ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ...

221
ÓÀØÀÒÈÅÄËÏÓ ÌÀÈÄÌÀÔÉÊÏÓÈÀ ÊÀÅÛÉÒÉÓ III ÓÀÄÒÈÀÛÏÒÉÓÏ ÊÏÍ×ÄÒÄÍÝÉÀ III INTERNATIONAL CONFERENCE OF THE GEORGIAN MATHEMATICAL UNION ÈÄÆÉÓÄÁÉÓ ÊÒÄÁÖËÉ BOOK OF ABSTRACTS ÁÀÈÖÌÉ, 2 9 ÓÄØÔÄÌÁÄÒÉ Batumi, September 2 – 9 2012

Transcript of ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ...

Page 1: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

ÓÀØÀÒÈÅÄËÏÓ ÌÀÈÄÌÀÔÉÊÏÓÈÀ ÊÀÅÛÉÒÉÓ

III ÓÀÄÒÈÀÛÏÒÉÓÏ ÊÏÍ×ÄÒÄÍÝÉÀ

III INTERNATIONAL CONFERENCE

OF THE GEORGIAN MATHEMATICAL UNION

ÈÄÆÉÓÄÁÉÓ ÊÒÄÁÖËÉ

BOOK OF ABSTRACTS

ÁÀÈÖÌÉ, 2 – 9 ÓÄØÔÄÌÁÄÒÉ

Batumi, September 2 – 9

2012

Page 2: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

Organizing Committee:Baladze Vladimer (Vice Chairman), Beridze Anzor (Vice Chairman), Davitashvili Tinatin(Scientific Secretary), Duduchava Roland (Chairman), Kadeishvili Tornike, Kvaratskhe-lia Vakhtang, Makharadze Shota, Meladze Hamlet (Vice Chairman), Natroshvili David,Tarieladze Vaja (Chairman of Program Committee)

ÓÀÏÒÂÀÍÉÆÀÝÉÏ ÊÏÌÉÔÄÔÉ:ÁÀËÀÞÄ ÅËÀÃÉÌÄÒ (ÈÀÅÌãÃÏÌÀÒÉÓ ÌÏÀÃÂÉËÄ), ÁÄÒÉÞÄ ÀÍÆÏÒ (ÈÀÅÌãÃÏÌÀÒÉÓ ÌÏÀÃÂÉËÄ),ÃÀÅÉÈÀÛÅÉËÉ ÈÉÍÀÈÉÍ (ÓßÀÅËÖËÉ ÌÃÉÅÀÍÉ), ÃÖÃÖÜÀÅÀ ÒÏËÀÍà (ÈÀÅÌãÃÏÌÀÒÄ), ÊÅÀÒÀ-ÝáÄËÉÀ ÅÀáÔÀÍÂ, ÌÀáÀÒÀÞÄ ÛÏÈÀ, ÌÄËÀÞÄ äÀÌËÄÔ (ÈÀÅÌãÃÏÌÀÒÉÓ ÌÏÀÃÂÉËÄ), ÍÀÔÒÏ-ÛÅÉËÉ ÃÀÅÉÈ, ÔÀÒÉÄËÀÞÄ ÅÀÑÀ (ÓÀÐÒÏÂÒÀÌÏ ÊÏÌÉÔÄÔÉÓ ÈÀÅÌãÃÏÌÀÒÄ), ØÀÃÄÉÛÅÉËÉÈÏÒÍÉÊÄ

Programm Committee:Baladze V., Chilachava T., Duduchava R., Goginava Z., Gogishvili G., Gvazava J., Jangve-ladze T., Japaridze G., Jibladze M., Kadeishvili T., Kharazishvili A., Khimshiashvili G.,Kvinikadze M., Kvinikhidze A., Mania M., Meladze H., Nadaraia E., Natroshvili D.,Omanadze R., Oniani G., Oturanc G., Pkhakadze K., Rabinovich V., Rukhaia Kh.,Sokhadze G., Giorgashvili L., Tarieladze V. (Chairman), Vakhania N.

ÓÀÐÒÏÂÒÀÌÏ ÊÏÌÉÔÄÔÉ:ÁÀËÀÞÄ Å., ÜÉËÀÜÀÅÀ È., ÃÖÃÖÜÀÅÀ Ò., ÂÏÂÉÍÀÅÀ Æ., ÂÏÂÉÛÅÉËÉ Â., ÂÅÀÆÀÅÀ ã.,ãÀÍÂÅÄËÀÞÄ È., ãÀ×ÀÒÉÞÄ Â., ãÉÁËÀÞÄ Ì., ØÀÃÄÉÛÅÉËÉ È., áÀÒÀÆÉÛÅÉËÉ À., áÉÌÛÉÀÛÅÉËÉ Â.,ÊÅÉÍÉÊÀÞÄ Ì., ÊÅÉÍÉáÉÞÄ À., ÌÀÍÉÀ Ì., ÌÄËÀÞÄ ä., ÍÀÃÀÒÀÉÀ Ä., ÍÀÔÒÏÛÅÉËÉ Ã., ÏÌÀÍÀÞÄ Ò.,ÏÍÉÀÍÉ Â., ÏÈÖÒÀÍ Â., ×áÀÊÀÞÄ Ê., ÒÀÁÉÍÏÅÉÜÉ Å., ÒÖáÀÉÀ á., ÓÏáÀÞÄ Â., ÂÉÏÒÂÀÛÅÉ-ËÉ Ë., ÔÀÒÉÄËÀÞÄ Å. (ÈÀÅÌãÃÏÌÀÒÄ), ÅÀáÀÍÉÀ Í.

Page 3: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

Contents

Our Calendar - ÜÅÄÍÉ ÊÀËÄÍÃÀÒÉ 21

Stefan Banach in Tbilisi (On the occasion of his 120-th Birthday Anniversary) . 21

ÐÒÏ×ÄÓÏÒÉ ÀËÄØÓÉ ÂÏÒÂÉÞÄ (ÃÀÁÀÃÄÁÉÃÀÍ 105 ßËÉÓÈÀÅÉÓÀÃÌÉ) . . . . . . . . 27Prefessor Alexi Gorgidze (To the 105-th Birthday Anniversary) . . . . . . . . . 29

Professor George Lomadze (To the 100-th Birthday Anniversary) . . . . . . . . 31

ÐÒÏ×ÄÓÏÒÉ ÄËÉÆÁÀÒ ßÉÈËÀÍÀÞÄ (ÃÀÁÀÃÄÁÉÃÀÍ 100 ßËÉÓÈÀÅÉÓÀÃÌÉ) . . . . . . 35Professor Elizbar Citlanadze (To the 100th Birthday Anniversary) . . . . . . . 36

Anniversaries - ÜÅÄÍÉ ÉÖÁÉËÀÒÄÁÉ 37

ÂÀÉÏÆ áÀÔÉÀÛÅÉËÉ – 90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Gaioz Khatiashvili – 90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

ÐÒÏ×ÄÓÏÒÉ ÃÀÅÉÈ ÂÏÒÃÄÆÉÀÍÉ – 75 . . . . . . . . . . . . . . . . . . . . . . . 41Professor David Gordeziani – 75 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

ÓÄÒÂÏ ÜÏÁÀÍÉÀÍÉ – 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Sergei (Sergo) Chobanyan – 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Plenary Talks 53

ÐËÄÍÀÒÖËÉ ÌÏáÓÄÍÄÁÄÁÉ 53

Dionys Baeriswyl, Quantum XX chain with interface . . . . . . . . . . . . . 55ÃÉÏÍÉÓ ÁÀÄÒÉÓÅÉËÉ, ÄÒÈÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÓÐÉÍÉ XX-ÌÏÃÄËÉ ÂÀÃÀÁÌÉÓ ßÄÒÔÉËÉÈ 55

Vladimer Baladze, Coshape theory and its applications . . . . . . . . . . . . 55ÅËÀÃÉÌÄÒ ÁÀËÀÞÄ, ÊÏÛÄÉÐÄÁÉÓ ÈÄÏÒÉÀ ÃÀ ÌÉÓÉ ÂÀÌÏÚÄÍÄÁÄÁÉ . . . . . . . . . . 55

3

Page 4: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

4 September 2–9, Batumi, Georgia

Sergei Chobanyan, Shlomo Levental, On the distribution of the Steinitzfunctional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ÓÄÒÂÄÉ ÜÏÁÀÍÉÀÍÉ, ÛËÏÌÏ ËÄÅÄÍÔÀËÉ, ÛÔÀÉÍÉÝÉÓ ×ÖÍØÝÉÏÍÀËÉÓ ÂÀÍÀßÉËÄÁÉÓÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

David Gordeziani, Mathematical modelling and numerical solution of someproblems of water pollution and filtration problems of liquids . . . . . . . . 56

ÃÀÅÉÈ ÂÏÒÃÄÆÉÀÍÉ, ßÚËÉÓ ÃÀÁÉÍÞÖÒÄÁÉÓÀ ÃÀ ÓÉÈáÄÈÀ ×ÉËÔÒÀÝÉÉÓ ÆÏÂÉÄÒÈÉÀÌÏÝÀÍÉÓ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÀ ÃÀ ÒÉÝáÅÉÈÉ ÀÌÏáÓÍÀ . . . . . . . . 56

Inna Grusha, Giorgi Japaridze, Effective Hamiltonian for the half-filledspin-asymmetric Hubbard chain with strong and alternating on-site repulsion 58

ÉÍÀ ÂÒÖÛÀ, ÂÉÏÒÂÉ ãÀ×ÀÒÉÞÄ, Ä×ÄØÔÖÒÉ ÓÐÉÍÖÒÉ äÀÌÉËÔÏÍÉÀÍÉ ÄÒÈÂÀÍÆÏÌÉËÄ-ÁÉÀÍÉ ÍÀáÄÅÒÀÃÛÄÅÓÄÁÖËÉ ÓÐÉÍ-ÀÓÉÌÄÔÒÖËÉ äÀÁÀÒÃÉÓ ÌÏÃÄËÉÓÀÈÅÉÓ, ËÖßÃÀ ÊÄÍÔ ÊÅÀÍÞÄÁÆÄ ÂÀÍÓáÅÀÅÄÁÖËÉ ÞËÉÄÒÉ ÂÀÍÆÉÃÅÉÓ ÐÉÒÏÁÄÁÛÉ . . . . . . 58

Tornike Kadeishvili, Homotopy algebras in topological field theory . . . . . 58ÈÏÒÍÉÊÄ ØÀÃÄÉÛÅÉËÉ, äÏÌÏÔÏÐÉÖÒÉ ÀËÂÄÁÒÄÁÉ ÅÄËÉÓ ÔÏÐÏËÏÂÉÖÒ ÈÄÏ-

ÒÉÀÛÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Leonard Mdzinarishvili, Continuous homologies and cohomologies . . . . . 59ËÄÏÍÀÒà ÌÞÉÍÀÒÉÛÅÉËÉ, ÖßÚÅÄÔÉ äÏÌÏËÏÂÉÄÁÉ ÃÀ ÊÏäÏÌÏËÏÂÉÄÁÉ . . . . . . 59

ÊÏÍÓÔÀÍÔÉÍÄ ×áÀÊÀÞÄ, ØÀÒÈÖËÉ ÄÍÉÓ ÔÄØÍÏËÏÂÉÆÄÁÖËÉ ÀÍÁÀÍÉÓ ÛÄÌÖÛÀÅÄÁÉÓÌÉÆÍÄÁÉ ÃÀ ÐÒÏÁËÄÌÄÁÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Konstantine Pkhakadze, The aims and problems of creation of the techno-logical alphabet of the Georgian language . . . . . . . . . . . . . . . . . . 59

Vladimir S. Rabinovich, Diffraction problems on periodic metric graphs . . 60ÅËÀÃÉÌÄÒ Ó. ÒÀÁÉÍÏÅÉÜÉ, ÃÉ×ÒÀØÝÉÉÓ ÀÌÏÝÀÍÄÁÉ ÐÄÒÉÏÃÖË ÌÄÔÒÉÊÖË ÂÒÀ×ÄÁÆÄ 60

áÉÌÖÒÉ ÒÖáÀÉÀ, ËÀËÉ ÔÉÁÖÀ, ÂÄËÀ àÀÍÊÅÄÔÀÞÄ, ÖÒÀÍÂÏ ÊÅÀÍÔÏÒÖËÉ ÈÄÏÒÉÀ 61Khimuri Rukhaia, Lali Tibua, Gela Chankvetadze, Unranked theory

with quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Elias Wegert, On boundary value problems in circle packing . . . . . . . . . 62ÄËÉÀÓ ÅÄÂÄÒÔÉ, ßÒÄÄÁÉÓ ÜÀËÀÂÄÁÉÓ ÐÒÏÁËÄÌÀÓÈÀÍ ÃÀÊÀÅÛÉÒÄÁÖËÉ ÓÀÓÀÆÙÅÒÏ

ÀÌÏÝÀÍÄÁÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Real and Complex Analysis 63

ÍÀÌÃÅÉËÉ ÃÀ ÊÏÌÐËÄØÓÖÒÉ ÀÍÀËÉÆÉ 63

George Akhalaia, Nino Manjavidze, Generalized analytic functions . . . . 65ÂÉÏÒÂÉ ÀáÀËÀÉÀ, ÍÉÍÏ ÌÀÍãÀÅÉÞÄ, ÂÀÍÆÏÂÀÃÏÄÁÖËÉ ÀÍÀËÉÆÖÒÉ ×ÖÍØÝÉÄÁÉ . . . 65

Page 5: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 5

Leri Bantsuri, On the relationship between conditions of differentiability andexistence of generalized gradient . . . . . . . . . . . . . . . . . . . . . . . . 65

ËÄÒÉ ÁÀÍÝÖÒÉ, ÃÉ×ÄÒÄÍÝÉÒÄÁÀÃÏÁÉÓÀ ÃÀ ÂÀÍÆÏÂÀÃÄÁÖËÉ ÂÒÀÃÉÄÍÔÉÓ ÀÒÓÄÁÏÁÉÓÐÉÒÏÁÄÁÓ ÛÏÒÉÓ ÌÉÌÀÒÈÄÁÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . . . . . 65

Grigor Barsegian, Idea of complex conjugacy in differential geometry. Ar-gument variation principle and Nevanlinna type results for conjugatesurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

