op een andere prestatiemaat. We besluiten dus ook voor deze

prestatiemaat dat er betere resultaten bekomen worden bij gelijke gemiddelde

aankomstsnelheden.

Tot slot onderzoeken we de invloed op de kans dat een buffer leeg is indien een onderdeel een

snellere gemiddelde aanleveringsnelheid heeft dan de andere componenten. De linkse grafiek

geeft de resultaten voor de component met de snelle aanlevering, de rechtse die met de trage

aanlevering.

Vertrekkende van scenario 1 concludeerden we daarstraks dat we deze prestatiemaat konden

verbeteren voor het opvoeren van de gemiddelde aankomstsnelheid van de componenten

(scenario2). Wanneer we scenario a bekijken, stellen we vast dat het verhogen van de snelheid

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5

P[leeg2]

m0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5

P[leeg1]

m

1111m

1155m

5555m

1151m

5551m

GRAFIEK 19: P[LEEG1] EN P[LEEG2] BIJ VERSCHILLENDE AANKOMSTSNELHEDEN

Page 53: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 43

van slechts 1 component een gunstige impact heeft op het snelle onderdeel maar een slechte

impact op het trage onderdeel. Het is intuïtief duidelijk dat een snel onderdeel een lagere kans

heeft op een lege buffer dan een traag onderdeel, aangezien er een snellere aanlevering is bij

eenzelfde server snelheid.

Wanneer we ook nog eens de buffercapaciteit vergroten, zien we dat de kans op een lege buffer

voor het snelle onderdeel nagenoeg steeds 0% bedraagt. Dit vormt dus nog een verbetering

bovenop het reeds goede scenario 4. Voor het trage onderdeel zien we dat ook daar het

vergroten van de buffercapaciteit een gunstig effect heeft aangezien de curve van scenario b

lager ligt dan die van scenario a. Bij µ gelijk aan 1 is dit zelfs competitief met de andere

scenario’s maar wanneer µ groter wordt, behoort ook scenario b tot de slechtste scenario’s.

Scenario 4 blijft dus het te verkiezen scenario voor de trage component.

Als we enkele cijfers naast mekaar leggen, kunnen we stellen dat de meest optimale parameter-

waarden voor beide onderdelen deze van scenario 4 zijn.

Scenario b Scenario 4

Min Max Min Max

Onderdeel 1 0% 0% 0% 12%

Onderdeel 2 17% 80% 0% 12%

Na een analyse van deze prestatiematen kunnen we dus besluiten dat ongelijke gemiddelde

aankomstsnelheden nooit optimaal zijn.

4 Ongelijke buffergroottes gecombineerd met

ongelijke gemiddelde aankomstsnelheden

In het voorgaande hebben we besloten dat ongelijke buffergroottes niet optimaal zijn wanneer

de gemiddelde aankomstsnelheid van beide onderdelen dezelfde is. We besloten ook dat

ongelijke gemiddelde aankomstsnelheden nooit optimaal zijn wanneer de buffergroottes

dezelfde zijn voor beide onderdelen. In dit deel trachten we na te gaan of ongelijke

buffergroottes wel optimaal zijn wanneer de gemiddelde aankomstsnelheden ongelijk zijn.

We krijgen het duidelijkste beeld wanneer we enkele waarden van prestatiematen weergeven in

tabelvorm.

Page 54: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 44

TP P[leeg1] P[leeg2] P[vol1] P[vol2]

11.11.5 0.59 0.59 0.59 0.41 0.41

11.15.5 0.81 0.81 0.16 0.19 0.84

15.15.5 0.83 0.83 0.00 0.17 0.83

51.15.5 1.00 0.72 0.20 0.00 0.80

We vertrekken van een systeem met gelijke buffergroottes en gemiddelde aankomstsnelheden.

We zien dat het verhogen van 2 een positieve invloed heeft op de throughput. Deze verbetering

is lichtjes groter wanneer het snelle onderdeel een grotere buffer krijgt en wordt veel sterker

wanneer het trage onderdeel een grotere buffer krijgt. Dit is logisch aangezien in dat geval de

kleine gemiddelde aankomstsnelheid wordt gecompenseerd door een grotere buffer.

Kijken we naar de kans op een lege en volle buffer, dan zien we dat die waarde groot worden

voor het ene onderdeel en klein voor het andere onderdeel. Voor de kans op een volle buffer zou

dit zelfs gunstig kunnen zijn wanneer het stilleggen van het ene onderdeel veel duurder is dan

voor het andere onderdeel. Maar aangezien er niet gekit kan worden van zodra 1 onderdeel niet

beschikbaar is, zijn de ongelijke aankomstsnelheden nooit een verbetering voor de

prestatiemaat omtrent de kans op een lege buffer. Immers, als de kans op een lege buffer van 1

onderdeel toeneemt, neemt de kans voor heel het systeem toe dat het niet zal kunnen kitten, hoe

laag die kans ook is voor het andere onderdeel.

We besluiten hieruit dat, afhankelijk van welke winstcomponent het zwaarst doorweegt, het

scenario met ongelijke gemiddelde aankomstsnelheden beter zou kunnen zijn dan dat met

gelijke gemiddelde aankomstsnelheden (11.11.1) wanneer de buffergroottes het tegengestelde

patroon vertonen dan de snelheden (51.15.1). De tussenliggende scenario’s uit de tabel scoren

sowieso slechter dan deze 2 scenario’s en zijn dus nooit optimaal.

TP P[leeg1] P[leeg2] P[vol1] P[vol2]

11.11.5 0.59 0.59 0.59 0.41 0.41

15.11.5 0.78 0.78 0.13 0.22 0.22

15.15.5 0.83 0.83 0.00 0.17 0.83

15.51.5 1.00 0.20 0.72 0.80 0.00

Page 55: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 45

In bovenstaande tabel onderzoeken we wat er gebeurt indien we uitgaan van ongelijke

buffergroottes. Hieruit kunnen we natuurlijk dezelfde conclusies trekken dan daarnet. Het

laatste scenario zou mogelijks beter kunnen zijn dan het eerste scenario indien de

winstcomponenten de juiste verhoudingen hebben. Een stijging van 0.59 naar 1.00 in

throughput zou immers meer waardevol kunnen zijn dan het grotere risico op een lege buffer

van 0.59 naar 0.72.

5 Optimalisatie van het kitting systeem

Totnogtoe hebben we de individuele prestatiematen bestudeerd door het effect van

verschillende combinaties parameterwaarden te bekijken. Bij het beschrijven van de

optimalisatie van de prestatiematen hebben we de ene keer een lage µ aangeraden en de andere

keer een hoge µ. Dit maakt meteen duidelijk dat DE optimale parameterwaarden niet bestaan.

Om een kitting systeem te optimaliseren moeten we dus afwegingen maken tussen de voor- en

nadelen van de verschillende prestatiematen.

Om een beter beeld te bekomen over de afwegingen die gemaakt moeten worden, gaan we na of

er een positieve of negatieve relatie is tussen de parameters en de prestatiematen. We nemen

alle besproken prestatiematen op in onderstaande tabel maar houden in het achterhoofd dat de

gemiddelde bufferbezetting en het verlies gerelateerd zijn aan sommige andere prestatiematen.

Bovendien maken we volgende assumpties omtrent de betekenis van het + teken: wanneer de

parameterwaarde groter wordt, ceteris paribus, dan; wordt E[Q] groter, hoewel de grootte op

zich geen voor- of nadeel is, P[vol] daalt, P[leeg] daalt , TP stijgt en Verlies daalt aangezien we in

die situaties kunnen spreken van een voordeel.

E[Q] P[vol] P[leeg] TP Verlies

C + + + + +

+ - + + -

µ - + - + +

De mate waarin een toename van de parameterwaarde een verbetering met zich meebrengt is

sterk afhankelijk van de waarde van de andere parameters. Bovendien brengt het verhogen of

Page 56: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

2. ANALYSE VAN PRODUCTIELIJNEN MET KITTING 46

verlagen van parameterwaarden niet alleen opbrengsten met zich mee maar ook kosten. De

kosten om de parameter groter of kleiner te maken, maar ook eventuele opportuniteitskosten

doordat andere prestatiematen nadelig beïnvloed worden. Om te beslissen welke parameter

combinatie de beste is, moeten we ook rekening houden met de huidige configuratie van het

systeem. Omdat er zoveel factoren zijn die we in acht moeten nemen, hebben we ervoor gekozen

om in hoofdstuk 4 een winstfunctie op te stellen. Op die manier ontwikkelen we een hulpmiddel

om te helpen bij de beslissing van de parameterwaarden.

Page 57: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

Hoofdstuk 3

Uitbreidingen op het

Basis Kitting Proces

1 Kitting proces met tweeledige server

In het vorige hoofdstuk bespraken we de prestatiematen van het meest eenvoudige kitting

proces met 2 onderdelen en 1 server. Om die analyse uit te breiden, zijn er tal van mogelijke

configuraties om te onderzoeken. Het zou kunnen dat het product bestaat uit meer dan 2

onderdelen of dat het product bestaat uit de combinatie van meerdere onderdelen A en een

verschillend aantal onderdelen B. Het kan ook zijn dat de onderdelen een beperkte

houdbaarheid hebben of dat 1 van de machines zeer duur is om stil te leggen. Wij hebben ervoor

gekozen om na te gaan wat het effect is van 2 seriële servers in plaats van 1 server.

Page 58: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 48

Met seriële servers bedoelen we dat de kit achtereenvolgens eerst door de eerste server moet

worden bediend en daarna door de tweede server. De bediening is dus tweeledig en dient in die

bepaalde volgorde te gebeuren. Verder veronderstellen we dat de onderdelen de buffers pas

verlaten nadat het product gevormd is, dus na de tweede server. We kunnen ons dit voorstellen

door de servers te zien als 2 fases van 1 machine. De machine staat ingesteld in fase 1 en voert

het eerste deel van de bewerking uit. Daarna schakelt de machine over naar fase 2 en voert het

laatste deel van de bewerking uit. Daarna verlaat de kit het systeem. De machine schakelt terug

naar fase 1 en er komt een plaatsje vrij in elke buffer.

Het doel van de volgende analyse is nagaan wat de impact is op de prestatiematen van het feit

dat het assembleren van de onderdelen nu in 2 fases gebeurt. In het basismodel is de

assemblagetijd S exponentieel verdeeld met parameter µ.

