(3..2J Le- ~ :C~t)~CQ Pi---GnCLrL€ - Rutgers ECEgajic/pdffiles/Nonlinear... · 2015-06-19 · (1)...

13
(1) {3 (<=3 (4) (3..2J Le- 58-JJ.e-' Pi---G"nCLrL€ 3·3) 8C3·J-c) (1-, A 0-) = SlM><--1 - )L2. 'Ie-/-) = /"0 0. &--) =- - 6 0 -=> LS sCa-ble 5()YJC!i?- t5 0- LS, h-e- 'rro'lfls0 k u.s t +fA'<- Cptr\go..S[01Q obatvt .. +k- .pev-du.fuJ..v.. l.J<.. V 6l-) = 0 ><..2.-=-0 Cc;uJ S SO- s1-a-LM L5 tno-+C'1:>u- d.-P otl\3 (i-) =- 0 (+ J -= 6 :::::0-') ><2 (4- J -::::: 0 CJ-). -;::::::) a -== tt') '=·0 'T'hu.s, -Y:J.. C+, b cS p c 5SLi'h le ?'Si (+) } LS I C)-. LS f}Jos.::,()b lR- ( 0) 0) '\-He 4NL p Con "·:He CCSl-U -«'Stz.Js:)€LsCt V(-r.-)--o L5 ryhcb l-o-S&-Ue\s 'Jo L+ 1JY)et-E:.. \f-t€. 1J).€ed .

Transcript of (3..2J Le- ~ :C~t)~CQ Pi---GnCLrL€ - Rutgers ECEgajic/pdffiles/Nonlinear... · 2015-06-19 · (1)...

Page 1: (3..2J Le- ~ :C~t)~CQ Pi---GnCLrL€ - Rutgers ECEgajic/pdffiles/Nonlinear... · 2015-06-19 · (1) ~, {3 (

(1) ~ 3 (lt=3 ~ (4)

(32J Le- 58-JJe-~ C~t)~CQ Pi---GnCLrLeuro

cpound~~ 3middot3) 8C3middotJ-c) 5~Le pendu--~ ~

(1- A ~r-2

0-) ~2 = -(~) SlMgtlt--1 - ~ )L2

Ie--) = C~)(1---CoS~)~~ 0

0 amp--) =- - ~ ~]- 6 0 -=gt ~ oc~ LS sCa-ble

5()YJCi-~ t5 0- pe-udtgt-~ i-f~ ~~ ~e ~JOyt

~ampf- ~ o~ LS od--o-~ O-S~fn1G~ ~8Jj1e

h-e- 59Jle~5 1Xl~~ce rrolfls0k ~cee ~Oyen-l us t ~H +fAlt- CptrgoS[01Q obatvt dlt~~ickc ~G-bCQ9cJ

~ +k- pev-dufuJv e7-~ lJlt V 6l-) = 0 ~ gtlt2-=-0 --x~+-)

CcuJ ~~ S ltjS~ SO-s1-a-LM L5 tno-+C1gtu- d-Potl3 ~2 (i-) =- 0

~L (+J -= 6 0-) gtlt2 (4-J - 0

CJ-) -) a -== -(~)scu~ tt) -Q~ ~(+) =middot0

Thus -YJ C+ ~ b cS pc 5SLih le ~)If~ ~ Si (+) ~D

~~ LS I C)- LS fJos()b lR- OV)~ ~te~ ~ ~ r~ (0) 0)

f~ce -He h~e 4NL C9-S~h~ s~t~~ p

Con ceu~ctgt ~ ~ middotHe CCSl-U -laquoStzJs)euroLsCt ~~ ~D ~c~

C-~ ~~ ~kc~ ~pocv+S )4h~ V(-r-)--o ~~

~~~ --gtgt~ ~ L5 os~l-ok~ 8~J ~

ryhcb -C--Sbe-3(5~ l-o-Samp-Ues ~~ 1JfUVcu(J~ Jo r~ L+ ~ 1JY)et-E r~rcu ~ ~~1 f-t euro 1J)euroed ~E decknuAc~ ~

j

cg r~T 5lD~e 8 -( ~tL J A-pr~ Notf)-euroL~ ~~~ lJ

CDS lt2e-=gt VY~0~ MScnltYt00-3) p~~ -teau 1 ta6-J

1)EP C~+-vne gy U) A-~ lt7 C5 OLV UYlfgt~ ~~

0 c~~WL~ 5~~ ~ V-f~ Stf~~ ~~1(1 rv-tLIlrrR

-S~~ OL poLMl- tJ)L amp te-n~s LIlA G ~~

~~

D~ CJl-ha-amp-e) k r~ N LS 0~ 1-0 be O-V LM-(J~~ 4 t-(O) ~M --gt ~c+) E-- N ~FO

t7ok~ eurofjrjCtJAt-gt J ~1- Gzjd-es) teuro--ZfYDLl ltpoundGL-t+ra~0 ~ CJy)~~

La SA-LL-E 5 ---r=H ~P-E-M

(Th-eo~ (S[(YL~U~~ teuror1NlU~oCt(jd)=r3~J ~ 52- 2 D be 010 Lf)I-I~ ~ D~ gtlt =-~~) teJ- v= 0 --poundgt Pshy

te 0 Ugt~1JCLo~~ ~I~la ~chsm-U ~c_e ~

V(7-) ~ (gt ~ 5- leJ- ~ ~ ~ of ~PclJlJj-~ ~ ~L v-th~ (-r) ---0 ~ K ~ y~~-t ()1A~~

~ U1 5 Jt~ eurogtf-et(f s~~ Sl~U VLk- SU ~plDQche~ 1-1 O-~ +~-oltO

_______- I - shy

V (1-) lt 0 UY SL

Y QLJ -C) ()L) E N-COUed-ltrov cf-~ (JL)JJ~ ~ Lu E

CcsJJ ~ p+s) eDLL(+- ~~ )

(rf1 hen f-e -)4CJLV+-- +0 s ho lt11 ~~ ~L~ -fgt 0 fYe 1Jeeq ~ ~ esla-betsCA ~ ~ ~s-t- tJtA-~ ~(U-E

LS ~ie)~~ ~ ~ CS CO-U- teuro ckYtJe Dd SUltkHGJ--(f ~~ )1) s~ cO-() s~ GdeJJh-~ lttAA E o~ ~B-o- ~ tr-L-Pld- s~ -lt (+) =-0 (Q)LQ yel~~ tlr(F

_amp~ ~o 50AJlfJlJz ~0--~)1

~ gDNA-UTZgth100S (TINE- VA-~I(H6) S_tS1C~~

gtlt =-+t~ -t- raquo) ~ (+0) --lt0 ) gtlt-C~ E-D

-S- (() 1 -cgtltgt) ~ 1D -tgt fR C5 rG e ceo Y-( tSe c OYi1lth u- 0 v S i~ + O-n ~ e 0 CCkeecJ ~p stl1 fz VVI ~ cY) CC 1 gt07)lt 11)

-5- o J = 0 Ift-~ 0 ~ ~euro ~cM LS O-V)

e3-(LbeLb~ FOIt TYtt5 CCMJ- be O-SSll-Je~ IH~ou-Q-eo~S of- ~er~~~ ~4

~ -- ~CZi ~) 0 = ~ ( ~ t) =-gt ~ 4 C ~ ()l

~

ch CAIYI~ -J~c6lR

gtlt- -== ~ - ~c~)

= -0 ( aA-t x 4- ~ (1)) - 5 (t -+- 0)

~~$) ~ e7--OJYY LV)-L~- ~ S~b~-eltzj bd(O--LJ (~gt-r

o-~e or-CBt ~ oS lt)vV) ~LUeuro_Lb n~ r~1J

~ ~~ ~~~-t-)IYle~ ~ St~ ) He deY-e--rn L~

~ S t-rJ(ft(zmiddotmiddot~~ZJ or- U-e 5~J-~( -g-(C) ~ +--(~

+-1--middot1 ~c f 9 --f c-Lgt I bull0 __ -(] _-u -~ Q-J ~lIgt

1--1 A-P 0 ~()IJ 51A-GIl-tTY OE-A N TTICN FoF- 1~ E- -lAP-ll 16 SfsT~5

J=-or ~o~ egtc- 8J(J ~7C1 to-C ~ ~bg=~(euroI+O)

~~dA 2fr~ ~ [( ~CT) 11lt b ~ fI gtlaquo+) l lt E Vt-t--o

(5E-F 32) Jk e~tgt-C~bt-G~ p61J)A+ ~-=-6 e~ X = -G+-) Ls

5 19--bLE S~ -SOt- eo-cR eraquo-o ~ 65 S ( tE 1t-o ) gt Q 3v- cf ~~

-t1 r-- [+0) l1( S --== Ir-L+) 11 L e kJ-t- ~ 9c ~ C

Il ULy)~yen~~ Sl~U2 ~ s1aj oLR ~d s= S Ceuro) - L1I~lt2f~k~JeltJ-d)~

o O-Sttrto~ sla-b~ [~L~ LS S~Le O-VI~ ~(+-PO ~) t1~

LUJtJOrllMftj cgt-S~+OkL~ SlabCR [~o- L~ ~~UJ-ea

Sl~ 12 c2U c)~L+)--b 6 oS t---tgt ~ utfG~r-YlA -ampc C-IUgt- ~ (wil)deshy

peraquoampeVtecJ o~ 4-0) (C-LmC~r-t-U os~ ~S~F)

-~ha-Glca QY~rWl-eurotl OS~[)l-btt~S~(p C5-o-DgtoY-euro ~80r ~~(euro

be0~ He ()J+t-ocluce Y~ L~-~~y $t-abu~1-t1 r-es~ ~

~ y~(JV)~ _~5~~ cent1e Y)Re~ scxue d46~9vrau-~

~Ef 3 iJ A-LDt~t-c If 0-0 U S ~__~ d Col 0-J --Jlgt (0 +=)

C5 o-C~ 1-D he)Ctf(j 1-0 cpoundcgt~K Cf- C-+ G5 sfrd-~ lttACJ-eO$C0q a~ oLeo) -=-0 ]4- LS 50-lt6 i-obeJoUeJ ~ closs kOo tpound 0= c-o

a---n d d- c r-) --tgt ~ 0gt3 qr- ~ ~

Cf)e-F 3J-f JJ ~ ~1CluJ- 0-~ ~~ to Coo) gtlt ( 0 egtlt) -t LOtx)0

C5 So--co +-0 be)~C1 9-0 e-amp35 JtltX 6-amp ~ eGG--euro( ~d ~

tne ~aJgtr~ B(r1~) k~0jS -n cC6$S lllt ~[K

re5pzcl-- 1-c r ) 2gt--nd fal ~ ocpound ~~ r ti~ 1Y) e-pr crU-- (shy

3crs) cs dec-eo-SLM8 ~L~ ~1~d- A-o s ~ A(s)~o

~ 5 --pgt e-o ~i

~ ol (1)41) ) W- ) V A-t fl2I) J ol-- (r) 1gt lt=Xgt 005 r~ =shy

~5~tz~~~ ~ ~)~ EBr ~~ ~i JampC+-) D j)~ pp

reg

-IGt-t c PO 6~

) (-l+-) ~~ (r--) 0 -v-t

CDcf ~L 7) pocaz 10b ~ ~~ ~ -0)

30YY LeC9-r~ a sc~e-r con1-LfAU-b0-S ~u cs DECQE-SCEt--fT

C~ I (0 rt) -= cgt 2-gt (~-t-) 6 cJ (((~II) ) W ~E~)1

d-Cr)--tgt ~ r-pgto

Or t+ Q- 1-5 db11LM~~ bcJ ~lo~ po5Ukve amp-e~ ~~l~LS

(Ol+) =-0 2 V(gtl-I4-) L-~(~) ) -Y~G-raquo 0

~Wcr 3~ 5 ~ )-he-CCe ~~ ~

~ (I ~JI) L V C~) lt oZL (It~J ~ v-ro-rcOs ( ~~~s1- +v-to ff( ~cA-u1J(J~ ol-1 ~dd-2 5u-camp ~ t-te ~oct~ ho-t~~ - Zk- rclas ~~y-k )d-2-E-~

H A-t-H -rtfEtgt PErl [rnEegttLE-H l8J ~ ~_=O k CL(f) euro~opoundec-brCwu po~f ~ )L --5-(~~ t ) ~ 0 V E- 1J2-Y brlt 0 ~ ~V~ ltfV-(j- gtlt -=-- 001K)6-UV)

kJ- ~ Co I ~) ~ R --pound) P-- be CJ- ~Vl1-CrvLUOG~ ~cyfere0-fL~middot~

~cJv~ So ue ~~ 744 (~) ~ ( 7lt It)s 42 CcL)

8 j -+- amp-1 ( v -1-) ~ - vY3 (7-) et 0~ 7

~~ t-1d amp-) I t12(zL)) ~cf ff3 C7--) O--t-euro- ~t(--h1Ill9--tgts pDSG~K ~~~ ~~gt 00- P ~ ~) gtz-=-middotO G~ ~rn~rm-ezJ 0-8crUJ-r)ro~ smiddot~LR

~) yen 4-CJlV2 ~~Zj S~S1-eLu-gt t--e egttLJcAALS ~Softu-~

0-5(jWft-oh5a-t4] SLgJJL-2 ~ tf~ ~~+S 0- coUt-LUU-00-Ssectr

~~1gt2 -gt poS~ defu-Lle l d-~~cJ-eSc~ Jltu~ J6lt-rf

V4ho~ ~er--tJb~ ~Ol)laquof k ~2gt~ b ecf-eclo~-es LS

n9~ d~vJ)e S~ C-~ck~ V(~H-) L~ a-~C~

~cP-G~ ~ ~Wlt ~~~(f ro~~ 3ltd5teugt-~

CoP-fI4-LA-P-1 33 t8-~ass~t-G~s ~ ~~ 38 ~

~S~d ~ beA1t( ~ ~ E- (P ~ gtlt = D L5 (J1-oG~

0-Jf tj-Dt-YYI eurot1 ~s~fuk~ S ~e~

-J-t e ca 1(5 to-te ltA() fSoIt-U s~D09~ I ~~tLU O-S~ +Vi-lt-

S~t-amp~) ~~ ~f=gt~ o~t-Dtu= $Cs-bt~ au~

~u euJaJ ~7B-h~~ bcJ LLSulCj 1I)tgt~ltrgt + 11lt 8-(~ cd JK~

~cku~s (~ ~O- ~s ~ ~~ 35)Dcrlt

Y- =- 0 oJ- gtlt =--j-~1~) LS

unsjo~-tJ 5to-b1Q Ls6)~ eus-l- ~ CpoundCSS ~ ~chrcltf cI (I)

CLucJ c t Ds(~-ube_ Qb1flS ~t c Un d ep~d~ o-f- -tv) 5ZJ- o-(J ~

() 7lt-c+) 11 ~ oZ (1J f- (4-c) n ) yen+~ 4-c~ Cl) V- 11 ~ (+t)) 0 c C

tJn$80fI(1etJ o5~n~ ~t~middot~ 6ampC-5)-C~-[f-0 ~ 2f2middot~~f HlL ()6--f-e 0- -eel iIUa c~~ 1-0 ~ pTitgt --I~) ) ~amp eu-ea- on-euro fshy-H-L tJC0-(e 0-- d)~1-csouJ 2fQl-e ~51- 0-- cEgtoss kC ~~ focmiddot) ~ cA fC=sUt-C_Jl-e ecS(~lt) uu-d~d~b+ 4-c 3 O_c6-- 1--e--~

11 lt C+) 1 ~ A Cn~Utl) 11 t-~) ) v4-J- n ~ 0) V- 17lt-(~) 11 lt ~

~~ amp-()~1w-00 G~~k~ s~~ ~ ~

~otfR h~JS ~ ~ 7lt (~)

~

~-=O vshy