ÂÒÉÂÏÒÉ ÁÀÒÓÄÂÉÀÍÉ, ÊÏÌÐËÄØÓÖÒÀà ÛÄÖÙËÄÁÖËÏÁÉÓ ÉÃÄÀ ÃÉ×ÄÒÄÍÝÉÀËÖÒÂÄÏÌÄÔÒÉÀÛÉ. ÀÒÂÖÌÄÍÔÉÓ ÝÅËÉËÄÁÉÓ ÐÒÉÍÝÉÐÉ ÃÀ ÍÄÅÀÍËÉÍÀÓ ÔÉÐÉÓÈÄÏÒÄÌÄÁÉ ÛÄÖÙËÄÁÖËÉ ÆÄÃÀÐÉÒÄÁÉÓÀÈÅÉÓ . . . . . . . . . . . . . . . . . . 66

Natela Chachava, Ilia Lomidze, Classification of Hermitian Matrices withTheir Polynomial Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . 67

ÍÀÈÄËÀ ÜÀÜÀÅÀ, ÉËÉÀ ËÏÌÉÞÄ, ÄÒÌÉÔÖËÉ ÌÀÔÒÉÝÄÁÉÓ ÊËÀÓÉ×ÉÝÉÒÄÁÀ ÌÀÈÉÐÏËÉÍÏÌÖÒÉ ÉÍÅÀÒÉÀÍÔÄÁÉÈ . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Omar Dzagnidze, Irma Tsivtsivadze, The representation of an indefiniteintegral with a parameter by double exponential series . . . . . . . . . . . 68

ÏÌÀÒ ÞÀÂÍÉÞÄ, ÉÒÌÀ ßÉÅßÉÅÀÞÄ, ÐÀÒÀÌÄÔÒÉÓ ÛÄÌÝÅÄËÉ ÂÀÍÖÓÀÆÙÅÒÄËÉ ÉÍÔÄÂÒÀËÉÓßÀÒÌÏÃÂÄÍÀ ÄØÓÐÏÍÄÍÔÖÒÉ ÏÒÌÀÂÉ ÌßÊÒÉÅÉÈ . . . . . . . . . . . . . . . . 68

ÏÌÀÒ ÂÉÅÒÀÞÄ, ÆÏÂÉÄÒÈÉ ÔÉÐÉÓ ×ÖÍØÝÉÏÍÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉ . . . . . . . . . 69Omar Givradze, Some types of functional equations . . . . . . . . . . . . . . 69

ÄÒÄÊËÄ ãÀ×ÀÒÉÞÄ, ÐÖÀÓÏÍÉÓ ÂÀßÀÒÌÏÄÁÖËÉ ÉÍÔÄÂÒÀËÉÓ ÓÀÓÀÆÙÅÒÏ ÌÍÉÛÅÍÄ-ËÏÁÄÁÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Erekle Japharidze, On boundary values of differentiated Poisson integral . . 70

Shadiman Kheladze, On the metric kernel and shell problem . . . . . . . . . 70ÛÀÃÉÌÀÍ áÄËÀÞÄ, ÌÄÔÒÉÊÖËÉ ÂÖËÉÓÀ ÃÀ ÂÀÒÓÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . . 70

Ilia Lomidze, Jimsher Javakhishvili, At the tetrad representation of theLorentz group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

ÉËÉÀ ËÏÌÉÞÄ, ãÉÌÛÄÒ ãÀÅÀáÉÛÅÉËÉ, ËÏÒÄÍÝÉÓ ãÂÖ×ÉÓ ÔÄÔÒÀÃÖËÉ ßÀÒÌÏÃÂÄ-ÍÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

George Makatsaria, Liouville theorems for the systems of elliptic equations 72ÂÉÏÒÂÉ ÌÀØÀÝÀÒÉÀ, ËÉÖÅÉËÉÓ ÔÉÐÉÓ ÈÄÏÒÄÌÄÁÉ ÄËÉ×ÓÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓ-

ÔÄÌÄÁÉÓÀÈÅÉÓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ÂÉÂËÀ ÏÍÉÀÍÉ, ÂÏÂÉ ÈÄÈÅÀÞÄ, ÄÒÈÄÖËÏÅÀÍ ßÒÄÛÉ ãÀÌÄÁÀÃÉ ÂÒÀÃÉÄÍÔÉÓ ÌØÏÍÄäÀÒÌÏÍÉÖËÉ ×ÖÍØÝÉÄÁÉÓ ÓÀÓÀÆÙÅÒÏ ÈÅÉÓÄÁÄÁÉ . . . . . . . . . . . . . . . . 72

Gigla Oniani, Gogi Tetvadze, Boundary values of harmonic functions inunit ball with summable gradient . . . . . . . . . . . . . . . . . . . . . . . 72

Page 6: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

6 September 2–9, Batumi, Georgia

ÂÉÂËÀ ÏÍÉÀÍÉ, ÉÒÌÀ ßÉÅßÉÅÀÞÄ, Ap ÓÉÅÒÝÉÓ ×ÖÍØÝÉÄÁÉÓ ÐÀÒÀÌÄÔÒÖËÉ ßÀÒÌÏÃ-ÂÄÍÉÓÀ ÃÀ ÍÖËÏÅÀÍÉ ÓÉÌÒÀÅËÄÄÁÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . 73

Gigla Oniani, Irma Tsivtsivadze, On parametric representation and zerosets of functions from the space Ap . . . . . . . . . . . . . . . . . . . . . . 73

Giorgi Oniani, Divergence of Fourier series with respect to systems of productsof bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

ÂÉÏÒÂÉ ÏÍÉÀÍÉ, ÁÀÆÉÓÈÀ ÍÀÌÒÀÅËÉÓ ÓÀáÉÓ ÓÉÓÔÄÌÄÁÉÓ ÌÉÌÀÒÈ ×ÖÒÉÄÓ ÌßÊÒÉÅÄÁÉÓÂÀÍÛËÀÃÏÁÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Gogi R. Pantsulaia, Givi P. Giorgadze, A description of behaviors ofsome phase motions in R∞ in terms of ordinary and standard “Lebesguemeasures” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

ÂÏÂÉ ×ÀÍÝÖËÀÉÀ, ÂÉÅÉ ÂÉÏÒÂÀÞÄ, R∞ ÓÉÅÒÝÄÆÄ ÂÀÍÓÀÆÙÅÒÖËÉ ÆÏÂÉÄÒÈÉ×ÀÆÖÒÉ ÌÏÞÒÀÏÁÉÓ ÚÏ×ÀØÝÄÅÉÓ ÀÙßÄÒÀ ÓÔÀÍÃÀÒÔÖËÉ ÃÀ ÏÒÃÉÍÀËÖÒÉ``ËÄÁÄÂÉÓ ÆÏÌÉÓ'' ÔÄÒÌÉÍÄÁÛÉ . . . . . . . . . . . . . . . . . . . . . . . . . 75

Shakro Tetunashvili, On Cantor’s functionals . . . . . . . . . . . . . . . . . 76ÛÀØÒÏ ÔÄÔÖÍÀÛÅÉËÉ, ÊÀÍÔÏÒÉÓ ×ÖÍØÝÉÏÍÀËÈÀ ÛÄÓÀáÄÁ . . . . . . . . . . . . . . 76

Salaudin Umarkhadzhiev, Boundedness of linear operators from generalizedgrand Lebesque spaces to generalized grand Morrey spaces . . . . . . . . . 77

ÓÀËÀÖÃÉÍ ÖÌÀÒáÀãÉÄÅÉ, ÂÀÍÆÏÂÀÃÄÁÖËÉ ÂÒÀÍà ËÄÁÄÂÉÓ ÓÉÅÒÝÉÃÀÍ ÂÀÍÆÏÂÀÃÄ-ÁÖË ÂÒÀÍà ÌÏÒÉÓ ÓÉÅÒÝÄÛÉ ÌÏØÌÄÃÉ ßÒ×ÉÅÉ ÏÐÄÒÀÔÏÒÄÁÉÓ ÛÄÌÏÓÀÆÙÅ-ÒÖËÏÁÀ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Topology, Algebra and Number Theory 79

ÔÏÐÏËÏÂÉÀ, ÀËÂÄÁÒÀ ÃÀ ÒÉÝáÅÈÀ ÈÄÏÒÉÀ 79

Malkhaz Bakuradze, Morava K-theory atlas for finite groups . . . . . . . . 81ÌÀËáÀÆ ÁÀÊÖÒÀÞÄ, ÌÏÒÀÅÀÓ K-ÈÄÏÒÉÉÓ ÀÔËÀÓÉ ÓÀÓÒÖËÉ ãÂÖ×ÄÁÉÓÀÈÅÉÓ . . . 81

Vladimer Baladze, On homology and shape theories of compact Hausdorffspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ÅËÀÃÉÌÄÒ ÁÀËÀÞÄ, äÀÖÓÃÏÒ×ÉÓ ÊÏÌÐÀØÔÖÒ ÓÉÅÒÝÄÈÀ äÏÌÏËÏÂÉÖÒÉ ÃÀ ÛÄÉÐÖÒÉÈÄÏÒÉÄÁÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Vladimer Baladze, Ruslan Tsinaridze, On normal homology and coho-mology theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

ÅËÀÃÉÌÄÒ ÁÀËÀÞÄ, ÒÖÓËÀÍ ÝÉÍÀÒÉÞÄ, ÍÏÒÌÀËÖÒÉ äÏÌÏËÏÂÉÉÓÀ ÃÀ ÊÏäÏÌÏ-ËÏÂÉÉÓ ÈÄÏÒÉÄÁÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Page 7: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 7

Sadi Bayramov, Ciğdem Gunduz (Aras), Separable and compact softtopological space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

ÓÀÃÉ ÁÀÉÒÀÌÏÅÉ, ÜÉÂÃÄÌ ÂÖÍÃÖÆÉ (ÀÒÀÓÉ), ÓÄÐÀÒÀÁÄËÖÒÉ ÃÀ ÊÏÌÐÀØÔÖÒÉ ÒÁÉËÉÔÏÐÏËÏÂÉÖÒÉ ÓÉÅÒÝÄÄÁÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Anzor Beridze, Partial continuity of strong homology group of continuousmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

ÀÍÆÏÒ ÁÄÒÉÞÄ, ÖßÚÅÄÔÉ ÀÓÀáÅÉÓ ÞËÉÄÒÉ äÏÌÏËÏÂÉÉÓ ãÂÖ×ÉÓ ÍÀßÉËÏÁÒÉÅÖßÚÅÄÔÏÁÀ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Vakhtang Beridze, Solution Bitsadze–Samarski problem for the Helmholtzequations with Mathcad . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

ÅÀáÔÀÍ ÁÄÒÉÞÄ, äÄËÌäÏËÝÉÓ ÂÀÍÔÏËÄÁÉÓÀÈÅÉÓ ÁÉßÀÞÄ–ÓÀÌÀÒÓÊÉÓ ÀÌÏÝÀÍÉÓÀÌÏáÓÍÀ Mathcad–ÉÓ ÓÀÛÖÀËÄÁÉÈ . . . . . . . . . . . . . . . . . . . . . . . 86

Gulnara Bibileishvili, Centered configurations of open linkages . . . . . . . 87ÂÖËÍÀÒÀ ÁÉÁÉËÄÉÛÅÉËÉ, ÙÉÀ ÓÀáÓÒÖËÉ ÌÒÀÅÀËÊÖÈáÄÃÄÁÉÓ ÝÄÍÔÒÉÒÄÁÖËÉ

ÊÏÍ×ÉÂÖÒÀÝÉÄÁÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Tengiz Bokelavadze, Abelian and nilpotent varieties of 2-step nilpotentpower groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

ÈÄÍÂÉÆ ÁÏÊÄËÀÅÀÞÄ, ÏÒÓÀ×ÄáÖÒÉÀÍÉ ÍÉËÐÏÔÄÍÔÖÒÉ áÀÒÉÓáÏÅÀÍÉ ãÂÖ×ÉÓ ÀÁÄ-ËÖÒÉ ÃÀ ÍÉËÐÏÔÄÍÔÖÒÉ ÌÒÀÅÀËÓÀáÄÏÁÄÁÉ . . . . . . . . . . . . . . . . . 88

Tengiz Bokelavadze, Maia Chabashvili, On the lattice isomorphisms of2-nilpotent w-power hall groups and lie algebras . . . . . . . . . . . . . . . 89

ÈÄÍÂÉÆ ÁÏÊÄËÀÅÀÞÄ, ÌÀÉÀ àÀÁÀÛÅÉËÉ, ÏÒÉ ÊËÀÓÉÓ ÍÉËÐÏÔÄÍÔÖÒÉ áÀÒÉÓáÏÅÀÍÉãÂÖ×ÄÁÉÓ ÃÀ ËÉÓ ÀËÂÄÁÒÄÁÉÓ ÌÄÓÄÒÖËÉ ÉÆÏÌÏÒ×ÉÆÌÄÁÉ . . . . . . . . . 89

Nejmi Cengiz, Torsion tensors of pure Π-connections . . . . . . . . . . . . . . 90ÍÄÑÌÉ ÜÄÍÂÉÆ, ÍÀÌÃÅÉËÉ pi-ÁÌÖËÏÁÄÁÉÓ ÂÒÄáÉËÉ ÔÄÍÆÏÒÄÁÉ . . . . . . . . . . . 90

Yasha Diasamidze, Some regular elements, idempotents and right units ofcomplete semigroups of binary relations defined by semilattices of the classright side incomplete nets . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

ÉÀÛÀ ÃÉÀÓÀÌÉÞÄ, ÌÀÒãÅÄÍÀ ÀÒÀÓÒÖË ÁÀÃÄÈÀ ÊËÀÓÉÓ ÍÀáÄÅÀÒÌÄÓÄÒÄÁÉÈ ÂÀÍÓÀÆÙ-ÅÒÖË ÁÉÍÀÒÖË ÌÉÌÀÒÈÄÁÀÈÀ ÓÒÖËÉ ÍÀáÄÅÀÒãÂÖ×ÄÁÉÓ ÆÏÂÉÄÒÈÉ ÒÄÂÖËÀ-ÒÖËÉ ÄËÄÌÄÍÔÉ, ÉÃÄÌÐÏÔÄÍÔÄÁÉ ÃÀ ÌÀÒãÅÄÍÀ ÄÒÈÄÖËÄÁÉ . . . . . . . . 91

Eka Elerdashvili, Mamuka Jibladze, Giorgi Khimshiashvili, Cyclicconfigurations of pentagon linkages . . . . . . . . . . . . . . . . . . . . . . 92

ÄÊÀ ÄËÄÒÃÀÛÅÉËÉ, ÌÀÌÖÊÀ ãÉÁËÀÞÄ, ÂÉÏÒÂÉ áÉÌÛÉÀÛÅÉËÉ, ÐÄÍÔÀÂÏÍÖÒÉ ÓÀáÓÒÖ-ËÀÓ ÝÉÊËÖÒÉ ÊÏÍ×ÉÂÖÒÀÝÉÄÁÉ . . . . . . . . . . . . . . . . . . . . . . . . . 92