E[S] = 1/µ

In het model dat we nu bestuderen, hebben we te maken met een tweeledige bediening en dus

S = S1 + S2. Waarbij S1 en S2 onafhankelijk zijn en exponentieel verdeeld met respectievelijke

parameters µ1 en µ2. Als we dus willen vergelijken met het basismodel, dan is de totale

gemiddelde assemblagetijd;

1/µ1 + 1/µ2 = E[S1] + E[S2] = E[S] = 1/µ

Door nu de analyses te maken in functie van de relatieve lengte van de eerste fase tegenover de

totale gemiddelde assemblagetijd, kunnen we de resultaten van beide analyses vergelijken. We

voeren daarom een parameter q in (0<=q<=1) en kiezen dan µ1 en µ2 zo dat

1/µ1 = q/µ en 1/µ2 = (1-q)/µ.

Op deze manier zal de assemblage van een kit gemiddeld voor een fractie q doorgaan in de

eerste fase en voor een fractie 1-q in de tweede fase. In de onderstaande analyse laten we q

variëren tussen 0,1 en 0,9 met stappen van 0,1. We vermijden 0 en 1 omdat dit zou betekenen

dat alles gebeurt in server 1 of server 2 en dat er dus slechts 1 server is. Dit onderzochten we

reeds in het vorige hoofdstuk en we gebruiken de resultaten die we daar vonden als

vergelijkingsbasis. Verder kiezen we =1=2 aangezien in het vorige hoofdstuk concludeerden

dat ongelijke gemiddelde aankomstsnelheden nooit optimaal zijn. Zij verminderen de potentiële

throughput stijging aanzienlijk en leiden tot een buffer die steeds vol zit en een andere die

steeds leeg is. We kiezen µ=1 alsook =1 omdat de throughput toch begrensd is door het

minimum van µ en . Door ze gelijk te kiezen, kunnen we het effect van de seriële buffers nagaan

Page 59: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 49

zonder rekening te moeten houden met deze grenzen. Tot slot bekijken we ook scenario’s met

onderbezetting van 50% (=0,5; µ=1) en overbezetting van 200% (=2, µ=1).

1.1 Throughput

GRAFIEK 20: TP IN FUNCTIE VAN Q MET =µ=1

In bovenstaande grafiek zien we het effect op de throughput van het feit dat de server in 2 fases

werkt. De eerste vijf curven zijn hier de illustratie van, de laatste vijf geven het throughput

niveau weer indien er slechts 1 server zou zijn. Deze resultaten vonden we in de voorgaande

analyses alsook door q in te stellen op 0 of 1. Voor een buffercapaciteit van 1 zien we dat de

throughput exact dezelfde is als voordien. Voor buffers groter dan 1 zien we dat de throughput

betere resultaten geeft voor alle mogelijk q. We merken ook op dat zich een optimum voordoet

bij q=0,5 en dat de curve symmetrisch ligt rond dat punt. De mogelijke verbetering in

throughput van 1 server naar 2 servers stijgt samen met de buffercapaciteiten. De reden

hiervoor ligt in het stochastische aankomstproces waarvan de pieken beter opgevangen kunnen

worden bij grotere buffers, zoals eerder uitgelegd.

0,3

0,4

0,5

0,6

0,7

0,8

0,9

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

TP

q

11q

22q

33q

44q

55q

11

22

33

44

55

Page 60: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 50

Maar waarom stijgt de throughput wanneer de server in 2 fases werkt? De verklaring daarvoor

vinden we in de variantie van de server. De variantie van de tijd nodig om te assembleren met 1

server wordt gegeven door 1/µ2. Diezelfde variantie voor het proces met 2 servers ziet er zo uit;

Var[S] = Var[S1 + S2] = Var[S1] + Var[S2] =ଵ

ஜభమ +

ஜమమ =

ஜమ+

(ଵି)మ

ஜమ

Var[S] =ଵ

ஜమଶݍ) + (1 − (ଶ(ݍ ≤

ஜమ

Deze daling in variantie komt de throughput dus duidelijk ten goede. Dit is ook de reden dat we

bij een buffercapaciteit van 1 identiek dezelfde resultaten vinden voor het basismodel en het

systeem met de seriële server. Aangezien de onderdelen in de buffer blijven zitten tot ze gekit

zijn en het systeem verlaten, is een buffer met 1 plaats eigenlijk geen wachtlijn. De onderdelen

‘wachten’ niet, ze worden gekit door de server. De variantie heeft dus geen effect wanneer de

buffergrootte gelijk is aan 1.

Het spreekt vanzelf dat ook het verlies gunstige resultaten bekomt aangezien het verlies = - TP.

Deze grafiek is dus het inverse van de grafiek hierboven. We bekijken nu wat het effect op de

throughput is bij onder- en overbelasting.

GRAFIEK 21: TP IN FUNCTIE VAN Q BIJ VERSCHILLENDE SYSTEEMBELASTING

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

TP

q

50%

100%

200%

basis 50%

basis 100%

basis 200%

=0.5 µ=1

=1 µ=1

=2 µ=1

Page 61: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 51

Deze grafiek geeft de throughput weer voor scenario’s met onder-, gelijke en overbelasting, voor

het systeem met de tweeledige server en het systeem met 1 server. De buffercapaciteiten kozen

we C1=C2=5. We zien dat de potentiële throughput stijging het grootst is voor het scenario met

gelijke belasting. Voor overbelasting is er ook sprake van verhoogde throughput maar minder

dan bij gelijke bezetting en voor onderbelasting is er praktisch geen verschil tussen het systeem

met 1 en 2 servers.

We zagen dus dat de verlaagde variantie is assemblagetijd een gunstig effect heeft op de

throughput, en dan vooral bij gelijke belasting. We gaan nu na of de tweeledige server ook

gunstige effecten heeft op de andere prestatiematen.

1.2 Kans dat buffer vol/leeg is

We zien dat de kans op een volle buffer kleiner is wanneer er 2 servers zijn vanaf buffers die

groter zijn dan 1. Ook de kans op een lege buffer daalt. De tweeledige seriële buffer scoort dus

beter op alle prestatiematen en is optimaal bij q=0,5.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

P[leeg]

q0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

P[vol]

q

11q

22q

33q

44q

55q

11

22

33

44

55

GRAFIEK 22: P[VOL] EN P[LEEG] IN FUNCTIE VAN Q MET =µ=1

Page 62: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES

1.3 Het effect van ongelijke buffergroottes

We analyseerden steeds de situaties met gelijke buffergroottes aangezien we in het vorige

hoofdstuk reeds concludeerden dat een combinaties met gelijke buffercapaciteiten de meest

optimale resultaten geven. We kunnen dit nogmaals bevestigen door middel van vo

grafiek. Zij geeft de throughput niveaus voor verschillende combinaties van buffercapaciteiten,

in de veronderstelling dat q=0,5. Zoals we hier zien, zijn ook bij de tweeledige server de

combinaties met gelijke buffergroottes het meest optimaal.

GRAFIEK 23: TP BIJ VERSCHILLEN

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

TP

3. UITBREIDINGEN OP HET BASIS KITTING PROCES

Het effect van ongelijke buffergroottes

analyseerden steeds de situaties met gelijke buffergroottes aangezien we in het vorige

hoofdstuk reeds concludeerden dat een combinaties met gelijke buffercapaciteiten de meest

optimale resultaten geven. We kunnen dit nogmaals bevestigen door middel van vo

grafiek. Zij geeft de throughput niveaus voor verschillende combinaties van buffercapaciteiten,

in de veronderstelling dat q=0,5. Zoals we hier zien, zijn ook bij de tweeledige server de

combinaties met gelijke buffergroottes het meest optimaal.

: TP BIJ VERSCHILLENDE BUFFERGROOTTES MET Q=0.5 EN =µ=1

1

3

5

2 3 4 5

C2

C1

52

analyseerden steeds de situaties met gelijke buffergroottes aangezien we in het vorige

hoofdstuk reeds concludeerden dat een combinaties met gelijke buffercapaciteiten de meest

optimale resultaten geven. We kunnen dit nogmaals bevestigen door middel van volgende

grafiek. Zij geeft de throughput niveaus voor verschillende combinaties van buffercapaciteiten,

in de veronderstelling dat q=0,5. Zoals we hier zien, zijn ook bij de tweeledige server de

=µ=1

Page 63: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 53

2 Kitting proces met drempels

In dit deel bekijken we een andere uitbreiding op het meest eenvoudige kitting systeem uit

hoofdstuk 2. Hier veronderstellen we dat elke buffer een bepaalde drempel heeft die kleiner is

dan de buffercapaciteit. Stel dat we starten met volle buffers voor beide onderdelen. Het systeem

produceert en er verdwijnen onderdelen uit de buffers. Wanneer het aantal onderdelen nu

onder de drempel komt, dan zendt het systeem een order naar de machine die dat onderdeel

aanlevert om een bepaalde hoeveelheid te produceren en door te sturen naar de buffer.

We zien dus dat wanneer het aantal onderdelen

onder de bijhorende drempel T valt, een

bepaalde hoeveelheid B besteld wordt. Deze

komt aan na een bepaalde tijd die exponentieel

verdeeld is met gemiddelde 1/. De verwerking

blijft hetzelfde met een parameter µ. Merk dus

op dat de continue toevoer van onderdelen met

parameter hier vervangen wordt door een

aankomst na bestelling. De buffers zijn nog

steeds begrensd. Dit impliceert dat 0 ≤ Ti ≤ Ci en

dat 1 ≤ Bi ≤ (Ci – Ti).

Om het wiskundig eenvoudig te houden, maken we een assumptie wat betreft de bestelgrootte

B. We veronderstellen dat deze grootte variabel is en afhankelijk van de huidige

voorraadniveaus zodanig dat de bestelgrootte gelijk is aan de buffercapaciteit verminderd met

de huidige voorraadpositie. Op die manier bestellen we dus steeds het aantal onderdelen dat

nodig is om de buffer vol te krijgen. De gedefinieerde prestatiemaat over de kans op een volle

buffer verliest hier dan ook gedeeltelijk zijn betekenis. Immers, de aanvoer van de onderdelen

moet niet stilgelegd worden wanneer de buffer vol zit omdat we werken op basis van bestelling

en geen continue toevoer onderdelen kennen. We bestellen het aantal onderdelen nodig om de

buffer terug aan te vullen. Dit betekent ook dat de opportuniteitskost ‘verlies’ niet meer van

toepassing is aangezien de bestelde hoeveelheid vermeerderd met de huidige voorraadpositie

nooit de buffercapaciteit kan overschrijden. Merk op dat dit enkel van toepassing is onder de

gemaakte assumptie. Een andere assumptie zou immers kunnen zijn dat de bestelgrootte groter

is om te anticiperen om de tijd die nodig is om de bestelling te maken en te leveren. In dat geval

zou het wel kunnen dat de buffer vol zit en er dus verlies is omdat de hele bestelling niet in de

buffer past.