~~~Su ~~~~~_upO~J~S___ ~d1~~

s1zbs2 ~~e~t-~~--fX~Ob-~ lty)~ ~ ~- ~

~~~ _Sl-W=~(~-~ ~~~(to) - - --_ __

f1 ~(+-) n ~ 1 )((+0) Ue--~-~~~) --4-h - Jl

6ir ts-tA ~~ 0gt-+ 4f-CL ptetDGmiddot~middot ~ d~~)

0- ( -~) u~k4t~(-b)lj=~)Jf~~) lJ- 1 gt(+0) 11 lt- c

bullV(c4-) 6 0 =-gtc=e cs slable )A =~2

~= - ~2 - (2+ 5 en c) ~~

l ~ ~2 L~ Ll c) -= ~ +- -Il---=---Lshy

L- -+-0 Lh c

1 R ts =hIIu-oosea d-c~~te iYi ~ -I ershy

j (7Y Imiddot ~l c ) ~ gtlt-tL+ -~1- yent

3 ~01

~ ~2+~V C~I~t-)

L-+- 2~VhC + cos1shyL2+ s LJlAt-) ~

lt ~ ACi-J x ~c+~ =- 4gtCtl -h) )([~

rJh~ ~~~=J Jhe ltdutlttmiddotbn~ x=-o c~ cun~t1M~ O-~~to1-Gcoe~ ~~te -cs-s- ~ s+oJ-e ~~t~Q fY)~R 5~~~egt

- lt6 C1--t-o)f1 ~Lt-I t-o) II 4 ~ e

~ some rosL~e C-Ol~~b 1L SUI)~ ~

(~ tJI) CO~l IhlCPrcJ x ~bocgtlL b~ C0cu)

1-rhYVI ~~iJ ~ ~-= 0 toe ~ eJ-upoundeLb~ r~~ Y ~ MOIy)~N)e~ ~-e~

~ =-$-~t1J

~~ -5- ~ c 0 -gt0) gtlt ID ~ f~b CS Go V-1-L Vl tgt-~~ ~~lt2Yli-cab(s2) D =-- ~e-~Y) xJI2 - r- evnol ed

~ JO-ltcgtb-(~ ld-~a-~Jb bO~d~ ctx)o

t-tj 5~L1-+ 01 0) u Yl ~- N tJ t)U f- ~

AL+- -- ~t0lt-~~~ J ~=-O

Theuro-ltJ I 1--Me o~~ ts Cgt--Y) ex-poV) ~ H 0e~ 5 ~Le eJ-~ ez b r-c~ po lt)Ut- ~ ~ nOn~re~ 8ltjamp (-eA-M ) q L+- Lgt out ~o-n~~~

~ ~J-cuR p4-- ~ ~ ~ear- Sltj5~

~ -- ~(r-) )(

hU-gt Heuro h~Ll-e -hgt esl-a-h-euroc-s tJe l-CjOPltAUo-- $(a(Ceurol~-~ ~ -eltu eer- S2f s1ecu-gtlt - AQ-) gtlt

(~~U2 3~)

V (Y- rt = ~-rP(+)i

Cgt ~ 1-tJ~~y Jlt-u-~ ~ ~middotmiddot~middotAL+)gtlt

Y-r~ AtB-) c~ csz1D1-c~0-~ ~ ~~ PC+-) ~

ctYv+-C1AO-oUL~ ~t-c~ tR34 V1I W1 ekt-ccl boo-ltJ1d~

~o~ ~1A01R IM~)-~ l5~

o ~ ~ T ~ C+ C)T v+ ~gt 0 I ~gt 0

~hCCf3- ~5~5gt -bf-e r-vn~ oU-~ ~~ ~ - middotmiddot--T

--- ptt) -=- Pffi Ai et-) +- Aa-)f~) +- (pound amp-)

~ ~) -(5 lt-9I1)-k1tmiddot~middotq-~+~i111I1~t~cJ P~~ otlt2b~7~J

ltsect (+) ~C3E gt6 1~-) lt3gt Cgt

[5 post~ ~) decrcesc-eM+ gt~-~

911 ~ Tgtlt ~ -lcgtltrt-) ~ ~~P(+) )ltt-~C2 gtlt1x -=-- ~ Itlt j

~ctertJb~ egt ~ y (lt+) ~oV8 ~ Sj5~ b-o--~~ ltS

Y((-c )= z-Pet-))lt +- ~-r9(-t) gtlt _+ltTPEt-) X

=-ltrr- L PC+)+1(+)Aamp) +A1(-t-) PCt-)] X c -~-d2ff-)gtlt

VIII

(~+-) =-- lt~ Cf-)Jlt ~ - lt-3 xrgtlt = - C3 11gtlt f1

== ~ --0 C S ltA-Il ~-6tJ0-~(tt-up~1-0 ~ s ~LR

tfiieuropoundgt~ 3-1q) ~ A- ~4-) be coVt-01l~~ au-~ (SLt+-be

U)-t-crvtlAov-fgt bb unded) pO5L~ ~UL1R $l1MWI~ Vyg-~~

Jh~ ~ ~L~ 0-C-cl+CVlu00~ olc~-yen~_-e(J~a-b(e1PgtcWded)

~o~tpoundeuro ~~ st1lA11fr~~m~ PCplusmn-)gt-I~~e 5ok-ec - PIJ)- p C+) M+) +-- ATC+) PC+-) +-~ (+)

~ucpoundf ~

~(~l+) es -xT PA-) x

C5 ~ J-tJop~-ucgtygt ~~ jot- c =-A-8-)~ -KenCR) ~=-l)

C) ~ tQn C~~-EJo-s~t-ckca-Uc1 ~ha-bL-eaU-feLbre~

~oU-t- ~f- ~ AL-t) ~

~ Co tfltferde ~etD~S gt nece-ss~ ~tfgtch-(hJZ9-u-~ Y-fe Vi L~e ~o+- ltagty--ep- thcs ~oh~

1-~Ju-u-oy ~~ ~S+- CS a S~CL~CJct~ ~ SCsa-b~~ ~ ~ pJ- tie02S~ltDULclL~ -ICepound bel ~- r+- 5~1s2 gt 5 L~~

~~ ~St Lh~lt-e- 0D1I~ ~~ ~ Vlc-t-shy

~~ crnucRJ- ~~~~)

Ch8fl1q--~ A-olpat1CQdS(~G~ ---rhQrDtlaquoJ

~1et- SteYJ~~ middotcJ-middotmiddot~P~~ ~~~ k ~5- C~It-) -+-CJ GltIT) lt3 =-~~

ChapJar)lt J2n~D~~ Sta-6t-~ Bo~c9~ ~ S~c ~petJ bOUUAd-eaJ o~~

~ampptc2(- q pef-LJbciL-C ~L~

bt~ ~~ 91-1

lt bull CJt~e-middotp Vn

P0-~OD1C ORB TS

dAgt lfY) oJ_fY)

( (Or~ 8Uf

)lt C E ID CK--1() 1t)e

~ =- X~C I gtlt)

rS-- C5 eo c ~~ l-~-$ fA i1-=z lt3fl 10 ==gt ~C~ -soe~ ~(5 ~~ eurogt-IR~ roc~~~ ur

J--ek ltfLo~) =~--- ~+-- ~~

2rltd ~ Cd) -r+(~OJ ~o~e tb rrn~~1tYl~ lJ)I 152-t--ICJ-Egt

of ~~CQ ~

(-+let) = 4--C

tSr --4-( d -= +-0ltgt 7-leuro ol~~

~Kd ~gt

~+Crzr) ~ P(tC1) (

cctd Camp- I-CO) -= Cgtcgt ) -He ~ef-uve ~lt1r~~e- ~(~

~ltg-e ~ a-5

~- (zt)- oCtlt6) J - 6- t~ b I

J 07 cgt- jD-brr-cfe ~+ p~4 =4 _~ so~

cPC4 ~l I -t~ D ~CO ~ltLjnce ~ J ~L~I 0shy

bY) -f) cgtO CltS I) --Igt gtltraquo 5 u~ 1fAaJ 4 c-t- tj) --egt ~ a-~ n --pound) -=- L-t- 65 0 r0c1S~e ~t-b- ~_

tr~M ~Li1 ~ ~+ be OL boltA-V)~~~ ~tiot-b-u- c~ (j) 0X1--shy ~ c1-5 ~~-e U1JY1-L-tshy sek- ~ L+ COYta-Lo~ 00 eg~elhvtu

fOUYlb ~ L~ C5 ogtp-erLD~t ~_

POI I NCAP-E-middot f3 E H D 1 ~5c N (cf-EcentP-~

JI C5 b~de~ am d- rn 0 ~LJt-eAb-rCcJJt f sUVt-s lfV- L~

A-eso e--I~ 50eu~~ ~o+- S~ UU-- 1-4 ~~ -II(

H ~ ~ ~~0 -fgt i M OoYtoLYs -=-~-~ ~~J- -- y I L r-- - II ~ -J ~j~ - ~-

O~~ fl) A- eo~it ~cee tgt Cgt- ceoSEd or-tnt- ~ ~-ltJ-oa - ~

~oJ ~ CS ~-e TOC7-tgtIEf ~tlIlI)t-~ o~ 0- ros-r-c-f~ ~ t +- I ~- rJ~lerb ~ L~) Qrrcv~ ~c$-~tlt ~L-~T

~C(1) ~ 5-o1Yte 7r~ ~

eGMD 1 gtlt-5cN cptTE-4oH i

ttft M rr2) ry n 0- S CtW~0

1J-e ~6S c3b IV

~ + ampf2 ampL1 ~

C5 ~)t ~oleAl~~ ~ero 9-r)al ~~ l101-~

~~ty) ~~S1~i (11 ~ nO ~cAfiltshycbi~ ~ t-Yd- ~n-r-e~ t5gt fD

( 1tb~~J____C-)j-~5~_~~ltO middot

Exercise~15)([143]) Consider the system

1 = z2 ( 2 2)

2 -Xl - X2 sat X 2 - X3= 3 = X3 sat(x~ -X)

where sat(middot) is the saturation function Show that the origin is the unique equiIibmiddot rium point and use V(z) =xT x to show that it is globally asymptotically stable

~ -~

~ _ ~ +-b~ _~2~_x~

bL-D

~dj (JlJ- ~0ert5~ltyc ~-euHD IJ~ ~ tnid-~ccr or-der- 5-t5 5~gt Y-( LJJ

~ dt)n~ btj ~ ~~d ~ o~tM8-~VcH-~ (Sc~ 10 bull4 )

Exercise ~Consider the system

1 = X2 - g(t)X1(X~ + X~) 2 = -Xl -9(t)X2(Z~ + x~)

where g(t) is ~ntinuously differentiable bounded and g(t) k gt 0 for all t gt o Is the origm UnIformly asymptotically stable Is it exponentially stable shy

o = X2 o = -ZI - Z2 sat(x~ - z~) =gt ZI =0

o = X3 sat(x~ - x~) =gt Z3 sat(-z~) =0 =gt Z3 =0

Hence the origin is the unique equilibrium point consider

Vex) = xTx = x~+x~+zi Vex) = 2[XIX2 - IX2 - x~sat(z~ - z) + zsat(z~ - z)]

= -2(z~ - z~)sat(x~ - z~) $ 0

11 is negative semidefinite v=0 =gt z~(t) == zi(t) =gt 3(t) == 0

Hence both X2(t) and Z3(t) must be constants This implies that 2(t) == O From the second state equation We conclude that Xl(t) == O Then the first state equation implies that Z2(t) == O Consequently Z3(t) == o IY LaSalles theorem (Corollary 32) the origin is globally asymptotically stable

~)Try Vex) =(x~ + x~) t

v = XIX2 - g(t)x~(x~ + 3) - XIZ2 - g(t)xi(xi + xi) = -g(t)(z~ + z~)2 $ -4kV2(x)

Hence Vet x) is negative definite and the origin is uniformly asymptotically stable From the inequality V lt -4kV2 we cannot conclude exponential stability Let us try linearization Assume get) is bounded-

_ 8f t r I _[-3g(t)xyen - g(t)x~ 1-2g(t)r1X2 ] I =[0 1]A(t) - 8x ( ) c=o - -1 - 2g(t)IX2 -3g(t)x~ - g(t)xyen c=o -1 0

A is a constant matrix that is not Hurwitz Hence by Theorem 313 we conclude that the origin is not

exponentially stable

Page 2: (3..2J Le- ~ :C~t)~CQ Pi---GnCLrL€ - Rutgers ECEgajic/pdffiles/Nonlinear... · 2015-06-19 · (1) ~, {3 (

j

cg r~T 5lD~e 8 -( ~tL J A-pr~ Notf)-euroL~ ~~~ lJ

CDS lt2e-=gt VY~0~ MScnltYt00-3) p~~ -teau 1 ta6-J

1)EP C~+-vne gy U) A-~ lt7 C5 OLV UYlfgt~ ~~

0 c~~WL~ 5~~ ~ V-f~ Stf~~ ~~1(1 rv-tLIlrrR

-S~~ OL poLMl- tJ)L amp te-n~s LIlA G ~~

~~

D~ CJl-ha-amp-e) k r~ N LS 0~ 1-0 be O-V LM-(J~~ 4 t-(O) ~M --gt ~c+) E-- N ~FO

t7ok~ eurofjrjCtJAt-gt J ~1- Gzjd-es) teuro--ZfYDLl ltpoundGL-t+ra~0 ~ CJy)~~

La SA-LL-E 5 ---r=H ~P-E-M

(Th-eo~ (S[(YL~U~~ teuror1NlU~oCt(jd)=r3~J ~ 52- 2 D be 010 Lf)I-I~ ~ D~ gtlt =-~~) teJ- v= 0 --poundgt Pshy

te 0 Ugt~1JCLo~~ ~I~la ~chsm-U ~c_e ~

V(7-) ~ (gt ~ 5- leJ- ~ ~ ~ of ~PclJlJj-~ ~ ~L v-th~ (-r) ---0 ~ K ~ y~~-t ()1A~~

~ U1 5 Jt~ eurogtf-et(f s~~ Sl~U VLk- SU ~plDQche~ 1-1 O-~ +~-oltO

_______- I - shy

V (1-) lt 0 UY SL

Y QLJ -C) ()L) E N-COUed-ltrov cf-~ (JL)JJ~ ~ Lu E

CcsJJ ~ p+s) eDLL(+- ~~ )

(rf1 hen f-e -)4CJLV+-- +0 s ho lt11 ~~ ~L~ -fgt 0 fYe 1Jeeq ~ ~ esla-betsCA ~ ~ ~s-t- tJtA-~ ~(U-E

LS ~ie)~~ ~ ~ CS CO-U- teuro ckYtJe Dd SUltkHGJ--(f ~~ )1) s~ cO-() s~ GdeJJh-~ lttAA E o~ ~B-o- ~ tr-L-Pld- s~ -lt (+) =-0 (Q)LQ yel~~ tlr(F

_amp~ ~o 50AJlfJlJz ~0--~)1

~ gDNA-UTZgth100S (TINE- VA-~I(H6) S_tS1C~~

gtlt =-+t~ -t- raquo) ~ (+0) --lt0 ) gtlt-C~ E-D

-S- (() 1 -cgtltgt) ~ 1D -tgt fR C5 rG e ceo Y-( tSe c OYi1lth u- 0 v S i~ + O-n ~ e 0 CCkeecJ ~p stl1 fz VVI ~ cY) CC 1 gt07)lt 11)

-5- o J = 0 Ift-~ 0 ~ ~euro ~cM LS O-V)

e3-(LbeLb~ FOIt TYtt5 CCMJ- be O-SSll-Je~ IH~ou-Q-eo~S of- ~er~~~ ~4

~ -- ~CZi ~) 0 = ~ ( ~ t) =-gt ~ 4 C ~ ()l

~

ch CAIYI~ -J~c6lR

gtlt- -== ~ - ~c~)

= -0 ( aA-t x 4- ~ (1)) - 5 (t -+- 0)

~~$) ~ e7--OJYY LV)-L~- ~ S~b~-eltzj bd(O--LJ (~gt-r

o-~e or-CBt ~ oS lt)vV) ~LUeuro_Lb n~ r~1J

~ ~~ ~~~-t-)IYle~ ~ St~ ) He deY-e--rn L~

~ S t-rJ(ft(zmiddotmiddot~~ZJ or- U-e 5~J-~( -g-(C) ~ +--(~

+-1--middot1 ~c f 9 --f c-Lgt I bull0 __ -(] _-u -~ Q-J ~lIgt

1--1 A-P 0 ~()IJ 51A-GIl-tTY OE-A N TTICN FoF- 1~ E- -lAP-ll 16 SfsT~5

J=-or ~o~ egtc- 8J(J ~7C1 to-C ~ ~bg=~(euroI+O)

~~dA 2fr~ ~ [( ~CT) 11lt b ~ fI gtlaquo+) l lt E Vt-t--o

(5E-F 32) Jk e~tgt-C~bt-G~ p61J)A+ ~-=-6 e~ X = -G+-) Ls

5 19--bLE S~ -SOt- eo-cR eraquo-o ~ 65 S ( tE 1t-o ) gt Q 3v- cf ~~

-t1 r-- [+0) l1( S --== Ir-L+) 11 L e kJ-t- ~ 9c ~ C

Il ULy)~yen~~ Sl~U2 ~ s1aj oLR ~d s= S Ceuro) - L1I~lt2f~k~JeltJ-d)~

o O-Sttrto~ sla-b~ [~L~ LS S~Le O-VI~ ~(+-PO ~) t1~

LUJtJOrllMftj cgt-S~+OkL~ SlabCR [~o- L~ ~~UJ-ea

Sl~ 12 c2U c)~L+)--b 6 oS t---tgt ~ utfG~r-YlA -ampc C-IUgt- ~ (wil)deshy

peraquoampeVtecJ o~ 4-0) (C-LmC~r-t-U os~ ~S~F)

-~ha-Glca QY~rWl-eurotl OS~[)l-btt~S~(p C5-o-DgtoY-euro ~80r ~~(euro

be0~ He ()J+t-ocluce Y~ L~-~~y $t-abu~1-t1 r-es~ ~

~ y~(JV)~ _~5~~ cent1e Y)Re~ scxue d46~9vrau-~

~Ef 3 iJ A-LDt~t-c If 0-0 U S ~__~ d Col 0-J --Jlgt (0 +=)

C5 o-C~ 1-D he)Ctf(j 1-0 cpoundcgt~K Cf- C-+ G5 sfrd-~ lttACJ-eO$C0q a~ oLeo) -=-0 ]4- LS 50-lt6 i-obeJoUeJ ~ closs kOo tpound 0= c-o

a---n d d- c r-) --tgt ~ 0gt3 qr- ~ ~

Cf)e-F 3J-f JJ ~ ~1CluJ- 0-~ ~~ to Coo) gtlt ( 0 egtlt) -t LOtx)0

C5 So--co +-0 be)~C1 9-0 e-amp35 JtltX 6-amp ~ eGG--euro( ~d ~

tne ~aJgtr~ B(r1~) k~0jS -n cC6$S lllt ~[K

re5pzcl-- 1-c r ) 2gt--nd fal ~ ocpound ~~ r ti~ 1Y) e-pr crU-- (shy

3crs) cs dec-eo-SLM8 ~L~ ~1~d- A-o s ~ A(s)~o

~ 5 --pgt e-o ~i

~ ol (1)41) ) W- ) V A-t fl2I) J ol-- (r) 1gt lt=Xgt 005 r~ =shy

~5~tz~~~ ~ ~)~ EBr ~~ ~i JampC+-) D j)~ pp

reg

-IGt-t c PO 6~

) (-l+-) ~~ (r--) 0 -v-t

CDcf ~L 7) pocaz 10b ~ ~~ ~ -0)

30YY LeC9-r~ a sc~e-r con1-LfAU-b0-S ~u cs DECQE-SCEt--fT

C~ I (0 rt) -= cgt 2-gt (~-t-) 6 cJ (((~II) ) W ~E~)1

d-Cr)--tgt ~ r-pgto

Or t+ Q- 1-5 db11LM~~ bcJ ~lo~ po5Ukve amp-e~ ~~l~LS

(Ol+) =-0 2 V(gtl-I4-) L-~(~) ) -Y~G-raquo 0

~Wcr 3~ 5 ~ )-he-CCe ~~ ~

~ (I ~JI) L V C~) lt oZL (It~J ~ v-ro-rcOs ( ~~~s1- +v-to ff( ~cA-u1J(J~ ol-1 ~dd-2 5u-camp ~ t-te ~oct~ ho-t~~ - Zk- rclas ~~y-k )d-2-E-~

H A-t-H -rtfEtgt PErl [rnEegttLE-H l8J ~ ~_=O k CL(f) euro~opoundec-brCwu po~f ~ )L --5-(~~ t ) ~ 0 V E- 1J2-Y brlt 0 ~ ~V~ ltfV-(j- gtlt -=-- 001K)6-UV)

kJ- ~ Co I ~) ~ R --pound) P-- be CJ- ~Vl1-CrvLUOG~ ~cyfere0-fL~middot~

~cJv~ So ue ~~ 744 (~) ~ ( 7lt It)s 42 CcL)

8 j -+- amp-1 ( v -1-) ~ - vY3 (7-) et 0~ 7

~~ t-1d amp-) I t12(zL)) ~cf ff3 C7--) O--t-euro- ~t(--h1Ill9--tgts pDSG~K ~~~ ~~gt 00- P ~ ~) gtz-=-middotO G~ ~rn~rm-ezJ 0-8crUJ-r)ro~ smiddot~LR

~) yen 4-CJlV2 ~~Zj S~S1-eLu-gt t--e egttLJcAALS ~Softu-~

0-5(jWft-oh5a-t4] SLgJJL-2 ~ tf~ ~~+S 0- coUt-LUU-00-Ssectr

~~1gt2 -gt poS~ defu-Lle l d-~~cJ-eSc~ Jltu~ J6lt-rf

V4ho~ ~er--tJb~ ~Ol)laquof k ~2gt~ b ecf-eclo~-es LS

n9~ d~vJ)e S~ C-~ck~ V(~H-) L~ a-~C~

~cP-G~ ~ ~Wlt ~~~(f ro~~ 3ltd5teugt-~

CoP-fI4-LA-P-1 33 t8-~ass~t-G~s ~ ~~ 38 ~

~S~d ~ beA1t( ~ ~ E- (P ~ gtlt = D L5 (J1-oG~

0-Jf tj-Dt-YYI eurot1 ~s~fuk~ S ~e~

-J-t e ca 1(5 to-te ltA() fSoIt-U s~D09~ I ~~tLU O-S~ +Vi-lt-

S~t-amp~) ~~ ~f=gt~ o~t-Dtu= $Cs-bt~ au~

~u euJaJ ~7B-h~~ bcJ LLSulCj 1I)tgt~ltrgt + 11lt 8-(~ cd JK~

~cku~s (~ ~O- ~s ~ ~~ 35)Dcrlt

Y- =- 0 oJ- gtlt =--j-~1~) LS

unsjo~-tJ 5to-b1Q Ls6)~ eus-l- ~ CpoundCSS ~ ~chrcltf cI (I)

CLucJ c t Ds(~-ube_ Qb1flS ~t c Un d ep~d~ o-f- -tv) 5ZJ- o-(J ~

() 7lt-c+) 11 ~ oZ (1J f- (4-c) n ) yen+~ 4-c~ Cl) V- 11 ~ (+t)) 0 c C

tJn$80fI(1etJ o5~n~ ~t~middot~ 6ampC-5)-C~-[f-0 ~ 2f2middot~~f HlL ()6--f-e 0- -eel iIUa c~~ 1-0 ~ pTitgt --I~) ) ~amp eu-ea- on-euro fshy-H-L tJC0-(e 0-- d)~1-csouJ 2fQl-e ~51- 0-- cEgtoss kC ~~ focmiddot) ~ cA fC=sUt-C_Jl-e ecS(~lt) uu-d~d~b+ 4-c 3 O_c6-- 1--e--~

11 lt C+) 1 ~ A Cn~Utl) 11 t-~) ) v4-J- n ~ 0) V- 17lt-(~) 11 lt ~

~~ amp-()~1w-00 G~~k~ s~~ ~ ~

~otfR h~JS ~ ~ 7lt (~)

~

~-=O vshy