Page 8: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

8 September 2–9, Batumi, Georgia

Liana Karalashvili, Ketevan Kutkhashvili, David Kalandarishvili,Properties of the certain centro-symmetric matrices similar to the unitmatrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

ËÉÀÍÀ ÚÀÒÀËÀÛÅÉËÉ, ØÄÈÄÅÀÍ ÊÖÈáÀÛÅÉËÉ, ÃÀÅÉÈ ÊÀËÀÍÃÀÒÉÛÅÉËÉ, ÄÒÈÄ-ÖËÏÅÀÍÉ ÌÀÔÒÉÝÉÓ ÌÓÂÀÅÓÉ ÆÏÂÉÄÒÈÉ ÝÄÍÔÒÓÉÌÄÔÒÉÖËÉ ÌÀÔÒÉÝÄÁÉÓÈÅÉÓÄÁÄÁÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Tamar Kasrashvili, On some properties of quasi-diophantine sets in Eu-clidean spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

ÈÀÌÀÒ ÊÀÓÒÀÛÅÉËÉ, ÊÅÀÆÉ-ÃÉÏ×ÀÍÔÄÓ ÓÉÌÒÀÅËÄÄÁÉÓ ÆÏÂÉÄÒÈÉ ÈÅÉÓÄÁÉÓ ÛÄÓÀáÄÁÄÅÊËÉÃÄÓ ÓÉÅÒÝÄÄÁÛÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Tariel Kemoklidze, On one hypothesis of Moskalenko . . . . . . . . . . . . . 95ÔÀÒÉÄË ØÄÌÏÊËÉÞÄ, ÌÏÓÊÀËÄÍÊÏÓ ÄÒÈÉ äÉÐÏÈÄÆÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . 95ÒÀÑÃÄÍ áÀÁÖÒÞÀÍÉÀ, ÐÉÒÅÄËÉ ÂÅÀÒÉÓ ÝÉÊËÖÒÀà ÛÄÖÙËÄÁÖËÉ ÓÉÓÔÄÌÉÓ ÛÄÓÀáÄÁ

ÄËÉ×ÓÖÒÉ ÓÉÅÒÝÉÓ ÓÔÒÖØÔÖÒÉÓ ÌØÏÍÄ ÏÈáÂÀÍÆÏÌÉËÄÁÉÀÍ ÀÒÀÓÀÊÖÈÒÉÅäÉÐÄÒÓÉÁÒÔÚÄÛÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Razhden Khaburdzania, On the first order about the cyclical conjugatesystem in four dimensional elliptical space structure improper hyperplane . 95

Giorgi Khimshiashvili, Morse functions on shapes of linkages . . . . . . . . . 96ÂÉÏÒÂÉ áÉÌÛÉÀÛÅÉËÉ, ÌÏÒÓÉÓ ×ÖÍØÝÉÄÁÉ ÓÀáÓÒÖËÉ ÌÒÀÅÀËÊÖÈáÄÃÄÁÉÓ ÛÄÉÐÄÁÆÄ 96Leonard Mdzinarishvili, Continuous Hu cohomology . . . . . . . . . . . . . 97ËÄÏÍÀÒà ÌÞÉÍÀÒÉÛÅÉËÉ, äÖÓ ÖßÚÅÄÔÉ ÊÏäÏÌÏËÏÂÉÀ . . . . . . . . . . . . . . 97Givi Mikiashvili, Hypercombined numbers . . . . . . . . . . . . . . . . . . . . 98ÂÉÅÉ ÌÉØÉÀÛÅÉËÉ, äÉÐÄÒÊÏÌÁÉÍÉÒÄÁÖËÉ ÒÉÝáÄÁÉ . . . . . . . . . . . . . . . . . . 98Taha Yasin Ozturk, Ahmet Kuçuk, Homological methods in category of

fuzzy soft modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100ÔÀäÀ ÉÀÓÉÍ ÏÆÈÖÒØÉ, ÀäÌÄà ØÖÜÖÊÉ, äÏÌÏËÏÂÉÖÒÉ ÌÄÈÏÃÄÁÉ ÀÒÀÌÊÀ×ÉÏ ÒÁÉËÉ

ÌÏÃÖËÄÁÉÓ ÊÀÔÄÂÏÒÉÀÛÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Giorgi Rakviashvili, On primitive elements of free Lie p-algebras . . . . . . 101ÂÉÏÒÂÉ ÒÀØÅÉÀÛÅÉËÉ, ÈÀÅÉÓÖ×ÀËÉ ËÉÓ p-ÀËÂÄÁÒÄÁÉÓ ÐÒÉÌÉÔÉÖËÉ ÄËÄÌÄÍÔÄÁÉ 101Arif A. Salimov, On hypercomplex structures . . . . . . . . . . . . . . . . . 101ÀÒÉ× À. ÓÀËÉÌÏÅÉ, äÉÐÄÒÊÏÌÐËÄØÓÖÒÉ ÓÔÒÖØÔÖÒÄÁÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . 101ÏÍÉÓÄ ÓÖÒÌÀÍÉÞÄ, ÓÖÓÔÀà ËÏÊÀËÖÒÀà ÊÏÌÐÀØÔÖÒÉ ÔÏÐÏËÏÂÉÖÒÉ ÀÁÄËÉÓ

ãÂÖ×ÄÁÉÓÀÈÅÉÓ ÌÀáÀÓÉÀÈÄÁÄËÈÀ ÈÄÏÒÉÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . . . 102Onise Surmanidze, On the characteristic theory of weekly linearly compact

topological abelian groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 102Ivane Tsereteli, On a special class of topological spaces . . . . . . . . . . . . 103ÉÅÀÍÄ ßÄÒÄÈÄËÉ, ÔÏÐÏËÏÂÉÖÒ ÓÉÅÒÝÄÈÀ ÄÒÈÉ ÓÐÄÝÉÀËÖÒÉ ÊËÀÓÉÓ ÛÄÓÀáÄÁ . 103

Page 9: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 9

Lela Turmanidze, On the strong uniform homology theory . . . . . . . . . . 104ËÄËÀ ÈÖÒÌÀÍÉÞÄ, ÞËÉÄÒÉ ÈÀÍÀÁÒÖËÉ äÏÌÏËÏÂÉÉÓ ÈÄÏÒÉÉÓ ÛÄÓÀáÄÁ . . . . . 104Teimuraz Vepkhvadze, On the number of representations of positive integers

by some diagonal quadratic forms of 16 level . . . . . . . . . . . . . . . . . 105ÈÄÉÌÖÒÀÆ ÅÄ×áÅÀÞÄ, 16 ÓÀ×ÄáÖÒÉÓ ÆÏÂÉÄÒÈÉ ÃÉÀÂÏÍÀËÖÒÉ ÊÅÀÃÒÀÔÖËÉ ×ÏÒÌÉÈ

ÃÀÃÄÁÉÈÉ ÌÈÄËÉ ÒÉÝáÅÄÁÉÓ ßÀÒÌÏÃÂÄÍÀÈÀ ÒÀÏÃÄÍÏÁÉÓ ÛÄÓÀáÄÁ . . . . . 105Murat Ibrahim Yazar, Ciğdem Gunduz (Aras), Sadi Bayramov, In-

verse limits in the category of fuzzy soft modules . . . . . . . . . . . . . . 106ÌÖÒÀÔ ÉÁÒÀäÉÌ ÉÀÆÀÒÉ, ÜÉÂÃÄÌ ÂÖÍÃÖÆÉ (ÀÒÀÓÉ), ÓÀÃÉ ÁÀÉÒÀÌÏÅÉ, ÛÄÁÒÖÍÄÁÖËÉ

ÆÙÅÒÄÁÉ ÀÒÀÌÊÀ×ÉÏ ÒÁÉËÉ ÌÏÃÖËÄÁÉÓ ÊÀÔÄÂÏÒÉÀÛÉ . . . . . . . . . . . . 106Ruṣen Yilmaz and Yilmaz Altun, r-orthomorphisms and their Arens tri-

adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107ÒÖÓÄÍ ÉËÌÀÆÉ, ÉËÌÀÆ ÀËÈÖÍÉ, r-ÏÒÈÏÌÏÒ×ÉÆÌÄÁÉ ÃÀ ÌÀÈÉ ÀÒÄÍÓÉÓ ÓÀÌ-

ÛÄÖÙËÄÁÖËÄÁÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107ËÄËÀ ÆÉÅÆÉÅÀÞÄ, ÓÉÁÒÔÚÉÓ ÛÄ×ÀÓÄÁÉÓ ÛÄÓÀáÄÁ ÌÀáËÏÁÄËÉ ÀÒÄÈÀ ÊÅÀÆÉÊÏÍ×ÏÒ-

ÌÖË ÀÓÀáÅÄÁÛÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107Lela Zivzivadze, Characterization of planes in quasiconformal mappings . . . 107

Differential Equations and Mathematical Physics 109

ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉ ÃÀ ÌÀÈÄÌÀÔÉÊÖÒÉ ×ÉÆÉÊÀ 109Malkhaz Ashordia, On a two point boundary value problem for the system

of the linear impulsive equations with singularities . . . . . . . . . . . . . . 111ÌÀËáÀÆ ÀÛÏÒÃÉÀ, ÄÒÈÉ ÏÒßÄÒÔÉËÏÅÀÍÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ ÛÄÓÀáÄÁ ÓÉÍÂÖ-

ËÀÒÏÁÄÁÉÀÍ ßÒ×ÉÅ ÉÌÐÖËÓÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓÀÈÅÉÓ . . . . . . . 111Malkhaz Ashordia, Nestan Kekelia, On conditions for the well-posedness

of nonlocal boundary value problems for systems of a class of linear gener-alized ordinary differential equations with singularities . . . . . . . . . . . 112

ÌÀËáÀÆ ÀÛÏÒÃÉÀ, ÍÄÓÔÀÍ ÊÄÊÄËÉÀ, ÄÒÈÉ ÊËÀÓÉÓ ÂÀÍÆÏÂÀÃÄÁÖË ÜÅÄÖËÄÁÒÉÅßÒ×ÉÅ ÓÉÍÂÖËÀÒÏÁÄÁÉÀÍ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÄÁÉÓÈÅÉÓÀÒÀËÏÊÀËÖÒÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉÓ ÊÏÒÄØÔÖËÏÁÉÓ ÐÉÒÏÁÄÁÉÓ ÛÄÓÀáÄÁ 112

Rusudan Bitsadze, On one nonlinear characteristic problem . . . . . . . . . . 113ÒÖÓÖÃÀÍ ÁÉßÀÞÄ, Haskell ÄÒÈÉ ÀÒÀßÒ×ÉÅÉ ÌÀáÀÓÉÀÈÄÁÄËÉ ÀÌÏÝÀÍÉÓ ÛÄÓÀáÄÁ . . 113Roland Duduchava, David Kapanadze, George Tepnadze, Medea

Tsaava, Boundary value problems for the Helmholtz equation in arbitrary2D-sectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

ÒÏËÀÍà ÃÖÃÖÜÀÅÀ, ÃÀÅÉÈ ÊÀÐÀÍÀÞÄ, ÂÉÏÒÂÉ ÔÄ×ÍÀÞÄ, ÌÄÃÄÀ ÝÀÀÅÀ, ÓÀÓÀÆÙÅÒÏÀÌÏÝÀÍÄÁÉ äÄËÌäÏËÝÉÓ ÂÀÍÔÏËÄÁÉÓÀÈÅÉÓ ÏÒÂÀÍÆÏÌÉËÄÁÉÀÍ ÓÄØÔÏÒÛÉ . 114

Page 10: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

10 September 2–9, Batumi, Georgia

Huseyin Halilov, Bahadir Ö. Güler, Kadir Kutlu, Dependence on Ini-tial Conditions of a Solution to a Mixed Problem with Periodic BoundaryCondition for a Class of Quasi-Linear Euler–Bernoulli Equation . . . . . . 115

äÖÓÄÉÍ äÀËÉËÏÅÉ, ÁÀäÀÃÉÒ Ï. ÂÖËÄÒÉ, ÊÀÃÉÒ ÊÖÔËÖ, ÊÅÀÆÉßÒ×ÉÅÉ ÄÉËÄÒ-ÁÄÒÍÖËÉÓ ÂÀÍÔÏËÄÁÉÓ ÀÌÏÍÀáÓÍÉÓ ÃÀÌÏÊÉÃÄÁÖËÄÁÀ ÓÀßÚÉÓ ÐÉÒÏÁÄÁÆÄ,ÒÏÃÄÓÀÝ ÓÀÓÀÆÙÅÒÏ ÐÉÒÏÁÄÁÉ ÐÄÒÉÏÃÖËÉÀ . . . . . . . . . . . . . . . . . 115

Sergo Kharibegashvili, Bidzina Midodashvili, On a Darboux type mul-tidimensional problem for one class of second order nonlinear hyperbolicsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

ÓÄÒÂÏ áÀÒÉÁÄÂÀÛÅÉËÉ, ÁÉÞÉÍÀ ÌÉÃÏÃÀÛÅÉËÉ, ÃÀÒÁÖÓ ÔÉÐÉÓ ÌÒÀÅÀËÂÀÍÆÏÌÉËÄ-ÁÉÀÍÉ ÀÌÏÝÀÍÉÓ ÛÄÓÀáÄÁ ÌÄÏÒÄ ÒÉÂÉÓ ÀÒÀßÒ×ÉÅ äÉÐÄÒÁÏËÖÒ ÓÉÓÔÄÌÀÈÀÄÒÈÉ ÊËÀÓÉÓÀÈÅÉÓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Marine Menteshashvili, One nonlinear variant of the Darboux type nonlocalproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

ÌÀÒÉÍÄ ÌÄÍÈÄÛÀÛÅÉËÉ, ÃÀÒÁÖÓ ÔÉÐÉÓ ÀÒÀËÏÊÀËÖÒÉ ÀÌÏÝÀÍÉÓ ÄÒÈÉ ÀÒÀßÒ×ÉÅÉÅÀÒÉÀÍÔÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

David Natroshvili, Acoustic scattering by inhomogeneous anisotropic obstacle118ÃÀÅÉÈ ÍÀÔÒÏÛÅÉËÉ, ÀÊÖÓÔÉÊÖÒÉ ÔÀËÙÄÁÉÓ ÂÀÁÍÄÅÉÓ ÀÌÏÝÀÍÄÁÉ ÀÒÀÄÒÈÂÅÀÒÏÅÀÍ