Page 64: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 54

In de analyses uit hoofdstuk 2 lieten we de parameters variëren om het effect te zien om de

prestatiematen. Bij dit nieuwe kitting systeem doen we dat ook. De parameters zijn nu C1, C2, T1,

T2, B1, B2, 1, 2 en µ. De prestatiematen die we zullen bespreken zijn gereduceerd tot de

throughput, de kans op een lege buffer en de gemiddelde bufferbezetting, ten gevolge van de

gemaakte assumptie betreffende Bi.

Het basis kitting systeem besproken in hoofdstuk 2 en het kitting systeem met drempels zijn

duidelijk twee alternatieve manieren om de productie te organiseren. Wiskundig gezien zijn

beide systemen echter fundamenteel anders. Zo anders dat een vergelijking, wiskundig gezien,

niet echt mogelijk is. We trachten de parameters zodanig te kiezen dat we de prestatiematen

min of meer kunnen vergelijken en kijken wat het effect is van de drempels.

2.1 Basismodel Kitting versus Kitting met Drempels

We starten met de analyse van de throughput en we trachten deze te vergelijken met de

uitkomsten van hoofdstuk 2. We voeren daarbij de volgende notatie in: C1C2.T1T2.12.µ.

Onderstaande grafiek geeft de throughput voor een systeem met notatie: 55.TT.55.5. We laten de

drempels variëren van 1 tot 4 en de bestelgrootte B is variabel zoals eerder uitgelegd. We

vergelijken met het basis kitting proces uit hoofdstuk 2 met parameterwaarden 55555.

GRAFIEK 24: TP VAN BASIS VS DREMPELS

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1 2 3 4

TP

T

drempels

basis

Page 65: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 55

Uit bovenstaande grafiek leiden we af dat het invoeren van drempels een gunstige invloed heeft

op de throughput en hoe hoger de drempel, hoe groter het effect. We vermoeden dat dit ten dele

te maken heeft met de assumptie die we gemaakt hebben om steeds bij te vullen tot de

buffercapaciteit. Op die manier is er waarschijnlijk minder kans op een lege buffer. Hoe kleiner

die kans, hoe hoger de throughput niveaus. Het effect is het kleinst bij een T=1 omdat de

bestelde hoeveelheid niet onmiddellijk toekomt maar pas na een bepaalde tijd weergegeven

door de parameter . Bij een lage drempel is de kans dus groter dat de buffer leeg komt te staan

doordat de onderdelen sneller uit de buffer verdwijnen dan dat de bestelling toekomt. Een

grotere kans op lege buffers leidt tot lagere throughput niveaus. Om na te gaan of de oorzaak van

de hogere throughput inderdaad te wijten is aan het feit dat de er meer onderdelen in de buffers

zitten, bekijken we de gemiddelde bufferbezetting in het basis kitting proces en het kitting

proces met drempels.

GRAFIEK 25: E[Q] VAN BASIS VS DREMPELS

Bovenstaande grafiek bevestigt dat de gemiddelde bufferbezetting hoger is in het systeem met

drempels dan zonder drempels onder de gemaakte assumptie. Wanneer =5 en µ=5 kunnen we

dus besluiten dat hoe hoger de drempel ligt, hoe hoger de gemiddelde bufferbezetting is

aangezien dan steeds sneller de buffer aangevuld wordt met nieuwe bestellingen. Deze manier

van werken zal bijzonder nuttig blijken wanneer de kost om het kitting proces stil te leggen zeer

hoog is. De drempels worden echter een nadeel wanneer de voorraadkosten zeer hoog zijn. Meer

over de verschillende soorten kosten vinden we terug in hoofdstuk 4 met het numerieke

voorbeeld.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4

E[Q]

T

drempels

basis

Page 66: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 56

Aangezien er geen aankomstproces meer is maar enkel een gemiddelde leveringssnelheid,

kunnen we ook niet meer spreken van verschillende graden van systeembelasting. Immers, wat

is de gemiddelde aankomstsnelheid van het systeem? In hoofdstuk 2 zagen we dat =TP+verlies.

Omdat er nu geen verlies meer is, is =TP. De throughput is geen parameter maar een

prestatiemaat. Dit betekent dat in een kitting systeem met drempels, we geen controle meer

hebben over de belastingsgraad van het systeem.

Geen aankomstproces en dus geen , doet de vraag rijzen wat er gebeurt met TP < min(1,2,µ).

Is de TP nu enkel begrensd door µ of speelt de gemiddelde leveringssnelheid ook een rol? Dit

gaan we na aan de hand van volgende grafiek.

GRAFIEK 26: TP IN FUNCTIE VAN T VOOR VERSCHILLENDE SCENARIO’S

In bovenstaande grafiek trachten we na te gaan of TP begrensd is door µ, of beiden. Wanneer

we logisch nadenken, weten we dat TP altijd gelimiteerd zal zijn door µ. De kits kunnen het

systeem maar zo snel verlaten als de machine kan werken. Bovenstaande grafiek bevestigt dit

aangezien de throughput nergens hoger is dan 3. Vermits er geen kits gevormd kunnen worden

wanneer een onderdeel niet beschikbaar is, is het ook logisch dat TP begrensd is door de

gemiddelde aankomstsnelheid in het basismodel. We weten bovendien ook dat P[leeg]

rechtstreeks gerelateerd is met in dat systeem. In het kitting systeem met drempels vinden we

geen rechtstreekse relatie tussen P[leeg] en , enkel een positieve correlatie. We concluderen

daaruit dat TP niet begrensd is door . Ook dit wordt bevestigd door de grafiek. We zien dat het

0

0,5

1

1,5

2

2,5

3

3,5

1 2 3 4

TP

T

55.TT.11.3

55.TT.33.3

55.TT.55.3

Page 67: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 57

scenario met =1 een throughput met zich meebrengt die groter is dan 1. We kunnen besluiten

dat wel degelijk een invloed heeft op TP, want TP stijgt wanneer toeneemt. Maar vormt geen

bovengrens voor de TP, die dus enkel gelimiteerd blijkt door µ.

We concluderen dat het basismodel en het model met drempels wiskundig verschillend zijn

doordat er geen aankomstproces meer is maar enkel een aankomst na een bestelling. In het

vervolg van dit hoofdstuk trachten we dan ook het kitting systeem met drempels te

optimaliseren zonder expliciet rekening te houden met het basismodel.

2.2 Optimaliseren kitting systeem met drempels

2.2.1 Gemiddelde bufferbezetting

Als eerste prestatiemaat bekijken we de gemiddelde bufferbezetting. We kiezen 4 scenario’s

waarbij we trachten een zo breed mogelijk gamma combinaties te dekken. We bekijken welke

parameterwaarden we moeten kiezen om het kitting proces met drempels te optimaliseren. We

gebruiken daarbij de eerder ingevoerde notatie: C1C2.T1T2.12.µ .

GRAFIEK 27: E[Q] VOOR VERSCHILLENDE SCENARIO’S

In bovenstaande grafiek vinden we de gemiddelde bufferbezetting voor de verschillende

scenario’s. Veralgemenend kunnen we stellen dat de gemiddelde bufferbezetting daalt naarmate

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5

E[Q]

m

99.11.11.m

99.11.55.m

99.88.11.m

99.88.55.m

Page 68: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 58

µ toeneemt en naarmate of T dalen. We zien dat de scenario’s gekenmerkt door lage

leveringsnelheden een sterkere daling in gemiddelde buffercapaciteit kennen naarmate µ groter

wordt dan hun tegenhangers, de scenario’s met hoge leveringsnelheden. Dit zien we duidelijk in

de grafiek doordat bijvoorbeeld scenario 3 sneller en sterker daalt dan scenario 4 bij

toenemende µ.

Wanneer we scenario 1 en 3 naast mekaar leggen, alsook 2 en 4, dan zien we dat hogere

drempels een aanzienlijke verhoging in de gemiddelde bufferbezetting teweeg brengen. Zoals

gezegd in hoofdstuk 2 is het optimaliseren van de gemiddelde bufferbezetting weinig zinvol

omdat het op zich niet goed of slecht is als die waarde hoog of laag is. Echter, stel dat we die

waarde zo hoog mogelijk willen, dan kunnen we besluiten dat het verhogen van de drempels tot

een beter resultaat leidt dan het verhogen van de gemiddelde leveringsnelheid van de bestelling.

Een combinatie van beide leidt natuurlijk tot het scenario met de hoogste gemiddelde

bufferbezetting.

2.2.1.1 HET EFFECT VAN DE BUFFERGROOTTE

In de voorgaande analyse waren de buffercapaciteiten hetzelfde voor elk scenario. We vragen

ons nu af wat het effect is van die buffergroottes. Daartoe bekijken we eerst onderstaande figuur.

GRAFIEK 28: E[Q] IN FUNCTIE VAN C

0

1

2

3

4

5

6

2 3 4 5 6 7 8 9

E[Q]

C

CC.11.11.1

Page 69: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 59

In bovenstaande grafiek laten we de buffercapaciteiten toenemen van 2 tot 9, met een vaste

drempel, en µ. De conclusie is zeer eenvoudig. De gemiddelde bufferbezetting stijgt quasi

lineair met de buffercapaciteit.

Wanneer we scenario 1 en 2 uit de voorgaande grafiek bestuderen, kunnen we ons afvragen of

een buffercapaciteit van 9 niet te groot is. Men wou immers kunnen denken dat er capaciteit

wordt vrij gehouden waarvan gemiddeld minstens 3 plaatsen niet gebruikt worden. We gaan na

wat er zou gebeuren indien we de buffercapaciteit zouden terugbrengen tot bijvoorbeeld 6 voor

scenario 1 en 2.