~~~Su ~~~~~_upO~J~S___ ~d1~~

s1zbs2 ~~e~t-~~--fX~Ob-~ lty)~ ~ ~- ~

~~~ _Sl-W=~(~-~ ~~~(to) - - --_ __

f1 ~(+-) n ~ 1 )((+0) Ue--~-~~~) --4-h - Jl

6ir ts-tA ~~ 0gt-+ 4f-CL ptetDGmiddot~middot ~ d~~)

0- ( -~) u~k4t~(-b)lj=~)Jf~~) lJ- 1 gt(+0) 11 lt- c

bullV(c4-) 6 0 =-gtc=e cs slable )A =~2

~= - ~2 - (2+ 5 en c) ~~

l ~ ~2 L~ Ll c) -= ~ +- -Il---=---Lshy

L- -+-0 Lh c

1 R ts =hIIu-oosea d-c~~te iYi ~ -I ershy

j (7Y Imiddot ~l c ) ~ gtlt-tL+ -~1- yent

3 ~01

~ ~2+~V C~I~t-)

L-+- 2~VhC + cos1shyL2+ s LJlAt-) ~

lt ~ ACi-J x ~c+~ =- 4gtCtl -h) )([~

rJh~ ~~~=J Jhe ltdutlttmiddotbn~ x=-o c~ cun~t1M~ O-~~to1-Gcoe~ ~~te -cs-s- ~ s+oJ-e ~~t~Q fY)~R 5~~~egt

- lt6 C1--t-o)f1 ~Lt-I t-o) II 4 ~ e

~ some rosL~e C-Ol~~b 1L SUI)~ ~

(~ tJI) CO~l IhlCPrcJ x ~bocgtlL b~ C0cu)

1-rhYVI ~~iJ ~ ~-= 0 toe ~ eJ-upoundeLb~ r~~ Y ~ MOIy)~N)e~ ~-e~

~ =-$-~t1J

~~ -5- ~ c 0 -gt0) gtlt ID ~ f~b CS Go V-1-L Vl tgt-~~ ~~lt2Yli-cab(s2) D =-- ~e-~Y) xJI2 - r- evnol ed

~ JO-ltcgtb-(~ ld-~a-~Jb bO~d~ ctx)o

t-tj 5~L1-+ 01 0) u Yl ~- N tJ t)U f- ~

AL+- -- ~t0lt-~~~ J ~=-O

Theuro-ltJ I 1--Me o~~ ts Cgt--Y) ex-poV) ~ H 0e~ 5 ~Le eJ-~ ez b r-c~ po lt)Ut- ~ ~ nOn~re~ 8ltjamp (-eA-M ) q L+- Lgt out ~o-n~~~

~ ~J-cuR p4-- ~ ~ ~ear- Sltj5~

~ -- ~(r-) )(

hU-gt Heuro h~Ll-e -hgt esl-a-h-euroc-s tJe l-CjOPltAUo-- $(a(Ceurol~-~ ~ -eltu eer- S2f s1ecu-gtlt - AQ-) gtlt

(~~U2 3~)

V (Y- rt = ~-rP(+)i

Cgt ~ 1-tJ~~y Jlt-u-~ ~ ~middotmiddot~middotAL+)gtlt

Y-r~ AtB-) c~ csz1D1-c~0-~ ~ ~~ PC+-) ~

ctYv+-C1AO-oUL~ ~t-c~ tR34 V1I W1 ekt-ccl boo-ltJ1d~

~o~ ~1A01R IM~)-~ l5~

o ~ ~ T ~ C+ C)T v+ ~gt 0 I ~gt 0

~hCCf3- ~5~5gt -bf-e r-vn~ oU-~ ~~ ~ - middotmiddot--T

--- ptt) -=- Pffi Ai et-) +- Aa-)f~) +- (pound amp-)

~ ~) -(5 lt-9I1)-k1tmiddot~middotq-~+~i111I1~t~cJ P~~ otlt2b~7~J

ltsect (+) ~C3E gt6 1~-) lt3gt Cgt

[5 post~ ~) decrcesc-eM+ gt~-~

911 ~ Tgtlt ~ -lcgtltrt-) ~ ~~P(+) )ltt-~C2 gtlt1x -=-- ~ Itlt j

~ctertJb~ egt ~ y (lt+) ~oV8 ~ Sj5~ b-o--~~ ltS

Y((-c )= z-Pet-))lt +- ~-r9(-t) gtlt _+ltTPEt-) X

=-ltrr- L PC+)+1(+)Aamp) +A1(-t-) PCt-)] X c -~-d2ff-)gtlt

VIII

(~+-) =-- lt~ Cf-)Jlt ~ - lt-3 xrgtlt = - C3 11gtlt f1

== ~ --0 C S ltA-Il ~-6tJ0-~(tt-up~1-0 ~ s ~LR

tfiieuropoundgt~ 3-1q) ~ A- ~4-) be coVt-01l~~ au-~ (SLt+-be

U)-t-crvtlAov-fgt bb unded) pO5L~ ~UL1R $l1MWI~ Vyg-~~

Jh~ ~ ~L~ 0-C-cl+CVlu00~ olc~-yen~_-e(J~a-b(e1PgtcWded)

~o~tpoundeuro ~~ st1lA11fr~~m~ PCplusmn-)gt-I~~e 5ok-ec - PIJ)- p C+) M+) +-- ATC+) PC+-) +-~ (+)

~ucpoundf ~

~(~l+) es -xT PA-) x

C5 ~ J-tJop~-ucgtygt ~~ jot- c =-A-8-)~ -KenCR) ~=-l)

C) ~ tQn C~~-EJo-s~t-ckca-Uc1 ~ha-bL-eaU-feLbre~

~oU-t- ~f- ~ AL-t) ~

~ Co tfltferde ~etD~S gt nece-ss~ ~tfgtch-(hJZ9-u-~ Y-fe Vi L~e ~o+- ltagty--ep- thcs ~oh~

1-~Ju-u-oy ~~ ~S+- CS a S~CL~CJct~ ~ SCsa-b~~ ~ ~ pJ- tie02S~ltDULclL~ -ICepound bel ~- r+- 5~1s2 gt 5 L~~

~~ ~St Lh~lt-e- 0D1I~ ~~ ~ Vlc-t-shy

~~ crnucRJ- ~~~~)

Ch8fl1q--~ A-olpat1CQdS(~G~ ---rhQrDtlaquoJ

~1et- SteYJ~~ middotcJ-middotmiddot~P~~ ~~~ k ~5- C~It-) -+-CJ GltIT) lt3 =-~~

ChapJar)lt J2n~D~~ Sta-6t-~ Bo~c9~ ~ S~c ~petJ bOUUAd-eaJ o~~

~ampptc2(- q pef-LJbciL-C ~L~

bt~ ~~ 91-1

lt bull CJt~e-middotp Vn

P0-~OD1C ORB TS

dAgt lfY) oJ_fY)

( (Or~ 8Uf

)lt C E ID CK--1() 1t)e

~ =- X~C I gtlt)

rS-- C5 eo c ~~ l-~-$ fA i1-=z lt3fl 10 ==gt ~C~ -soe~ ~(5 ~~ eurogt-IR~ roc~~~ ur

J--ek ltfLo~) =~--- ~+-- ~~

2rltd ~ Cd) -r+(~OJ ~o~e tb rrn~~1tYl~ lJ)I 152-t--ICJ-Egt

of ~~CQ ~

(-+let) = 4--C

tSr --4-( d -= +-0ltgt 7-leuro ol~~

~Kd ~gt

~+Crzr) ~ P(tC1) (

cctd Camp- I-CO) -= Cgtcgt ) -He ~ef-uve ~lt1r~~e- ~(~

~ltg-e ~ a-5

~- (zt)- oCtlt6) J - 6- t~ b I

J 07 cgt- jD-brr-cfe ~+ p~4 =4 _~ so~

cPC4 ~l I -t~ D ~CO ~ltLjnce ~ J ~L~I 0shy

bY) -f) cgtO CltS I) --Igt gtltraquo 5 u~ 1fAaJ 4 c-t- tj) --egt ~ a-~ n --pound) -=- L-t- 65 0 r0c1S~e ~t-b- ~_

tr~M ~Li1 ~ ~+ be OL boltA-V)~~~ ~tiot-b-u- c~ (j) 0X1--shy ~ c1-5 ~~-e U1JY1-L-tshy sek- ~ L+ COYta-Lo~ 00 eg~elhvtu

fOUYlb ~ L~ C5 ogtp-erLD~t ~_

POI I NCAP-E-middot f3 E H D 1 ~5c N (cf-EcentP-~

JI C5 b~de~ am d- rn 0 ~LJt-eAb-rCcJJt f sUVt-s lfV- L~

A-eso e--I~ 50eu~~ ~o+- S~ UU-- 1-4 ~~ -II(

H ~ ~ ~~0 -fgt i M OoYtoLYs -=-~-~ ~~J- -- y I L r-- - II ~ -J ~j~ - ~-

O~~ fl) A- eo~it ~cee tgt Cgt- ceoSEd or-tnt- ~ ~-ltJ-oa - ~

~oJ ~ CS ~-e TOC7-tgtIEf ~tlIlI)t-~ o~ 0- ros-r-c-f~ ~ t +- I ~- rJ~lerb ~ L~) Qrrcv~ ~c$-~tlt ~L-~T

~C(1) ~ 5-o1Yte 7r~ ~

eGMD 1 gtlt-5cN cptTE-4oH i

ttft M rr2) ry n 0- S CtW~0

1J-e ~6S c3b IV

~ + ampf2 ampL1 ~

C5 ~)t ~oleAl~~ ~ero 9-r)al ~~ l101-~

~~ty) ~~S1~i (11 ~ nO ~cAfiltshycbi~ ~ t-Yd- ~n-r-e~ t5gt fD

( 1tb~~J____C-)j-~5~_~~ltO middot

Exercise~15)([143]) Consider the system

1 = z2 ( 2 2)

2 -Xl - X2 sat X 2 - X3= 3 = X3 sat(x~ -X)

where sat(middot) is the saturation function Show that the origin is the unique equiIibmiddot rium point and use V(z) =xT x to show that it is globally asymptotically stable

~ -~

~ _ ~ +-b~ _~2~_x~

bL-D

~dj (JlJ- ~0ert5~ltyc ~-euHD IJ~ ~ tnid-~ccr or-der- 5-t5 5~gt Y-( LJJ

~ dt)n~ btj ~ ~~d ~ o~tM8-~VcH-~ (Sc~ 10 bull4 )

Exercise ~Consider the system

1 = X2 - g(t)X1(X~ + X~) 2 = -Xl -9(t)X2(Z~ + x~)

where g(t) is ~ntinuously differentiable bounded and g(t) k gt 0 for all t gt o Is the origm UnIformly asymptotically stable Is it exponentially stable shy

o = X2 o = -ZI - Z2 sat(x~ - z~) =gt ZI =0

o = X3 sat(x~ - x~) =gt Z3 sat(-z~) =0 =gt Z3 =0

Hence the origin is the unique equilibrium point consider

Vex) = xTx = x~+x~+zi Vex) = 2[XIX2 - IX2 - x~sat(z~ - z) + zsat(z~ - z)]

= -2(z~ - z~)sat(x~ - z~) $ 0

11 is negative semidefinite v=0 =gt z~(t) == zi(t) =gt 3(t) == 0

Hence both X2(t) and Z3(t) must be constants This implies that 2(t) == O From the second state equation We conclude that Xl(t) == O Then the first state equation implies that Z2(t) == O Consequently Z3(t) == o IY LaSalles theorem (Corollary 32) the origin is globally asymptotically stable

~)Try Vex) =(x~ + x~) t

v = XIX2 - g(t)x~(x~ + 3) - XIZ2 - g(t)xi(xi + xi) = -g(t)(z~ + z~)2 $ -4kV2(x)

Hence Vet x) is negative definite and the origin is uniformly asymptotically stable From the inequality V lt -4kV2 we cannot conclude exponential stability Let us try linearization Assume get) is bounded-

_ 8f t r I _[-3g(t)xyen - g(t)x~ 1-2g(t)r1X2 ] I =[0 1]A(t) - 8x ( ) c=o - -1 - 2g(t)IX2 -3g(t)x~ - g(t)xyen c=o -1 0

A is a constant matrix that is not Hurwitz Hence by Theorem 313 we conclude that the origin is not

exponentially stable

Page 3: (3..2J Le- ~ :C~t)~CQ Pi---GnCLrL€ - Rutgers ECEgajic/pdffiles/Nonlinear... · 2015-06-19 · (1) ~, {3 (

(rf1 hen f-e -)4CJLV+-- +0 s ho lt11 ~~ ~L~ -fgt 0 fYe 1Jeeq ~ ~ esla-betsCA ~ ~ ~s-t- tJtA-~ ~(U-E

LS ~ie)~~ ~ ~ CS CO-U- teuro ckYtJe Dd SUltkHGJ--(f ~~ )1) s~ cO-() s~ GdeJJh-~ lttAA E o~ ~B-o- ~ tr-L-Pld- s~ -lt (+) =-0 (Q)LQ yel~~ tlr(F

_amp~ ~o 50AJlfJlJz ~0--~)1

~ gDNA-UTZgth100S (TINE- VA-~I(H6) S_tS1C~~

gtlt =-+t~ -t- raquo) ~ (+0) --lt0 ) gtlt-C~ E-D

-S- (() 1 -cgtltgt) ~ 1D -tgt fR C5 rG e ceo Y-( tSe c OYi1lth u- 0 v S i~ + O-n ~ e 0 CCkeecJ ~p stl1 fz VVI ~ cY) CC 1 gt07)lt 11)

-5- o J = 0 Ift-~ 0 ~ ~euro ~cM LS O-V)

e3-(LbeLb~ FOIt TYtt5 CCMJ- be O-SSll-Je~ IH~ou-Q-eo~S of- ~er~~~ ~4

~ -- ~CZi ~) 0 = ~ ( ~ t) =-gt ~ 4 C ~ ()l

~

ch CAIYI~ -J~c6lR

gtlt- -== ~ - ~c~)

= -0 ( aA-t x 4- ~ (1)) - 5 (t -+- 0)

~~$) ~ e7--OJYY LV)-L~- ~ S~b~-eltzj bd(O--LJ (~gt-r

o-~e or-CBt ~ oS lt)vV) ~LUeuro_Lb n~ r~1J

~ ~~ ~~~-t-)IYle~ ~ St~ ) He deY-e--rn L~

~ S t-rJ(ft(zmiddotmiddot~~ZJ or- U-e 5~J-~( -g-(C) ~ +--(~

+-1--middot1 ~c f 9 --f c-Lgt I bull0 __ -(] _-u -~ Q-J ~lIgt

1--1 A-P 0 ~()IJ 51A-GIl-tTY OE-A N TTICN FoF- 1~ E- -lAP-ll 16 SfsT~5

J=-or ~o~ egtc- 8J(J ~7C1 to-C ~ ~bg=~(euroI+O)

~~dA 2fr~ ~ [( ~CT) 11lt b ~ fI gtlaquo+) l lt E Vt-t--o

(5E-F 32) Jk e~tgt-C~bt-G~ p61J)A+ ~-=-6 e~ X = -G+-) Ls

5 19--bLE S~ -SOt- eo-cR eraquo-o ~ 65 S ( tE 1t-o ) gt Q 3v- cf ~~

-t1 r-- [+0) l1( S --== Ir-L+) 11 L e kJ-t- ~ 9c ~ C

Il ULy)~yen~~ Sl~U2 ~ s1aj oLR ~d s= S Ceuro) - L1I~lt2f~k~JeltJ-d)~

o O-Sttrto~ sla-b~ [~L~ LS S~Le O-VI~ ~(+-PO ~) t1~

LUJtJOrllMftj cgt-S~+OkL~ SlabCR [~o- L~ ~~UJ-ea

Sl~ 12 c2U c)~L+)--b 6 oS t---tgt ~ utfG~r-YlA -ampc C-IUgt- ~ (wil)deshy

peraquoampeVtecJ o~ 4-0) (C-LmC~r-t-U os~ ~S~F)

-~ha-Glca QY~rWl-eurotl OS~[)l-btt~S~(p C5-o-DgtoY-euro ~80r ~~(euro

be0~ He ()J+t-ocluce Y~ L~-~~y $t-abu~1-t1 r-es~ ~

~ y~(JV)~ _~5~~ cent1e Y)Re~ scxue d46~9vrau-~

~Ef 3 iJ A-LDt~t-c If 0-0 U S ~__~ d Col 0-J --Jlgt (0 +=)

C5 o-C~ 1-D he)Ctf(j 1-0 cpoundcgt~K Cf- C-+ G5 sfrd-~ lttACJ-eO$C0q a~ oLeo) -=-0 ]4- LS 50-lt6 i-obeJoUeJ ~ closs kOo tpound 0= c-o

a---n d d- c r-) --tgt ~ 0gt3 qr- ~ ~

Cf)e-F 3J-f JJ ~ ~1CluJ- 0-~ ~~ to Coo) gtlt ( 0 egtlt) -t LOtx)0

C5 So--co +-0 be)~C1 9-0 e-amp35 JtltX 6-amp ~ eGG--euro( ~d ~

tne ~aJgtr~ B(r1~) k~0jS -n cC6$S lllt ~[K

re5pzcl-- 1-c r ) 2gt--nd fal ~ ocpound ~~ r ti~ 1Y) e-pr crU-- (shy

3crs) cs dec-eo-SLM8 ~L~ ~1~d- A-o s ~ A(s)~o

~ 5 --pgt e-o ~i

~ ol (1)41) ) W- ) V A-t fl2I) J ol-- (r) 1gt lt=Xgt 005 r~ =shy

~5~tz~~~ ~ ~)~ EBr ~~ ~i JampC+-) D j)~ pp

reg

-IGt-t c PO 6~

) (-l+-) ~~ (r--) 0 -v-t

CDcf ~L 7) pocaz 10b ~ ~~ ~ -0)

30YY LeC9-r~ a sc~e-r con1-LfAU-b0-S ~u cs DECQE-SCEt--fT

C~ I (0 rt) -= cgt 2-gt (~-t-) 6 cJ (((~II) ) W ~E~)1

d-Cr)--tgt ~ r-pgto

Or t+ Q- 1-5 db11LM~~ bcJ ~lo~ po5Ukve amp-e~ ~~l~LS

(Ol+) =-0 2 V(gtl-I4-) L-~(~) ) -Y~G-raquo 0

~Wcr 3~ 5 ~ )-he-CCe ~~ ~

~ (I ~JI) L V C~) lt oZL (It~J ~ v-ro-rcOs ( ~~~s1- +v-to ff( ~cA-u1J(J~ ol-1 ~dd-2 5u-camp ~ t-te ~oct~ ho-t~~ - Zk- rclas ~~y-k )d-2-E-~

H A-t-H -rtfEtgt PErl [rnEegttLE-H l8J ~ ~_=O k CL(f) euro~opoundec-brCwu po~f ~ )L --5-(~~ t ) ~ 0 V E- 1J2-Y brlt 0 ~ ~V~ ltfV-(j- gtlt -=-- 001K)6-UV)

kJ- ~ Co I ~) ~ R --pound) P-- be CJ- ~Vl1-CrvLUOG~ ~cyfere0-fL~middot~

~cJv~ So ue ~~ 744 (~) ~ ( 7lt It)s 42 CcL)

8 j -+- amp-1 ( v -1-) ~ - vY3 (7-) et 0~ 7

~~ t-1d amp-) I t12(zL)) ~cf ff3 C7--) O--t-euro- ~t(--h1Ill9--tgts pDSG~K ~~~ ~~gt 00- P ~ ~) gtz-=-middotO G~ ~rn~rm-ezJ 0-8crUJ-r)ro~ smiddot~LR

~) yen 4-CJlV2 ~~Zj S~S1-eLu-gt t--e egttLJcAALS ~Softu-~

0-5(jWft-oh5a-t4] SLgJJL-2 ~ tf~ ~~+S 0- coUt-LUU-00-Ssectr

~~1gt2 -gt poS~ defu-Lle l d-~~cJ-eSc~ Jltu~ J6lt-rf

V4ho~ ~er--tJb~ ~Ol)laquof k ~2gt~ b ecf-eclo~-es LS

n9~ d~vJ)e S~ C-~ck~ V(~H-) L~ a-~C~

~cP-G~ ~ ~Wlt ~~~(f ro~~ 3ltd5teugt-~

CoP-fI4-LA-P-1 33 t8-~ass~t-G~s ~ ~~ 38 ~

~S~d ~ beA1t( ~ ~ E- (P ~ gtlt = D L5 (J1-oG~

0-Jf tj-Dt-YYI eurot1 ~s~fuk~ S ~e~

-J-t e ca 1(5 to-te ltA() fSoIt-U s~D09~ I ~~tLU O-S~ +Vi-lt-

S~t-amp~) ~~ ~f=gt~ o~t-Dtu= $Cs-bt~ au~

~u euJaJ ~7B-h~~ bcJ LLSulCj 1I)tgt~ltrgt + 11lt 8-(~ cd JK~

~cku~s (~ ~O- ~s ~ ~~ 35)Dcrlt

Y- =- 0 oJ- gtlt =--j-~1~) LS

unsjo~-tJ 5to-b1Q Ls6)~ eus-l- ~ CpoundCSS ~ ~chrcltf cI (I)

CLucJ c t Ds(~-ube_ Qb1flS ~t c Un d ep~d~ o-f- -tv) 5ZJ- o-(J ~

() 7lt-c+) 11 ~ oZ (1J f- (4-c) n ) yen+~ 4-c~ Cl) V- 11 ~ (+t)) 0 c C

tJn$80fI(1etJ o5~n~ ~t~middot~ 6ampC-5)-C~-[f-0 ~ 2f2middot~~f HlL ()6--f-e 0- -eel iIUa c~~ 1-0 ~ pTitgt --I~) ) ~amp eu-ea- on-euro fshy-H-L tJC0-(e 0-- d)~1-csouJ 2fQl-e ~51- 0-- cEgtoss kC ~~ focmiddot) ~ cA fC=sUt-C_Jl-e ecS(~lt) uu-d~d~b+ 4-c 3 O_c6-- 1--e--~

11 lt C+) 1 ~ A Cn~Utl) 11 t-~) ) v4-J- n ~ 0) V- 17lt-(~) 11 lt ~

~~ amp-()~1w-00 G~~k~ s~~ ~ ~

~otfR h~JS ~ ~ 7lt (~)

~

~-=O vshy