ÀÍÉÆÏÔÒÏÐÖË ÂÀÒÄÌÏÛÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Zaza Sokhadze, The weighted Cauchy problem for nonlinear singular differ-ential equations with deviating arguments . . . . . . . . . . . . . . . . . . 119

ÆÀÆÀ ÓÏáÀÞÄ, ÊÏÛÉÓ ßÏÍÉÀÍÉ ÀÌÏÝÀÍÀ ÂÀÃÀáÒÉËÀÒÂÖÌÄÍÔÄÁÉÀÍÉ ÀÒÀßÒ×ÉÅÉÓÉÍÂÖËÀÒÖËÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÀÈÅÉÓ . . . . . . . . . . . . 119

Teimuraz Surguladze, General constitutive relation for viscoelasticity con-taining fractional derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 120

ÈÄÉÌÖÒÀÆ ÓÖÒÂÖËÀÞÄ, ÁËÀÍÔÉ ÃÒÄÊÀÃÏÁÉÓ ÈÄÏÒÉÉÓ ßÉËÀÃÖÒÉ ÒÉÂÉÓ ÛÄÌÝÅÄËÉÆÏÂÀÃÉ ÂÀÍÌÓÀÆÙÅÒÄËÉ ÈÀÍÀ×ÀÒÃÏÁÄÁÉ . . . . . . . . . . . . . . . . . . . 120

Probability and Statistics, Financial Mathematics 121

ÀËÁÀÈÏÁÉÓ ÈÄÏÒÉÀ ÃÀ ÓÔÀÔÉÓÔÉÊÀ, ×ÉÍÀÍÓÖÒÉ ÌÀÈÄÌÀÔÉÊÀ 121

ÌÀËáÀÆ ÊÖÝÉÀ, ÌÄÃÄÀ àÀÍÉÀ, ÃÀÆÙÅÄÅÉÓ ÌÀáÀÓÉÀÈÄÁËÄÁÉÓ ÂÀÌÏÈÅËÉÓ ÌÀÒÊÏÅÉÓÌÏÃÄËÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Malkhaz Cucia, Medea Chania, Markov models of calculations of insurancecharacteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Page 11: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 11

Vladimir Emelichev, Vladimir Korotkov, Quantitative characteristic ofstability of multicriteria investment problem with Wald’s efficiency criteria 124

ÅËÀÃÉÌÄÒ ÄÌÄËÉÜÄÅÉ, ÅËÀÃÉÌÄÒ ÊÏÒÏÔÊÏÅÉ, ÌÒÀÅÀËÊÒÉÔÄÒÉÖÌÉÀÍÉ ÉÍÅÄÓÔÉÝÉ-ÉÓ ÀÌÏÝÀÍÉÓ ÌÃÂÒÀÃÏÁÉÓ ÒÀÏÃÄÍÏÁÒÉÅÉ ÃÀáÀÓÉÀÈÄÁÀ ÅÀËÃÉÓ Ä×ÄØÔÖ-ÒÏÁÉÓ ÊÒÉÔÄÒÉÖÌÉÈ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

George Giorgobiani, Vaja Tarieladze, A version of the rearrangementtheore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

ÂÉÏÒÂÉ ÂÉÏÒÂÏÁÉÀÍÉ, ÅÀÑÀ ÔÀÒÉÄËÀÞÄ, ÂÀÃÀÍÀÝÅËÄÁÉÓ ÈÄÏÒÄÌÉÓ ÄÒÈÉ ÅÄÒÓÉÉÓÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

ÈÄÌÖÒ ÊÏÊÏÁÉÍÀÞÄ, ×ÉÍÀÍÓÖÒÉ ÒÉÓÊÉÓ ÌÀÒÈÅÉÓ ÆÏÂÉÄÒÈÉ ÌÄÈÏÃÉ . . . . . . . 126Temur Kokobinadze, Some of the methods of financial risk management . . . 126

Vakhtang Kvaratskhelia, Vaja Tarieladze, Nicholas Vakhania, Thenotion of Subgaussian random element in Banach spaces . . . . . . . . . . 127

ÅÀáÔÀÍ ÊÅÀÒÀÝáÄËÉÀ, ÅÀÑÀ ÔÀÒÉÄËÀÞÄ, ÍÉÊÏËÏÆ ÅÀáÀÍÉÀ, ÓÖÁÂÀÖÓÉÓ ÛÄÌÈáÅÄÅÉ-ÈÉ ÄËÄÌÄÍÔÉÓ ÝÍÄÁÀ ÁÀÍÀáÉÓ ÓÉÅÒÝÄÄÁÛÉ . . . . . . . . . . . . . . . . . . . 127

Badri Mamporia, On the Ornstein–Uhlenbeck process in the Banach space . 128ÁÀÃÒÉ ÌÀÌ×ÏÒÉÀ, ÏÒÍÛÔÄÉÍ-ÖËÄÍÁÄÊÉÓ ÐÒÏÝÄÓÉÓ ÛÄÓÀáÄÁ ÁÀÍÀáÉÓ ÓÉÅÒÝÄÛÉ . . 128

Elizbar Nadaraya, Petre Babilua, Grigol Sokhadze, About TestingHypotheses for Bernoulli Regression Function . . . . . . . . . . . . . . . . 128

ÄËÉÆÁÀÒ ÍÀÃÀÒÀÉÀ, ÐÄÔÒÄ ÁÀÁÉËÖÀ, ÂÒÉÂÏË ÓÏáÀÞÄ, ÁÄÒÍÖËÉÓ ÒÄÂÒÄÓÉÉÓ×ÖÍØÝÉÀÆÄ äÉÐÏÈÄÆÉÓ ÛÄÌÏßÌÄÁÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . . . 128

Mzevinar Pacacia, Vaja Tarieladze, A test for being Gaussian . . . . . . 129ÌÆÄÅÉÍÀÒ ×ÀÝÀÝÉÀ, ÅÀÑÀ ÔÀÒÉÄËÀÞÄ, ÔÄÓÔÉ ÂÀÖÓÏÁÉÓÈÅÉÓ . . . . . . . . . . . . . 129

Omar Purtukhia, Grigol Sokhadze, Zaza Khechinashvili, Cramer–Raoinequality in the Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . 130

ÏÌÀÒ ×ÖÒÈÖáÉÀ, ÂÒÉÂÏË ÓÏáÀÞÄ, ÆÀÆÀ áÄÜÉÍÀÛÅÉËÉ, ÊÒÀÌÄÒ-ÒÀÏÓ ÖÔÏËÏÁÀäÉËÁÄÒÔÉÓ ÓÉÅÒÝÄÛÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A. Shangua, V. Tarieladze, Multiplicators for WLLN . . . . . . . . . . . . 131ÀËÄØÓÀÍÃÒÄ ÛÀÍÂÖÀ, ÅÀÑÀ ÔÀÒÉÄËÀÞÄ, ÌÖËÔÉÐËÉÊÀÔÏÒÄÁÉ ÃÉà ÒÉÝáÅÈÀ ÓÖÓÔÉ

ÊÀÍÏÍÉÓÀÈÅÉÓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Applied Logic and Programming 133

ÂÀÌÏÚÄÍÄÁÉÈÉ ËÏÂÉÊÀ ÃÀ ÐÒÏÂÒÀÌÉÒÄÁÀ 133

ÍÀÈÄËÀ ÀÒÜÅÀÞÄ, Haskell ÒÄÊÖÒÓÉÖËÉ ×ÖÍØÝÉÄÁÉÓ ÀÍÀËÉÆÀÔÏÒÉ . . . . . . . . . 135Natela Archvadze, Haskell - analizator of recursive functions . . . . . . . . . 135

Page 12: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

12 September 2–9, Batumi, Georgia

Mariam Beriashvili, Measurability properties of sets and functions in lightof additional set-theoretical axioms . . . . . . . . . . . . . . . . . . . . . . 136

ÌÀÒÉÀÌ ÁÄÒÉÀÛÅÉËÉ, ÆÏÌÀÃÉ ÓÉÌÒÀÅËÄÄÁÉÓÀ ÃÀ ×ÖÍØÝÉÄÁÉÓ ÈÅÉÓÄÁÄÁÉ ÓÉÌÒÀÅËÄ-ÈÀ ÈÄÏÒÉÉÓ ÃÀÌÀÔÄÁÉÈÉ ÀØÓÉÏÌÄÁÉÓ ÈÅÀËÓÀÆÒÉÓÉÈ . . . . . . . . . . . . 136

ÂÄËÀ àÀÍÊÅÄÔÀÞÄ, ×ÏÒÌÖËÉÓ áÉÓ ÓÀáÉÈ ßÀÒÌÏÌÃÂÄÍÉ ÐÒÏÂÒÀÌÀ . . . . . . . . 137Gela Chankvetadze, A program transforming a formula in a tree form . . . 137

Besik Dundua, Temur Kutsia, Constraint logic programming for hedgesand context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

ÁÄÓÉÊ ÃÖÍÃÖÀ, ÈÄÌÖÒ ÊÖÝÉÀ, ÛÄÆÙÖÃÅÄÁÉÀÍÉ ËÏÂÉÊÖÒÉ ÐÒÏÂÒÀÌÉÒÄÁÀ ÌÉÌÃÄÅ-ÒÏÁÄÁÉÓÀ ÃÀ ÊÏÍÔÄØÓÔÄÁÉÓ ÀÒÄÆÄ . . . . . . . . . . . . . . . . . . . . . . 138

Genadi Fedulov, Lali Tibua, Tamaz Dzagania, Konstantine Ba-balian, Nugzar Iashvili, The logical computer game for pupils to studyEnglish on the basis of the algorithm of solving the bin packing problem . 139

ÂÄÍÀÃÉ ×ÄÃÖËÏÅÉ, ËÀËÉ ÔÉÁÖÀ, ÈÀÌÀÆ ÞÀÂÀÍÉÀ, ÊÏÍÓÔÀÍÔÉÍÄ ÁÀÁÀËÉÀÍÉ,ÍÖÂÆÀÒ ÉÀÛÅÉËÉ, ËÏÂÉÊÖÒÉ ÊÏÌÐÉÖÔÒÖËÉ ÈÀÌÀÛÉ ÌÏÓßÀÅËÄÈÀÈÅÉÓ ÉÍÂËÉ-ÓÖÒÉ ÄÍÉÓ ÛÄÓÀÓßÀÅËÀà ÀÂÄÁÖËÉ ÊÏÍÔÄÉÍÄÒÄÁÛÉ ÛÄ×ÖÈÅÉÓ ÀÌÏÝÀÍÉÓÀÌÏáÓÍÉÓ ÀËÂÏÒÉÈÌÉÓ ÂÀÌÏÚÄÍÄÁÉÈ . . . . . . . . . . . . . . . . . . . . . 139

ÂÉÏÒÂÉ ÉÀÛÅÉËÉ, ÓÉÌÄÔÒÉÖËÉ ÃÀÛÉ×ÒÅÉÓ ÀáÀËÉ, ÌÏØÍÉËÉ ÀËÂÏÒÉÈÌÉ äÉËÉÓn-ÂÒÀÌÖËÉ ÌÄÈÏÃÉÓ ÂÀÌÏÚÄÍÄÁÉÈ . . . . . . . . . . . . . . . . . . . . . . 140

George Iashvili, Symetric criptographic algoritms to build freexible Hill n-gram metod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

ØÄÈÄÅÀÍ ÊÖÈáÀÛÅÉËÉ, ÀËÂÏÒÉÈÌÉÆÀÝÉÉÓÀ ÃÀ ÃÀÐÒÏÂÒÀÌÄÁÉÓ ÓßÀÅËÄÁÉÓ ÄÒÈÉÊÏÍÝÄ×ÝÉÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Ketevan Kutkhashvili, About one concept of programming and algorithmsteach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Nikoloz Pachuashvili, Teimuraz Kiviladze, Formal method of serviceoriented functional decomposition . . . . . . . . . . . . . . . . . . . . . . . 142

ÍÉÊÏËÏÆ ×ÀÜÖÀÛÅÉËÉ, ÈÄÉÌÖÒÀÆ ÊÉÅÉËÀÞÄ, ÓÄÒÅÉÓÆÄ ÏÒÉÄÍÔÉÒÄÁÖËÉ ×ÖÍØÝÉ-ÍÀËÖÒÉ ÃÄÊÏÌÐÏÆÉÝÉÉÓ ×ÏÒÌÀËÖÒÉ ÌÄÈÏÃÉ . . . . . . . . . . . . . . . . 142

ÍÉÊÏËÏÆ ×áÀÊÀÞÄ, ÊÅÀÍÔÏÒÄÁÉÓ ÄËÉÌÉÍÀÝÉÀ ÊÅÀÍÔÏÒÄÁÉÀÍ ÐÒÏÐÏÆÉÝÉÖË ËÖÊÀ-ÛÄÅÉÜÉÓ ËÏÂÉÊÀÛÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Nikoloz Pkhakadze, Quantifier elimination in quantified propositional Luka-siewicz logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

ÓÏ×Ï ×áÀÊÀÞÄ, e-ÃÀÚÅÀÍÀÃÏÁÉÓ ÈÅÉÓÄÁÀ ÞËÉÄÒÀà Ä×ÄØÔÖÒÀà ÉÌÖÍÖÒÉ ÓÉÌÒÀÅ-ËÄÄÁÉÓÀÈÅÉÓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Sopho Pkhakadze, Property of e-reducibility for strongly effective immunesets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Page 13: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 13

Logic of Natural Languages and Computational Linguistics 145

ÁÖÍÄÁÒÉÅÉ ÄÍÄÁÉÓ ËÏÂÉÊÀ ÃÀ ÂÀÌÏÈÅËÉÈÉ ËÉÍÂÅÉÓÔÉÊÀ 145

Lasha Abzianidze, Designing and implementing an HPSG-based formal gram-mar for Georgian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

ËÀÛÀ ÀÁÆÉÀÍÉÞÄ, ØÀÒÈÖËÉ HPSG-ÔÉÐÉÓ ×ÏÒÌÀËÖÒÉ ÂÒÀÌÀÔÉÊÉÓ ÊÏÍÓÔÒÖÉÒÄÁÀÃÀ ÉÌÐËÄÌÄÍÔÀÝÉÀ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Daan Henselmans, Natural language generation of tense and aspect in anarrative context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