GRAFIEK 29: E[Q] BIJ VERSCHILLENDE BUFFERGROOTTES

De grafiek toont een verschuiving naar beneden toe van beide scenario’s. Aangezien we daarnet

een quasi lineaire relatie vonden tussen E[Q] en C, is het logisch dat deze scenario’s nu evenredig

met C naar beneden toe verschoven zijn. Het gevolg van het verlagen van de buffercapaciteit

omdat er “teveel” capaciteit is, is dat de gemiddelde bufferbezetting zodanig gedaald is dat er nu

nog steeds “teveel” capaciteit is. Dit was te verwachten aangezien de procentuele

bezettingsgraad in grafiek 28 overal ongeveer dezelfde is. Er zitten dus absoluut gezien meer

onderdelen in de buffer, maar de buffer zit altijd even vol. De schijnbare overcapaciteit kan dus

enkel weg gewerkt worden door de drempels te verhogen. Hoewel het gunstig lijkt om de

capaciteit van de buffer ten volle te benutten, zien we straks in hoofdstuk 4 dat een hoge

gemiddelde bufferbezetting ook grote kosten met zich mee kan brengen. Kosten die het gunstige

effect van een goede benutting van de capaciteit overschaduwen.

0

1

2

3

4

5

6

1 2 3 4 5

E[Q]

m

99.11.11.m

99.11.55.m

66.11.11.m

66.11.55.m

Page 70: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 60

2.2.2 Kans op een lege buffer

De kans op een volle buffer verliest zijn betekenis met de gemaakte assumptie dat de bestelde

hoeveelheid gelijk is aan de buffercapaciteit verminderd met de huidige voorraadpositie.

Hierdoor kan de buffer wel vol zitten maar zullen er nooit onderdelen toekomen die niet in de

buffer kunnen omdat die vol zit, net omdat we werken met die variabele bestelgrootte.

De kans op een lege buffer daarentegen is ook hier zeer belangrijk. Wanneer een onderdeel niet

ter beschikking is, kan er niet gekit worden en ligt de machine stil. We gaan na welke kansen de

verschillende scenario’s met zich meebrengen.

GRAFIEK 30: P[LEEG] VOOR VERSCHILLENDE SCENARIO’S

We zien dat de scenario’s met de lage gemiddelde leveringsnelheid (1 en 3) het slechtst scoren

op deze prestatiemaat. Het is misschien wat verrassend dat scenario 3 slechter scoort dan

scenario 2. In scenario 3 liggen de drempels dan wel hoog maar de lage leveringsnelheid in

combinatie met steeds snellere verwerking leidt dus tot buffers met een grotere kans om leeg te

zijn dan in scenario 2 waar de lage drempels gecompenseerd worden door een hoge gemiddelde

leveringsnelheid. Scenario 4 levert de beste resultaten op met kansen die nagenoeg 0 zijn,

ongeacht de waarde van µ. Wat dus betekent dat de server steeds onderdelen heeft om mee te

werken en dus praktisch nooit stil ligt. Dit zal dan ook resulteren in hoge throughput niveaus.

Om deze prestatiemaat te optimaliseren streven we voornamelijk naar hoge gemiddelde

leveringsnelheden. De scenario’s met lage gemiddelde toeleveringsnelheid zijn bovendien zeer

0

0,05

0,1

0,15

0,2

0,25

0,3

1 2 3 4 5

P[leeg]

m

99.11.11.m

99.11.55.m

99.88.11.m

99.88.55.m

Page 71: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 61

gevoelig aan een toenemende µ. Dus voor die scenario’s kan het optimaal zijn om de

verwerkingssnelheid wat lager te zetten. Voor de andere scenario’s is het voordeel dat men haalt

door µ te verlagen, met als doel een lagere kans op lege een buffer, waarschijnlijk veel kleiner

dan het voordeel dat we kunnen halen uit de throughput door µ hoog te kiezen.

2.2.2.1 HET EFFECT VAN DE BUFFERGROOTTE

GRAFIEK 31: P[LEEG] IN FUNCTIE VAN C

Bovenstaande grafiek toont dat de kans op lege buffer daalt met afnemende minderkosten bij

groter wordende buffercapaciteiten. De kans op een lege buffer daalt dus steeds minder en

minder naarmate C groter wordt. Laten we kijken wat het effect is op bovenstaande scenario’s.

0

0,05

0,1

0,15

0,2

0,25

2 3 4 5 6 7 8 9

P[leeg]

C

CC.11.11.1

Page 72: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 62

GRAFIEK 32: P[LEEG] BIJ VERSCHILLENDE BUFFERGROOTTES

Aangezien de kans op een lege buffer stijgt wanneer de buffercapaciteit daalt, vinden we curven

die hoger liggen. Bovendien kennen de curven een steiler verloop bij lagere buffergroottes. Om

deze prestatiemaat te optimaliseren concludeerden we daarnet dat we moeten streven naar een

snelle gemiddelde aanlevering. Ook hoge buffercapaciteiten dragen bij tot de optimalisatie van

deze prestatiemaat. Echter, we merken op dat de verbetering die de grotere buffers met zich

meebrengen veel kleiner is dan de verbetering dankzij snellere aanlevering. Deze opmerking

geldt des te meer wanneer µ groot is aangezien we daar te maken met de hoogste

opportuniteitskosten en het verschil tussen de verschillende scenario’s groter wordt.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

1 2 3 4 5

P[leeg]

m

99.11.11.m

99.11.55.m

66.11.11.m

66.11.55.m

Page 73: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 63

2.2.3 Throughput

Als laatste prestatiemaat bekijken we de throughput in verschillende scenario’s. We trachten die

te optimaliseren door de juiste combinatie parameterwaarden te kiezen voor Ci, Ti, i en µ.

GRAFIEK 33: TP VOOR VERSCHILLENDE SCENARIO’S

Bovenstaande grafiek toont aan dat de throughput stijgt wanneer de gemiddelde

verwerkingssnelheid toeneemt, de gemiddelde leveringsnelheid stijgt en/of de drempels hoger

liggen. Het is dan ook niet verwonderlijk dat scenario 1 de laagste en scenario 4 de hoogste

throughput niveaus met zich meebrengen. Wanneer we scenario 4 meer in detail bekijken, zien

we dat de throughput nagenoeg gelijk is aan de gemiddelde verwerkingssnelheid wat betekent

dat er altijd voldoende onderdelen zijn om te produceren. Het kitting proces hoeft niet stil

gelegd te worden omdat een onderdeel niet ter beschikking is. Dit stelden we ook vast bij de

prestatiemaat omtrent de kans op een lege buffer. Vertrekkende van scenario 4 kunnen we nu

onderzoeken wat het effect is van een lagere gemiddelde leveringsnelheid van de bestelling en

van lagere drempels.

Wanneer we nu scenario 4 en 3 vergelijken, zien we dat de gemiddelde leveringsnelheid een

belangrijke invloed heeft op de throughput naarmate µ groter wordt. Bij µ=5 resulteert de

snellere aanlevering immers in ±40% meer throughput ten opzichte van het scenario met de

trage leveringsnelheid. Wanneer het systeem bovendien gekenmerkt is door lage drempels, dan

heeft de leveringsnelheid een nog grotere impact. Vergelijken we scenario 1 en 2 dan bereiken

we ±66% meer throughput door een snellere gemiddelde leveringsnelheid bij µ=5.

0

1

2

3

4

5

6

1 2 3 4 5

TP

m

99.11.11.m

99.11.55.m

99.88.11.m

99.88.55.m

Page 74: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 64

Dit brengt ons tot het effect van de drempels. Dit vinden we door het vergelijken van scenario 4

en 2. We zien dat de throughput minder hoog is wanneer de drempels laag gekozen worden. Dit

is intuïtief duidelijk aangezien we rekening moeten houden met de tijd nodig om de bestelling te

produceren en te leveren. Wanneer de bestelling pas geplaatst wordt wanneer de buffer bijna

leeg is, dan is de kans groter dat de buffer leeg komt te staan vooraleer de bestelling aankomt

dan wanneer de drempel hoog zou liggen. Een hogere kans op een lege buffer betekent een

lagere throughput. Wanneer de gemiddelde leveringsnelheid bovendien ook laag is, dan is de

vermindering in throughput groter dan wanneer die snelheid hoog is. Dit vinden we door de

vergelijking van scenario 3 en 1. Ook dit is makkelijk te begrijpen. Immers, hoe langer het duurt

vooral de bestelling er is, en dus hoe kleiner de gemiddelde leveringsnelheid, hoe meer kans dat

de buffer leeg komt te staan voor de bestelling er is.

We kunnen besluiten dat een maximale throughput behaald wordt bij hoge drempels, snelle

aanlevering en snelle verwerking. Afhankelijk van de huidige situatie waarin het systeem zich

bevindt zijn hier meer of minder kostelijk ingrepen voor nodig en is de verbetering in

throughput meer of minder aanzienlijk. Stel bijvoorbeeld dat we zitten in het punt C1C2T1T212µ

= 9911555. We kunnen de throughput nu enkel verhogen door de drempels hoger in te stellen.

We zien echter in de grafiek dat de verbetering in throughput beperkt blijft tot 10%. Er moet

worden nagegaan of die verbetering opweegt tegen de kosten die gepaard gaan met het

verhogen van de drempels, zoals bijvoorbeeld hogere gemiddelde buffercapaciteiten. We zien

ook dat wanneer µ=1, het weinig uitmaakt in welk scenario we zitten aangezien de throughput

in elk scenario rond dezelfde waarden hangt. In dat geval zal de throughput vermeerdering

waarschijnlijk niet opwegen tegen de kosten van de ingrepen om van scenario 1 naar 4 te gaan.

2.2.3.1 HET EFFECT VAN DE BUFFERGROOTTE

GRAFIEK 34: TP IN FUNCTIE VAN C

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

2 3 4 5 6 7 8 9

TP

C

CC.11.11.1

Page 75: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

3. UITBREIDINGEN OP HET BASIS KITTING PROCES 65

Bovenstaande grafiek toont dat de throughput toeneemt met de buffercapaciteit. De curve is

convex wat betekent dat de TP stijgt met afnemende meeropbrengsten. Voor elke eenheid

waarmee we de drempel verhogen, daalt de proportionele stijging in TP. We bekijken wat het

effect hiervan is op de voorgaande scenario’s.

GRAFIEK 35: TP BIJ VERSCHILLENDE BUFFERGROOTTES

De verlaagde buffercapaciteit heeft relatief weinig invloed op de throughput in vergelijking met

de andere prestatiematen. Vooral bij µ=1 verandert er bijzonder weinig. Wanneer we de vorige

grafiek nog eens bekijken, zien we dat de throughput stijging van 6 naar 9 slechts 5% bedraagt.