~~~Su ~~~~~_upO~J~S___ ~d1~~

s1zbs2 ~~e~t-~~--fX~Ob-~ lty)~ ~ ~- ~

~~~ _Sl-W=~(~-~ ~~~(to) - - --_ __

f1 ~(+-) n ~ 1 )((+0) Ue--~-~~~) --4-h - Jl

6ir ts-tA ~~ 0gt-+ 4f-CL ptetDGmiddot~middot ~ d~~)

0- ( -~) u~k4t~(-b)lj=~)Jf~~) lJ- 1 gt(+0) 11 lt- c

bullV(c4-) 6 0 =-gtc=e cs slable )A =~2

~= - ~2 - (2+ 5 en c) ~~

l ~ ~2 L~ Ll c) -= ~ +- -Il---=---Lshy

L- -+-0 Lh c

1 R ts =hIIu-oosea d-c~~te iYi ~ -I ershy

j (7Y Imiddot ~l c ) ~ gtlt-tL+ -~1- yent

3 ~01

~ ~2+~V C~I~t-)

L-+- 2~VhC + cos1shyL2+ s LJlAt-) ~

lt ~ ACi-J x ~c+~ =- 4gtCtl -h) )([~

rJh~ ~~~=J Jhe ltdutlttmiddotbn~ x=-o c~ cun~t1M~ O-~~to1-Gcoe~ ~~te -cs-s- ~ s+oJ-e ~~t~Q fY)~R 5~~~egt

- lt6 C1--t-o)f1 ~Lt-I t-o) II 4 ~ e

~ some rosL~e C-Ol~~b 1L SUI)~ ~

(~ tJI) CO~l IhlCPrcJ x ~bocgtlL b~ C0cu)

1-rhYVI ~~iJ ~ ~-= 0 toe ~ eJ-upoundeLb~ r~~ Y ~ MOIy)~N)e~ ~-e~

~ =-$-~t1J

~~ -5- ~ c 0 -gt0) gtlt ID ~ f~b CS Go V-1-L Vl tgt-~~ ~~lt2Yli-cab(s2) D =-- ~e-~Y) xJI2 - r- evnol ed

~ JO-ltcgtb-(~ ld-~a-~Jb bO~d~ ctx)o

t-tj 5~L1-+ 01 0) u Yl ~- N tJ t)U f- ~

AL+- -- ~t0lt-~~~ J ~=-O

Theuro-ltJ I 1--Me o~~ ts Cgt--Y) ex-poV) ~ H 0e~ 5 ~Le eJ-~ ez b r-c~ po lt)Ut- ~ ~ nOn~re~ 8ltjamp (-eA-M ) q L+- Lgt out ~o-n~~~

~ ~J-cuR p4-- ~ ~ ~ear- Sltj5~

~ -- ~(r-) )(

hU-gt Heuro h~Ll-e -hgt esl-a-h-euroc-s tJe l-CjOPltAUo-- $(a(Ceurol~-~ ~ -eltu eer- S2f s1ecu-gtlt - AQ-) gtlt

(~~U2 3~)

V (Y- rt = ~-rP(+)i

Cgt ~ 1-tJ~~y Jlt-u-~ ~ ~middotmiddot~middotAL+)gtlt

Y-r~ AtB-) c~ csz1D1-c~0-~ ~ ~~ PC+-) ~

ctYv+-C1AO-oUL~ ~t-c~ tR34 V1I W1 ekt-ccl boo-ltJ1d~

~o~ ~1A01R IM~)-~ l5~

o ~ ~ T ~ C+ C)T v+ ~gt 0 I ~gt 0

~hCCf3- ~5~5gt -bf-e r-vn~ oU-~ ~~ ~ - middotmiddot--T

--- ptt) -=- Pffi Ai et-) +- Aa-)f~) +- (pound amp-)

~ ~) -(5 lt-9I1)-k1tmiddot~middotq-~+~i111I1~t~cJ P~~ otlt2b~7~J

ltsect (+) ~C3E gt6 1~-) lt3gt Cgt

[5 post~ ~) decrcesc-eM+ gt~-~

911 ~ Tgtlt ~ -lcgtltrt-) ~ ~~P(+) )ltt-~C2 gtlt1x -=-- ~ Itlt j

~ctertJb~ egt ~ y (lt+) ~oV8 ~ Sj5~ b-o--~~ ltS

Y((-c )= z-Pet-))lt +- ~-r9(-t) gtlt _+ltTPEt-) X

=-ltrr- L PC+)+1(+)Aamp) +A1(-t-) PCt-)] X c -~-d2ff-)gtlt

VIII

(~+-) =-- lt~ Cf-)Jlt ~ - lt-3 xrgtlt = - C3 11gtlt f1

== ~ --0 C S ltA-Il ~-6tJ0-~(tt-up~1-0 ~ s ~LR

tfiieuropoundgt~ 3-1q) ~ A- ~4-) be coVt-01l~~ au-~ (SLt+-be

U)-t-crvtlAov-fgt bb unded) pO5L~ ~UL1R $l1MWI~ Vyg-~~

Jh~ ~ ~L~ 0-C-cl+CVlu00~ olc~-yen~_-e(J~a-b(e1PgtcWded)

~o~tpoundeuro ~~ st1lA11fr~~m~ PCplusmn-)gt-I~~e 5ok-ec - PIJ)- p C+) M+) +-- ATC+) PC+-) +-~ (+)

~ucpoundf ~

~(~l+) es -xT PA-) x

C5 ~ J-tJop~-ucgtygt ~~ jot- c =-A-8-)~ -KenCR) ~=-l)

C) ~ tQn C~~-EJo-s~t-ckca-Uc1 ~ha-bL-eaU-feLbre~

~oU-t- ~f- ~ AL-t) ~

~ Co tfltferde ~etD~S gt nece-ss~ ~tfgtch-(hJZ9-u-~ Y-fe Vi L~e ~o+- ltagty--ep- thcs ~oh~

1-~Ju-u-oy ~~ ~S+- CS a S~CL~CJct~ ~ SCsa-b~~ ~ ~ pJ- tie02S~ltDULclL~ -ICepound bel ~- r+- 5~1s2 gt 5 L~~

~~ ~St Lh~lt-e- 0D1I~ ~~ ~ Vlc-t-shy

~~ crnucRJ- ~~~~)

Ch8fl1q--~ A-olpat1CQdS(~G~ ---rhQrDtlaquoJ

~1et- SteYJ~~ middotcJ-middotmiddot~P~~ ~~~ k ~5- C~It-) -+-CJ GltIT) lt3 =-~~

ChapJar)lt J2n~D~~ Sta-6t-~ Bo~c9~ ~ S~c ~petJ bOUUAd-eaJ o~~

~ampptc2(- q pef-LJbciL-C ~L~

bt~ ~~ 91-1

lt bull CJt~e-middotp Vn

P0-~OD1C ORB TS

dAgt lfY) oJ_fY)

( (Or~ 8Uf

)lt C E ID CK--1() 1t)e

~ =- X~C I gtlt)

rS-- C5 eo c ~~ l-~-$ fA i1-=z lt3fl 10 ==gt ~C~ -soe~ ~(5 ~~ eurogt-IR~ roc~~~ ur

J--ek ltfLo~) =~--- ~+-- ~~

2rltd ~ Cd) -r+(~OJ ~o~e tb rrn~~1tYl~ lJ)I 152-t--ICJ-Egt

of ~~CQ ~

(-+let) = 4--C

tSr --4-( d -= +-0ltgt 7-leuro ol~~

~Kd ~gt

~+Crzr) ~ P(tC1) (

cctd Camp- I-CO) -= Cgtcgt ) -He ~ef-uve ~lt1r~~e- ~(~

~ltg-e ~ a-5

~- (zt)- oCtlt6) J - 6- t~ b I

J 07 cgt- jD-brr-cfe ~+ p~4 =4 _~ so~

cPC4 ~l I -t~ D ~CO ~ltLjnce ~ J ~L~I 0shy

bY) -f) cgtO CltS I) --Igt gtltraquo 5 u~ 1fAaJ 4 c-t- tj) --egt ~ a-~ n --pound) -=- L-t- 65 0 r0c1S~e ~t-b- ~_

tr~M ~Li1 ~ ~+ be OL boltA-V)~~~ ~tiot-b-u- c~ (j) 0X1--shy ~ c1-5 ~~-e U1JY1-L-tshy sek- ~ L+ COYta-Lo~ 00 eg~elhvtu

fOUYlb ~ L~ C5 ogtp-erLD~t ~_

POI I NCAP-E-middot f3 E H D 1 ~5c N (cf-EcentP-~

JI C5 b~de~ am d- rn 0 ~LJt-eAb-rCcJJt f sUVt-s lfV- L~

A-eso e--I~ 50eu~~ ~o+- S~ UU-- 1-4 ~~ -II(

H ~ ~ ~~0 -fgt i M OoYtoLYs -=-~-~ ~~J- -- y I L r-- - II ~ -J ~j~ - ~-

O~~ fl) A- eo~it ~cee tgt Cgt- ceoSEd or-tnt- ~ ~-ltJ-oa - ~

~oJ ~ CS ~-e TOC7-tgtIEf ~tlIlI)t-~ o~ 0- ros-r-c-f~ ~ t +- I ~- rJ~lerb ~ L~) Qrrcv~ ~c$-~tlt ~L-~T

~C(1) ~ 5-o1Yte 7r~ ~

eGMD 1 gtlt-5cN cptTE-4oH i

ttft M rr2) ry n 0- S CtW~0

1J-e ~6S c3b IV

~ + ampf2 ampL1 ~

C5 ~)t ~oleAl~~ ~ero 9-r)al ~~ l101-~

~~ty) ~~S1~i (11 ~ nO ~cAfiltshycbi~ ~ t-Yd- ~n-r-e~ t5gt fD

( 1tb~~J____C-)j-~5~_~~ltO middot

Exercise~15)([143]) Consider the system

1 = z2 ( 2 2)

2 -Xl - X2 sat X 2 - X3= 3 = X3 sat(x~ -X)

where sat(middot) is the saturation function Show that the origin is the unique equiIibmiddot rium point and use V(z) =xT x to show that it is globally asymptotically stable

~ -~

~ _ ~ +-b~ _~2~_x~

bL-D

~dj (JlJ- ~0ert5~ltyc ~-euHD IJ~ ~ tnid-~ccr or-der- 5-t5 5~gt Y-( LJJ

~ dt)n~ btj ~ ~~d ~ o~tM8-~VcH-~ (Sc~ 10 bull4 )

Exercise ~Consider the system

1 = X2 - g(t)X1(X~ + X~) 2 = -Xl -9(t)X2(Z~ + x~)

where g(t) is ~ntinuously differentiable bounded and g(t) k gt 0 for all t gt o Is the origm UnIformly asymptotically stable Is it exponentially stable shy

o = X2 o = -ZI - Z2 sat(x~ - z~) =gt ZI =0

o = X3 sat(x~ - x~) =gt Z3 sat(-z~) =0 =gt Z3 =0

Hence the origin is the unique equilibrium point consider

Vex) = xTx = x~+x~+zi Vex) = 2[XIX2 - IX2 - x~sat(z~ - z) + zsat(z~ - z)]

= -2(z~ - z~)sat(x~ - z~) $ 0

11 is negative semidefinite v=0 =gt z~(t) == zi(t) =gt 3(t) == 0

Hence both X2(t) and Z3(t) must be constants This implies that 2(t) == O From the second state equation We conclude that Xl(t) == O Then the first state equation implies that Z2(t) == O Consequently Z3(t) == o IY LaSalles theorem (Corollary 32) the origin is globally asymptotically stable

~)Try Vex) =(x~ + x~) t

v = XIX2 - g(t)x~(x~ + 3) - XIZ2 - g(t)xi(xi + xi) = -g(t)(z~ + z~)2 $ -4kV2(x)

Hence Vet x) is negative definite and the origin is uniformly asymptotically stable From the inequality V lt -4kV2 we cannot conclude exponential stability Let us try linearization Assume get) is bounded-

_ 8f t r I _[-3g(t)xyen - g(t)x~ 1-2g(t)r1X2 ] I =[0 1]A(t) - 8x ( ) c=o - -1 - 2g(t)IX2 -3g(t)x~ - g(t)xyen c=o -1 0

A is a constant matrix that is not Hurwitz Hence by Theorem 313 we conclude that the origin is not

exponentially stable

Page 4: (3..2J Le- ~ :C~t)~CQ Pi---GnCLrL€ - Rutgers ECEgajic/pdffiles/Nonlinear... · 2015-06-19 · (1) ~, {3 (

(5E-F 32) Jk e~tgt-C~bt-G~ p61J)A+ ~-=-6 e~ X = -G+-) Ls

5 19--bLE S~ -SOt- eo-cR eraquo-o ~ 65 S ( tE 1t-o ) gt Q 3v- cf ~~

-t1 r-- [+0) l1( S --== Ir-L+) 11 L e kJ-t- ~ 9c ~ C

Il ULy)~yen~~ Sl~U2 ~ s1aj oLR ~d s= S Ceuro) - L1I~lt2f~k~JeltJ-d)~

o O-Sttrto~ sla-b~ [~L~ LS S~Le O-VI~ ~(+-PO ~) t1~

LUJtJOrllMftj cgt-S~+OkL~ SlabCR [~o- L~ ~~UJ-ea

Sl~ 12 c2U c)~L+)--b 6 oS t---tgt ~ utfG~r-YlA -ampc C-IUgt- ~ (wil)deshy

peraquoampeVtecJ o~ 4-0) (C-LmC~r-t-U os~ ~S~F)

-~ha-Glca QY~rWl-eurotl OS~[)l-btt~S~(p C5-o-DgtoY-euro ~80r ~~(euro

be0~ He ()J+t-ocluce Y~ L~-~~y $t-abu~1-t1 r-es~ ~

~ y~(JV)~ _~5~~ cent1e Y)Re~ scxue d46~9vrau-~

~Ef 3 iJ A-LDt~t-c If 0-0 U S ~__~ d Col 0-J --Jlgt (0 +=)

C5 o-C~ 1-D he)Ctf(j 1-0 cpoundcgt~K Cf- C-+ G5 sfrd-~ lttACJ-eO$C0q a~ oLeo) -=-0 ]4- LS 50-lt6 i-obeJoUeJ ~ closs kOo tpound 0= c-o

a---n d d- c r-) --tgt ~ 0gt3 qr- ~ ~

Cf)e-F 3J-f JJ ~ ~1CluJ- 0-~ ~~ to Coo) gtlt ( 0 egtlt) -t LOtx)0

C5 So--co +-0 be)~C1 9-0 e-amp35 JtltX 6-amp ~ eGG--euro( ~d ~

tne ~aJgtr~ B(r1~) k~0jS -n cC6$S lllt ~[K

re5pzcl-- 1-c r ) 2gt--nd fal ~ ocpound ~~ r ti~ 1Y) e-pr crU-- (shy

3crs) cs dec-eo-SLM8 ~L~ ~1~d- A-o s ~ A(s)~o

~ 5 --pgt e-o ~i

~ ol (1)41) ) W- ) V A-t fl2I) J ol-- (r) 1gt lt=Xgt 005 r~ =shy

~5~tz~~~ ~ ~)~ EBr ~~ ~i JampC+-) D j)~ pp

reg

-IGt-t c PO 6~

) (-l+-) ~~ (r--) 0 -v-t

CDcf ~L 7) pocaz 10b ~ ~~ ~ -0)

30YY LeC9-r~ a sc~e-r con1-LfAU-b0-S ~u cs DECQE-SCEt--fT

C~ I (0 rt) -= cgt 2-gt (~-t-) 6 cJ (((~II) ) W ~E~)1

d-Cr)--tgt ~ r-pgto

Or t+ Q- 1-5 db11LM~~ bcJ ~lo~ po5Ukve amp-e~ ~~l~LS

(Ol+) =-0 2 V(gtl-I4-) L-~(~) ) -Y~G-raquo 0

~Wcr 3~ 5 ~ )-he-CCe ~~ ~

~ (I ~JI) L V C~) lt oZL (It~J ~ v-ro-rcOs ( ~~~s1- +v-to ff( ~cA-u1J(J~ ol-1 ~dd-2 5u-camp ~ t-te ~oct~ ho-t~~ - Zk- rclas ~~y-k )d-2-E-~

H A-t-H -rtfEtgt PErl [rnEegttLE-H l8J ~ ~_=O k CL(f) euro~opoundec-brCwu po~f ~ )L --5-(~~ t ) ~ 0 V E- 1J2-Y brlt 0 ~ ~V~ ltfV-(j- gtlt -=-- 001K)6-UV)

kJ- ~ Co I ~) ~ R --pound) P-- be CJ- ~Vl1-CrvLUOG~ ~cyfere0-fL~middot~

~cJv~ So ue ~~ 744 (~) ~ ( 7lt It)s 42 CcL)

8 j -+- amp-1 ( v -1-) ~ - vY3 (7-) et 0~ 7

~~ t-1d amp-) I t12(zL)) ~cf ff3 C7--) O--t-euro- ~t(--h1Ill9--tgts pDSG~K ~~~ ~~gt 00- P ~ ~) gtz-=-middotO G~ ~rn~rm-ezJ 0-8crUJ-r)ro~ smiddot~LR

~) yen 4-CJlV2 ~~Zj S~S1-eLu-gt t--e egttLJcAALS ~Softu-~

0-5(jWft-oh5a-t4] SLgJJL-2 ~ tf~ ~~+S 0- coUt-LUU-00-Ssectr

~~1gt2 -gt poS~ defu-Lle l d-~~cJ-eSc~ Jltu~ J6lt-rf

V4ho~ ~er--tJb~ ~Ol)laquof k ~2gt~ b ecf-eclo~-es LS

n9~ d~vJ)e S~ C-~ck~ V(~H-) L~ a-~C~

~cP-G~ ~ ~Wlt ~~~(f ro~~ 3ltd5teugt-~

CoP-fI4-LA-P-1 33 t8-~ass~t-G~s ~ ~~ 38 ~

~S~d ~ beA1t( ~ ~ E- (P ~ gtlt = D L5 (J1-oG~

0-Jf tj-Dt-YYI eurot1 ~s~fuk~ S ~e~

-J-t e ca 1(5 to-te ltA() fSoIt-U s~D09~ I ~~tLU O-S~ +Vi-lt-

S~t-amp~) ~~ ~f=gt~ o~t-Dtu= $Cs-bt~ au~

~u euJaJ ~7B-h~~ bcJ LLSulCj 1I)tgt~ltrgt + 11lt 8-(~ cd JK~

~cku~s (~ ~O- ~s ~ ~~ 35)Dcrlt

Y- =- 0 oJ- gtlt =--j-~1~) LS

unsjo~-tJ 5to-b1Q Ls6)~ eus-l- ~ CpoundCSS ~ ~chrcltf cI (I)

CLucJ c t Ds(~-ube_ Qb1flS ~t c Un d ep~d~ o-f- -tv) 5ZJ- o-(J ~

() 7lt-c+) 11 ~ oZ (1J f- (4-c) n ) yen+~ 4-c~ Cl) V- 11 ~ (+t)) 0 c C

tJn$80fI(1etJ o5~n~ ~t~middot~ 6ampC-5)-C~-[f-0 ~ 2f2middot~~f HlL ()6--f-e 0- -eel iIUa c~~ 1-0 ~ pTitgt --I~) ) ~amp eu-ea- on-euro fshy-H-L tJC0-(e 0-- d)~1-csouJ 2fQl-e ~51- 0-- cEgtoss kC ~~ focmiddot) ~ cA fC=sUt-C_Jl-e ecS(~lt) uu-d~d~b+ 4-c 3 O_c6-- 1--e--~

11 lt C+) 1 ~ A Cn~Utl) 11 t-~) ) v4-J- n ~ 0) V- 17lt-(~) 11 lt ~

~~ amp-()~1w-00 G~~k~ s~~ ~ ~

~otfR h~JS ~ ~ 7lt (~)

~

~-=O vshy