ÃÀÀÍ äÄÍÓÄËÌÀÍÓÉ, ÁÖÍÄÁÒÉÅÉ ÄÍÉÓ ÃÒÏÉÓ ÃÀ ÀÓÐÄØÔÉÓ ÂÄÍÄÒÀÝÉÀ ÈáÒÏÁÉÈÊÏÍÔÄØÓÔÛÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Aleksandre Maskharashvili, About the contracting symbols in Georgianand in some other languages . . . . . . . . . . . . . . . . . . . . . . . . . . 149

ÀËÄØÓÀÍÃÒÄ ÌÀÓáÀÒÀÛÅÉËÉ, ÛÄÌÀÌÏÊËÄÁÄËÉ ÓÉÌÁÏËÏÄÁÉÓ ÛÄÓÀáÄÁ ØÀÒÈÖËÓÀÃÀ ÓáÅÀ ÄÍÄÁÛÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

ÊÏÍÓÔÀÍÔÉÍÄ ×áÀÊÀÞÄ, ÂÉÏÒÂÉ ÜÉÜÖÀ, ØÀÒÈÖËÉ ÛÉÍÀÀÒÓÏÁÒÉÅÀà ÌÊÉÈáÅÄË-ÌÓÌÄÍÄËÉ ÓÉÓÔÄÌÀ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Konstantine Pkhakadze, Giorgi Chichua, The aims and methods of con-structing of the Georgian multi voice semantically reader-listener system . 150

ÊÏÍÓÔÀÍÔÉÍÄ ×áÀÊÀÞÄ, ÌÄÒÀÁ ÜÉØÅÉÍÉÞÄ, ØÀÒÈÖËÉ ÓÉÍÔÀØÓÖÒÉ ÀÍÀËÉÆÀÔÏÒÉÓßÉÍÀÓßÀÒÉ ÅÄÒÓÉÀ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Konstantine Pkhakadze, Merab Chikvinidze, Preliminary version of thegeorgian syntax analyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Alexander Vashalomidze, The allophone database of the Georgian speechsynthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

ÀËÄØÓÀÍÃÒÄ ÅÀÛÀËÏÌÉÞÄ, ÀËÏ×ÏÍÖÒÉ ÁÀÆÀ ØÀÒÈÖËÉ ÌÄÔÚÅÄËÄÁÉÓ ÓÉÍÈÄÆÀÔÏ-ÒÉÓÀÈÅÉÓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Mathematical Modeling and Numerical Analysis 155

ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÀ ÃÀ ÒÉÝáÅÉÈÉ ÀÍÀËÉÆÉ 155

Givi Berikelashvili, Nodar Khomeriki, On a numerical solution of one non-local boundary value problem with mixed Dirichlet–Neumann conditions . 157

ÂÉÅÉ ÁÄÒÉÊÄËÀÛÅÉËÉ, ÍÏÃÀÒ áÏÌÄÒÉÊÉ, ÃÉÒÉáËÄ-ÍÄÉÌÀÍÉÓ ÛÄÒÄÖË ÐÉÒÏÁÄÁÉÀÍÉÄÒÈÉ ÀÒÀËÏÊÀËÖÒÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÉÓ ÒÉÝáÅÉÈÉ ÀÌÏáÓÍÉÓ ÛÄÓÀáÄÁ . . 157

Temur Chilachava, About new mathematical model “beast - predator-victim”158ÈÄÌÖÒ ÜÉËÀÜÀÅÀ, ÀáÀËÉ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉ "ÌáÄÝÉ-ÌÔÀÝÄÁÄËÉ-ÌÓáÅÄÒÐËÉ" . 158

Page 14: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

14 September 2–9, Batumi, Georgia

Francisco Criado, Tinatin Davitashvili, Hamlet Meladze, Threelayer factorized difference schemes for solving the systems of differentialequations of parabolic type with mixed derivatives . . . . . . . . . . . . . . 159

×ÒÀÍÓÉÓÊÏ ÊÒÉÀÃÏ, ÈÉÍÀÈÉÍ ÃÀÅÉÈÀÛÅÉËÉ, äÀÌËÄÔ ÌÄËÀÞÄ, ÓÀÌÛÒÉÀÍÉ ×ÀØÔÏ-ÒÉÆÄÁÖËÉ ÓØÄÌÄÁÉ ÐÀÒÀÁÏËÖÒÉ ÔÉÐÉÓ ÊÄÒÞÏßÀÒÌÏÄÁÖËÉÀÍÉ ÃÉ×ÄÒÄÍÝÉÀ-ËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÌÒÀÅÀËÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÓÉÓÔÄÌÄÁÉÓÀÈÅÉÓ . . . . . . . . 159

Teimuraz Davitashvili, Givi Gubelidze, David Gordeziani, ArchilPapukashvili, Meri Sharikadze, Mathematical modeling of leak loca-tion in compound gas pipeline network . . . . . . . . . . . . . . . . . . . . 160

ÈÄÉÌÖÒÀÆ ÃÀÅÉÈÀÛÅÉËÉ, ÂÉÅÉ ÂÖÁÄËÉÞÄ, ÃÀÅÉÈ ÂÏÒÃÄÆÉÀÍÉ, ÀÒÜÉË ÐÀÐÖÊÀÛÅÉËÉ,ÌÄÒÉ ÛÀÒÉØÀÞÄ, ÒÈÖË ÂÀÍÛÔÏÄÁÄÁÉÓ ÌØÏÍÄ ÂÀÆÓÀÃÄÍÛÉ ÂÀÑÏÍÅÉÓ ÀÃÂÉËÌÃÄ-ÁÀÒÄÏÁÉÓ ÀÙÌÏÜÄÍÉÓ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÀ . . . . . . . . . . . . . . 160

David Devadze, Vakhtang Beridze, Solution of an optimal control problemwith MATHCAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

ÃÀÅÉÈ ÃÄÅÀÞÄ, ÅÀáÔÀÍÂ ÁÄÒÉÞÄ, ÄÒÈÉ ÏÐÔÉÌÀËÖÒÉ ÌÀÒÈÅÉÓ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÀMathcad–ÉÓ ÓÀÛÖÀËÄÁÉÈ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

George Geladze, Numerical modelling of pollution sources optimization . . . 162ÂÉÏÒÂÉ ÂÄËÀÞÄ, ÃÀÁÉÍÞÖÒÄÁÉÓ ßÚÀÒÏÄÁÉÓ ÏÐÔÉÌÉÆÀÝÉÉÓ ÒÉÝáÅÉÈÉ ÌÏÃÄËÉÒÄÁÀ 162

George Geladze, Meri Sharikadze, Manana Tevdoradze, Mathemat-ical simulation of a humidity processes ensemble . . . . . . . . . . . . . . . 163

ÂÉÏÒÂÉ ÂÄËÀÞÄ, ÌÄÒÉ ÛÀÒÉØÀÞÄ, ÌÀÍÀÍÀ ÈÄÅÃÏÒÀÞÄ, ÍÏÔÉÏ ÐÒÏÝÄÓÈÀ ÀÍÓÀÌÁËÉÓÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÀ . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Temur Jangveladze, On one nonlinear one-dimensional diffusion model . . . 164ÈÄÌÖÒ ãÀÍÂÅÄËÀÞÄ, ÄÒÈÉ ÀÒÀßÒ×ÉÅÉ ÄÒÈÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÃÉ×ÖÆÉÖÒÉ ÌÏÃÄËÉÓ

ÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Nikoloz Kachakhidze, Nodar Khomeriki, Zviad Tsiklauri, On thesolution of an equation for the static string . . . . . . . . . . . . . . . . . . 165

ÍÉÊÏËÏÆ ÊÀàÀáÉÞÄ, ÍÏÃÀÒ áÏÌÄÒÉÊÉ, ÆÅÉÀà ßÉÊËÀÖÒÉ, ÓÉÌÉÓ ÓÔÀÔÉÊÖÒÉ ÂÀÍÔÏ-ËÄÁÉÓ ÀÌÏáÓÍÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Mesut Karabacak, Muhammed Yigider, Ercan Çelik, The Numericalsolution of fractional differential-algebraic equations (FDAEs) . . . . . . . 165

ÌÄÓÖÈ ÊÀÒÀÁÀãÀÊÉ, ÌÖäÀÌÄà ÉÂÉÃÀÒÉ, ÄÒãÀÍ ÜÄËÉÊÉ, ßÉËÀÃÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒ-ÀËÂÄÁÒÖËÉ ÂÀÍÔÏËÄÁÉÓ ÒÉÝáÅÉÈÉ ÀÌÏáÓÍÀ (FDAEs) . . . . . . . . . . . 165

Nugzar Kereselidze, Mathematical model of information warfare taking intoaccount technological possibilities of the parties . . . . . . . . . . . . . . . 166

ÍÖÂÆÀÒ ÊÄÒÄÓÄËÉÞÄ, ÉÍ×ÏÒÌÀÝÉÖËÉ ÏÌÉÓ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉ ÌáÀÒÄÈÀÔÄØÍÏËÏÂÉÖÒÉ ÛÄÓÀÞËÄÁËÏÁÉÓ ÂÀÈÅÀËÉÓßÉÍÄÁÉÈ . . . . . . . . . . . . . 166

Page 15: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 15

Nino Khatiashvili, Kristina Pirumova, Manana Tevdoradze, On thesolution of one nonlinear elliptic equation . . . . . . . . . . . . . . . . . . . 167

ÍÉÍÏ áÀÔÉÀÛÅÉËÉ, ÊÒÉÓÔÉÍÀ ×ÉÒÖÌÏÅÀ, ÌÀÍÀÍÀ ÈÄÅÃÏÒÀÞÄ, ÄÒÈÉ ÀÒÀßÒ×ÉÅÉÄËÉ×ÓÖÒÉ ÂÀÍÔÏËÄÁÉÓ ÀÌÏáÓÍÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . . 167

Ekhtiar Khodadadi, Ercan Çelik, Faruk Düşünceli, Variational iter-ation method for fuzzy fractional differential equations with uncertainty . . 168

ÄáÔÉÀÒ áÏÃÀÃÀÃÉ, ÄÒãÀÍ ÜÄËÉÊÉ, ×ÀÒÖØ ÃÖÓÖÍãÄËÉ, ÅÀÒÉÀÝÉÖËÉ ÉÔÄÒÀÝÉÖËÉÌÄÈÏÃÉ ÂÀÍÖÆÙÅÒÄËÏÁÉÓ ÛÄÌÝÅÄËÉ ÀÒÀÌÊÀ×ÉÏ ßÉËÀÃÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Zurab Kiguradze, On numerical resolution of one system of nonlinear integro-differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

ÆÖÒÀÁ ÊÉÙÖÒÀÞÄ, ÄÒÈÉ ÀÒÀßÒ×ÉÅÉ ÉÍÔÄÂÒÏ-ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÀÈÀÓÉÓÔÄÌÉÓ ÒÉÝáÅÉÈÉ ÀÌÏÍÀáÓÍÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . . . . 168

Vladimer Odisharia, The approximate solution of a nonhomogeneous differ-ential equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

ÅËÀÃÉÌÄÒ ÏÃÉÛÀÒÉÀ, ÄÒÈÉ ÀÒÀÄÒÈÂÅÀÒÏÅÀÍÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÉÓÌÉÀáËÏÄÁÉÈÉ ÀÌÏÍÀáÓÍÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . . . . . . . 169

Israfil Okumuş, Ercan Çelik, Classification of factors that affect the speedof the RSA cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

ÉÓÒÀ×ÉË ÏÊÖÌÖÛÉ, ÄÒãÀÍ ÜÄËÉÊÉ, ×ÀØÔÏÒÄÁÉÓ ÊËÀÓÉ×ÉÊÀÝÉÀ, ÒÏÌËÄÁÉÝ ÂÀÅËÄÍÀÓÀáÃÄÍÓ RSA ÊÒÉÐÔÏÓÉÓÔÄÌÉÓ ÓÉÓßÒÀ×ÄÆÄ . . . . . . . . . . . . . . . . . . 171

Archil Papukashvili, David Gordeziani, Teimuraz Davitashvili, MeriSharikadze, On one finite-difference method for investigation of stressedstate of composite bodies weakened by cracks . . . . . . . . . . . . . . . . 171

ÀÒÜÉË ÐÀÐÖÊÀÛÅÉËÉ, ÃÀÅÉÈ ÂÏÒÃÄÆÉÀÍÉ, ÈÄÉÌÖÒÀÆ ÃÀÅÉÈÀÛÅÉËÉ, ÌÄÒÉ ÛÀÒÉØÀÞÄ,ÄÒÈÉ ÓÀÓÒÖË-ÓáÅÀÏÁÉÀÍÉ ÌÄÈÏÃÉÓ ÛÄÓÀáÄÁ ÁÆÀÒÄÁÉÈ ÛÄÓÖÓÔÄÁÖËÉ ÛÄÃ-ÂÄÍÉËÉ ÓáÄÖËÄÁÉÓ ÃÀÞÀÁÖËÉ ÌÃÂÏÌÀÒÄÏÁÉÓ ÂÀÌÏÓÀÊÅËÄÅÀà . . . . . . . . 171

Jemal Peradze, A numerical method for a beam equation . . . . . . . . . . . 172ãÄÌÀË ×ÄÒÀÞÄ, ÒÉÝáÅÉÈÉ ÌÄÈÏÃÉ ÞÄËÉÓ ÂÀÍÔÏËÄÁÉÓÈÅÉÓ . . . . . . . . . . . . 172

Arnak Poghosyan, Accelerating the convergence of trigonometric interpola-tion via polynomial and rational corrections . . . . . . . . . . . . . . . . . 173

ÀÒÍÀÊ ÐÏÙÏÓÉÀÍÉ, ÔÒÉÂÏÍÏÌÄÔÒÉÖËÉ ÉÍÔÄÒÐÏËÄÁÉÓ ÊÒÄÁÀÃÏÁÉÓ ÓÉÜØÀÒÉÓÂÀÆÒÃÀ ÐÏËÉÍÏÌÄÁÉÓÀ ÃÀ ÒÀÝÉÏÍÀËÖÒÉ ÊÏÒÄØÝÉÄÁÉÓ ÂÀÌÏÚÄÍÄÁÉÈ . . . 173

Lusine Poghosyan, On a convergence of the quasi-periodic interpolation . . . 174ËÖÓÉÍÄ ÐÏÙÏÓÉÀÍÉ, ÊÅÀÆÉ–ÐÄÒÉÏÃÖËÉ ÉÍÔÚÄÒÐÏËÄÁÉÓ ÊÒÄÁÀÃÏÁÉÓ ÛÄÓÀáÄÁ . . 174