Het is dan ook logisch dat de throughput hier weinig last lijkt te hebben van de verlaagde

buffercapaciteiten. Aangezien µ verhogen een actie is die de throughput aanzienlijk kan

verhogen, moeten we er rekening mee houden dat het effect van kleinere buffers groter wordt

naarmate µ groter wordt.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1 2 3 4 5

TP

m

99.11.11.m

99.11.55.m

66.11.11.m

66.11.55.m

Page 76: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

Hoofdstuk 4

Numeriek voorbeeld

1 Opstellen van de winstfunctie

In de voorgaande analyses spraken we steeds van kosten en baten bij de beslissing om acties uit

te voeren of niet. In dit hoofdstuk zullen we trachten een winstfunctie op te stellen die toelaat de

kosten en opbrengsten van bepaalde acties in rekening te nemen. We starten met te bepalen

welke kosten en opbrengsten we nodig hebben, hoe deze in relatie staan met mekaar en wat de

gepaste coëfficiënten zijn van elke parameter.

1.1 Opbrengsten

De opbrengsten zijn het meest eenvoudig aangezien we enkel opbrengsten kunnen genereren

door de throughput. De TP geeft weer hoeveel afgewerkte kits er per tijdseenheid het systeem

verlaten. De kosten bestaan uit meerdere componenten zoals de voorraadkosten, de kosten van

een lege en volle buffer en de kosten van verlies.

Page 77: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 67

1.2 Kosten

De voorraadkosten bestaan uit twee delen; een vaste kost en een variabele kost. De vaste kost

heeft betrekking op de buffercapaciteit C. Dit is de eenmalige kost die we doen om een buffer

met C plaatsen te installeren. Dit gaat van de ruimte die het in beslag neemt, tot de rekken die we

voorzien om de onderdelen te stockeren. Dit is een vaste kost omdat we eenmalig betalen voor

die capaciteit. Wanneer het kitting proces loopt, zal de buffer vullen met onderdelen maar de

capaciteit verandert niet. De variabele voorraadkost is gerelateerd aan de gemiddelde

bufferbezetting. Het is de kost die een bedrijf draagt voor elke tijdseenheid dat het onderdeel in

de buffer zit. Stel bijvoorbeeld dat we te maken hebben met onderdelen die een speciale

behandeling nodig hebben, bijvoorbeeld staalrollen die een bepaalde temperatuur moeten

hebben zodat ze niet uitharden, of etenswaren die gekoeld moeten worden opdat ze niet

bederven. Elke tijdseenheid dat het onderdeel warm of koud moet zijn kost geld. Zelfs wanneer

er geen speciale behandeling vereist is, kost een onderdeel geld in termen van ruimte voor elke

tijdseenheid dat het in de buffer zit. Bijvoorbeeld een half afgewerkte auto die staat te wachten

op verdere productie neemt een bepaalde plaats in beslag die niet voor iets anders kan gebruikt

worden. Deze kosten zijn dus variabele kosten. Deze kosten kunnen hoog of laag zijn afhankelijk

van de behandeling die het vereist, de plaats die het beslag neemt en mogelijke andere factoren.

We kiezen om in de winstfunctie de vaste kosten niet op te nemen. Zo blijft alles uitgedrukt in

kost of opbrengst per tijdseenheid. Bovendien zouden we kunnen veronderstellen dat die kost

klein is in vergelijking met de kosten en opbrengsten op jaarbasis bijvoorbeeld.

De kosten van een lege en volle buffer zijn uiteraard gerelateerd aan de kans dat de buffer leeg of

vol is. We kunnen deze kost nu op twee manieren inbrengen. We nemen het voorbeeld van de

lege buffer maar het is analoog voor de volle buffer. De eerste mogelijkheid is dat we een kost in

rekening brengen elke keer dat de kitting machine stil gelegd moet worden omdat een van de

buffers leeg is. Dit betekent dat de machine opnieuw opgestart moet worden, wat voor sommige

machines zeer duur kan zijn, bijvoorbeeld als de machine een bepaalde snelheid moet opbouwen

om op volle toeren te werken. Om de kost zo in rekening brengen moeten we afleiden uit de kans

op een lege buffer hoe vaak de buffer effectief leeg is. Om dit te vinden zouden we moeten

simuleren. We houden het eenvoudig en kiezen daarom voor de tweede methode. De tweede

manier waarop we kost in rekening kunnen brengen is door te kijken naar de fractie van tijd dat

de aanvoer stil ligt, wat wel gelijk is aan de kans op een lege buffer. Door dit te vermenigvuldigen

met een gepaste kostencoëfficiënt kunnen we deze kost op een eenvoudige manier in rekening

brengen. Analoog voor de kans dat een buffer vol is en de kosten die dat met zich meebrengt.

Page 78: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 68

Tot slot is er het verlies. In hoofdstuk 2 bespraken we hoe het verlies moet worden

geïnterpreteerd. Als de aanvoer van een onderdeel niet stil wordt gelegd wanneer de buffer van

dat onderdeel vol zit, dan worden er onderdelen aangevoerd waarvoor geen plaats is in de

buffer. Deze onderdelen gaan verloren. Wanneer echter de aanvoer wel wordt stil gelegd, dan

geeft het verlies weer hoeveel onderdelen we hadden kunnen verwerken indien de buffer nooit

vol had gezeten. In dat geval is het verlies een opportuniteitskost. Indien 1=2 dan is het verlies

rechtstreeks gerelateerd aan het de kans dat de buffer vol zit: verlies = P[vol].

1.3 Winstfunctie

Nu we alle opbrengsten en kostfactoren kennen, kunnen we de winstfunctie opstellen. De vaste

voorraadkost nemen we niet in aanmerking zoals gezegd. Het verlies nemen we niet

rechtstreeks op in de winstfunctie omdat we reeds de fractie van de tijd dat de buffer vol zit

verrekenen. Op deze manier vermijden we dubbeltelling.

Winst = Opbrengsten – Kosten

Winst = a TP – b E[Q1] – c E[Q2] – d P[vol1] –e P[vol2] – f P[leeg1 of leeg2]

a = opbrengst per afgewerkte kit: €/stuk

b,c = kost per tijdseenheid dat een onderdeel in buffer 1/2 zit: €/t

d,e = kost per tijdseenheid dat de aanvoer van onderdeel 1/2 stil ligt: €/t

f = kost per tijdseenheid dat het kitting proces stil ligt: €/t

Page 79: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 69

2 De invloed van de verschillende parameters

2.1 Basisscenario

In het basisscenario kiezen we de volgende parameterwaarden: a=20, b=c=1, d=e=2 en f=5.

GRAFIEK 36: WINST BASISSCENARIO

Bovenstaande grafiek toont de winst voor de scenario’s die we in hoofdstuk 2 analyseerden. We

zien dat deze grafiek zeer gelijkaardig is aan de grafiek die de throughput weergeeft. Dit is

enigszins logisch aangezien coëfficiënt a een relatief grote waarde toegekend werd. We bekijken

later wat er gebeurt wanneer de verschillende kosten zwaarder doorwegen.

Veronderstel net als in hoofdstuk 2 dat de huidige situatie van het kitting proces wordt

weergegeven door het punt 11111. We concludeerden toen dat er 3 mogelijke acties zijn om de

TP te verhogen. Aangezien deze grafiek zeer gelijkaardig is aan die van de TP, gelden deze acties

ook om de winst te verhogen. Deze maatregelen omvatten het verhogen van µ, het verhogen van

en/of het vergroten van C. We legden sterk de nadruk op het feit dat de kosten-baten analyse

moest uitwijzen welke maatregelen winstgevend zouden zijn. Daartoe bekijken we

onderstaande tabellen.

1111 5511 1155 5555

µ = 1 € 1,40 € 9,15 € 7,80 € 7,29

µ = 5 € 4,88 € 33,40 € 10,56 € 70,01

€ -

€ 10,00

€ 20,00

€ 30,00

€ 40,00

€ 50,00

€ 60,00

€ 70,00

€ 80,00

1 2 3 4 5

winst

m

1111m

1155m

5511m

5555m

Page 80: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 70

Bovenstaande tabel geeft het de winst per tijdseenheid van de verschillende scenario’s. Door de

volgende assumpties en berekeningen, vinden we hoeveel de ingrepen maximaal mogen kosten

opdat we break-even zouden zijn met de huidige situatie (11111). Als de ingreep minder kost,

maken we extra winst.

Stel dat de tijdseenheid van de winstfunctie uitgedrukt staat in minuten. Stel bovendien dat er

8u op dag gewerkt wordt, en dat 250 dagen per jaar. Vermenigvuldigen we bovenstaande

getallen met 60min/u x 8u/dag x 250 dagen/jaar, dan bekomen we volgende cijfers.

1111 5511 1155 5555

µ = 1 € 168.000 € 1.098.462 € 935.974 € 874.368

µ = 5 € 585.882 € 4.008.000 € 1.266.662 € 8.401.406

Deze tabel geeft de winst per jaar, gegeven de assumpties hierboven uitgelegd. Vergelijken we

nu deze winsten met de huidige situatie (11111) dan bekomen we hoeveel de ingrepen

maximaal mogen kosten opdat we winst zouden maken bovenop de winst van het huidige

systeem.

1111 5511 1155 5555

µ = 1 € - € 930.462 € 767.974 € 706.368

µ = 5 € 417.882 € 3.840.000 € 1.098.662 € 8.233.406

Dit betekent dat wanneer µ=1, de maatregel om de buffers met een factor 5 te vergroten

(scenario 3) maximaal € 930.462 mag kosten. Dit is overigens de vaste voorraadkost die we

daarstraks besproken hebben met betrekking tot de buffercapaciteit. Willen we bovendien de

gemiddelde aankomst-snelheid verhogen met een factor 5, dan komen we in scenario 4 en die

kosten mogen te samen het bedrag van €706.368 niet overschrijden. Merk op dat bij µ=1 er dus

meer winst per tijdseenheid is wanneer de buffer groot zijn dan wanneer de buffer groot zijn én

de aanvoer snel is. Willen we als laatste maatregel ook µ verhogen met een factor 5, dan mogen

de 3 ingrepen samen niet meer kosten dan € 8.233.406 opdat de acties winstgevend zouden zijn.

De totale winst is dan gelijk aan de winst die we vinden in de vorige tabel verminderd met de

kost van de geïmplementeerde acties.

Page 81: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 71

Bovenstaande getallen veronderstellen bovendien dat de acties afgeschreven worden over 1 jaar

en dat de kost dus jaarlijks is. Kunnen we achter afschrijven over bijvoorbeeld 4 jaar, en dus

slechts elke 4 jaar dat bedrag moeten ophoesten, dan vinden we volgende cijfers.