~~~Su ~~~~~_upO~J~S___ ~d1~~

s1zbs2 ~~e~t-~~--fX~Ob-~ lty)~ ~ ~- ~

~~~ _Sl-W=~(~-~ ~~~(to) - - --_ __

f1 ~(+-) n ~ 1 )((+0) Ue--~-~~~) --4-h - Jl

6ir ts-tA ~~ 0gt-+ 4f-CL ptetDGmiddot~middot ~ d~~)

0- ( -~) u~k4t~(-b)lj=~)Jf~~) lJ- 1 gt(+0) 11 lt- c

bullV(c4-) 6 0 =-gtc=e cs slable )A =~2

~= - ~2 - (2+ 5 en c) ~~

l ~ ~2 L~ Ll c) -= ~ +- -Il---=---Lshy

L- -+-0 Lh c

1 R ts =hIIu-oosea d-c~~te iYi ~ -I ershy

j (7Y Imiddot ~l c ) ~ gtlt-tL+ -~1- yent

3 ~01

~ ~2+~V C~I~t-)

L-+- 2~VhC + cos1shyL2+ s LJlAt-) ~

lt ~ ACi-J x ~c+~ =- 4gtCtl -h) )([~

rJh~ ~~~=J Jhe ltdutlttmiddotbn~ x=-o c~ cun~t1M~ O-~~to1-Gcoe~ ~~te -cs-s- ~ s+oJ-e ~~t~Q fY)~R 5~~~egt

- lt6 C1--t-o)f1 ~Lt-I t-o) II 4 ~ e

~ some rosL~e C-Ol~~b 1L SUI)~ ~

(~ tJI) CO~l IhlCPrcJ x ~bocgtlL b~ C0cu)

1-rhYVI ~~iJ ~ ~-= 0 toe ~ eJ-upoundeLb~ r~~ Y ~ MOIy)~N)e~ ~-e~

~ =-$-~t1J

~~ -5- ~ c 0 -gt0) gtlt ID ~ f~b CS Go V-1-L Vl tgt-~~ ~~lt2Yli-cab(s2) D =-- ~e-~Y) xJI2 - r- evnol ed

~ JO-ltcgtb-(~ ld-~a-~Jb bO~d~ ctx)o

t-tj 5~L1-+ 01 0) u Yl ~- N tJ t)U f- ~

AL+- -- ~t0lt-~~~ J ~=-O

Theuro-ltJ I 1--Me o~~ ts Cgt--Y) ex-poV) ~ H 0e~ 5 ~Le eJ-~ ez b r-c~ po lt)Ut- ~ ~ nOn~re~ 8ltjamp (-eA-M ) q L+- Lgt out ~o-n~~~

~ ~J-cuR p4-- ~ ~ ~ear- Sltj5~

~ -- ~(r-) )(

hU-gt Heuro h~Ll-e -hgt esl-a-h-euroc-s tJe l-CjOPltAUo-- $(a(Ceurol~-~ ~ -eltu eer- S2f s1ecu-gtlt - AQ-) gtlt

(~~U2 3~)

V (Y- rt = ~-rP(+)i

Cgt ~ 1-tJ~~y Jlt-u-~ ~ ~middotmiddot~middotAL+)gtlt

Y-r~ AtB-) c~ csz1D1-c~0-~ ~ ~~ PC+-) ~

ctYv+-C1AO-oUL~ ~t-c~ tR34 V1I W1 ekt-ccl boo-ltJ1d~

~o~ ~1A01R IM~)-~ l5~

o ~ ~ T ~ C+ C)T v+ ~gt 0 I ~gt 0

~hCCf3- ~5~5gt -bf-e r-vn~ oU-~ ~~ ~ - middotmiddot--T

--- ptt) -=- Pffi Ai et-) +- Aa-)f~) +- (pound amp-)

~ ~) -(5 lt-9I1)-k1tmiddot~middotq-~+~i111I1~t~cJ P~~ otlt2b~7~J

ltsect (+) ~C3E gt6 1~-) lt3gt Cgt

[5 post~ ~) decrcesc-eM+ gt~-~

911 ~ Tgtlt ~ -lcgtltrt-) ~ ~~P(+) )ltt-~C2 gtlt1x -=-- ~ Itlt j

~ctertJb~ egt ~ y (lt+) ~oV8 ~ Sj5~ b-o--~~ ltS

Y((-c )= z-Pet-))lt +- ~-r9(-t) gtlt _+ltTPEt-) X

=-ltrr- L PC+)+1(+)Aamp) +A1(-t-) PCt-)] X c -~-d2ff-)gtlt

VIII

(~+-) =-- lt~ Cf-)Jlt ~ - lt-3 xrgtlt = - C3 11gtlt f1

== ~ --0 C S ltA-Il ~-6tJ0-~(tt-up~1-0 ~ s ~LR

tfiieuropoundgt~ 3-1q) ~ A- ~4-) be coVt-01l~~ au-~ (SLt+-be

U)-t-crvtlAov-fgt bb unded) pO5L~ ~UL1R $l1MWI~ Vyg-~~

Jh~ ~ ~L~ 0-C-cl+CVlu00~ olc~-yen~_-e(J~a-b(e1PgtcWded)

~o~tpoundeuro ~~ st1lA11fr~~m~ PCplusmn-)gt-I~~e 5ok-ec - PIJ)- p C+) M+) +-- ATC+) PC+-) +-~ (+)

~ucpoundf ~

~(~l+) es -xT PA-) x

C5 ~ J-tJop~-ucgtygt ~~ jot- c =-A-8-)~ -KenCR) ~=-l)

C) ~ tQn C~~-EJo-s~t-ckca-Uc1 ~ha-bL-eaU-feLbre~

~oU-t- ~f- ~ AL-t) ~

~ Co tfltferde ~etD~S gt nece-ss~ ~tfgtch-(hJZ9-u-~ Y-fe Vi L~e ~o+- ltagty--ep- thcs ~oh~

1-~Ju-u-oy ~~ ~S+- CS a S~CL~CJct~ ~ SCsa-b~~ ~ ~ pJ- tie02S~ltDULclL~ -ICepound bel ~- r+- 5~1s2 gt 5 L~~

~~ ~St Lh~lt-e- 0D1I~ ~~ ~ Vlc-t-shy

~~ crnucRJ- ~~~~)

Ch8fl1q--~ A-olpat1CQdS(~G~ ---rhQrDtlaquoJ

~1et- SteYJ~~ middotcJ-middotmiddot~P~~ ~~~ k ~5- C~It-) -+-CJ GltIT) lt3 =-~~

ChapJar)lt J2n~D~~ Sta-6t-~ Bo~c9~ ~ S~c ~petJ bOUUAd-eaJ o~~

~ampptc2(- q pef-LJbciL-C ~L~

bt~ ~~ 91-1

lt bull CJt~e-middotp Vn

P0-~OD1C ORB TS

dAgt lfY) oJ_fY)

( (Or~ 8Uf

)lt C E ID CK--1() 1t)e

~ =- X~C I gtlt)

rS-- C5 eo c ~~ l-~-$ fA i1-=z lt3fl 10 ==gt ~C~ -soe~ ~(5 ~~ eurogt-IR~ roc~~~ ur

J--ek ltfLo~) =~--- ~+-- ~~

2rltd ~ Cd) -r+(~OJ ~o~e tb rrn~~1tYl~ lJ)I 152-t--ICJ-Egt

of ~~CQ ~

(-+let) = 4--C

tSr --4-( d -= +-0ltgt 7-leuro ol~~

~Kd ~gt

~+Crzr) ~ P(tC1) (

cctd Camp- I-CO) -= Cgtcgt ) -He ~ef-uve ~lt1r~~e- ~(~

~ltg-e ~ a-5

~- (zt)- oCtlt6) J - 6- t~ b I

J 07 cgt- jD-brr-cfe ~+ p~4 =4 _~ so~

cPC4 ~l I -t~ D ~CO ~ltLjnce ~ J ~L~I 0shy

bY) -f) cgtO CltS I) --Igt gtltraquo 5 u~ 1fAaJ 4 c-t- tj) --egt ~ a-~ n --pound) -=- L-t- 65 0 r0c1S~e ~t-b- ~_

tr~M ~Li1 ~ ~+ be OL boltA-V)~~~ ~tiot-b-u- c~ (j) 0X1--shy ~ c1-5 ~~-e U1JY1-L-tshy sek- ~ L+ COYta-Lo~ 00 eg~elhvtu

fOUYlb ~ L~ C5 ogtp-erLD~t ~_

POI I NCAP-E-middot f3 E H D 1 ~5c N (cf-EcentP-~

JI C5 b~de~ am d- rn 0 ~LJt-eAb-rCcJJt f sUVt-s lfV- L~

A-eso e--I~ 50eu~~ ~o+- S~ UU-- 1-4 ~~ -II(

H ~ ~ ~~0 -fgt i M OoYtoLYs -=-~-~ ~~J- -- y I L r-- - II ~ -J ~j~ - ~-

O~~ fl) A- eo~it ~cee tgt Cgt- ceoSEd or-tnt- ~ ~-ltJ-oa - ~

~oJ ~ CS ~-e TOC7-tgtIEf ~tlIlI)t-~ o~ 0- ros-r-c-f~ ~ t +- I ~- rJ~lerb ~ L~) Qrrcv~ ~c$-~tlt ~L-~T

~C(1) ~ 5-o1Yte 7r~ ~

eGMD 1 gtlt-5cN cptTE-4oH i

ttft M rr2) ry n 0- S CtW~0

1J-e ~6S c3b IV

~ + ampf2 ampL1 ~

C5 ~)t ~oleAl~~ ~ero 9-r)al ~~ l101-~

~~ty) ~~S1~i (11 ~ nO ~cAfiltshycbi~ ~ t-Yd- ~n-r-e~ t5gt fD

( 1tb~~J____C-)j-~5~_~~ltO middot

Exercise~15)([143]) Consider the system

1 = z2 ( 2 2)

2 -Xl - X2 sat X 2 - X3= 3 = X3 sat(x~ -X)

where sat(middot) is the saturation function Show that the origin is the unique equiIibmiddot rium point and use V(z) =xT x to show that it is globally asymptotically stable

~ -~

~ _ ~ +-b~ _~2~_x~

bL-D

~dj (JlJ- ~0ert5~ltyc ~-euHD IJ~ ~ tnid-~ccr or-der- 5-t5 5~gt Y-( LJJ

~ dt)n~ btj ~ ~~d ~ o~tM8-~VcH-~ (Sc~ 10 bull4 )

Exercise ~Consider the system

1 = X2 - g(t)X1(X~ + X~) 2 = -Xl -9(t)X2(Z~ + x~)

where g(t) is ~ntinuously differentiable bounded and g(t) k gt 0 for all t gt o Is the origm UnIformly asymptotically stable Is it exponentially stable shy

o = X2 o = -ZI - Z2 sat(x~ - z~) =gt ZI =0

o = X3 sat(x~ - x~) =gt Z3 sat(-z~) =0 =gt Z3 =0

Hence the origin is the unique equilibrium point consider

Vex) = xTx = x~+x~+zi Vex) = 2[XIX2 - IX2 - x~sat(z~ - z) + zsat(z~ - z)]

= -2(z~ - z~)sat(x~ - z~) $ 0

11 is negative semidefinite v=0 =gt z~(t) == zi(t) =gt 3(t) == 0

Hence both X2(t) and Z3(t) must be constants This implies that 2(t) == O From the second state equation We conclude that Xl(t) == O Then the first state equation implies that Z2(t) == O Consequently Z3(t) == o IY LaSalles theorem (Corollary 32) the origin is globally asymptotically stable

~)Try Vex) =(x~ + x~) t

v = XIX2 - g(t)x~(x~ + 3) - XIZ2 - g(t)xi(xi + xi) = -g(t)(z~ + z~)2 $ -4kV2(x)

Hence Vet x) is negative definite and the origin is uniformly asymptotically stable From the inequality V lt -4kV2 we cannot conclude exponential stability Let us try linearization Assume get) is bounded-

_ 8f t r I _[-3g(t)xyen - g(t)x~ 1-2g(t)r1X2 ] I =[0 1]A(t) - 8x ( ) c=o - -1 - 2g(t)IX2 -3g(t)x~ - g(t)xyen c=o -1 0

A is a constant matrix that is not Hurwitz Hence by Theorem 313 we conclude that the origin is not

exponentially stable

Page 5: (3..2J Le- ~ :C~t)~CQ Pi---GnCLrL€ - Rutgers ECEgajic/pdffiles/Nonlinear... · 2015-06-19 · (1) ~, {3 (

reg

-IGt-t c PO 6~

) (-l+-) ~~ (r--) 0 -v-t

CDcf ~L 7) pocaz 10b ~ ~~ ~ -0)

30YY LeC9-r~ a sc~e-r con1-LfAU-b0-S ~u cs DECQE-SCEt--fT

C~ I (0 rt) -= cgt 2-gt (~-t-) 6 cJ (((~II) ) W ~E~)1

d-Cr)--tgt ~ r-pgto

Or t+ Q- 1-5 db11LM~~ bcJ ~lo~ po5Ukve amp-e~ ~~l~LS

(Ol+) =-0 2 V(gtl-I4-) L-~(~) ) -Y~G-raquo 0

~Wcr 3~ 5 ~ )-he-CCe ~~ ~

~ (I ~JI) L V C~) lt oZL (It~J ~ v-ro-rcOs ( ~~~s1- +v-to ff( ~cA-u1J(J~ ol-1 ~dd-2 5u-camp ~ t-te ~oct~ ho-t~~ - Zk- rclas ~~y-k )d-2-E-~

H A-t-H -rtfEtgt PErl [rnEegttLE-H l8J ~ ~_=O k CL(f) euro~opoundec-brCwu po~f ~ )L --5-(~~ t ) ~ 0 V E- 1J2-Y brlt 0 ~ ~V~ ltfV-(j- gtlt -=-- 001K)6-UV)

kJ- ~ Co I ~) ~ R --pound) P-- be CJ- ~Vl1-CrvLUOG~ ~cyfere0-fL~middot~

~cJv~ So ue ~~ 744 (~) ~ ( 7lt It)s 42 CcL)

8 j -+- amp-1 ( v -1-) ~ - vY3 (7-) et 0~ 7

~~ t-1d amp-) I t12(zL)) ~cf ff3 C7--) O--t-euro- ~t(--h1Ill9--tgts pDSG~K ~~~ ~~gt 00- P ~ ~) gtz-=-middotO G~ ~rn~rm-ezJ 0-8crUJ-r)ro~ smiddot~LR

~) yen 4-CJlV2 ~~Zj S~S1-eLu-gt t--e egttLJcAALS ~Softu-~

0-5(jWft-oh5a-t4] SLgJJL-2 ~ tf~ ~~+S 0- coUt-LUU-00-Ssectr

~~1gt2 -gt poS~ defu-Lle l d-~~cJ-eSc~ Jltu~ J6lt-rf

V4ho~ ~er--tJb~ ~Ol)laquof k ~2gt~ b ecf-eclo~-es LS

n9~ d~vJ)e S~ C-~ck~ V(~H-) L~ a-~C~

~cP-G~ ~ ~Wlt ~~~(f ro~~ 3ltd5teugt-~

CoP-fI4-LA-P-1 33 t8-~ass~t-G~s ~ ~~ 38 ~

~S~d ~ beA1t( ~ ~ E- (P ~ gtlt = D L5 (J1-oG~

0-Jf tj-Dt-YYI eurot1 ~s~fuk~ S ~e~

-J-t e ca 1(5 to-te ltA() fSoIt-U s~D09~ I ~~tLU O-S~ +Vi-lt-

S~t-amp~) ~~ ~f=gt~ o~t-Dtu= $Cs-bt~ au~

~u euJaJ ~7B-h~~ bcJ LLSulCj 1I)tgt~ltrgt + 11lt 8-(~ cd JK~

~cku~s (~ ~O- ~s ~ ~~ 35)Dcrlt

Y- =- 0 oJ- gtlt =--j-~1~) LS

unsjo~-tJ 5to-b1Q Ls6)~ eus-l- ~ CpoundCSS ~ ~chrcltf cI (I)

CLucJ c t Ds(~-ube_ Qb1flS ~t c Un d ep~d~ o-f- -tv) 5ZJ- o-(J ~

() 7lt-c+) 11 ~ oZ (1J f- (4-c) n ) yen+~ 4-c~ Cl) V- 11 ~ (+t)) 0 c C

tJn$80fI(1etJ o5~n~ ~t~middot~ 6ampC-5)-C~-[f-0 ~ 2f2middot~~f HlL ()6--f-e 0- -eel iIUa c~~ 1-0 ~ pTitgt --I~) ) ~amp eu-ea- on-euro fshy-H-L tJC0-(e 0-- d)~1-csouJ 2fQl-e ~51- 0-- cEgtoss kC ~~ focmiddot) ~ cA fC=sUt-C_Jl-e ecS(~lt) uu-d~d~b+ 4-c 3 O_c6-- 1--e--~

11 lt C+) 1 ~ A Cn~Utl) 11 t-~) ) v4-J- n ~ 0) V- 17lt-(~) 11 lt ~

~~ amp-()~1w-00 G~~k~ s~~ ~ ~

~otfR h~JS ~ ~ 7lt (~)

~

~-=O vshy

~~~Su ~~~~~_upO~J~S___ ~d1~~

s1zbs2 ~~e~t-~~--fX~Ob-~ lty)~ ~ ~- ~

~~~ _Sl-W=~(~-~ ~~~(to) - - --_ __

f1 ~(+-) n ~ 1 )((+0) Ue--~-~~~) --4-h - Jl

6ir ts-tA ~~ 0gt-+ 4f-CL ptetDGmiddot~middot ~ d~~)

0- ( -~) u~k4t~(-b)lj=~)Jf~~) lJ- 1 gt(+0) 11 lt- c

bullV(c4-) 6 0 =-gtc=e cs slable )A =~2

~= - ~2 - (2+ 5 en c) ~~

l ~ ~2 L~ Ll c) -= ~ +- -Il---=---Lshy

L- -+-0 Lh c

1 R ts =hIIu-oosea d-c~~te iYi ~ -I ershy

j (7Y Imiddot ~l c ) ~ gtlt-tL+ -~1- yent

3 ~01

~ ~2+~V C~I~t-)

L-+- 2~VhC + cos1shyL2+ s LJlAt-) ~

lt ~ ACi-J x ~c+~ =- 4gtCtl -h) )([~

rJh~ ~~~=J Jhe ltdutlttmiddotbn~ x=-o c~ cun~t1M~ O-~~to1-Gcoe~ ~~te -cs-s- ~ s+oJ-e ~~t~Q fY)~R 5~~~egt

- lt6 C1--t-o)f1 ~Lt-I t-o) II 4 ~ e

~ some rosL~e C-Ol~~b 1L SUI)~ ~

(~ tJI) CO~l IhlCPrcJ x ~bocgtlL b~ C0cu)

1-rhYVI ~~iJ ~ ~-= 0 toe ~ eJ-upoundeLb~ r~~ Y ~ MOIy)~N)e~ ~-e~

~ =-$-~t1J

~~ -5- ~ c 0 -gt0) gtlt ID ~ f~b CS Go V-1-L Vl tgt-~~ ~~lt2Yli-cab(s2) D =-- ~e-~Y) xJI2 - r- evnol ed

~ JO-ltcgtb-(~ ld-~a-~Jb bO~d~ ctx)o

t-tj 5~L1-+ 01 0) u Yl ~- N tJ t)U f- ~

AL+- -- ~t0lt-~~~ J ~=-O

Theuro-ltJ I 1--Me o~~ ts Cgt--Y) ex-poV) ~ H 0e~ 5 ~Le eJ-~ ez b r-c~ po lt)Ut- ~ ~ nOn~re~ 8ltjamp (-eA-M ) q L+- Lgt out ~o-n~~~

~ ~J-cuR p4-- ~ ~ ~ear- Sltj5~

~ -- ~(r-) )(

hU-gt Heuro h~Ll-e -hgt esl-a-h-euroc-s tJe l-CjOPltAUo-- $(a(Ceurol~-~ ~ -eltu eer- S2f s1ecu-gtlt - AQ-) gtlt

(~~U2 3~)

V (Y- rt = ~-rP(+)i

Cgt ~ 1-tJ~~y Jlt-u-~ ~ ~middotmiddot~middotAL+)gtlt

Y-r~ AtB-) c~ csz1D1-c~0-~ ~ ~~ PC+-) ~

ctYv+-C1AO-oUL~ ~t-c~ tR34 V1I W1 ekt-ccl boo-ltJ1d~

~o~ ~1A01R IM~)-~ l5~

o ~ ~ T ~ C+ C)T v+ ~gt 0 I ~gt 0

~hCCf3- ~5~5gt -bf-e r-vn~ oU-~ ~~ ~ - middotmiddot--T

--- ptt) -=- Pffi Ai et-) +- Aa-)f~) +- (pound amp-)

~ ~) -(5 lt-9I1)-k1tmiddot~middotq-~+~i111I1~t~cJ P~~ otlt2b~7~J

ltsect (+) ~C3E gt6 1~-) lt3gt Cgt

[5 post~ ~) decrcesc-eM+ gt~-~

911 ~ Tgtlt ~ -lcgtltrt-) ~ ~~P(+) )ltt-~C2 gtlt1x -=-- ~ Itlt j

~ctertJb~ egt ~ y (lt+) ~oV8 ~ Sj5~ b-o--~~ ltS

Y((-c )= z-Pet-))lt +- ~-r9(-t) gtlt _+ltTPEt-) X

=-ltrr- L PC+)+1(+)Aamp) +A1(-t-) PCt-)] X c -~-d2ff-)gtlt

VIII

(~+-) =-- lt~ Cf-)Jlt ~ - lt-3 xrgtlt = - C3 11gtlt f1

== ~ --0 C S ltA-Il ~-6tJ0-~(tt-up~1-0 ~ s ~LR

tfiieuropoundgt~ 3-1q) ~ A- ~4-) be coVt-01l~~ au-~ (SLt+-be

U)-t-crvtlAov-fgt bb unded) pO5L~ ~UL1R $l1MWI~ Vyg-~~

Jh~ ~ ~L~ 0-C-cl+CVlu00~ olc~-yen~_-e(J~a-b(e1PgtcWded)

~o~tpoundeuro ~~ st1lA11fr~~m~ PCplusmn-)gt-I~~e 5ok-ec - PIJ)- p C+) M+) +-- ATC+) PC+-) +-~ (+)

~ucpoundf ~

~(~l+) es -xT PA-) x

C5 ~ J-tJop~-ucgtygt ~~ jot- c =-A-8-)~ -KenCR) ~=-l)

C) ~ tQn C~~-EJo-s~t-ckca-Uc1 ~ha-bL-eaU-feLbre~

~oU-t- ~f- ~ AL-t) ~

~ Co tfltferde ~etD~S gt nece-ss~ ~tfgtch-(hJZ9-u-~ Y-fe Vi L~e ~o+- ltagty--ep- thcs ~oh~

1-~Ju-u-oy ~~ ~S+- CS a S~CL~CJct~ ~ SCsa-b~~ ~ ~ pJ- tie02S~ltDULclL~ -ICepound bel ~- r+- 5~1s2 gt 5 L~~

~~ ~St Lh~lt-e- 0D1I~ ~~ ~ Vlc-t-shy

~~ crnucRJ- ~~~~)

Ch8fl1q--~ A-olpat1CQdS(~G~ ---rhQrDtlaquoJ

~1et- SteYJ~~ middotcJ-middotmiddot~P~~ ~~~ k ~5- C~It-) -+-CJ GltIT) lt3 =-~~

ChapJar)lt J2n~D~~ Sta-6t-~ Bo~c9~ ~ S~c ~petJ bOUUAd-eaJ o~~

~ampptc2(- q pef-LJbciL-C ~L~

bt~ ~~ 91-1

lt bull CJt~e-middotp Vn

P0-~OD1C ORB TS

dAgt lfY) oJ_fY)

( (Or~ 8Uf

)lt C E ID CK--1() 1t)e

~ =- X~C I gtlt)

rS-- C5 eo c ~~ l-~-$ fA i1-=z lt3fl 10 ==gt ~C~ -soe~ ~(5 ~~ eurogt-IR~ roc~~~ ur

J--ek ltfLo~) =~--- ~+-- ~~

2rltd ~ Cd) -r+(~OJ ~o~e tb rrn~~1tYl~ lJ)I 152-t--ICJ-Egt

of ~~CQ ~

(-+let) = 4--C

tSr --4-( d -= +-0ltgt 7-leuro ol~~

~Kd ~gt

~+Crzr) ~ P(tC1) (

cctd Camp- I-CO) -= Cgtcgt ) -He ~ef-uve ~lt1r~~e- ~(~

~ltg-e ~ a-5

~- (zt)- oCtlt6) J - 6- t~ b I

J 07 cgt- jD-brr-cfe ~+ p~4 =4 _~ so~

cPC4 ~l I -t~ D ~CO ~ltLjnce ~ J ~L~I 0shy

bY) -f) cgtO CltS I) --Igt gtltraquo 5 u~ 1fAaJ 4 c-t- tj) --egt ~ a-~ n --pound) -=- L-t- 65 0 r0c1S~e ~t-b- ~_

tr~M ~Li1 ~ ~+ be OL boltA-V)~~~ ~tiot-b-u- c~ (j) 0X1--shy ~ c1-5 ~~-e U1JY1-L-tshy sek- ~ L+ COYta-Lo~ 00 eg~elhvtu

fOUYlb ~ L~ C5 ogtp-erLD~t ~_

POI I NCAP-E-middot f3 E H D 1 ~5c N (cf-EcentP-~

JI C5 b~de~ am d- rn 0 ~LJt-eAb-rCcJJt f sUVt-s lfV- L~

A-eso e--I~ 50eu~~ ~o+- S~ UU-- 1-4 ~~ -II(

H ~ ~ ~~0 -fgt i M OoYtoLYs -=-~-~ ~~J- -- y I L r-- - II ~ -J ~j~ - ~-

O~~ fl) A- eo~it ~cee tgt Cgt- ceoSEd or-tnt- ~ ~-ltJ-oa - ~

~oJ ~ CS ~-e TOC7-tgtIEf ~tlIlI)t-~ o~ 0- ros-r-c-f~ ~ t +- I ~- rJ~lerb ~ L~) Qrrcv~ ~c$-~tlt ~L-~T

~C(1) ~ 5-o1Yte 7r~ ~

eGMD 1 gtlt-5cN cptTE-4oH i

ttft M rr2) ry n 0- S CtW~0

1J-e ~6S c3b IV

~ + ampf2 ampL1 ~

C5 ~)t ~oleAl~~ ~ero 9-r)al ~~ l101-~

~~ty) ~~S1~i (11 ~ nO ~cAfiltshycbi~ ~ t-Yd- ~n-r-e~ t5gt fD

( 1tb~~J____C-)j-~5~_~~ltO middot

Exercise~15)([143]) Consider the system

1 = z2 ( 2 2)

2 -Xl - X2 sat X 2 - X3= 3 = X3 sat(x~ -X)

where sat(middot) is the saturation function Show that the origin is the unique equiIibmiddot rium point and use V(z) =xT x to show that it is globally asymptotically stable

~ -~

~ _ ~ +-b~ _~2~_x~

bL-D

~dj (JlJ- ~0ert5~ltyc ~-euHD IJ~ ~ tnid-~ccr or-der- 5-t5 5~gt Y-( LJJ

~ dt)n~ btj ~ ~~d ~ o~tM8-~VcH-~ (Sc~ 10 bull4 )

Exercise ~Consider the system

1 = X2 - g(t)X1(X~ + X~) 2 = -Xl -9(t)X2(Z~ + x~)

where g(t) is ~ntinuously differentiable bounded and g(t) k gt 0 for all t gt o Is the origm UnIformly asymptotically stable Is it exponentially stable shy

o = X2 o = -ZI - Z2 sat(x~ - z~) =gt ZI =0

o = X3 sat(x~ - x~) =gt Z3 sat(-z~) =0 =gt Z3 =0

Hence the origin is the unique equilibrium point consider

Vex) = xTx = x~+x~+zi Vex) = 2[XIX2 - IX2 - x~sat(z~ - z) + zsat(z~ - z)]

= -2(z~ - z~)sat(x~ - z~) $ 0

11 is negative semidefinite v=0 =gt z~(t) == zi(t) =gt 3(t) == 0

Hence both X2(t) and Z3(t) must be constants This implies that 2(t) == O From the second state equation We conclude that Xl(t) == O Then the first state equation implies that Z2(t) == O Consequently Z3(t) == o IY LaSalles theorem (Corollary 32) the origin is globally asymptotically stable

~)Try Vex) =(x~ + x~) t

v = XIX2 - g(t)x~(x~ + 3) - XIZ2 - g(t)xi(xi + xi) = -g(t)(z~ + z~)2 $ -4kV2(x)

Hence Vet x) is negative definite and the origin is uniformly asymptotically stable From the inequality V lt -4kV2 we cannot conclude exponential stability Let us try linearization Assume get) is bounded-

_ 8f t r I _[-3g(t)xyen - g(t)x~ 1-2g(t)r1X2 ] I =[0 1]A(t) - 8x ( ) c=o - -1 - 2g(t)IX2 -3g(t)x~ - g(t)xyen c=o -1 0

A is a constant matrix that is not Hurwitz Hence by Theorem 313 we conclude that the origin is not

exponentially stable

Page 6: (3..2J Le- ~ :C~t)~CQ Pi---GnCLrL€ - Rutgers ECEgajic/pdffiles/Nonlinear... · 2015-06-19 · (1) ~, {3 (

~) yen 4-CJlV2 ~~Zj S~S1-eLu-gt t--e egttLJcAALS ~Softu-~

0-5(jWft-oh5a-t4] SLgJJL-2 ~ tf~ ~~+S 0- coUt-LUU-00-Ssectr

~~1gt2 -gt poS~ defu-Lle l d-~~cJ-eSc~ Jltu~ J6lt-rf

V4ho~ ~er--tJb~ ~Ol)laquof k ~2gt~ b ecf-eclo~-es LS

n9~ d~vJ)e S~ C-~ck~ V(~H-) L~ a-~C~

~cP-G~ ~ ~Wlt ~~~(f ro~~ 3ltd5teugt-~

CoP-fI4-LA-P-1 33 t8-~ass~t-G~s ~ ~~ 38 ~

~S~d ~ beA1t( ~ ~ E- (P ~ gtlt = D L5 (J1-oG~

0-Jf tj-Dt-YYI eurot1 ~s~fuk~ S ~e~

-J-t e ca 1(5 to-te ltA() fSoIt-U s~D09~ I ~~tLU O-S~ +Vi-lt-

S~t-amp~) ~~ ~f=gt~ o~t-Dtu= $Cs-bt~ au~

~u euJaJ ~7B-h~~ bcJ LLSulCj 1I)tgt~ltrgt + 11lt 8-(~ cd JK~

~cku~s (~ ~O- ~s ~ ~~ 35)Dcrlt

Y- =- 0 oJ- gtlt =--j-~1~) LS

unsjo~-tJ 5to-b1Q Ls6)~ eus-l- ~ CpoundCSS ~ ~chrcltf cI (I)

CLucJ c t Ds(~-ube_ Qb1flS ~t c Un d ep~d~ o-f- -tv) 5ZJ- o-(J ~

() 7lt-c+) 11 ~ oZ (1J f- (4-c) n ) yen+~ 4-c~ Cl) V- 11 ~ (+t)) 0 c C

tJn$80fI(1etJ o5~n~ ~t~middot~ 6ampC-5)-C~-[f-0 ~ 2f2middot~~f HlL ()6--f-e 0- -eel iIUa c~~ 1-0 ~ pTitgt --I~) ) ~amp eu-ea- on-euro fshy-H-L tJC0-(e 0-- d)~1-csouJ 2fQl-e ~51- 0-- cEgtoss kC ~~ focmiddot) ~ cA fC=sUt-C_Jl-e ecS(~lt) uu-d~d~b+ 4-c 3 O_c6-- 1--e--~

11 lt C+) 1 ~ A Cn~Utl) 11 t-~) ) v4-J- n ~ 0) V- 17lt-(~) 11 lt ~

~~ amp-()~1w-00 G~~k~ s~~ ~ ~

~otfR h~JS ~ ~ 7lt (~)

~

~-=O vshy