Page 16: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

16 September 2–9, Batumi, Georgia

K. Tavzarashvili, G. Ghvedashvili, Simulation of plasmonic structures byusing method of auxiliary sources . . . . . . . . . . . . . . . . . . . . . . . 175

Ê. ÈÀÅÆÀÒÀÛÅÉËÉ, Â. ÙÅÄÃÀÛÅÉËÉ, ÐËÀÆÌÏÍÖÒÉ ÓÔÒÖØÔÖÒÄÁÉÓ ÌÏÃÄËÉÒÄÁÀÃÀÌáÀÌÒÄ ÂÀÌÏÌÓáÉÅÄÁËÄÁÉÓ ÌÄÈÏÃÉÈ . . . . . . . . . . . . . . . . . . . . 175

Mathematical Education and History 177

ÌÀÈÄÌÀÔÉÊÖÒÉ ÂÀÍÀÈËÄÁÀ ÃÀ ÉÓÔÏÒÉÀ 177

ÐÄÔÒÄ ÁÀÁÉËÖÀ, ÀËÁÀÈÏÁÀ ÃÀ ÓÔÀÔÉÓÔÉÊÉÓ ÄËÄÌÄÍÔÄÁÉÓ ÓßÀÅËÄÁÀ IB ÓÀÃÉÐ-ËÏÌÏ ÐÒÏÂÒÀÌÉÓ ÌÉáÄÃÅÉÈ . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Petre Babilua, Teaching of probability and statistics by the IB diploma pro-gramme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

ÌÀÍÀÍÀ ÃÄÉÓÀÞÄ, ÅËÀÃÉÌÄÒ ÀÃÄÉÛÅÉËÉ, ÆÏÂÉÄÒÈÉ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÉÓ ÀËÂÄÁÒÖËÉÃÀ ÀÒÉÈÌÄÔÉÊÖËÉ áÄÒáÄÁÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Manana Deisadze, Vladimer Adeishvili, Algebraic and arithmetic waysof solution of some problems . . . . . . . . . . . . . . . . . . . . . . . . . . 179

ÂÖÒÀÌ ÂÏÂÉÛÅÉËÉ, ÌÀÈÄÌÀÔÉÊÉÓ ÓÀÖÍÉÅÄÒÓÉÔÄÔÏ ÓÐÄÝÉÀËÖÒÉ ÓÀÓßÀÅËÏ ÊÖÒÓÄ-ÁÉÓ ÀÂÄÁÉÓ ÄÒÈÉ ÌÄÈÏÃÉÓ ÛÄÓÀáÄÁ . . . . . . . . . . . . . . . . . . . . . . 180

Guram Gogishvili, One way to create university mathematics special courses 180

ÌÀÊÀ ËÏÌÈÀÞÄ, ËÀÌÀÒÀ ÝÉÁÀÞÄ, ×ÖÒÉÄÓ ÌßÊÒÉÅÉÓ ÂÀÌÏÚÄÍÄÁÉÓ ÛÄÓÀáÄÁ ÒÉÝáÅÉÈÉÌßÊÒÉÅÉÓ ãÀÌÉÓ ÂÀÌÏÈÅËÀÛÉ . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Maka Lomtadze, Lamara Tsibadze, About use of Fourier series in calcu-lation of the sum of numerical series . . . . . . . . . . . . . . . . . . . . . 181

ÝÉÝÉÍÏ ÓÀÒÀãÉÛÅÉËÉ, ÄÊÏÍÏÌÉÊÖÒÉ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓ ÌÃÂÒÀÃÏÁÉÓ ÓÀÊÉÈáÉÓÓßÀÅËÄÁÉÓ ÆÏÂÉÄÒÈÉ ÀÓÐÄØÔÉ . . . . . . . . . . . . . . . . . . . . . . . . . 182

Tsitsino Sarajishvili, Some aspects of teaching stability of the solution ofeconomic problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

ÂÒÉÂÏË ÓÏáÀÞÄ, ÐÄÔÒÄ ÁÀÁÉËÖÀ, ÌÀÈÄÌÀÔÉÊÉÓ ÌÀÓßÀÅËÄÁÄËÈÀ ÓÀÓÄÒÔÉ×ÉÊÀÝÉÏÂÀÌÏÝÃÉÓ ÌÏÌÆÀÃÄÁÉÓÀÈÅÉÓ . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Grigol Sokhadze, Petre Babilua, Preparation for the Certification testingof mathematics teachers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

ËÀÌÀÒÀ ÝÉÁÀÞÄ, ÌÀÊÀ ËÏÌÈÀÞÄ, ÒÉÝáÅÉÈ ÌßÊÒÉÅÈÀ ÂÀÌÒÀÅËÄÁÉÓÀ ÃÀ ÂÀÚÏ×ÉÓÓßÀÅËÄÁÀ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Lamara Tsibadze, Maka Lomtadze, Teaching of multiplication and divisionof numerical series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Page 17: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 17

Luiza Umarkhadzhieva, Using a modern information technology to teachhigh mathematics in a technical college . . . . . . . . . . . . . . . . . . . . 184

ËÖÉÆÀ ÖÌÀÒáÀãÉÄÅÀ, ÔÄØÍÉÊÖÒ ÊÏËÄãÛÉ ÖÌÀÙËÄÓÉ ÌÀÈÄÌÀÔÉÊÉÓ ÓßÀÅËÄÁÉÓÀÓÈÀÍÀÌÄÃÒÏÅÄ ÓÀÉÍ×ÏÒÌÀÝÉÏ ÔÄØÍÏËÏÂÉÄÁÉÓ ÂÀÌÏÚÄÍÄÁÀ . . . . . . . . . . 184

Continuum Mechanics 187

ÖßÚÅÄÔ ÂÀÒÄÌÏÈÀ ÌÄØÀÍÉÊÀ 187Aleksander G. Bagdoev, Some synergetic treatments of wave dynamics in

application to stochastic processes in semiconductors, traffic flow, fracturemechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

ÀËÄØÓÀÍÃÒÄ ÁÀÂÃÏÄÅÉ, ÔÀËÙÉÓ ÃÉÍÀÌÉÊÉÓ ÆÏÂÉÄÒÈÉ ÓÉÍÄÒÂÄÔÉÊÖËÉ ÓÀÊÉÈáÉ ÃÀÌÀÈÉ ÂÀÌÏÚÄÍÄÁÀ ÍÀáÄÅÀÒÂÀÌÔÀÒÄÁÉÓ ÓÔÏØÀÓÔÖÒ ÐÒÏÝÄÓÄÁÛÉ, ÔÒÀÍÓÐÏÒ-ÔÉÓ ÍÀÊÀÃÉÓÀ ÃÀ ÒÙÅÄÅÉÓ ÌÄØÀÍÉÊÉÓ ÀÌÏÝÀÍÄÁÛÉ . . . . . . . . . . . . . . 189

Lamara Bitsadze, Effective solution of the Dirichlet BVP of the linear theoryof thermoelasticity with microtemperatures for a spherical ring . . . . . . . 190

ËÀÌÀÒÀ ÁÉßÀÞÄ, ÃÉÒÉáËÄÓ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÀ Ó×ÄÒÖËÉ ÒÂÏËÉÓÀÈÅÉÓ ÈÄÒÌÏ-ÃÒÄÊÀÃÏÁÉÓ ßÒ×ÉÅÉ ÈÄÏÒÉÉÓ ÂÀÍÔÏËÄÁÄÁÉÓÀÈÅÉÓ ÌÉÊÒÏÔÄÌÐÄÒÀÔÖÒÉÓÂÀÈÅÀËÉÓßÉÍÄÁÉÈ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Sema Bodur, H. Alpaslan Peker, Galip Oturanç, Analysis of Winkler’smodel of elastic foundation using differential transform method . . . . . . 191

ÓÄÌÀ ÁÏÃÖÒÉ, ä. ÀË×ÀÓËÀÍ ÐÄÊÄÒÉ, ÂÀËÉ× ÏÈÖÒÀÍÂÉ, ÃÒÄÊÀÃÉ ÓÀÚÒÃÄÍÄÁÉÓÀÈÅÉÓÅÉÍÊËÄÒÉÓ ÔÉÐÉÓ ÀÌÏÝÀÍÄÁÉÓ ÀÍÀËÉÆÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÒÃÀØÌÍÄÁÉÓÌÄÈÏÃÉÈ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Otar Chkadua, Asymptotic analysis of interface crack problems for metallic-piezoelectric composite structures . . . . . . . . . . . . . . . . . . . . . . . 192

ÏÈÀÒ àÊÀÃÖÀ, ÓÀÊÏÍÔÀØÔÏ ÁÆÀÒÉÓ ÀÌÏÝÀÍÄÁÉÓ ÀÓÉÌÐÔÏÔÖÒÉ ÀÍÀËÉÆÉ ÌÄÔÀËÖÒ-ÐÉÄÆÏÄËØÔÒÖËÉ ÊÏÌÐÏÆÉÔÖÒÉ ÓÔÒÖØÔÖÒÄÁÉÓ ÈÄÏÒÉÀÛÉ . . . . . . . . . . 192

Francisco Criado-Aldeanueva, Francisco Criado, Nana Odishe-lidze, Partially unknown boundaries problems of elasticity and plate bend-ing (equi-strong contours finding problem) . . . . . . . . . . . . . . . . . . 193

×ÒÀÍÓÉÓÊÏ ÊÒÉÀÃÏ-ÀËÃÄÀÍÖÄÅÀ, ×ÒÀÍÓÉÓÊÏ ÊÒÉÀÃÏ, ÍÀÍÀ ÏÃÉÛÄËÉÞÄ, ÃÒÄÊÀ-ÃÏÁÉÓ ÁÒÔÚÄËÉ ÈÄÏÒÉÉÓÀ ÃÀ ×ÉÒ×ÉÔÉÓ ÙÖÍÅÉÓ ÍÀßÉËÏÁÒÉÅ ÖÝÍÏÁÓÀ-ÆÙÅÒÉÀÍÉ ÀÌÏÝÀÍÄÁÉ (ÈÀÍÀÁÒÀÃÌÔÊÉÝÄ ÊÏÍÔÖÒÉÓ ÌÏÞÄÁÍÉÓ ÀÌÏÝÀÍÄÁÉ) . . 193

L. Giorgashvili, G. Karseladze, The boundary value problems for a solidbody with double porosity and two nonintersecting spherical cavities . . . 194

Ë. ÂÉÏÒÂÀÛÅÉËÉ, Â. ØÀÒÓÄËÀÞÄ, ÞÉÒÉÈÀÃÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉÓ ÀÌÏáÓÍÀÏÒÉ ÖÒÈÉÄÒÈ ÀÒÀÂÀÃÀÌÊÅÄÈÉ ÁÉÒÈÅÖËÉ ÙÒÖÓ ÌØÏÍÄ ÏÒÂÅÀÒÉ ×ÏÒÏÅÍÏ-ÁÉÓ ÌØÏÍÄ ÌÈÄËÉ ÓÉÅÒÝÉÓÀÈÅÉÓ . . . . . . . . . . . . . . . . . . . . . . . . 194

Page 18: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

18 September 2–9, Batumi, Georgia

Diana Ivanidze, Uniqueness theorems for the basic interface problems of ther-moelastostatics for hemitropic composite bodies . . . . . . . . . . . . . . . 194

ÃÉÀÍÀ ÉÅÀÍÉÞÄ, äÄÌÉÔÒÏÐÖËÉ ÓáÄÖËÄÁÉÓ ÈÄÒÌÏÃÒÄÊÀÃÏÁÉÓ ÈÄÏÒÉÉÓ ÓÔÀÔÉÊÉÓÞÉÒÉÈÀÃÉ ÓÀÊÏÍÔÀØÔÏ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓ ÄÒÈÀÃÄÒÈÏÁÉÓ ÛÄÓÀáÄÁ . . . 194

Marekh Ivanidze, Uniqueness theorems for the basic interface problems ofthermoelastostatics for anisotropic composite bodies . . . . . . . . . . . . . 195

ÌÀÒÄá ÉÅÀÍÉÞÄ, ÀÍÉÆÏÔÒÏÐÖËÉ ÓáÄÖËÄÁÉÓ ÈÄÒÌÏÃÒÄÊÀÃÏÁÉÓ ÈÄÏÒÉÉÓ ÓÔÀÔÉÊÉÓÞÉÒÉÈÀÃÉ ÓÀÊÏÍÔÀØÔÏ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓ ÄÒÈÀÃÄÒÈÏÁÉÓ ÛÄÓÀáÄÁ . . . 195

A. Jaghmaidze, R. Meladze, The boundary value problems of statics of thetwo-temperature theory elastic mixtures for a domain bounded by sphericalsurface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

À. ãÀÙÌÀÉÞÄ, Ò. ÌÄËÀÞÄ, ÏÒÔÄÌÐÄÒÀÔÖÒÉÀÍ ÃÒÄÊÀà ÍÀÒÄÅÈÀ ÈÄÏÒÉÉÓ ÓÔÀÔÉ-ÊÉÓ ÞÉÒÉÈÀÃÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉ ÁÉÒÈÅÉÓÀÈÅÉÓ . . . . . . . . . . . . . 196

ÒÏÌÀÍ ãÀÍãÙÀÅÀ, ÍÖÒÉ áÏÌÀÓÖÒÉÞÄ, ÌÀÒÈÊÖÈáÀ ÐÀÒÀËÄËÄÐÉÐÄÃÉÓÀÈÅÉÓ ÈÄÒÌÏ-ÃÒÄÊÀÃÏÁÉÓ ÆÏÂÉÄÒÈÉ ÀÒÀÊËÀÓÉÊÖÒÉ ÀÌÏÝÀÍÉÓ ÃÀÓÌÀ ÃÀ ÀÌÏáÓÍÀ . . . . 196

Roman Janjgava, Nuri Khomasuridze, Statements and solutions of somenon-classical problem of thermoelasticity for rectangular parallelepiped . . 196

Ilia Lomidze, Jimsher Javakhishvili, Thermodynamics of barochronic po-tential flow of ideal liquid (gas) . . . . . . . . . . . . . . . . . . . . . . . . 197

ÉËÉÀ ËÏÌÉÞÄ, ãÉÌÛÄÒ ãÀÅÀáÉÛÅÉËÉ, ÉÃÄÀËÖÒÉ ÓÉÈáÉÓ (ÀÉÒÉÓ) ÐÏÔÄÍÝÉÀËÖÒÉÁÀÒÏØÒÏÍÖËÉ ÃÉÍÄÁÉÓ ÈÄÒÌÏÃÉÍÀÌÉÊÀ . . . . . . . . . . . . . . . . . . . . 197