1111 5511 1155 5555

µ = 1 € - € 3.721.846 € 3.071.894 € 2.825.472

µ = 5 € 1.671.529 € 15.360.000 € 4.394.647 € 32.933.622

We zien dat wanneer we afschrijven over 4 jaar, de kost van de 3 ingrepen niet hoger mag zijn

dan € 32.933.622. Dit is een zeer aanzienlijk bedrag en de acties zullen dus waarschijnlijk

winstgevend zijn. Door te spelen met deze getallen vinden we op een snelle manier hoeveel de

ingrepen maximaal mogen kosten. We kunnen de tijdseenheid veranderen van de winstfunctie,

het aantal uur dat er gewerkt wordt per dag, het aantal werkdagen op een jaar en het aantal jaar

waarover de acties worden afgeschreven. Dit kunnen we dus gebruiken voor alle kosten-baten

analyses aangehaald in hoofdstuk 2.

2.1.1 Systeembelasting

GRAFIEK 37: WINST BIJ VERSCHILLENDE SYSTEEMBELASTING

€ -4

€ -2

€ -

€ 2

€ 4

€ 6

€ 8

€ 10

€ 12

1 2 3 4 5

winst

C

50%

100%

200%

=0.5 µ=1

=1 µ=1

=2 µ=1

Page 82: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 72

Bovenstaande grafiek geeft de winst voor scenario’s met onder, gelijke en overbelasting. Ook

hier zien we gelijkenis met de throughput van diezelfde scenario’s in die zin dat de scenario’s

met de hoogste TP nu ook de hoogste winst per tijdseenheid genereren. We zien echter dat de

winst niet blijft stijgen bij grotere buffercapaciteiten maar dat de winst na een bepaald optimum

begint te dalen. De verschillende scenario’s bereiken hun optimale winst bij verschillende

buffergroottes. Voor overbelasting is dat bij C=3, bij onderbelasting bij C=4. Bij gelijkbelasting is

de winst pas optimaal bij C=5 (we hebben C laten verder variëren tot 10 en wanneer C verder

stijgt dan 5 daalt de winst per tijdseenheid). We trachten de reden voor deze optima te

achterhalen door de kosten en opbrengsten apart te bekijken.

We zien dat de opbrengsten een redelijk gelijkaardig verloop kennen en dat de reden dat de

winst maximaal is bij verschillende buffergroottes gezocht moet worden bij de kosten. Een

verdere analyse van de kosten leert ons dat de reden dat de winst bij overbelasting reeds

optimaal is bij C=3 ligt aan het feit dat in dat scenario de gemiddelde bufferbezetting veel sterker

toeneemt dan in de andere scenario’s. Meer algemeen kunnen we dus stellen dat de winst een

maximum bereikt omdat de opbrengsten stijgen met afnemende meeropbrengsten en de kosten

stijgen met toenemende meerkosten. Aangezien de kans op een volle en lege buffer dalen bij

toenemende buffercapaciteiten, ligt de oorzaak dus bij de toenemende gemiddelde

bufferbezetting.

€ -

€ 5

€ 10

€ 15

€ 20

€ 25

1 2 3 4 5

Opbrengst

C€ -

€ 2

€ 4

€ 6

€ 8

€ 10

€ 12

1 2 3 4 5

Kosten

C

50%

100%

200%

GRAFIEK 38: KOSTEN BIJ VERSCHILLENDE SYSTEEMBELASTING GRAFIEK 39: OPBRENGSTEN BIJ VERSCHILLENDE SYSTEEMBELASTING

Page 83: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 73

2.2 Stilleggen kitting

We veronderstellen nu dat de kosten om het kitting proces stil te leggen veel groter zijn. We

kiezen f=15, wat een drievoud is van het basis scenario. We vergelijken met de voorgaande winst

per tijdseenheid, het basis scenario.

De grotere coëfficiëntwaarde voor f betekent dat de tijd dat er geen kits gevormd kunnen

worden omdat 1 van de buffers leeg is, zwaar afgestrafd wordt. We bekijken de kans op een lege

buffer van de verschillende scenario’s. Deze vonden we reeds in hoofdstuk 2.

€ -10,00

€ -

€ 10,00

€ 20,00

€ 30,00

€ 40,00

€ 50,00

€ 60,00

€ 70,00

€ 80,00

1 2 3 4 5

winst

m

1111m

1155m

5511m

5555m

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5

P[leeg]

m

1111m

1155m

5511m

5555m

GRAFIEK 40: WINST ALS STILLEGGEN KITTING DUURDER IS

Page 84: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 74

We zien dat scenario 4 de laagste kans heeft een lege buffer en scenario 1 de hoogste kans.

Scenario 2 en 3 liggen er tussen in en liggen zo wat in de zelfde lijn. Bekijken we deze grafiek

samen met de nieuwe winst per tijdseenheid, dan kunnen we volgende opmerkingen maken.

We zien dat scenario 1 niet meer winstgevend is, ongeacht de waarde van µ. De reden hiervoor

wordt meteen duidelijk in bovenstaande grafiek. Immers, scenario 1 kent de hoogste kansen op

een lege buffer. Bovendien herinneren we ons uit hoofdstuk 2 dat dit scenario de kleinste

throughput niveaus heeft. De kleine throughput is dus niet voldoende om de grotere kosten van

een lege buffer te dragen.

Scenario 2 en 3 hebben beide te maken met een initiële daling in de winst ten gevolge van de

zwaarder doorwegende kost op een lege buffer. Verder dan µ=1 zien we dat de grafiek naar

beneden gedraaid is. De reden is de toenemende kans op een lege buffer naarmate µ groter

wordt. Hoewel beide stijgen met afnemende meeropbengsten/kosten, nemen de opbrengsten

sneller af dan de kosten. De stijging in kosten blijft dus groter dan de stijging in throughput

waardoor het netto effect een beweging naar beneden veroorzaakt.

Aangezien de kans op een lege buffer zeer klein is voor scenario 4, heeft de zwaardere kost het

minst impact op dit scenario. Bij de vergelijking van de nieuwe en de vorige winstfunctie zien we

immers slechts een kleine daling in winst per tijdseenheid.

2.2.1 Systeembelasting

GRAFIEK 41: WINST BIJ VERSCHILLENDE SYSTEEMBELASTING

€ -15

€ -10

€ -5

€ -

€ 5

€ 10

€ 15

1 2 3 4 5

Winst

C

50%

100%

200%

=0.5 µ=1

=1 µ=1

=2 µ=1

Page 85: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 75

De winst per tijdseenheid van onder, gelijke en overbelasting is gedaald tengevolge van de

zwaardere kost voor lege buffers. Onderbelasting is zelfs niet meer winstgevend, ongeacht de

buffercapaciteiten. De optimale buffergroottes verschuiven naar respectievelijk C=5, C=6 en C=4.

2.3 Variabele voorraadkosten

In dit deel bekijken we wat er gebeurt wanneer de variabele voorraadkosten groter worden en

kiezen b=c=5. Dit is mogelijk wanneer er een speciale handeling nodig is of wanneer het half

afgewerkte product zeer kostbare ruimte in beslag neemt die dan voor niets anders gebruikt kan

worden.

We zien meteen een groot verschil met de 2 voorgaande sets van coëfficiënten. Daar bleef de

volgorde van winstgevendheid dezelfde maar nu is die helemaal door mekaar geschud. Scenario

4 is niet meer het meest winstgevende scenario ongeacht de waarden van µ. Echter, pas wanneer

µ>4 resulteert het scenario met grote buffercapaciteiten en snelle aanlevering tot het scenario

met de hoogste winst per tijdseenheid. Scenario 1 is niet langer het minst winstgevende en die

plaats is nu voor scenario 3. Bovendien is dit laatste scenario verlieslatend voor elke waarde van

µ. We bekijken de gemiddelde bufferbezetting van de verschillende scenario’s om de oorzaak

van deze veranderingen te achterhalen.

€ -40,00

€ -30,00

€ -20,00

€ -10,00

€ -

€ 10,00

€ 20,00

€ 30,00

€ 40,00

€ 50,00

€ 60,00

1 2 3 4 5

winst

m

1111m

1155m

5511m

5555m

GRAFIEK 42: WINST ALS VARIABELE VOORRAADKOSTEN DUURDER ZIJN

Page 86: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 76

Bovenstaande grafiek geeft de gemiddelde bufferbezetting voor de verschillende scenario’s en

verklaard meteen het winst per tijdseenheid met de nieuwe coëfficiënten. Scenario 4 kent zeer

hoge gemiddelde bufferbezettingen wat gunstig bleek wanneer de kost van lege buffers zwaar

was. Wanneer nu de variabele voorraadkost zwaar doorweegt zorgt de gemiddelde

bufferbezetting ervoor dat scenario 4 veel minder winstgevend is dan bij de eerste set

coëfficiënten. Scenario 4 gaat van het minst tot het meest winstgevend van µ=1 tot µ=5. Zoals

we ons herinneren uit hoofdstuk 2 is de reden hiervoor dat de throughput van dit scenario het

sterkst stijgt naarmate µ groter wordt in vergelijking met de andere scenario’s. Die sterke

stijging in opbrengsten zorgt er dus voor dat scenario 4 uiteindelijk weer het meest winstgevend

wordt. Tot slot vinden we in de gemiddelde bufferbezetting ook de reden dat scenario 1 en 3

gewisseld zijn in termen van winstgevendheid.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1 2 3 4 5

E[Q]

m

1111m

1155m

5511m

5555m

Page 87: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 77

2.3.1 Systeembelasting

GRAFIEK 43: WINST BIJ VERSCHILLENDE SYSTEEMBELASTING

Geen van bovenstaande scenario’s blijft winstgevend wanneer de variabele voorraadkost sterk

stijgt. Een belangrijke reden daartoe is het feit dat TP < min(1,2,µ). De gemiddelde buffer-

bezetting stijgt echter met C. Aangezien C varieert van 1 tot 5 en =µ=1, voldoen de opbrengsten

dus niet om de kosten te dekken. Het is wel interessant dat het scenario met de hoogste

gemiddelde bufferbezetting (overbelasting) aanvankelijk toch het minst verlieslatend is en pas

van C=4 het meeste verlies teweeg brengt. De reden daarvoor is dat de opbrengsten stijgen met

afnemende meeropbrengsten maar dat de kosten stijgen met toenemende meerkosten, zie

onderstaande grafieken. Het effect is dus dat hoe groter C wordt, hoe groter de kosten worden

relatief ten op zichten van de opbrengsten. Het netto effect is dus een steeds steiler dalende

winstenfunctie. Merk op dat de optimale winst nu voor alle scenario’s gevonden wordt bij C=1.