~~~Su ~~~~~_upO~J~S___ ~d1~~

s1zbs2 ~~e~t-~~--fX~Ob-~ lty)~ ~ ~- ~

~~~ _Sl-W=~(~-~ ~~~(to) - - --_ __

f1 ~(+-) n ~ 1 )((+0) Ue--~-~~~) --4-h - Jl

6ir ts-tA ~~ 0gt-+ 4f-CL ptetDGmiddot~middot ~ d~~)

0- ( -~) u~k4t~(-b)lj=~)Jf~~) lJ- 1 gt(+0) 11 lt- c

bullV(c4-) 6 0 =-gtc=e cs slable )A =~2

~= - ~2 - (2+ 5 en c) ~~

l ~ ~2 L~ Ll c) -= ~ +- -Il---=---Lshy

L- -+-0 Lh c

1 R ts =hIIu-oosea d-c~~te iYi ~ -I ershy

j (7Y Imiddot ~l c ) ~ gtlt-tL+ -~1- yent

3 ~01

~ ~2+~V C~I~t-)

L-+- 2~VhC + cos1shyL2+ s LJlAt-) ~

lt ~ ACi-J x ~c+~ =- 4gtCtl -h) )([~

rJh~ ~~~=J Jhe ltdutlttmiddotbn~ x=-o c~ cun~t1M~ O-~~to1-Gcoe~ ~~te -cs-s- ~ s+oJ-e ~~t~Q fY)~R 5~~~egt

- lt6 C1--t-o)f1 ~Lt-I t-o) II 4 ~ e

~ some rosL~e C-Ol~~b 1L SUI)~ ~

(~ tJI) CO~l IhlCPrcJ x ~bocgtlL b~ C0cu)

1-rhYVI ~~iJ ~ ~-= 0 toe ~ eJ-upoundeLb~ r~~ Y ~ MOIy)~N)e~ ~-e~

~ =-$-~t1J

~~ -5- ~ c 0 -gt0) gtlt ID ~ f~b CS Go V-1-L Vl tgt-~~ ~~lt2Yli-cab(s2) D =-- ~e-~Y) xJI2 - r- evnol ed

~ JO-ltcgtb-(~ ld-~a-~Jb bO~d~ ctx)o

t-tj 5~L1-+ 01 0) u Yl ~- N tJ t)U f- ~

AL+- -- ~t0lt-~~~ J ~=-O

Theuro-ltJ I 1--Me o~~ ts Cgt--Y) ex-poV) ~ H 0e~ 5 ~Le eJ-~ ez b r-c~ po lt)Ut- ~ ~ nOn~re~ 8ltjamp (-eA-M ) q L+- Lgt out ~o-n~~~

~ ~J-cuR p4-- ~ ~ ~ear- Sltj5~

~ -- ~(r-) )(

hU-gt Heuro h~Ll-e -hgt esl-a-h-euroc-s tJe l-CjOPltAUo-- $(a(Ceurol~-~ ~ -eltu eer- S2f s1ecu-gtlt - AQ-) gtlt

(~~U2 3~)

V (Y- rt = ~-rP(+)i

Cgt ~ 1-tJ~~y Jlt-u-~ ~ ~middotmiddot~middotAL+)gtlt

Y-r~ AtB-) c~ csz1D1-c~0-~ ~ ~~ PC+-) ~

ctYv+-C1AO-oUL~ ~t-c~ tR34 V1I W1 ekt-ccl boo-ltJ1d~

~o~ ~1A01R IM~)-~ l5~

o ~ ~ T ~ C+ C)T v+ ~gt 0 I ~gt 0

~hCCf3- ~5~5gt -bf-e r-vn~ oU-~ ~~ ~ - middotmiddot--T

--- ptt) -=- Pffi Ai et-) +- Aa-)f~) +- (pound amp-)

~ ~) -(5 lt-9I1)-k1tmiddot~middotq-~+~i111I1~t~cJ P~~ otlt2b~7~J

ltsect (+) ~C3E gt6 1~-) lt3gt Cgt

[5 post~ ~) decrcesc-eM+ gt~-~

911 ~ Tgtlt ~ -lcgtltrt-) ~ ~~P(+) )ltt-~C2 gtlt1x -=-- ~ Itlt j

~ctertJb~ egt ~ y (lt+) ~oV8 ~ Sj5~ b-o--~~ ltS

Y((-c )= z-Pet-))lt +- ~-r9(-t) gtlt _+ltTPEt-) X

=-ltrr- L PC+)+1(+)Aamp) +A1(-t-) PCt-)] X c -~-d2ff-)gtlt

VIII

(~+-) =-- lt~ Cf-)Jlt ~ - lt-3 xrgtlt = - C3 11gtlt f1

== ~ --0 C S ltA-Il ~-6tJ0-~(tt-up~1-0 ~ s ~LR

tfiieuropoundgt~ 3-1q) ~ A- ~4-) be coVt-01l~~ au-~ (SLt+-be

U)-t-crvtlAov-fgt bb unded) pO5L~ ~UL1R $l1MWI~ Vyg-~~

Jh~ ~ ~L~ 0-C-cl+CVlu00~ olc~-yen~_-e(J~a-b(e1PgtcWded)

~o~tpoundeuro ~~ st1lA11fr~~m~ PCplusmn-)gt-I~~e 5ok-ec - PIJ)- p C+) M+) +-- ATC+) PC+-) +-~ (+)

~ucpoundf ~

~(~l+) es -xT PA-) x

C5 ~ J-tJop~-ucgtygt ~~ jot- c =-A-8-)~ -KenCR) ~=-l)

C) ~ tQn C~~-EJo-s~t-ckca-Uc1 ~ha-bL-eaU-feLbre~

~oU-t- ~f- ~ AL-t) ~

~ Co tfltferde ~etD~S gt nece-ss~ ~tfgtch-(hJZ9-u-~ Y-fe Vi L~e ~o+- ltagty--ep- thcs ~oh~

1-~Ju-u-oy ~~ ~S+- CS a S~CL~CJct~ ~ SCsa-b~~ ~ ~ pJ- tie02S~ltDULclL~ -ICepound bel ~- r+- 5~1s2 gt 5 L~~

~~ ~St Lh~lt-e- 0D1I~ ~~ ~ Vlc-t-shy

~~ crnucRJ- ~~~~)

Ch8fl1q--~ A-olpat1CQdS(~G~ ---rhQrDtlaquoJ

~1et- SteYJ~~ middotcJ-middotmiddot~P~~ ~~~ k ~5- C~It-) -+-CJ GltIT) lt3 =-~~

ChapJar)lt J2n~D~~ Sta-6t-~ Bo~c9~ ~ S~c ~petJ bOUUAd-eaJ o~~

~ampptc2(- q pef-LJbciL-C ~L~

bt~ ~~ 91-1

lt bull CJt~e-middotp Vn

P0-~OD1C ORB TS

dAgt lfY) oJ_fY)

( (Or~ 8Uf

)lt C E ID CK--1() 1t)e

~ =- X~C I gtlt)

rS-- C5 eo c ~~ l-~-$ fA i1-=z lt3fl 10 ==gt ~C~ -soe~ ~(5 ~~ eurogt-IR~ roc~~~ ur

J--ek ltfLo~) =~--- ~+-- ~~

2rltd ~ Cd) -r+(~OJ ~o~e tb rrn~~1tYl~ lJ)I 152-t--ICJ-Egt

of ~~CQ ~

(-+let) = 4--C

tSr --4-( d -= +-0ltgt 7-leuro ol~~

~Kd ~gt

~+Crzr) ~ P(tC1) (

cctd Camp- I-CO) -= Cgtcgt ) -He ~ef-uve ~lt1r~~e- ~(~

~ltg-e ~ a-5

~- (zt)- oCtlt6) J - 6- t~ b I

J 07 cgt- jD-brr-cfe ~+ p~4 =4 _~ so~

cPC4 ~l I -t~ D ~CO ~ltLjnce ~ J ~L~I 0shy

bY) -f) cgtO CltS I) --Igt gtltraquo 5 u~ 1fAaJ 4 c-t- tj) --egt ~ a-~ n --pound) -=- L-t- 65 0 r0c1S~e ~t-b- ~_

tr~M ~Li1 ~ ~+ be OL boltA-V)~~~ ~tiot-b-u- c~ (j) 0X1--shy ~ c1-5 ~~-e U1JY1-L-tshy sek- ~ L+ COYta-Lo~ 00 eg~elhvtu

fOUYlb ~ L~ C5 ogtp-erLD~t ~_

POI I NCAP-E-middot f3 E H D 1 ~5c N (cf-EcentP-~

JI C5 b~de~ am d- rn 0 ~LJt-eAb-rCcJJt f sUVt-s lfV- L~

A-eso e--I~ 50eu~~ ~o+- S~ UU-- 1-4 ~~ -II(

H ~ ~ ~~0 -fgt i M OoYtoLYs -=-~-~ ~~J- -- y I L r-- - II ~ -J ~j~ - ~-

O~~ fl) A- eo~it ~cee tgt Cgt- ceoSEd or-tnt- ~ ~-ltJ-oa - ~

~oJ ~ CS ~-e TOC7-tgtIEf ~tlIlI)t-~ o~ 0- ros-r-c-f~ ~ t +- I ~- rJ~lerb ~ L~) Qrrcv~ ~c$-~tlt ~L-~T

~C(1) ~ 5-o1Yte 7r~ ~

eGMD 1 gtlt-5cN cptTE-4oH i

ttft M rr2) ry n 0- S CtW~0

1J-e ~6S c3b IV

~ + ampf2 ampL1 ~

C5 ~)t ~oleAl~~ ~ero 9-r)al ~~ l101-~

~~ty) ~~S1~i (11 ~ nO ~cAfiltshycbi~ ~ t-Yd- ~n-r-e~ t5gt fD

( 1tb~~J____C-)j-~5~_~~ltO middot

Exercise~15)([143]) Consider the system

1 = z2 ( 2 2)

2 -Xl - X2 sat X 2 - X3= 3 = X3 sat(x~ -X)

where sat(middot) is the saturation function Show that the origin is the unique equiIibmiddot rium point and use V(z) =xT x to show that it is globally asymptotically stable

~ -~

~ _ ~ +-b~ _~2~_x~

bL-D

~dj (JlJ- ~0ert5~ltyc ~-euHD IJ~ ~ tnid-~ccr or-der- 5-t5 5~gt Y-( LJJ

~ dt)n~ btj ~ ~~d ~ o~tM8-~VcH-~ (Sc~ 10 bull4 )

Exercise ~Consider the system

1 = X2 - g(t)X1(X~ + X~) 2 = -Xl -9(t)X2(Z~ + x~)

where g(t) is ~ntinuously differentiable bounded and g(t) k gt 0 for all t gt o Is the origm UnIformly asymptotically stable Is it exponentially stable shy

o = X2 o = -ZI - Z2 sat(x~ - z~) =gt ZI =0

o = X3 sat(x~ - x~) =gt Z3 sat(-z~) =0 =gt Z3 =0

Hence the origin is the unique equilibrium point consider

Vex) = xTx = x~+x~+zi Vex) = 2[XIX2 - IX2 - x~sat(z~ - z) + zsat(z~ - z)]

= -2(z~ - z~)sat(x~ - z~) $ 0

11 is negative semidefinite v=0 =gt z~(t) == zi(t) =gt 3(t) == 0

Hence both X2(t) and Z3(t) must be constants This implies that 2(t) == O From the second state equation We conclude that Xl(t) == O Then the first state equation implies that Z2(t) == O Consequently Z3(t) == o IY LaSalles theorem (Corollary 32) the origin is globally asymptotically stable

~)Try Vex) =(x~ + x~) t

v = XIX2 - g(t)x~(x~ + 3) - XIZ2 - g(t)xi(xi + xi) = -g(t)(z~ + z~)2 $ -4kV2(x)

Hence Vet x) is negative definite and the origin is uniformly asymptotically stable From the inequality V lt -4kV2 we cannot conclude exponential stability Let us try linearization Assume get) is bounded-

_ 8f t r I _[-3g(t)xyen - g(t)x~ 1-2g(t)r1X2 ] I =[0 1]A(t) - 8x ( ) c=o - -1 - 2g(t)IX2 -3g(t)x~ - g(t)xyen c=o -1 0

A is a constant matrix that is not Hurwitz Hence by Theorem 313 we conclude that the origin is not

exponentially stable

Page 7: (3..2J Le- ~ :C~t)~CQ Pi---GnCLrL€ - Rutgers ECEgajic/pdffiles/Nonlinear... · 2015-06-19 · (1) ~, {3 (

~

~-=O vshy