R. Meladze, M. Kharashvili, K. Skhvitaridze, A two-component elasticmixture with different temperature values in a scalar field . . . . . . . . . 198

Ò. ÌÄËÀÞÄ, Ì. áÀÒÀÛÅÉËÉ, Ø. ÓáÅÉÔÀÒÉÞÄ, ÏÒÊÏÌÐÏÍÄÍÔÉÀÍÉ ÃÀ ÓáÅÀÃÀÓáÅÀÔÄÌÐÄÒÀÔÖÒÉÀÍÉ ÃÒÄÊÀÃÉ ÍÀÒÄÅÉ ÓÊÀËÀÒÖË ÅÄËÛÉ . . . . . . . . . . . . . 198

S. H. Sargsyan, A. J. Farmanyan, Mathematical model of dynamics ofmicropolar elastic orthotropic multilayered thin plates . . . . . . . . . . . . 199

Ó.ä. ÓÀÒÂÓÉÀÍÉ, À.ã. ×ÀÒÌÀÍÉÀÍÉ, ÏÒÈÏÔÒÏÐÖËÉ ÌÉÊÒÏÐÏËÀÒÖËÉ ÌÒÀÅÀË-×ÄÍÏÅÀÍÉ ÈáÄËÉ ×ÉËÄÁÉÓ ÃÉÍÀÌÉÊÉÓ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉ . . . . . . . 199

K. Skhvitaridze, M. Kharashvili, The boundary value problems of staticsof the two-temperature theory elastic mixtures for a domain bounded byspherical surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Ø. ÓáÅÉÔÀÒÉÞÄ, Ì. áÀÒÀÛÅÉËÉ, ÏÒÔÄÌÐÄÒÀÔÖÒÉÀÍ ÃÒÄÊÀà ÍÀÒÄÅÈÀ ÈÄÏÒÉÉÓÓÔÀÔÉÊÉÓ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉ ÍÀáÄÅÀÒÓÉÅÒÝÉÓÀÈÅÉÓ . . . . . . . . . . . . 200

Kosta Svanadze, On one problem of the plane theory of elastic mixture for ahalf-plane weakened by periodically arranged equally strong holes . . . . . 200

ÊÏÓÔÀ ÓÅÀÍÀÞÄ, ÃÒÄÊÀà ÍÀÒÄÅÈÀ ÁÒÔÚÄËÉ ÈÄÏÒÉÉÓ ÀÌÏÝÀÍÀ ÐÄÒÉÏÃÖËÀÃÂÀÍËÀÂÄÁÖËÉ ÈÀÍÀÁÒÀÃÌÊÔÉÝÄ áÅÒÄËÄÁÉÈ ÛÄÓÖÓÔÄÁÖËÉ ÍÀáÄÅÀÒÓÉÁÒÔÚÉ-ÓÀÈÅÉÓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Page 19: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 19

Ivane Tsagareli, Maia Svanadze, Numerical solution of boundary valueproblems of thermoelasticity with microtemperatures for circular hole . . . 201

ÉÅÀÍÄ ÝÀÂÀÒÄËÉ, ÌÀÉÀ ÓÅÀÍÀÞÄ, ÌÉÊÒÏÔÄÌÐÄÒÀÔÖÒÖËÉ ÈÄÒÌÏÃÒÄÊÀÃÏÁÉÓ ÓÀÓÀ-ÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉÓ ÒÉÝáÅÉÈÉ ÀÌÏáÓÍÀ ßÒÉÖËÉ áÅÒÄËÉÓ ÌØÏÍÄ ÀÒÄÄÁÉÓÀ-ÈÅÉÓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Varden Tsutskiridze, Levan Jikidze, Motion of a viscous hydromagneticfluid contained between rotating coaxial cylinders . . . . . . . . . . . . . . 202

ÅÀÒÃÄÍ ÝÖÝØÉÒÉÞÄ, ËÄÅÀÍ ãÉØÉÞÄ, ÂÀÌÔÀÒÉ ÓÉÈáÉÓ ÃÉÍÄÁÀ ÏÒ ÌÁÒÖÍÀÅ ÊÏÍÝÄÍ-ÔÒÖË ÝÉËÉÍÃÒÓ ÛÏÒÉÓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A. A. Vantsyan, Impact of a deformable indenter and the plate in the presenceof discharge current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

À.À. ÅÀÍÔÓÉÀÍÉ, ÂÀÍÌÖáÔÅÉÓ ÃÄÍÉÓ ÂÀÅËÄÍÀ ÃÒÄÊÀÃÉ ÉÍÃÄÍÔÏÒÉÓÀ ÃÀ ×ÉËÉÓÌÏÝÀÍÉÓ ÛÄÌÈáÅÄÅÀÛÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Sh. Zazashvili, G. Sadunishvili, The boundary value problems of station-ary oscillations in the theory of two-temperature elastic mixtures . . . . . 204

Û. ÆÀÆÀÛÅÉËÉ, Â. ÓÀÃÖÍÉÛÅÉËÉ, ÏÒÔÄÌÐÄÒÀÔÖÒÉÀÍ ÃÒÄÊÀà ÍÀÒÄÅÈÀ ÈÄÏÒÉÉÓÓÔÀÝÉÏÍÀÒÖËÉ ÒáÄÅÉÓ ÞÉÒÉÈÀÃÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉÓ ÂÀÌÏÊÅËÄÅÀ . . . 204

Natela Zirakashvili, Miranda Narmania, Study of stress-strain state ofthe piecewise homogeneous infinity elastic body with an elliptic hole andthe cracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

ÍÀÈÄËÀ ÆÉÒÀØÀÛÅÉËÉ, ÌÉÒÀÍÃÀ ÍÀÒÌÀÍÉÀ, ÁÒÔÚÄËÉ ÃÀÞÀÁÖËÉ ÌÃÂÏÌÀÒÄÏÁÉÓÛÄÓßÀÅËÀ ÄËÉ×ÓÖÒÉ áÅÒÄËÉÓÀ ÃÀ ÁÆÀÒÉÓ ÛÄÌÝÅÄËÉ ÖÁÍÏÁÒÉÅ ÄÒÈÂÅÀÒÏ-ÅÀÍÉ ÖÓÀÓÒÖËÏ ÃÒÄÊÀÃÉ ÓáÄÖËÉÓÀÈÅÉÓ . . . . . . . . . . . . . . . . . . 204

List of Participants 207

Index 217

Page 20: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
Page 21: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÜÅÄÍÉ ÊÀËÄÍÃÀÒÉ 21

Stefan Banach in Tbilisi(On the occasion of his 120-th Birthday Anniversary)

Vaja TarieladzeNiko Muskhelishvili Institute of Computational Mathematics of the Georgian Technical

University, Tbilisi, Georgiaemail: [email protected]

Abstract. We present an information about Stefan Banach’s visit to Tbilisi inMarch, 15–20, 1941 contained in Tbilisi’s newspapers “COMUNISTI” and “ZaryaVostoka” of March, 1941.2010 Mathematics Subject Classification: 01A70, 01A72.

1 IntroductionOn July, 21, 2012 I sent an abstract to The International Conference Dedicated to 120-thanniversary of Stefan Banach, which will be held in Lvov (Ukraine) in September 17-21,2012. In the abstract I wrote: “At the beginning of the talk it will be commented aninformation about being of Stefan Banach in Tbilisi (June, 1941)”.

I had heard several stories about Banach’s visit to Tbilisi, however I was encouragedto write the above lines thanks to appearance of the book1:

“Andro Bitsadze–Scientist and Personality” (in Georgian), Edited by Mery Bitsadze,Editorial “INTELECTI”, 2012, 345 p.This book consists mainly of the reminiscences of Prof. A. Bitsadze2; in particular,

on p. 173 it is written:“In 1940 Tbilisi and Lvov State Universities were engaged in a socialist competition. A

delegation of professors and students of Lvov University, led by its rector Banach3 visitedTbilisi State University several weeks before the begging of the war between Germanyand Soviet Union. An unforgettably deep impression was left by the meeting with thegroup of mathematicians such as Banach, Schauder4 and Zarits’kyi. It would be good fora reader to know that these are those Banach and Schauder, whose names are written ingolden letters in the history of mathematics.”

1 I am grateful to Professor Jondo Sharikadze (Tbilisi, Georgia), who told to me that this book wasgoing to appear and lent it to me when it appeared.

2 Seemingly, Banach has never been a rector of Lvov University.3 Seemingly, Banach has never been a rector of Lvov University.4 In fact Schauder was not a member of the delegation; see Section 2.

Page 22: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

22 Our Calendar September 2–9, Batumi, Georgia

The meeting with Banach and Schauder was unforgettable for the group of (Georgian)mathematicians and has left an indelible impression.

This text I could refer as a documental confirmation of Banach’s visit. The words “. . .several weeks before the begging of the war between Germany and Soviet Union”, sincethe war began in June, 22, 1941, I understood as 2 or 3 weeks, that’s why I wrote in theabstract ‘June, 1941’.

Before Lvov Conference I was going to look for the newspapers of 1941 with hope tofind there something more about Banach’s visit.

Meanwhile, on July 28, 2012 from Lech Maligranda5 I received an e-mail letter, inwhich, in particular it was written:

“I know that Banach was in Tbilisi and Gori in 1941. My information is that it wasin March but you are writing in June. How do you know this? Maybe you even knowexact days of stay of Banach in Tbilisi and Gori?”

In my answer to Prof. Maligranda I have explained to him my above given ‘argumen-tation’ and wrote also that I knew nothing about Banach’s visit to Gori.

Finally, on the second of August, 2012 I went to the National Library of the GeorgianParliament, where with the help of Nana Jokharidze6 I was able to find several newspaperscontaining the information about the visit of Lvov’s delegation to Tbilisi mentioned byA. Bitsadze. Below the reader will see what was found.

2 Banach’s visit according to the newspaper “COMUNISTI”On the first page of “COMUNISTI”7 (Sunday, March 16, 1941, no.63 (6068)) appearedan article entitled: “Delegation of Lvov State University in Tbilisi”.

Here is a translation of the Georgian article kindly made by Lily Goksadze8.“Yesterday the delegation of Lvov State University, lead by S.S. Banach, the famous

mathematician, arrived in Tbilisi. The delegation consists of M.O. Zarits’kyi, a professorof the history of mathematics of Lvov’s university; A.S. Braginets, the dean of HistoryDepartment; M.V. Solyak, a student of History Department.

Banach, the head of the delegation, said to a staff member of “COMUNISTI”: the aimof our visit to the capital of sunny Georgia is to sign the socialist competition agreementbetween Tbilisi Stalin State University and Lvov Iv. Franko State University. The wish ofhaving a socialist competition between these two fraternal universities was first expressedduring the visit of Georgian workers delegation to Ukraine9.

5 Professor of Mathematics Department of Engineering Sciences and Mathematics Lule a University ofTechnology SE-971 87 Lule a, Sweden.

6 A leading specialist of the Department of Periodics of the Library.7 “COMUNISTI”, in English “The Communist” was the official newspaper in Georgian of the Central

and Tbilisi committees of Georgian Communist (Bolshevik) Party and the Council of workers’ deputiesof Georgian SSR

8 A professor-emeritus of Ivane Javakhishvili Tbilisi State University.9 See Section 4.

Page 23: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÜÅÄÍÉ ÊÀËÄÍÃÀÒÉ 23

Photo by M. Ginzburg.

Our delegation will stay in Georgia for five days; during which we shall visit noteworthyplaces connected with the revolutionary activities of great Stalin, the beloved leader ofpeople and with the period of his youth.

We shall familiarize ourselves with the scientific and pedagogical work at Tbilisi Uni-versity and share their experience to improve the work of Lvov young Soviet University.

There is no doubt that the socialist competition between the two fraternal universitieswill further promote our common claim.”

On the third page of “COMUNISTI” (Wednesday, March 19, 1941, no.65 (6070))appeared a photo of four persons under which it is written:

Delegation of Lvov University in Tbilisi, from left to right: A. Braginets, S. Banach(head of delegation), M. Solyak and M. Zarits’kyi.

On the second page of “COMUNISTI” (Thursday, March 20, 1941, no.66 (6071))appeared the following information:

“PROFESSORS OF LVOV UNIVERSITY IN GORIGORI, March, 19 (SAQDES10.). The professors of Lvov University comrades Banach,

Zarits’kyi, docent Braginets and lady-student Solyak arrived to Gori. They were accom-panied by vice-rector of Tbilisi State University Prof. A. Kharadze11, dean of Faculty ofPhysics and Mathematics I. Vekua12 and assistant of dean of Philology Department K.Kopaleishvili.

The guests visited the house where the great Stalin was born and spent his childhood,the room of the former Orthodox Christian Seminary where comrade Stalin studied. The

10 ‘SAQDES’ in Georgian means: saqartvelos depeshata saagento; in Engish: the teletype agency ofGeorgia

11 A. Kharadze (1895–1976), a Georgian mathematician.12 I. Vekua(1907–1977), a famous Georgian mathematician.

Page 24: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

24 Our Calendar September 2–9, Batumi, Georgia

guests also got insights of the activities of Gori State Pedagogic Institute and had aconversation with comrade Loladze, a secretary of district committee of party in Gori.”

3 Banach’s visit according to the newspaper “Zarya Vostoka”In “Zarya Vostoka”13 (Friday, March 21, 1941, no.67 (5293)) appeared an article in Russianentitled: “Lvov-Tbilisi. Competition of Universities.”

The article begins with photos of professor S.S. Banach, professor M.O. Zarits’kyi,docent A.S. Braginets and a lady-student M.V. Solyak.

We give a translation of this article.“On 17 of March in the club of Tbilisi Stalin State University took place a meeting

between the delegation of Lvov Iv. Franko State University with the collective of TbilisiUniversity.

The meeting was opened by the rector of theuniversity D. Kipshidze, who underlined the greatimportance of socialist competition of high schoolsfor further improvement of the whole scientific-pedagogical work.

The populous gathering warmly met the repre-sentatives of Lvov University.

A.S. Braginets, the dean of History Departmentof Lvov University, in his report spoke about stalinfriendship of nations, about the importance of so-cialist competition.Then he read the socialist com-petition agreement brought by the delegation. Theagreement was signed by: prof. G. Vichenko,the rector of Lvov Iv. Franko State University;academician I. Studiskij, vice-rector; professor Z.Khraplivij, vice-rector; A. Kulikov, secretary ofparty bureau; c. Artiukh14, secretary of bureau ofVLKSM; A. Skaba, chair of mestkom(local com-mittee) and T. Stanik, chair of profkom(=localtrade-union committee).