€ -30

€ -25

€ -20

€ -15

€ -10

€ -5

€ -

1 2 3 4 5

winst C

50%

100%

200%

=0.5 µ=1

=1 µ=1

=2 µ=1

Page 88: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 78

GRAFIEK 45: OPBRENGSTEN BIJ VERSCHILLENDE SYSTEEMBELASTING

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

50,00

1 2 3 4 5

Kosten

C

100%

200%

50%

€ -

€ 5,00

€ 10,00

€ 15,00

€ 20,00

€ 25,00

1 2 3 4 5

Opbrengst

C

GRAFIEK 44: KOSTEN BIJ VERSCHILLENDE SYSTEEMBELASTING

Page 89: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 79

2.4 Stilleggen aanvoer onderdelen

Als laatste set van coëfficiënten kijken we wat er gebeurt wanneer de kost geassocieerd met het

stilleggen van de aanvoer van onderdelen, omwille van een volle buffer, sterk toeneemt.

Hiervoor kiezen we d=e=8. We vergelijken met het basisscenario.

We zien dat de volgorde van winstgevendheid van de verschillende scenario’s gelijk blijft

behalve voor µ=1. De oorzaken zoeken we bij de kans op een volle buffer.

Scenario’s 2 en 4 kennen zeer hoge kansen op een volle buffer bij µ=1. Aangezien bij µ=1 de

throughput in dezelfde buurt ligt voor alle scenario’s, betekent dit dat bij µ=1 scenario 2 en 4 de

€ -10,00

€ -

€ 10,00

€ 20,00

€ 30,00

€ 40,00

€ 50,00

€ 60,00

€ 70,00

€ 80,00

1 2 3 4 5

winst

m

1111m

1155m

5511m

5555m

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5

P[vol]

m

1111m

1155m

5511m

5555m

GRAFIEK 46: WINST ALS STILLEGGEN AANVOER ONDERDELEN DUURDER IS

Page 90: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 80

zwaarste kost dragen relatief gezien ten opzichten van de opbrengsten. Daarna stijgen de TP en

dus de opbrengsten van die scenario’s sterk waardoor ze weer meer winstgevend worden dan

scenario’s 1 en 3.

2.4.1 Systeembelasting

GRAFIEK 47: WINST BIJ VERSCHILLENDE SYSTEEMBELASTING

Tot slot geven we de winst per tijdseenheid voor onder, gelijke en overbelasting. Dit is de eerste

maal dat de optimale winst van overbelasting niet de hoogste is, maar voorbij gestoken wordt

door het scenario met gelijkbelasting. Aangezien het scenario met overbelasting de grootste

kansen kent op volle buffers, is dit niet verwonderlijk. Onderbelasting blijft het minst

winstgevende, zoals bij alle andere sets van coëfficiënten ook het geval was.

€ -10

€ -8

€ -6

€ -4

€ -2

€ -

€ 2

€ 4

€ 6

1 2 3 4 5

Winst

C

50%

100%

200%

=0.5 µ=1

=1 µ=1

=2 µ=1

Page 91: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 81

3 Maximale winst

We zagen bij de grafieken over onder, gelijke en overbelasting dat er zich steeds een maximale

winst voordeed bij een bepaalde buffergrootte. Tot slot van dit hoofdstuk bekijken we de

maximale winst met de vier verschillende sets van coëfficiënten in termen van C, en µ. We

stellen deze coëfficiëntensets voor met de volgende notatie: a.b.c.d.e.f .

GRAFIEK 48: WINST IN FUNCTIE VAN DE BUFFERGROOTTE

De bovenstaande grafiek geeft de winst per tijdseenheid voor de vier verschillende sets

coëfficiënten waarbij we C laten variëren en =µ=5. We zien dat voor coëfficiëntensets 1, 2 en 4

de winst redelijk gelijkaardig verloopt. De optimale winst wordt bereikt bij een buffercapaciteit

van respectievelijk 15, 16, 9 en 11. We zien echter dat vanaf een buffergrootte van ongeveer 8,

de winsttoename zeer gering wordt en dus waarschijnlijk niet zal opwegen tegen de kost om de

buffer met nog een extra eenheid te vergroten. Enkel bij de derde set van coëfficiënten is de

winst per tijdseenheid aanzienlijk minder dan de andere sets. De variabele voorraadkost blijkt

dus de meest cruciale kostenfactor voor de winst per tijdseenheid.

€ -10

€ -

€ 10

€ 20

€ 30

€ 40

€ 50

€ 60

€ 70

€ 80

€ 90

€ 100

1 2 3 4 5 6 7 8 9 1011121314151617181920

C

20.1.1.2.2.5

20.1.1.2.2.15

20.5.5.2.2.5

20.1.1.8.8.5

Page 92: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 82

GRAFIEK 49: WINST IN FUNCTIE VAN DE GEMIDDELDE AANKOMSTSNELHEID

Bovenstaande grafiek geeft de winst per tijdseenheid in functie van =1=2 voor de

verschillende sets van coëfficiënten. We kiezen C=5 en µ=5. De maximale winst vinden we bij

een gemiddelde aankomstsnelheid van respectievelijk 10, 11, 4 en 11. Wederom zien we een

redelijk gelijkaardig winstverloop voor coëfficiëntensets 1,2 en 4. Voor deze coëfficiëntensets

zien we bovendien ook dat bij van ongeveer 8 de winsttoename zeer gering wordt, net als in de

vorige grafiek. De beste keuze van zal in dat geval waarschijnlijk meer afhankelijk zijn van de

machines. Bijvoorbeeld wanneer de machine die de onderdelen aanlevert dat doet aan een

snelheid van bijvoorbeeld 7, dan is de kans groot dat het bedrijf dit zo zal laten in plaats van

extra kosten te doen om de aanvoersnelheid op te voeren naar 10 of 11 om maximale winst te

bekomen. Voor coëfficiëntenset 3 wordt het nu echter zeer belangrijk om de gemiddelde

aankomstsnelheid goed te kiezen. Immers, het verlies in winst een beetje links of rechts van het

optimum is reeds aanzienlijk.

€ -40

€ -20

€ -

€ 20

€ 40

€ 60

€ 80

1 2 3 4 5 6 7 8 9 1011121314151617181920l

20.1.1.2.2.5

20.1.1.2.2.15

20.5.5.2.2.5

20.1.1.8.8.5

Page 93: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

4. NUMERIEK VOORBEELD 83

GRAFIEK 50: WINSTIN FUNCTIE VAN DE GEMIDDELDE VERWERKINGSSNELHEID

Om de maximale winst in functie van µ te vinden, moesten we µ laten toenemen tot zeer grote

waarden. Voor de verschillende coëfficiënten sets en met C=5 en =5 zijn de optima

respectievelijk bij µ gelijk aan 32, 11 en 37 voor coëfficiëntensets 1, 2 en 4. Voor coëfficiëntenset

3 was de maximale winst nog niet bereikt na µ=100. Zoals in de vorige grafieken is

coëfficiëntenset 3 het afwijkende coëfficiëntenset, hoewel nu ook coëfficiëntenset 2 afwijkingen

vertoont ten opzichten van coëfficiëntensets 1 en 4. Het optimum wordt in coëfficiëntenset 2

reeds veel vroeger bereikt dan de andere coëfficiëntensets en een goede keuze voor µ is dus

belangrijk voor dit coëfficiëntenset. Voor de andere 3 coëfficiëntensets is de winst immers veel

minder variabel vanaf een bepaalde µ, ongeveer 15.

€ -40

€ -20

€ -

€ 20

€ 40

€ 60

€ 80

€ 100

1 2 3 4 5 6 7 8 9 1011121314151617181920

m

20.1.1.2.2.5

20.1.1.2.2.15

20.5.5.2.2.5

20.1.1.8.8.5

Page 94: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

Besluit

Het doel van deze masterproef was om na te gaan wat het effect is van de buffergrootte in

productielijnen met kitting.

In het eerste hoofdstuk zijn we gestart met een kort literatuuroverzicht. We vonden een aantal

studies die handelden over kitting op een puur wiskundige manier, en een aantal kwalitatieve

studies over de voor- en nadelen van kitting in de praktijk. Deze laatste studies concludeerden

dat kitting in de praktijk op vele verschillende manieren geïmplementeerd wordt en dat er dus

een gebrek is aan eenduidige richtlijnen en advies. Verder stelden zij vast dat er een groot

verschil is tussen de tijd dat kitting duurt in het hoofd van het bedrijf en in de praktijk. We

concludeerden dat de kwantitatieve studies en de kwalitatieve studies mekaar nog niet ontmoet

hebben. Er is immers nood aan kwantitatieve studies die vertaalt worden in praktische

richtlijnen en advies, die getoetst kunnen worden door de kwalitatieve studies. In deze

masterproef hebben we dan ook getracht de theorie steeds te linken aan de praktijk.

Na het literatuuroverzicht volgde de wiskundige modellering van een productiesysteem met

kitting. We startten met een analyse van de verschillende componenten van een kitting systeem.

We bespraken het Poisson aankomstproces, de analogie van kitting met Birth-Death-processen,

de gelimiteerde buffers, … . Het wiskundig voorstellen van een kitting systeem betekent dat we

de overgangsmatrix invullen en oplossen om de evenwichtswaarschijnlijkheden te vinden. We

zagen dat deze manier van werken leidt tot zeer grote en complexe stelsels. Met een alternatieve

oplossingsmethode uit de literatuur slaagden we erin om op een makkelijke manier de

evenwichtswaarschijnlijkheden te berekenen van het kitting systeem. Die hebben we immers

nodig om de prestatiematen te berekenen uit hoofdstuk 2.

In hoofdstuk 2 zijn we van start gegaan met de definities van enkele prestatiematen. We hebben

beschreven wat de betekenis is van de verschillende prestatiematen en hoe we ze berekent

hebben. Omdat het optimaliseren van een kitting systeem betekent dat we rekening moeten

houden met alle prestatiematen, en omdat het verbeteren van de ene maat de andere kan

Page 95: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

BESLUIT 85

verslechteren, hebben we eerst de prestatiematen afzonderlijk besproken. We zetten de

belangrijkste conclusies voor elke prestatiemaat even op een rij.