~~~Su ~~~~~_upO~J~S___ ~d1~~

s1zbs2 ~~e~t-~~--fX~Ob-~ lty)~ ~ ~- ~

~~~ _Sl-W=~(~-~ ~~~(to) - - --_ __

f1 ~(+-) n ~ 1 )((+0) Ue--~-~~~) --4-h - Jl

6ir ts-tA ~~ 0gt-+ 4f-CL ptetDGmiddot~middot ~ d~~)

0- ( -~) u~k4t~(-b)lj=~)Jf~~) lJ- 1 gt(+0) 11 lt- c

bullV(c4-) 6 0 =-gtc=e cs slable )A =~2

~= - ~2 - (2+ 5 en c) ~~

l ~ ~2 L~ Ll c) -= ~ +- -Il---=---Lshy

L- -+-0 Lh c

1 R ts =hIIu-oosea d-c~~te iYi ~ -I ershy

j (7Y Imiddot ~l c ) ~ gtlt-tL+ -~1- yent

3 ~01

~ ~2+~V C~I~t-)

L-+- 2~VhC + cos1shyL2+ s LJlAt-) ~

lt ~ ACi-J x ~c+~ =- 4gtCtl -h) )([~

rJh~ ~~~=J Jhe ltdutlttmiddotbn~ x=-o c~ cun~t1M~ O-~~to1-Gcoe~ ~~te -cs-s- ~ s+oJ-e ~~t~Q fY)~R 5~~~egt

- lt6 C1--t-o)f1 ~Lt-I t-o) II 4 ~ e

~ some rosL~e C-Ol~~b 1L SUI)~ ~

(~ tJI) CO~l IhlCPrcJ x ~bocgtlL b~ C0cu)

1-rhYVI ~~iJ ~ ~-= 0 toe ~ eJ-upoundeLb~ r~~ Y ~ MOIy)~N)e~ ~-e~

~ =-$-~t1J

~~ -5- ~ c 0 -gt0) gtlt ID ~ f~b CS Go V-1-L Vl tgt-~~ ~~lt2Yli-cab(s2) D =-- ~e-~Y) xJI2 - r- evnol ed

~ JO-ltcgtb-(~ ld-~a-~Jb bO~d~ ctx)o

t-tj 5~L1-+ 01 0) u Yl ~- N tJ t)U f- ~

AL+- -- ~t0lt-~~~ J ~=-O

Theuro-ltJ I 1--Me o~~ ts Cgt--Y) ex-poV) ~ H 0e~ 5 ~Le eJ-~ ez b r-c~ po lt)Ut- ~ ~ nOn~re~ 8ltjamp (-eA-M ) q L+- Lgt out ~o-n~~~

~ ~J-cuR p4-- ~ ~ ~ear- Sltj5~

~ -- ~(r-) )(

hU-gt Heuro h~Ll-e -hgt esl-a-h-euroc-s tJe l-CjOPltAUo-- $(a(Ceurol~-~ ~ -eltu eer- S2f s1ecu-gtlt - AQ-) gtlt

(~~U2 3~)

V (Y- rt = ~-rP(+)i

Cgt ~ 1-tJ~~y Jlt-u-~ ~ ~middotmiddot~middotAL+)gtlt

Y-r~ AtB-) c~ csz1D1-c~0-~ ~ ~~ PC+-) ~

ctYv+-C1AO-oUL~ ~t-c~ tR34 V1I W1 ekt-ccl boo-ltJ1d~

~o~ ~1A01R IM~)-~ l5~

o ~ ~ T ~ C+ C)T v+ ~gt 0 I ~gt 0

~hCCf3- ~5~5gt -bf-e r-vn~ oU-~ ~~ ~ - middotmiddot--T

--- ptt) -=- Pffi Ai et-) +- Aa-)f~) +- (pound amp-)

~ ~) -(5 lt-9I1)-k1tmiddot~middotq-~+~i111I1~t~cJ P~~ otlt2b~7~J

ltsect (+) ~C3E gt6 1~-) lt3gt Cgt

[5 post~ ~) decrcesc-eM+ gt~-~

911 ~ Tgtlt ~ -lcgtltrt-) ~ ~~P(+) )ltt-~C2 gtlt1x -=-- ~ Itlt j

~ctertJb~ egt ~ y (lt+) ~oV8 ~ Sj5~ b-o--~~ ltS

Y((-c )= z-Pet-))lt +- ~-r9(-t) gtlt _+ltTPEt-) X

=-ltrr- L PC+)+1(+)Aamp) +A1(-t-) PCt-)] X c -~-d2ff-)gtlt

VIII

(~+-) =-- lt~ Cf-)Jlt ~ - lt-3 xrgtlt = - C3 11gtlt f1

== ~ --0 C S ltA-Il ~-6tJ0-~(tt-up~1-0 ~ s ~LR

tfiieuropoundgt~ 3-1q) ~ A- ~4-) be coVt-01l~~ au-~ (SLt+-be

U)-t-crvtlAov-fgt bb unded) pO5L~ ~UL1R $l1MWI~ Vyg-~~

Jh~ ~ ~L~ 0-C-cl+CVlu00~ olc~-yen~_-e(J~a-b(e1PgtcWded)

~o~tpoundeuro ~~ st1lA11fr~~m~ PCplusmn-)gt-I~~e 5ok-ec - PIJ)- p C+) M+) +-- ATC+) PC+-) +-~ (+)

~ucpoundf ~

~(~l+) es -xT PA-) x

C5 ~ J-tJop~-ucgtygt ~~ jot- c =-A-8-)~ -KenCR) ~=-l)

C) ~ tQn C~~-EJo-s~t-ckca-Uc1 ~ha-bL-eaU-feLbre~

~oU-t- ~f- ~ AL-t) ~

~ Co tfltferde ~etD~S gt nece-ss~ ~tfgtch-(hJZ9-u-~ Y-fe Vi L~e ~o+- ltagty--ep- thcs ~oh~

1-~Ju-u-oy ~~ ~S+- CS a S~CL~CJct~ ~ SCsa-b~~ ~ ~ pJ- tie02S~ltDULclL~ -ICepound bel ~- r+- 5~1s2 gt 5 L~~

~~ ~St Lh~lt-e- 0D1I~ ~~ ~ Vlc-t-shy

~~ crnucRJ- ~~~~)

Ch8fl1q--~ A-olpat1CQdS(~G~ ---rhQrDtlaquoJ

~1et- SteYJ~~ middotcJ-middotmiddot~P~~ ~~~ k ~5- C~It-) -+-CJ GltIT) lt3 =-~~

ChapJar)lt J2n~D~~ Sta-6t-~ Bo~c9~ ~ S~c ~petJ bOUUAd-eaJ o~~

~ampptc2(- q pef-LJbciL-C ~L~

bt~ ~~ 91-1

lt bull CJt~e-middotp Vn

P0-~OD1C ORB TS

dAgt lfY) oJ_fY)

( (Or~ 8Uf

)lt C E ID CK--1() 1t)e

~ =- X~C I gtlt)

rS-- C5 eo c ~~ l-~-$ fA i1-=z lt3fl 10 ==gt ~C~ -soe~ ~(5 ~~ eurogt-IR~ roc~~~ ur

J--ek ltfLo~) =~--- ~+-- ~~

2rltd ~ Cd) -r+(~OJ ~o~e tb rrn~~1tYl~ lJ)I 152-t--ICJ-Egt

of ~~CQ ~

(-+let) = 4--C

tSr --4-( d -= +-0ltgt 7-leuro ol~~

~Kd ~gt

~+Crzr) ~ P(tC1) (

cctd Camp- I-CO) -= Cgtcgt ) -He ~ef-uve ~lt1r~~e- ~(~

~ltg-e ~ a-5

~- (zt)- oCtlt6) J - 6- t~ b I

J 07 cgt- jD-brr-cfe ~+ p~4 =4 _~ so~

cPC4 ~l I -t~ D ~CO ~ltLjnce ~ J ~L~I 0shy

bY) -f) cgtO CltS I) --Igt gtltraquo 5 u~ 1fAaJ 4 c-t- tj) --egt ~ a-~ n --pound) -=- L-t- 65 0 r0c1S~e ~t-b- ~_

tr~M ~Li1 ~ ~+ be OL boltA-V)~~~ ~tiot-b-u- c~ (j) 0X1--shy ~ c1-5 ~~-e U1JY1-L-tshy sek- ~ L+ COYta-Lo~ 00 eg~elhvtu

fOUYlb ~ L~ C5 ogtp-erLD~t ~_

POI I NCAP-E-middot f3 E H D 1 ~5c N (cf-EcentP-~

JI C5 b~de~ am d- rn 0 ~LJt-eAb-rCcJJt f sUVt-s lfV- L~

A-eso e--I~ 50eu~~ ~o+- S~ UU-- 1-4 ~~ -II(

H ~ ~ ~~0 -fgt i M OoYtoLYs -=-~-~ ~~J- -- y I L r-- - II ~ -J ~j~ - ~-

O~~ fl) A- eo~it ~cee tgt Cgt- ceoSEd or-tnt- ~ ~-ltJ-oa - ~

~oJ ~ CS ~-e TOC7-tgtIEf ~tlIlI)t-~ o~ 0- ros-r-c-f~ ~ t +- I ~- rJ~lerb ~ L~) Qrrcv~ ~c$-~tlt ~L-~T

~C(1) ~ 5-o1Yte 7r~ ~

eGMD 1 gtlt-5cN cptTE-4oH i

ttft M rr2) ry n 0- S CtW~0

1J-e ~6S c3b IV

~ + ampf2 ampL1 ~

C5 ~)t ~oleAl~~ ~ero 9-r)al ~~ l101-~

~~ty) ~~S1~i (11 ~ nO ~cAfiltshycbi~ ~ t-Yd- ~n-r-e~ t5gt fD

( 1tb~~J____C-)j-~5~_~~ltO middot

Exercise~15)([143]) Consider the system

1 = z2 ( 2 2)

2 -Xl - X2 sat X 2 - X3= 3 = X3 sat(x~ -X)

where sat(middot) is the saturation function Show that the origin is the unique equiIibmiddot rium point and use V(z) =xT x to show that it is globally asymptotically stable

~ -~

~ _ ~ +-b~ _~2~_x~

bL-D

~dj (JlJ- ~0ert5~ltyc ~-euHD IJ~ ~ tnid-~ccr or-der- 5-t5 5~gt Y-( LJJ

~ dt)n~ btj ~ ~~d ~ o~tM8-~VcH-~ (Sc~ 10 bull4 )

Exercise ~Consider the system

1 = X2 - g(t)X1(X~ + X~) 2 = -Xl -9(t)X2(Z~ + x~)

where g(t) is ~ntinuously differentiable bounded and g(t) k gt 0 for all t gt o Is the origm UnIformly asymptotically stable Is it exponentially stable shy

o = X2 o = -ZI - Z2 sat(x~ - z~) =gt ZI =0

o = X3 sat(x~ - x~) =gt Z3 sat(-z~) =0 =gt Z3 =0

Hence the origin is the unique equilibrium point consider

Vex) = xTx = x~+x~+zi Vex) = 2[XIX2 - IX2 - x~sat(z~ - z) + zsat(z~ - z)]

= -2(z~ - z~)sat(x~ - z~) $ 0

11 is negative semidefinite v=0 =gt z~(t) == zi(t) =gt 3(t) == 0

Hence both X2(t) and Z3(t) must be constants This implies that 2(t) == O From the second state equation We conclude that Xl(t) == O Then the first state equation implies that Z2(t) == O Consequently Z3(t) == o IY LaSalles theorem (Corollary 32) the origin is globally asymptotically stable

~)Try Vex) =(x~ + x~) t

v = XIX2 - g(t)x~(x~ + 3) - XIZ2 - g(t)xi(xi + xi) = -g(t)(z~ + z~)2 $ -4kV2(x)

Hence Vet x) is negative definite and the origin is uniformly asymptotically stable From the inequality V lt -4kV2 we cannot conclude exponential stability Let us try linearization Assume get) is bounded-

_ 8f t r I _[-3g(t)xyen - g(t)x~ 1-2g(t)r1X2 ] I =[0 1]A(t) - 8x ( ) c=o - -1 - 2g(t)IX2 -3g(t)x~ - g(t)xyen c=o -1 0

A is a constant matrix that is not Hurwitz Hence by Theorem 313 we conclude that the origin is not

exponentially stable

Page 8: (3..2J Le- ~ :C~t)~CQ Pi---GnCLrL€ - Rutgers ECEgajic/pdffiles/Nonlinear... · 2015-06-19 · (1) ~, {3 (

lt ~ ACi-J x ~c+~ =- 4gtCtl -h) )([~

rJh~ ~~~=J Jhe ltdutlttmiddotbn~ x=-o c~ cun~t1M~ O-~~to1-Gcoe~ ~~te -cs-s- ~ s+oJ-e ~~t~Q fY)~R 5~~~egt

- lt6 C1--t-o)f1 ~Lt-I t-o) II 4 ~ e

~ some rosL~e C-Ol~~b 1L SUI)~ ~

(~ tJI) CO~l IhlCPrcJ x ~bocgtlL b~ C0cu)

1-rhYVI ~~iJ ~ ~-= 0 toe ~ eJ-upoundeLb~ r~~ Y ~ MOIy)~N)e~ ~-e~

~ =-$-~t1J

~~ -5- ~ c 0 -gt0) gtlt ID ~ f~b CS Go V-1-L Vl tgt-~~ ~~lt2Yli-cab(s2) D =-- ~e-~Y) xJI2 - r- evnol ed

~ JO-ltcgtb-(~ ld-~a-~Jb bO~d~ ctx)o

t-tj 5~L1-+ 01 0) u Yl ~- N tJ t)U f- ~

AL+- -- ~t0lt-~~~ J ~=-O

Theuro-ltJ I 1--Me o~~ ts Cgt--Y) ex-poV) ~ H 0e~ 5 ~Le eJ-~ ez b r-c~ po lt)Ut- ~ ~ nOn~re~ 8ltjamp (-eA-M ) q L+- Lgt out ~o-n~~~

~ ~J-cuR p4-- ~ ~ ~ear- Sltj5~

~ -- ~(r-) )(

hU-gt Heuro h~Ll-e -hgt esl-a-h-euroc-s tJe l-CjOPltAUo-- $(a(Ceurol~-~ ~ -eltu eer- S2f s1ecu-gtlt - AQ-) gtlt

(~~U2 3~)

V (Y- rt = ~-rP(+)i

Cgt ~ 1-tJ~~y Jlt-u-~ ~ ~middotmiddot~middotAL+)gtlt

Y-r~ AtB-) c~ csz1D1-c~0-~ ~ ~~ PC+-) ~

ctYv+-C1AO-oUL~ ~t-c~ tR34 V1I W1 ekt-ccl boo-ltJ1d~

~o~ ~1A01R IM~)-~ l5~

o ~ ~ T ~ C+ C)T v+ ~gt 0 I ~gt 0

~hCCf3- ~5~5gt -bf-e r-vn~ oU-~ ~~ ~ - middotmiddot--T

--- ptt) -=- Pffi Ai et-) +- Aa-)f~) +- (pound amp-)

~ ~) -(5 lt-9I1)-k1tmiddot~middotq-~+~i111I1~t~cJ P~~ otlt2b~7~J

ltsect (+) ~C3E gt6 1~-) lt3gt Cgt

[5 post~ ~) decrcesc-eM+ gt~-~

911 ~ Tgtlt ~ -lcgtltrt-) ~ ~~P(+) )ltt-~C2 gtlt1x -=-- ~ Itlt j

~ctertJb~ egt ~ y (lt+) ~oV8 ~ Sj5~ b-o--~~ ltS

Y((-c )= z-Pet-))lt +- ~-r9(-t) gtlt _+ltTPEt-) X

=-ltrr- L PC+)+1(+)Aamp) +A1(-t-) PCt-)] X c -~-d2ff-)gtlt

VIII

(~+-) =-- lt~ Cf-)Jlt ~ - lt-3 xrgtlt = - C3 11gtlt f1

== ~ --0 C S ltA-Il ~-6tJ0-~(tt-up~1-0 ~ s ~LR

tfiieuropoundgt~ 3-1q) ~ A- ~4-) be coVt-01l~~ au-~ (SLt+-be

U)-t-crvtlAov-fgt bb unded) pO5L~ ~UL1R $l1MWI~ Vyg-~~

Jh~ ~ ~L~ 0-C-cl+CVlu00~ olc~-yen~_-e(J~a-b(e1PgtcWded)

~o~tpoundeuro ~~ st1lA11fr~~m~ PCplusmn-)gt-I~~e 5ok-ec - PIJ)- p C+) M+) +-- ATC+) PC+-) +-~ (+)

~ucpoundf ~

~(~l+) es -xT PA-) x

C5 ~ J-tJop~-ucgtygt ~~ jot- c =-A-8-)~ -KenCR) ~=-l)

C) ~ tQn C~~-EJo-s~t-ckca-Uc1 ~ha-bL-eaU-feLbre~

~oU-t- ~f- ~ AL-t) ~

~ Co tfltferde ~etD~S gt nece-ss~ ~tfgtch-(hJZ9-u-~ Y-fe Vi L~e ~o+- ltagty--ep- thcs ~oh~

1-~Ju-u-oy ~~ ~S+- CS a S~CL~CJct~ ~ SCsa-b~~ ~ ~ pJ- tie02S~ltDULclL~ -ICepound bel ~- r+- 5~1s2 gt 5 L~~

~~ ~St Lh~lt-e- 0D1I~ ~~ ~ Vlc-t-shy

~~ crnucRJ- ~~~~)

Ch8fl1q--~ A-olpat1CQdS(~G~ ---rhQrDtlaquoJ

~1et- SteYJ~~ middotcJ-middotmiddot~P~~ ~~~ k ~5- C~It-) -+-CJ GltIT) lt3 =-~~

ChapJar)lt J2n~D~~ Sta-6t-~ Bo~c9~ ~ S~c ~petJ bOUUAd-eaJ o~~

~ampptc2(- q pef-LJbciL-C ~L~

bt~ ~~ 91-1

lt bull CJt~e-middotp Vn

P0-~OD1C ORB TS

dAgt lfY) oJ_fY)

( (Or~ 8Uf

)lt C E ID CK--1() 1t)e

~ =- X~C I gtlt)

rS-- C5 eo c ~~ l-~-$ fA i1-=z lt3fl 10 ==gt ~C~ -soe~ ~(5 ~~ eurogt-IR~ roc~~~ ur

J--ek ltfLo~) =~--- ~+-- ~~

2rltd ~ Cd) -r+(~OJ ~o~e tb rrn~~1tYl~ lJ)I 152-t--ICJ-Egt

of ~~CQ ~

(-+let) = 4--C

tSr --4-( d -= +-0ltgt 7-leuro ol~~

~Kd ~gt

~+Crzr) ~ P(tC1) (

cctd Camp- I-CO) -= Cgtcgt ) -He ~ef-uve ~lt1r~~e- ~(~

~ltg-e ~ a-5

~- (zt)- oCtlt6) J - 6- t~ b I

J 07 cgt- jD-brr-cfe ~+ p~4 =4 _~ so~

cPC4 ~l I -t~ D ~CO ~ltLjnce ~ J ~L~I 0shy

bY) -f) cgtO CltS I) --Igt gtltraquo 5 u~ 1fAaJ 4 c-t- tj) --egt ~ a-~ n --pound) -=- L-t- 65 0 r0c1S~e ~t-b- ~_

tr~M ~Li1 ~ ~+ be OL boltA-V)~~~ ~tiot-b-u- c~ (j) 0X1--shy ~ c1-5 ~~-e U1JY1-L-tshy sek- ~ L+ COYta-Lo~ 00 eg~elhvtu

fOUYlb ~ L~ C5 ogtp-erLD~t ~_

POI I NCAP-E-middot f3 E H D 1 ~5c N (cf-EcentP-~

JI C5 b~de~ am d- rn 0 ~LJt-eAb-rCcJJt f sUVt-s lfV- L~

A-eso e--I~ 50eu~~ ~o+- S~ UU-- 1-4 ~~ -II(

H ~ ~ ~~0 -fgt i M OoYtoLYs -=-~-~ ~~J- -- y I L r-- - II ~ -J ~j~ - ~-

O~~ fl) A- eo~it ~cee tgt Cgt- ceoSEd or-tnt- ~ ~-ltJ-oa - ~

~oJ ~ CS ~-e TOC7-tgtIEf ~tlIlI)t-~ o~ 0- ros-r-c-f~ ~ t +- I ~- rJ~lerb ~ L~) Qrrcv~ ~c$-~tlt ~L-~T

~C(1) ~ 5-o1Yte 7r~ ~

eGMD 1 gtlt-5cN cptTE-4oH i

ttft M rr2) ry n 0- S CtW~0

1J-e ~6S c3b IV

~ + ampf2 ampL1 ~

C5 ~)t ~oleAl~~ ~ero 9-r)al ~~ l101-~

~~ty) ~~S1~i (11 ~ nO ~cAfiltshycbi~ ~ t-Yd- ~n-r-e~ t5gt fD

( 1tb~~J____C-)j-~5~_~~ltO middot

Exercise~15)([143]) Consider the system

1 = z2 ( 2 2)

2 -Xl - X2 sat X 2 - X3= 3 = X3 sat(x~ -X)

where sat(middot) is the saturation function Show that the origin is the unique equiIibmiddot rium point and use V(z) =xT x to show that it is globally asymptotically stable

~ -~

~ _ ~ +-b~ _~2~_x~

bL-D

~dj (JlJ- ~0ert5~ltyc ~-euHD IJ~ ~ tnid-~ccr or-der- 5-t5 5~gt Y-( LJJ

~ dt)n~ btj ~ ~~d ~ o~tM8-~VcH-~ (Sc~ 10 bull4 )

Exercise ~Consider the system

1 = X2 - g(t)X1(X~ + X~) 2 = -Xl -9(t)X2(Z~ + x~)

where g(t) is ~ntinuously differentiable bounded and g(t) k gt 0 for all t gt o Is the origm UnIformly asymptotically stable Is it exponentially stable shy

o = X2 o = -ZI - Z2 sat(x~ - z~) =gt ZI =0

o = X3 sat(x~ - x~) =gt Z3 sat(-z~) =0 =gt Z3 =0

Hence the origin is the unique equilibrium point consider

Vex) = xTx = x~+x~+zi Vex) = 2[XIX2 - IX2 - x~sat(z~ - z) + zsat(z~ - z)]

= -2(z~ - z~)sat(x~ - z~) $ 0

11 is negative semidefinite v=0 =gt z~(t) == zi(t) =gt 3(t) == 0

Hence both X2(t) and Z3(t) must be constants This implies that 2(t) == O From the second state equation We conclude that Xl(t) == O Then the first state equation implies that Z2(t) == O Consequently Z3(t) == o IY LaSalles theorem (Corollary 32) the origin is globally asymptotically stable

~)Try Vex) =(x~ + x~) t

v = XIX2 - g(t)x~(x~ + 3) - XIZ2 - g(t)xi(xi + xi) = -g(t)(z~ + z~)2 $ -4kV2(x)

Hence Vet x) is negative definite and the origin is uniformly asymptotically stable From the inequality V lt -4kV2 we cannot conclude exponential stability Let us try linearization Assume get) is bounded-

_ 8f t r I _[-3g(t)xyen - g(t)x~ 1-2g(t)r1X2 ] I =[0 1]A(t) - 8x ( ) c=o - -1 - 2g(t)IX2 -3g(t)x~ - g(t)xyen c=o -1 0

A is a constant matrix that is not Hurwitz Hence by Theorem 313 we conclude that the origin is not

exponentially stable

Page 9: (3..2J Le- ~ :C~t)~CQ Pi---GnCLrL€ - Rutgers ECEgajic/pdffiles/Nonlinear... · 2015-06-19 · (1) ~, {3 (

hU-gt Heuro h~Ll-e -hgt esl-a-h-euroc-s tJe l-CjOPltAUo-- $(a(Ceurol~-~ ~ -eltu eer- S2f s1ecu-gtlt - AQ-) gtlt

(~~U2 3~)

V (Y- rt = ~-rP(+)i

Cgt ~ 1-tJ~~y Jlt-u-~ ~ ~middotmiddot~middotAL+)gtlt

Y-r~ AtB-) c~ csz1D1-c~0-~ ~ ~~ PC+-) ~

ctYv+-C1AO-oUL~ ~t-c~ tR34 V1I W1 ekt-ccl boo-ltJ1d~

~o~ ~1A01R IM~)-~ l5~

o ~ ~ T ~ C+ C)T v+ ~gt 0 I ~gt 0

~hCCf3- ~5~5gt -bf-e r-vn~ oU-~ ~~ ~ - middotmiddot--T

--- ptt) -=- Pffi Ai et-) +- Aa-)f~) +- (pound amp-)

~ ~) -(5 lt-9I1)-k1tmiddot~middotq-~+~i111I1~t~cJ P~~ otlt2b~7~J

ltsect (+) ~C3E gt6 1~-) lt3gt Cgt

[5 post~ ~) decrcesc-eM+ gt~-~

911 ~ Tgtlt ~ -lcgtltrt-) ~ ~~P(+) )ltt-~C2 gtlt1x -=-- ~ Itlt j

~ctertJb~ egt ~ y (lt+) ~oV8 ~ Sj5~ b-o--~~ ltS

Y((-c )= z-Pet-))lt +- ~-r9(-t) gtlt _+ltTPEt-) X

=-ltrr- L PC+)+1(+)Aamp) +A1(-t-) PCt-)] X c -~-d2ff-)gtlt

VIII

(~+-) =-- lt~ Cf-)Jlt ~ - lt-3 xrgtlt = - C3 11gtlt f1

== ~ --0 C S ltA-Il ~-6tJ0-~(tt-up~1-0 ~ s ~LR

tfiieuropoundgt~ 3-1q) ~ A- ~4-) be coVt-01l~~ au-~ (SLt+-be

U)-t-crvtlAov-fgt bb unded) pO5L~ ~UL1R $l1MWI~ Vyg-~~

Jh~ ~ ~L~ 0-C-cl+CVlu00~ olc~-yen~_-e(J~a-b(e1PgtcWded)

~o~tpoundeuro ~~ st1lA11fr~~m~ PCplusmn-)gt-I~~e 5ok-ec - PIJ)- p C+) M+) +-- ATC+) PC+-) +-~ (+)

~ucpoundf ~

~(~l+) es -xT PA-) x

C5 ~ J-tJop~-ucgtygt ~~ jot- c =-A-8-)~ -KenCR) ~=-l)

C) ~ tQn C~~-EJo-s~t-ckca-Uc1 ~ha-bL-eaU-feLbre~

~oU-t- ~f- ~ AL-t) ~

~ Co tfltferde ~etD~S gt nece-ss~ ~tfgtch-(hJZ9-u-~ Y-fe Vi L~e ~o+- ltagty--ep- thcs ~oh~

1-~Ju-u-oy ~~ ~S+- CS a S~CL~CJct~ ~ SCsa-b~~ ~ ~ pJ- tie02S~ltDULclL~ -ICepound bel ~- r+- 5~1s2 gt 5 L~~

~~ ~St Lh~lt-e- 0D1I~ ~~ ~ Vlc-t-shy

~~ crnucRJ- ~~~~)

Ch8fl1q--~ A-olpat1CQdS(~G~ ---rhQrDtlaquoJ

~1et- SteYJ~~ middotcJ-middotmiddot~P~~ ~~~ k ~5- C~It-) -+-CJ GltIT) lt3 =-~~

ChapJar)lt J2n~D~~ Sta-6t-~ Bo~c9~ ~ S~c ~petJ bOUUAd-eaJ o~~

~ampptc2(- q pef-LJbciL-C ~L~

bt~ ~~ 91-1

lt bull CJt~e-middotp Vn

P0-~OD1C ORB TS

dAgt lfY) oJ_fY)

( (Or~ 8Uf

)lt C E ID CK--1() 1t)e

~ =- X~C I gtlt)

rS-- C5 eo c ~~ l-~-$ fA i1-=z lt3fl 10 ==gt ~C~ -soe~ ~(5 ~~ eurogt-IR~ roc~~~ ur

J--ek ltfLo~) =~--- ~+-- ~~

2rltd ~ Cd) -r+(~OJ ~o~e tb rrn~~1tYl~ lJ)I 152-t--ICJ-Egt

of ~~CQ ~

(-+let) = 4--C

tSr --4-( d -= +-0ltgt 7-leuro ol~~

~Kd ~gt

~+Crzr) ~ P(tC1) (

cctd Camp- I-CO) -= Cgtcgt ) -He ~ef-uve ~lt1r~~e- ~(~

~ltg-e ~ a-5

~- (zt)- oCtlt6) J - 6- t~ b I

J 07 cgt- jD-brr-cfe ~+ p~4 =4 _~ so~

cPC4 ~l I -t~ D ~CO ~ltLjnce ~ J ~L~I 0shy