We zagen dat de gemiddelde bufferbezetting toenam wanneer de buffercapaciteit groter werd,

en dit bij ongewijzigde gemiddelde aankomstsnelheden en verwerkingsnelheid. De reden

hiervoor was het stochastische aankomstproces van de onderdelen. Doordat de tijd tussen

opeenvolgende aankomsten niet altijd dezelfde is – dan zou het aankomstproces deterministisch

zijn – doen zich pieken en dalen voor rond de gemiddelde bufferbezetting. Hoe groter de buffer,

hoe meer kans dat de buffer deze pieken kan opvangen. Hierdoor stijgt dus de gemiddelde

bufferbezetting. Er zijn meer onderdelen ter beschikking van het systeem, wat resulteert in een

lagere kans op een lege buffer en dus een hogere throughput. Dit brengt ons tot de volgende

belangrijke conclusie. De gemiddelde bufferbezetting is rechtstreeks gerelateerd aan andere

prestatiematen. Daarom besloten we dat het optimaliseren van de gemiddelde bufferbezetting

weinig betekenis had omdat het op zich niet goed of slecht is om een hoge of lage gemiddelde

bufferbezetting te hebben. Het is echter des te belangrijker voor de andere prestatiematen dat

die hoog of laag zijn. In deze masterproef hebben we dus de gemiddelde bufferbezetting gezien

als middel om de andere prestatiematen te optimaliseren of als gevolg van de optimalisatie van

de andere prestatiematen.

De volgende prestatiemaat die we besproken hebben was de kans op een volle buffer. Om deze

prestatiemaat te optimaliseren kiezen we de parameters zodanig dat deze kans geminimaliseerd

wordt. Immers, een volle buffer vereist dat de aanvoer van het onderdeel wordt stil gelegd. Het

stilleggen en opstarten van machines is vaak duur en dus trachten we dit zo klein mogelijk te

houden. De optimale parameter combinatie voor deze prestatiemaat betreft hoge

buffercapaciteiten (C), lage gemiddelde aankomstsnelheden () en hoge gemiddelde

verwerkingssnelheid (µ). De reden hiervoor werd uitvoerig besproken in hoofdstuk 2.

De kans op een lege buffer was de volgende prestatiemaat. Deze kans is zeer belangrijk voor een

systeem met kitting. Immers, wanneer een onderdeel niet voorradig is kan er niet gekit worden,

ook al zijn alle andere onderdelen wel beschikbaar. Als er niet gekit wordt, genereert het

systeem ook geen opbrengsten. Het is dus cruciaal deze kans te minimaliseren. Hiervoor vonden

we een parameter combinatie met hoge C, hoge en lage µ optimaal.

Vervolgens bespraken we de throughput en dus het aantal kits dat per tijdseenheid het systeem

verlaat. Dit is de enige prestatiemaat die opbrengsten genereert voor het systeem. De andere

prestatiematen brengen kosten en risico’s met zich mee. Om de throughput te maximaliseren

vonden we een parametercombinatie met hoge C, hoge en hoge µ optimaal. We zagen ook dat

Page 96: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

BESLUIT 86

TP < min(1,2,µ), wat een zeer belangrijke restrictie bleek te zijn in het optimaliseren van deze

prestatiemaat.

De laatste prestatiemaat was het verlies. Het verlies hebben we gedefinieerd als het aantal

onderdelen dat verloren gaat omdat de buffers vol zitten. We vonden dat het verlies = - TP

alsook verlies = P[vol]. Om deze prestatiemaat te optimaliseren trachten we dus de throughput

(TP) zo hoog mogelijk te krijgen, en de kans op een volle buffer (P[vol]) zo laag mogelijk.

Na de bespreking van de individuele prestatiematen, onderzochten we nog enkele extra

parametercombinaties. De conclusie die daaruit volgde was dat ongelijke buffergroottes met

gelijke gemiddelde aankomstsnelheden nooit optimaal zijn. We zagen dat wanneer we C1 lieten

variëren van 1 tot 5, alsook C2, dat de optimale combinaties telkens die met gelijke

buffergroottes waren. We concludeerden verder dat ongelijke gemiddelde aankomstsnelheden

met gelijke buffergroottes ook nooit optimaal zijn. Dit resulteert in een buffer die steeds leeg is

en een andere die steeds vol is. Bovendien weten we dat de throughput begrensd is door

min(1,2,µ) en dus bleven de opbrengsten beperkt ondanks het feit dat de het ene onderdeel

een veel snellere gemiddelde aankomst kende dan het andere onderdeel. Een combinatie van

ongelijke buffergroottes en ongelijke gemiddelde aankomstsnelheden leverde een verrassend

inzicht. We zagen dat dit optimaal zou kunnen zijn op voorwaarde dat de buffergroottes een

tegengesteld patroon vertoonde dan de gemiddelde aankomstsnelheden. Het al dan niet

optimaal zijn van deze configuratie zou afhankelijk zijn van het gewicht van de verschillende

winst componenten.

Nu we alle prestatiematen afzonderlijk besproken hebben, hebben we getracht om het kitting

systeem te optimaliseren door een goede afweging te maken tussen de verschillende kosten,

risico’s en opbrengsten die de prestatiematen met zich meebrengen. We besloten dat de keuze

van de optimale parameterset afhankelijk is van wat dat betekent in economische termen voor

het bedrijf. Stel dat we bijvoorbeeld de throughput willen verhogen door µ te versnellen. Dan

moet het bedrijf zich afvragen of de opbrengsten van de extra throughput opwegen tegen de

kosten om de snellere µ te implementeren, maar ook de extra kosten of risico’s doordat de

hogere µ andere prestatiematen verslechtert. Daarom hebben we in hoofdstuk 4 een numeriek

voorbeeld opgesteld dat aantoont hoe we die afweging best kunnen maken.

In hoofdstuk 3 hebben we twee uitbreidingen op het kitting systeem uit hoofdstuk 2 bekeken. De

eerste uitbreiding was het kitting proces met tweeledige server. Dit betekent dat de kit nu

achtereenvolgens twee seriële servers moet doorlopen. We bespraken de prestatiematen uit

hoofdstuk 2 en concludeerden dat de tweeledige server een verbetering met zich meebracht

voor elke besproken prestatiemaat. De reden hiervoor vonden we in de variantie van de

Page 97: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

BESLUIT 87

assemblagetijd die kleiner bleek te zijn voor de tweeledige server dan voor het basismodel uit

hoofdstuk 2.

De tweede uitbreiding was die van het kitting proces met drempels. Deze manier van werken

houdt in dat er geen aanvoer van onderdelen is maar dat het systeem een bestelling plaatst

wanneer de voorraadpositie van een onderdeel daalt onder een bepaalde drempelwaarde. Dit

systeem is wiskundig zo verschillend van het basismodel uit hoofdstuk 2, dat een vergelijking

eigenlijk niet mogelijk is. In hoofdstuk 3 hebben we het kitting systeem met drempels trachten te

optimaliseren, onafhankelijk van het basismodel. We maakte de assumptie dat de bestelgrootte

variabel is en zo gekozen wordt dat de buffer steeds tot zijn maximum gevuld wordt. Door deze

assumptie verliezen de prestatiematen P[vol] en verlies hun betekenis. De buffer kan immers

nooit té vol zitten zodat het leidt tot verlies of andere risico’s en kosten. De overblijvende te

optimaliseren prestatiematen zijn de kans op een lege buffer en de throughput. Ook hier kan

hoofdstuk 4 een uitweg bieden in de keuze van de parameterwaarden alsook de keuze van beste

systeem om mee te werken – met of zonder drempels.

Het laatste hoofdstuk in deze masterproef is hoofdstuk 4. Hierin hebben we getracht een

winstfunctie op te stellen die kan helpen bij het kiezen van de optimale parameterwaarden. Dit

is zonder twijfel het meest relevante hoofdstuk voor bedrijven. Uit de literatuur studies bleek

immers dat er een gebrek is aan richtlijnen en advies omtrent de optimale configuratie van het

kitting systeem. In hoofdstuk 4 laten we zien dat met een zeer eenvoudige winstfunctie, we

reeds een indicatie kunnen bekomen over hoeveel de investering mag kosten bijvoorbeeld. Door

de verschillende componenten van de winstfunctie een zwaarder gewicht te geven, konden we

nagaan wat het effect was op de totale winst van elke afzonderlijke component.

Als er één ding is dat we onthouden is het dat een kitting systeem maar zo sterk is als zijn

zwakste schakel. Het is bijvoorbeeld zinloos om eindeloos te laten toenemen omdat we hogere

TP willen als µ niet mee stijgt. Dus hoewel de initiële vraag van deze masterproef was wat het

effect van de buffergrootte is, heb ik uiteindelijk elke parameter onderzocht. Een extra motivatie

om alle parameters te onderzoeken was het feit dat ik een zo praktisch mogelijke masterproef

wilde schrijven. Een masterproef die niet puur wetenschappelijk is maar ook nuttig voor de

praktijk. Reden te meer omdat er een gebrek aan praktische richtlijnen blijkt te zijn. Ik hoop dat

ik mijn steentje heb kunnen bijdragen hieraan door het schrijven van deze masterproef.

Page 98: Analytische Studie van Buffergroottes in Productielijnen met Kittinglib.ugent.be/.../459/656/RUG01-001459656_2011_0001_AC.pdf · 2011. 2. 19. · Analytische Studie van Buffergroottes

BIBLIOGRAFIE 88

Bibliografie

Bozer, Y. A., & McGinnis, L. F. (1992). Kitting versus line stocking: a conceptual framework and a

descriptive model. USA: Elsevier Science Publishers.

Bruneel, H. Wachtlijntheorie.

Brynzér, H., & Johansson, M. (1995). Design and performance of kitting and order picking

systems. Sweden: Elsevier Science Publishing.

Harrison, J. (1973). Assembly-like queues.

Hopp, W. J., & Simon, J. T. (1988). Bounds and heuristics for assembly-like queues. USA:

J.C.Baltzer A.G. Scientific Publishing Company.

Ramachandran, S., & Delen, D. (2003). Performance analysis of a kitting process in a stochastic

assembly system. USA: Elsevier Scientific Publishing.

Ramakrishnan, R., & Krishnamurthy, A. (2007). Analytical approximation for kitting systems

with multiple inputs. Singapore: World Scientific Publishing.

Tijms, H. (2003). A First Course in Stochastic Modeling. Wiley and Sons.