bY) -f) cgtO CltS I) --Igt gtltraquo 5 u~ 1fAaJ 4 c-t- tj) --egt ~ a-~ n --pound) -=- L-t- 65 0 r0c1S~e ~t-b- ~_

tr~M ~Li1 ~ ~+ be OL boltA-V)~~~ ~tiot-b-u- c~ (j) 0X1--shy ~ c1-5 ~~-e U1JY1-L-tshy sek- ~ L+ COYta-Lo~ 00 eg~elhvtu

fOUYlb ~ L~ C5 ogtp-erLD~t ~_

POI I NCAP-E-middot f3 E H D 1 ~5c N (cf-EcentP-~

JI C5 b~de~ am d- rn 0 ~LJt-eAb-rCcJJt f sUVt-s lfV- L~

A-eso e--I~ 50eu~~ ~o+- S~ UU-- 1-4 ~~ -II(

H ~ ~ ~~0 -fgt i M OoYtoLYs -=-~-~ ~~J- -- y I L r-- - II ~ -J ~j~ - ~-

O~~ fl) A- eo~it ~cee tgt Cgt- ceoSEd or-tnt- ~ ~-ltJ-oa - ~

~oJ ~ CS ~-e TOC7-tgtIEf ~tlIlI)t-~ o~ 0- ros-r-c-f~ ~ t +- I ~- rJ~lerb ~ L~) Qrrcv~ ~c$-~tlt ~L-~T

~C(1) ~ 5-o1Yte 7r~ ~

eGMD 1 gtlt-5cN cptTE-4oH i

ttft M rr2) ry n 0- S CtW~0

1J-e ~6S c3b IV

~ + ampf2 ampL1 ~

C5 ~)t ~oleAl~~ ~ero 9-r)al ~~ l101-~

~~ty) ~~S1~i (11 ~ nO ~cAfiltshycbi~ ~ t-Yd- ~n-r-e~ t5gt fD

( 1tb~~J____C-)j-~5~_~~ltO middot

Exercise~15)([143]) Consider the system

1 = z2 ( 2 2)

2 -Xl - X2 sat X 2 - X3= 3 = X3 sat(x~ -X)

where sat(middot) is the saturation function Show that the origin is the unique equiIibmiddot rium point and use V(z) =xT x to show that it is globally asymptotically stable

~ -~

~ _ ~ +-b~ _~2~_x~

bL-D

~dj (JlJ- ~0ert5~ltyc ~-euHD IJ~ ~ tnid-~ccr or-der- 5-t5 5~gt Y-( LJJ

~ dt)n~ btj ~ ~~d ~ o~tM8-~VcH-~ (Sc~ 10 bull4 )

Exercise ~Consider the system

1 = X2 - g(t)X1(X~ + X~) 2 = -Xl -9(t)X2(Z~ + x~)

where g(t) is ~ntinuously differentiable bounded and g(t) k gt 0 for all t gt o Is the origm UnIformly asymptotically stable Is it exponentially stable shy

o = X2 o = -ZI - Z2 sat(x~ - z~) =gt ZI =0

o = X3 sat(x~ - x~) =gt Z3 sat(-z~) =0 =gt Z3 =0

Hence the origin is the unique equilibrium point consider

Vex) = xTx = x~+x~+zi Vex) = 2[XIX2 - IX2 - x~sat(z~ - z) + zsat(z~ - z)]

= -2(z~ - z~)sat(x~ - z~) $ 0

11 is negative semidefinite v=0 =gt z~(t) == zi(t) =gt 3(t) == 0

Hence both X2(t) and Z3(t) must be constants This implies that 2(t) == O From the second state equation We conclude that Xl(t) == O Then the first state equation implies that Z2(t) == O Consequently Z3(t) == o IY LaSalles theorem (Corollary 32) the origin is globally asymptotically stable

~)Try Vex) =(x~ + x~) t

v = XIX2 - g(t)x~(x~ + 3) - XIZ2 - g(t)xi(xi + xi) = -g(t)(z~ + z~)2 $ -4kV2(x)

Hence Vet x) is negative definite and the origin is uniformly asymptotically stable From the inequality V lt -4kV2 we cannot conclude exponential stability Let us try linearization Assume get) is bounded-

_ 8f t r I _[-3g(t)xyen - g(t)x~ 1-2g(t)r1X2 ] I =[0 1]A(t) - 8x ( ) c=o - -1 - 2g(t)IX2 -3g(t)x~ - g(t)xyen c=o -1 0

A is a constant matrix that is not Hurwitz Hence by Theorem 313 we conclude that the origin is not

exponentially stable

Page 10: (3..2J Le- ~ :C~t)~CQ Pi---GnCLrL€ - Rutgers ECEgajic/pdffiles/Nonlinear... · 2015-06-19 · (1) ~, {3 (

tfiieuropoundgt~ 3-1q) ~ A- ~4-) be coVt-01l~~ au-~ (SLt+-be

U)-t-crvtlAov-fgt bb unded) pO5L~ ~UL1R $l1MWI~ Vyg-~~

Jh~ ~ ~L~ 0-C-cl+CVlu00~ olc~-yen~_-e(J~a-b(e1PgtcWded)

~o~tpoundeuro ~~ st1lA11fr~~m~ PCplusmn-)gt-I~~e 5ok-ec - PIJ)- p C+) M+) +-- ATC+) PC+-) +-~ (+)

~ucpoundf ~

~(~l+) es -xT PA-) x

C5 ~ J-tJop~-ucgtygt ~~ jot- c =-A-8-)~ -KenCR) ~=-l)

C) ~ tQn C~~-EJo-s~t-ckca-Uc1 ~ha-bL-eaU-feLbre~

~oU-t- ~f- ~ AL-t) ~

~ Co tfltferde ~etD~S gt nece-ss~ ~tfgtch-(hJZ9-u-~ Y-fe Vi L~e ~o+- ltagty--ep- thcs ~oh~

1-~Ju-u-oy ~~ ~S+- CS a S~CL~CJct~ ~ SCsa-b~~ ~ ~ pJ- tie02S~ltDULclL~ -ICepound bel ~- r+- 5~1s2 gt 5 L~~

~~ ~St Lh~lt-e- 0D1I~ ~~ ~ Vlc-t-shy

~~ crnucRJ- ~~~~)

Ch8fl1q--~ A-olpat1CQdS(~G~ ---rhQrDtlaquoJ

~1et- SteYJ~~ middotcJ-middotmiddot~P~~ ~~~ k ~5- C~It-) -+-CJ GltIT) lt3 =-~~

ChapJar)lt J2n~D~~ Sta-6t-~ Bo~c9~ ~ S~c ~petJ bOUUAd-eaJ o~~

~ampptc2(- q pef-LJbciL-C ~L~

bt~ ~~ 91-1

lt bull CJt~e-middotp Vn

P0-~OD1C ORB TS

dAgt lfY) oJ_fY)

( (Or~ 8Uf

)lt C E ID CK--1() 1t)e

~ =- X~C I gtlt)

rS-- C5 eo c ~~ l-~-$ fA i1-=z lt3fl 10 ==gt ~C~ -soe~ ~(5 ~~ eurogt-IR~ roc~~~ ur

J--ek ltfLo~) =~--- ~+-- ~~

2rltd ~ Cd) -r+(~OJ ~o~e tb rrn~~1tYl~ lJ)I 152-t--ICJ-Egt

of ~~CQ ~

(-+let) = 4--C

tSr --4-( d -= +-0ltgt 7-leuro ol~~

~Kd ~gt

~+Crzr) ~ P(tC1) (

cctd Camp- I-CO) -= Cgtcgt ) -He ~ef-uve ~lt1r~~e- ~(~

~ltg-e ~ a-5

~- (zt)- oCtlt6) J - 6- t~ b I

J 07 cgt- jD-brr-cfe ~+ p~4 =4 _~ so~

cPC4 ~l I -t~ D ~CO ~ltLjnce ~ J ~L~I 0shy

bY) -f) cgtO CltS I) --Igt gtltraquo 5 u~ 1fAaJ 4 c-t- tj) --egt ~ a-~ n --pound) -=- L-t- 65 0 r0c1S~e ~t-b- ~_

tr~M ~Li1 ~ ~+ be OL boltA-V)~~~ ~tiot-b-u- c~ (j) 0X1--shy ~ c1-5 ~~-e U1JY1-L-tshy sek- ~ L+ COYta-Lo~ 00 eg~elhvtu

fOUYlb ~ L~ C5 ogtp-erLD~t ~_

POI I NCAP-E-middot f3 E H D 1 ~5c N (cf-EcentP-~

JI C5 b~de~ am d- rn 0 ~LJt-eAb-rCcJJt f sUVt-s lfV- L~

A-eso e--I~ 50eu~~ ~o+- S~ UU-- 1-4 ~~ -II(

H ~ ~ ~~0 -fgt i M OoYtoLYs -=-~-~ ~~J- -- y I L r-- - II ~ -J ~j~ - ~-

O~~ fl) A- eo~it ~cee tgt Cgt- ceoSEd or-tnt- ~ ~-ltJ-oa - ~

~oJ ~ CS ~-e TOC7-tgtIEf ~tlIlI)t-~ o~ 0- ros-r-c-f~ ~ t +- I ~- rJ~lerb ~ L~) Qrrcv~ ~c$-~tlt ~L-~T

~C(1) ~ 5-o1Yte 7r~ ~

eGMD 1 gtlt-5cN cptTE-4oH i

ttft M rr2) ry n 0- S CtW~0

1J-e ~6S c3b IV

~ + ampf2 ampL1 ~

C5 ~)t ~oleAl~~ ~ero 9-r)al ~~ l101-~

~~ty) ~~S1~i (11 ~ nO ~cAfiltshycbi~ ~ t-Yd- ~n-r-e~ t5gt fD

( 1tb~~J____C-)j-~5~_~~ltO middot

Exercise~15)([143]) Consider the system

1 = z2 ( 2 2)

2 -Xl - X2 sat X 2 - X3= 3 = X3 sat(x~ -X)

where sat(middot) is the saturation function Show that the origin is the unique equiIibmiddot rium point and use V(z) =xT x to show that it is globally asymptotically stable

~ -~

~ _ ~ +-b~ _~2~_x~

bL-D

~dj (JlJ- ~0ert5~ltyc ~-euHD IJ~ ~ tnid-~ccr or-der- 5-t5 5~gt Y-( LJJ

~ dt)n~ btj ~ ~~d ~ o~tM8-~VcH-~ (Sc~ 10 bull4 )

Exercise ~Consider the system

1 = X2 - g(t)X1(X~ + X~) 2 = -Xl -9(t)X2(Z~ + x~)

where g(t) is ~ntinuously differentiable bounded and g(t) k gt 0 for all t gt o Is the origm UnIformly asymptotically stable Is it exponentially stable shy

o = X2 o = -ZI - Z2 sat(x~ - z~) =gt ZI =0

o = X3 sat(x~ - x~) =gt Z3 sat(-z~) =0 =gt Z3 =0

Hence the origin is the unique equilibrium point consider

Vex) = xTx = x~+x~+zi Vex) = 2[XIX2 - IX2 - x~sat(z~ - z) + zsat(z~ - z)]

= -2(z~ - z~)sat(x~ - z~) $ 0

11 is negative semidefinite v=0 =gt z~(t) == zi(t) =gt 3(t) == 0

Hence both X2(t) and Z3(t) must be constants This implies that 2(t) == O From the second state equation We conclude that Xl(t) == O Then the first state equation implies that Z2(t) == O Consequently Z3(t) == o IY LaSalles theorem (Corollary 32) the origin is globally asymptotically stable

~)Try Vex) =(x~ + x~) t

v = XIX2 - g(t)x~(x~ + 3) - XIZ2 - g(t)xi(xi + xi) = -g(t)(z~ + z~)2 $ -4kV2(x)

Hence Vet x) is negative definite and the origin is uniformly asymptotically stable From the inequality V lt -4kV2 we cannot conclude exponential stability Let us try linearization Assume get) is bounded-

_ 8f t r I _[-3g(t)xyen - g(t)x~ 1-2g(t)r1X2 ] I =[0 1]A(t) - 8x ( ) c=o - -1 - 2g(t)IX2 -3g(t)x~ - g(t)xyen c=o -1 0

A is a constant matrix that is not Hurwitz Hence by Theorem 313 we conclude that the origin is not

exponentially stable

Page 11: (3..2J Le- ~ :C~t)~CQ Pi---GnCLrL€ - Rutgers ECEgajic/pdffiles/Nonlinear... · 2015-06-19 · (1) ~, {3 (

lt bull CJt~e-middotp Vn

P0-~OD1C ORB TS

dAgt lfY) oJ_fY)

( (Or~ 8Uf

)lt C E ID CK--1() 1t)e

~ =- X~C I gtlt)

rS-- C5 eo c ~~ l-~-$ fA i1-=z lt3fl 10 ==gt ~C~ -soe~ ~(5 ~~ eurogt-IR~ roc~~~ ur

J--ek ltfLo~) =~--- ~+-- ~~

2rltd ~ Cd) -r+(~OJ ~o~e tb rrn~~1tYl~ lJ)I 152-t--ICJ-Egt

of ~~CQ ~

(-+let) = 4--C

tSr --4-( d -= +-0ltgt 7-leuro ol~~

~Kd ~gt

~+Crzr) ~ P(tC1) (

cctd Camp- I-CO) -= Cgtcgt ) -He ~ef-uve ~lt1r~~e- ~(~

~ltg-e ~ a-5

~- (zt)- oCtlt6) J - 6- t~ b I

J 07 cgt- jD-brr-cfe ~+ p~4 =4 _~ so~

cPC4 ~l I -t~ D ~CO ~ltLjnce ~ J ~L~I 0shy

bY) -f) cgtO CltS I) --Igt gtltraquo 5 u~ 1fAaJ 4 c-t- tj) --egt ~ a-~ n --pound) -=- L-t- 65 0 r0c1S~e ~t-b- ~_

tr~M ~Li1 ~ ~+ be OL boltA-V)~~~ ~tiot-b-u- c~ (j) 0X1--shy ~ c1-5 ~~-e U1JY1-L-tshy sek- ~ L+ COYta-Lo~ 00 eg~elhvtu

fOUYlb ~ L~ C5 ogtp-erLD~t ~_

POI I NCAP-E-middot f3 E H D 1 ~5c N (cf-EcentP-~

JI C5 b~de~ am d- rn 0 ~LJt-eAb-rCcJJt f sUVt-s lfV- L~

A-eso e--I~ 50eu~~ ~o+- S~ UU-- 1-4 ~~ -II(

H ~ ~ ~~0 -fgt i M OoYtoLYs -=-~-~ ~~J- -- y I L r-- - II ~ -J ~j~ - ~-

O~~ fl) A- eo~it ~cee tgt Cgt- ceoSEd or-tnt- ~ ~-ltJ-oa - ~

~oJ ~ CS ~-e TOC7-tgtIEf ~tlIlI)t-~ o~ 0- ros-r-c-f~ ~ t +- I ~- rJ~lerb ~ L~) Qrrcv~ ~c$-~tlt ~L-~T

~C(1) ~ 5-o1Yte 7r~ ~

eGMD 1 gtlt-5cN cptTE-4oH i

ttft M rr2) ry n 0- S CtW~0

1J-e ~6S c3b IV

~ + ampf2 ampL1 ~

C5 ~)t ~oleAl~~ ~ero 9-r)al ~~ l101-~

~~ty) ~~S1~i (11 ~ nO ~cAfiltshycbi~ ~ t-Yd- ~n-r-e~ t5gt fD

( 1tb~~J____C-)j-~5~_~~ltO middot

Exercise~15)([143]) Consider the system

1 = z2 ( 2 2)

2 -Xl - X2 sat X 2 - X3= 3 = X3 sat(x~ -X)

where sat(middot) is the saturation function Show that the origin is the unique equiIibmiddot rium point and use V(z) =xT x to show that it is globally asymptotically stable

~ -~

~ _ ~ +-b~ _~2~_x~

bL-D

~dj (JlJ- ~0ert5~ltyc ~-euHD IJ~ ~ tnid-~ccr or-der- 5-t5 5~gt Y-( LJJ

~ dt)n~ btj ~ ~~d ~ o~tM8-~VcH-~ (Sc~ 10 bull4 )

Exercise ~Consider the system

1 = X2 - g(t)X1(X~ + X~) 2 = -Xl -9(t)X2(Z~ + x~)

where g(t) is ~ntinuously differentiable bounded and g(t) k gt 0 for all t gt o Is the origm UnIformly asymptotically stable Is it exponentially stable shy

o = X2 o = -ZI - Z2 sat(x~ - z~) =gt ZI =0

o = X3 sat(x~ - x~) =gt Z3 sat(-z~) =0 =gt Z3 =0

Hence the origin is the unique equilibrium point consider

Vex) = xTx = x~+x~+zi Vex) = 2[XIX2 - IX2 - x~sat(z~ - z) + zsat(z~ - z)]

= -2(z~ - z~)sat(x~ - z~) $ 0

11 is negative semidefinite v=0 =gt z~(t) == zi(t) =gt 3(t) == 0

Hence both X2(t) and Z3(t) must be constants This implies that 2(t) == O From the second state equation We conclude that Xl(t) == O Then the first state equation implies that Z2(t) == O Consequently Z3(t) == o IY LaSalles theorem (Corollary 32) the origin is globally asymptotically stable

~)Try Vex) =(x~ + x~) t

v = XIX2 - g(t)x~(x~ + 3) - XIZ2 - g(t)xi(xi + xi) = -g(t)(z~ + z~)2 $ -4kV2(x)

Hence Vet x) is negative definite and the origin is uniformly asymptotically stable From the inequality V lt -4kV2 we cannot conclude exponential stability Let us try linearization Assume get) is bounded-

_ 8f t r I _[-3g(t)xyen - g(t)x~ 1-2g(t)r1X2 ] I =[0 1]A(t) - 8x ( ) c=o - -1 - 2g(t)IX2 -3g(t)x~ - g(t)xyen c=o -1 0

A is a constant matrix that is not Hurwitz Hence by Theorem 313 we conclude that the origin is not

exponentially stable

Page 12: (3..2J Le- ~ :C~t)~CQ Pi---GnCLrL€ - Rutgers ECEgajic/pdffiles/Nonlinear... · 2015-06-19 · (1) ~, {3 (

JI C5 b~de~ am d- rn 0 ~LJt-eAb-rCcJJt f sUVt-s lfV- L~

A-eso e--I~ 50eu~~ ~o+- S~ UU-- 1-4 ~~ -II(

H ~ ~ ~~0 -fgt i M OoYtoLYs -=-~-~ ~~J- -- y I L r-- - II ~ -J ~j~ - ~-

O~~ fl) A- eo~it ~cee tgt Cgt- ceoSEd or-tnt- ~ ~-ltJ-oa - ~

~oJ ~ CS ~-e TOC7-tgtIEf ~tlIlI)t-~ o~ 0- ros-r-c-f~ ~ t +- I ~- rJ~lerb ~ L~) Qrrcv~ ~c$-~tlt ~L-~T

~C(1) ~ 5-o1Yte 7r~ ~

eGMD 1 gtlt-5cN cptTE-4oH i

ttft M rr2) ry n 0- S CtW~0

1J-e ~6S c3b IV

~ + ampf2 ampL1 ~

C5 ~)t ~oleAl~~ ~ero 9-r)al ~~ l101-~

~~ty) ~~S1~i (11 ~ nO ~cAfiltshycbi~ ~ t-Yd- ~n-r-e~ t5gt fD

( 1tb~~J____C-)j-~5~_~~ltO middot

Exercise~15)([143]) Consider the system

1 = z2 ( 2 2)

2 -Xl - X2 sat X 2 - X3= 3 = X3 sat(x~ -X)

where sat(middot) is the saturation function Show that the origin is the unique equiIibmiddot rium point and use V(z) =xT x to show that it is globally asymptotically stable

~ -~

~ _ ~ +-b~ _~2~_x~

bL-D

~dj (JlJ- ~0ert5~ltyc ~-euHD IJ~ ~ tnid-~ccr or-der- 5-t5 5~gt Y-( LJJ

~ dt)n~ btj ~ ~~d ~ o~tM8-~VcH-~ (Sc~ 10 bull4 )

Exercise ~Consider the system

1 = X2 - g(t)X1(X~ + X~) 2 = -Xl -9(t)X2(Z~ + x~)

where g(t) is ~ntinuously differentiable bounded and g(t) k gt 0 for all t gt o Is the origm UnIformly asymptotically stable Is it exponentially stable shy

o = X2 o = -ZI - Z2 sat(x~ - z~) =gt ZI =0

o = X3 sat(x~ - x~) =gt Z3 sat(-z~) =0 =gt Z3 =0

Hence the origin is the unique equilibrium point consider

Vex) = xTx = x~+x~+zi Vex) = 2[XIX2 - IX2 - x~sat(z~ - z) + zsat(z~ - z)]

= -2(z~ - z~)sat(x~ - z~) $ 0

11 is negative semidefinite v=0 =gt z~(t) == zi(t) =gt 3(t) == 0

Hence both X2(t) and Z3(t) must be constants This implies that 2(t) == O From the second state equation We conclude that Xl(t) == O Then the first state equation implies that Z2(t) == O Consequently Z3(t) == o IY LaSalles theorem (Corollary 32) the origin is globally asymptotically stable

~)Try Vex) =(x~ + x~) t

v = XIX2 - g(t)x~(x~ + 3) - XIZ2 - g(t)xi(xi + xi) = -g(t)(z~ + z~)2 $ -4kV2(x)

Hence Vet x) is negative definite and the origin is uniformly asymptotically stable From the inequality V lt -4kV2 we cannot conclude exponential stability Let us try linearization Assume get) is bounded-

_ 8f t r I _[-3g(t)xyen - g(t)x~ 1-2g(t)r1X2 ] I =[0 1]A(t) - 8x ( ) c=o - -1 - 2g(t)IX2 -3g(t)x~ - g(t)xyen c=o -1 0

A is a constant matrix that is not Hurwitz Hence by Theorem 313 we conclude that the origin is not

exponentially stable

Page 13: (3..2J Le- ~ :C~t)~CQ Pi---GnCLrL€ - Rutgers ECEgajic/pdffiles/Nonlinear... · 2015-06-19 · (1) ~, {3 (

Exercise~15)([143]) Consider the system

1 = z2 ( 2 2)

2 -Xl - X2 sat X 2 - X3= 3 = X3 sat(x~ -X)

where sat(middot) is the saturation function Show that the origin is the unique equiIibmiddot rium point and use V(z) =xT x to show that it is globally asymptotically stable

~ -~

~ _ ~ +-b~ _~2~_x~

bL-D

~dj (JlJ- ~0ert5~ltyc ~-euHD IJ~ ~ tnid-~ccr or-der- 5-t5 5~gt Y-( LJJ

~ dt)n~ btj ~ ~~d ~ o~tM8-~VcH-~ (Sc~ 10 bull4 )

Exercise ~Consider the system

1 = X2 - g(t)X1(X~ + X~) 2 = -Xl -9(t)X2(Z~ + x~)

where g(t) is ~ntinuously differentiable bounded and g(t) k gt 0 for all t gt o Is the origm UnIformly asymptotically stable Is it exponentially stable shy

o = X2 o = -ZI - Z2 sat(x~ - z~) =gt ZI =0

o = X3 sat(x~ - x~) =gt Z3 sat(-z~) =0 =gt Z3 =0

Hence the origin is the unique equilibrium point consider

Vex) = xTx = x~+x~+zi Vex) = 2[XIX2 - IX2 - x~sat(z~ - z) + zsat(z~ - z)]

= -2(z~ - z~)sat(x~ - z~) $ 0

11 is negative semidefinite v=0 =gt z~(t) == zi(t) =gt 3(t) == 0

Hence both X2(t) and Z3(t) must be constants This implies that 2(t) == O From the second state equation We conclude that Xl(t) == O Then the first state equation implies that Z2(t) == O Consequently Z3(t) == o IY LaSalles theorem (Corollary 32) the origin is globally asymptotically stable

~)Try Vex) =(x~ + x~) t

v = XIX2 - g(t)x~(x~ + 3) - XIZ2 - g(t)xi(xi + xi) = -g(t)(z~ + z~)2 $ -4kV2(x)

Hence Vet x) is negative definite and the origin is uniformly asymptotically stable From the inequality V lt -4kV2 we cannot conclude exponential stability Let us try linearization Assume get) is bounded-

_ 8f t r I _[-3g(t)xyen - g(t)x~ 1-2g(t)r1X2 ] I =[0 1]A(t) - 8x ( ) c=o - -1 - 2g(t)IX2 -3g(t)x~ - g(t)xyen c=o -1 0

A is a constant matrix that is not Hurwitz Hence by Theorem 313 we conclude that the origin is not

exponentially stable