On behalf of the collective of Tbilisi University and Academy of Sciences of GeorgianSSR the guests greeted N. Muskhelishvili15, the president of the Academy of Sciences ofGeorgian SSR. He said that the names of scientists from Lvov were familiar to the scientificworkers of Georgia before the establishment of Soviet power in Lvov, but only now it was

13 “Zarya Vostoka”, in English “The Day-break of East” was the official newspaper in Russian of theCentral and Tbilisi Committees of Georgian Communist (Bolshevik) Party and the Council of Workers’Deputies of Georgian SSR.

15 N. Muskhelishvili(1891–1976), the most famous Georgian mathematician.

Page 25: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÜÅÄÍÉ ÊÀËÄÍÃÀÒÉ 25

opened a possibility of wide scientific collaboration and of exchange of experience. Inparticular, the mathematical school led by professor Banach has its followers in Tbilisi.

The next speaker academician K. Kekelidze16 spoke about the past of Georgian andUkrainian nations, about fruitful ground created by the Soviet power for the scientificwork.

On behalf of Tbilisi University the guests were also greeted by the aspirant P. Gudu-shauri.

V. Imedadze, a chair of the Republic Committee of workers of high schools and sci-entific institutions spoke about fraternal friendship between the best sons of Ukrainian,Georgian and Polish people, which existed since old times.

The speech of a distinguished Stalin’s grant-aided lady-student of fourth course ofChemistry Department T. Tsetskhladze raised attention, who spoke about the study ofstudents.

Prof. M. Zarits’kyi shared his impressions concerning the work of Tbilisi University.The populous auditory with exceptional attention listened to the speech of a dis-

tinguished lady-student of History Department of Lvov University M. Solyak, who spokeabout the life of young people in old Lvov, about her five years ordeal in prisons of Poland.

At the end of the meeting there was organized a big concert.”In “Zarya Vostoka” (Saturday, March 22, 1941, no.68 (5294)) appeared an article in

Russian entitled: ”OUR IMPRESSIONS. A letter to “Zarya Vostoka”, signed by Prof.S.S. Banach, Prof. M.O. Zarits’kyi, docent A.S. Braginets and lady-student M.V. Solyak.

I’ll not give a translation of the text of this letter.In “Zarya Vostoka” (Sunday, March 23, 1941, no.69 (5295)) appeared an article in

Russian entitled: ”MY LIFE, signed by Maria Solyak, a lady-student of Lvov State Uni-versity.

I’ll not give a translation of the text of this article either.

4 Georgian workers delegation to Ukraine (October, 1940) andStefan BanachA Georgian workers delegation led by People’s Commissar of Education of Georgian SSRG. Kiknadze17 visited Ukraine in November, 1940. It consisted of factory-workers, land-workers, miners, actors, scientists, etc. Among 50 members of delegation were also themathematician N. Muskhelishvili and the rector of Tbilisi Stalin State University D. Kip-shidze18. It arrived to Kiev in November, 5, 1940 and stayed there till November, 23(included). According to “COMUNISTI” (November, 14, 1940, no. 264 (5965)), onNovember, 13, 1940 in Kiev the delegation received an invitation letter from professors,

16 K. Kekelidze(1879–1962), a philologist and specialist in Georgian medieval literature.17 G. Kiknadze (G.=Giorgi, 1902–1963) was a People’s Commissar of Education of Georgian SSR in

1938–1944.18 D. Kipshidze(D.=David, 1902–1957) was a rector of Tbilisi Stalin State University in1938–1942.

Page 26: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

26 Our Calendar September 2–9, Batumi, Georgia

teachers and students of Lvov State University. The letter was ended as follows: “Goodbye, we will meet each-other soon in an old Ukrainian city Lvov.” The letter was signedby:the rector, comrade Vichenko,academician Studinskii,professor, doctor of mathematical sciences Banachdoctor of philological sciences Chernikh,professor, doctor of historical sciences Kripkevich,professor, doctor of physic-mathematical sciences Khrapliv, a student Stanek and others.

According to “COMUNISTI” (November, 21, 1940, no. 270 (5971)), the delegationvisited Lvov on November 19, 1940.

After coming back of the delegation to Georgia, several its members wrote their im-pressions about the visit. In two of them the name of Banach is mentioned.

In “Zarya Vostoka” (4.XII.1940, no. 281(5203)) appeared an article (in Russian) byacademician N. Muskhelishvili: “The prosperity of socialist science”. Muskhelishvili wrote:

”The trip to Ukraine gave me a possibility to meet personally my colleagues, many ofthem were known for me long before from the literature and the scientific correspondence. . .

It was particularly interesting to get acquainted with mathematicians of the liberatedregions of Western Ukraine. We met the representatives of Lvov mathematical schoolwhich is well-known throughout of the world, and with its leader professor Stefan Banach.”

In “COMUNISTI” (4.XII.1940, no.281(5982)) appeared an article (in Georgian) by G.Kiknadze: “A demonstration of Stalin friendship of people.” Kiknadze wrote: ”In Lvova group of delegates and I visited Lvov University. The professors and students of theUniversity got together for this occasion. They greeted us. We told them about work ofour higher educational institutions, about the strong scientific school of Tbilisi ComradeStalin State University, that the learning and teaching process at the university was inGeorgian, that the Georgian culture, national in form and international in content, wasflourishing. This was a big surprise, especially among Polish professors. . . The famousscientist professor Banach cheered up. He said that that day he was convinced of howimportant Stalin friendship of people was.”

Acknowledgements. I am grateful to my colleagues and friends G. Giorgobiani andZ. Sanikidze from Niko Muskhelishvili Institute of Computational Mathematics for theirinterest and help during preparation of this article.

The work was partially supported by Shota Rustaveli National Science Foundationgrant GNSF/ST09 99 3-104.

Page 27: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÜÅÄÍÉ ÊÀËÄÍÃÀÒÉ 27

ÐÒÏ×ÄÓÏÒÉ ÀËÄØÓÉ ÂÏÒÂÉÞÄ(ÃÀÁÀÃÄÁÉÃÀÍ 105 ßËÉÓÈÀÅÉÓÀÃÌÉ)

ÀËÄØÓÉ ÂÏÒÂÉÞÄ -- ÂÀÌÏÜÄÍÉËÉ ØÀÒÈÅÄËÉ ÌÄÝÍÉÄÒÉ-ÌÀÈÄ-ÌÀÔÉÊÏÓÉ ÃÀ ÌÄØÀÍÉÊÏÓÉ, ÌÄÝÍÉÄÒÄÁÉÓ ÃÀÌÓÀáÖÒÄÁÖËÉ ÌÏÙÅÀßÄ(1962ß.), ÓÀØÀÒÈÅÄËÏÓ ÓÀáÄËÌßÉ×Ï ÐÒÄÌÉÉÓ ËÀÖÒÄÀÔÉ(1997ß.), ÐÒÏ×ÄÓÏÒÉ.

ÀËÄØÓÉ ÂÏÒÂÉÞÄ ÃÀÉÁÀÃÀ 1907 ßËÉÓ 17 ÌÀÉÓÓ Ø. ØÖÈÀÉÓÛÉ.ãÄÒ ÊÉÃÄÅ ØÖÈÀÉÓÛÉ ÒÄÀËÖÒ ÓÀÓßÀÅËÄÁÄËÛÉ ÓßÀÅËÉÓÀÓ ÉÜÄÍÃÀÌÀÈÄÌÀÔÉÊÉÓ ÓÉÚÅÀÒÖËÓ ÃÀ ÍÉàÓ.

1924 ßÄËÓ ÉÂÉ ÛÄÃÉÓ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉÓÐÄÃÀÂÏÂÉÖÒÉ ×ÀÊÖËÔÄÔÉÓ ×ÉÆÉÊÀ-ÌÀÈÄÌÀÔÉÊÉÓ ÂÀÍÚÏ×ÉËÄÁÀÆÄ,

ÓÀÃÀÝ ÀÌ ÃÒÏÓ ÌÏÙÅÀßÄÏÁÃÍÄÍ ÓÀØÀÒÈÅÄËÏÛÉ ÖÌÀÙËÄÓÉ ÌÀÈÄÌÀÔÉÊÖÒÉ ÂÀÍÀÈËÄÁÉÓ×ÖÞÄÌÃÄÁËÄÁÉ ÀÍÃÒÉÀ ÒÀÆÌÀÞÄ, ÍÉÊÏ ÌÖÓáÄËÉÛÅÉËÉ, ÂÉÏÒÂÉ ÍÉÊÏËÀÞÄ ÃÀ ÀÒÜÉË áÀÒÀÞÄ.

1929 ßÄËÓ À. ÂÏÒÂÉÞÄ, ÍÉÊÏ ÌÖÓáÄËÉÛÅÉËÉÓ ÌÉßÅÄÅÉÈ, ÌÖÛÀÏÁÀÓ ÉßÚÄÁÓ ÓÀØÀÒÈÅÄ-ËÏÓ ÓÀáÄËÌßÉ×Ï ÐÏËÉÔÄØÍÉÊÖÒ ÉÍÓÔÉÔÖÔÛÉ ÈÄÏÒÉÖËÉ ÌÄØÀÍÉÊÉÓ ÊÀÈÄÃÒÀÆÄ.

1932 ßÄËÓ À. ÂÏÒÂÉÞÄ ÉÂÆÀÅÍÄÁÀ ËÄÍÉÍÂÒÀÃÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉÓ ÀÓÐÉÒÀÍ-ÔÖÒÀÛÉ, ÓÀÃÀÝ ÌÉÓÉ ÓÀÌÄÝÍÉÄÒÏ áÄËÌÞÙÅÀÍÄËÄÁÉ ÉÚÅÍÄÍ ÂÀÌÏÜÄÍÉËÉ ÌÄÝÍÉÄÒÄÁÉ Å. ÓÌÉÒ-ÍÏÅÉ ÃÀ Ó. ÌÉáËÉÍÉ.

1935 ßÄËÓ À. ÂÏÒÂÉÞÄ ÁÒÖÍÃÄÁÀ ÈÁÉËÉÓÛÉ ÃÀ ÌÖÛÀÏÁÀÓ ÉßÚÄÁÓ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ-×Ï ÖÍÉÅÄÒÓÉÔÄÔÛÉ ÃÀ ÓÀØÀÒÈÅÄËÏÓ ÐÏËÉÔÄØÍÉÊÖÒ ÉÍÓÔÉÔÖÔÛÉ. ÀØÔÉÖÒÀà ÌÏÍÀßÉ-ËÄÏÁÓ ÈÁÉËÉÓÉÓ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÉÓ ÃÀÀÒÓÄÁÀÛÉ.

1938 ßÄËÓ Í. ÌÖÓáÄËÉÛÅÉËÉÓ ßÉÍÀÃÀÃÄÁÉÈ À. ÂÏÒÂÉÞÄÌ ÄÓ ÂÀÌÏÜÄÍÉËÉ ÌÄÝÍÉÄÒÉÛÄÝÅÀËÀ ÐÏËÉÔÄØÍÉÊÖÒÉ ÉÍÓÔÉÔÖÔÉÓ ÈÄÏÒÉÖËÉ ÌÄØÀÍÉÊÉÓ ÊÀÈÄÃÒÉÓ ÂÀÌÂÉÓ ÈÀÍÀÌÃÄ-ÁÏÁÀÆÄ, ÒÏÌÄËÓÀÝ ÖÝÅËÄËÀà áÄËÌÞÙÅÀÍÄËÏÁÃÀ 52 ßËÉÓ ÌÀÍÞÉËÆÄ. ÀÌÀÅÄ ÃÒÏÓÌÖÛÀÏÁÀÓ ÂÀÍÀÂÒÞÏÁÓ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÛÉ ãÄÒ Ö×ÒÏÓ ÌÄÝÍÉÄÒ ÈÀÍÀÌÛÒÏÌËÀÃ.ÛÄÌÃÄ ÓßÀÅËÖË ÌÃÉÅÍÀÃ, ÃÉÒÄØÔÏÒÉÓ ÌÏÀÃÂÉËÄÃ. ÓÀØÀÒÈÅÄËÏÓ ÌÄÝÍÉÄÒÄÁÀÈÀÀÊÀÃÄÌÉÉÓ ÛÄØÌÍÉÓ ÛÄÌÃÄ ÒÉÂÉ ßËÄÁÉÓ ÂÀÍÌÀÅËÏÁÀÛÉ À. ÂÏÒÂÉÞÄ ÌÖÛÀÏÁÃÀ ÐÒÄÆÉÃÄÍÔÉÓÈÀÍÀÛÄÌßÄÃ.

ÂÀÓÖËÉ ÓÀÖÊÖÍÉÓ 60-ÉÀÍ ßËÄÁÛÉ À. ÂÏÒÂÉÞÉÓ ÉÍÉÝÉÀÔÉÅÉÈ ÈÁÉËÉÓÛÉ ÃÀÀÒÓÃÀÓÀØÀËÀØÏ ÓÄÌÉÍÀÒÉ ÈÄÏÒÉÖË ÃÀ ÂÀÌÏÚÄÍÄÁÉÈ ÌÄØÀÍÉÊÀÛÉ, ÒÏÌÄËÓÀÝ áÄËÌÞÙÅÀÍÄËÏÁÃÀÂÀÒÃÀÝÅÀËÄÁÀÌÃÄ. ÀÌ ÓÄÌÉÍÀÒÉÓ ÌÖÛÀÏÁÀÛÉ ÌÏÍÀßÉËÄÏÁÃÍÄÍ ÓáÅÀÃÀÓáÅÀ ØÅÄÚÍÉÓ ÐÒÏ×Ä-ÓÏÒ-ÌÀÓßÀÅËÄÁËÄÁÉ. ÀÌÀÓÈÀÍ ÄÒÈÀà ÂÀÒÃÀÝÅÀËÄÁÀÌÃÄ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒ-ÓÉÔÄÔÛÉ ÐÒÏ×ÄÓÏÒ-ÐÄÃÀÂÏÂÈÀ ÊÅÀËÉ×ÉÊÀÝÉÉÓ ÀÌÀÙËÄÁÉÓ ×ÀÊÖËÔÄÔÆÄ ÊÉÈáÖËÏÁÃÀÓÐÄÝÊÖÒÓÄÁÓ.

À. ÂÏÒÂÉÞÄ ÌÒÀÅÀËÉ ÓÀÌÄÝÍÉÄÒÏ ÍÀÛÒÏÌÉÓ ÀÅÔÏÒÉÀ. ÌÉÓÉ ÓÀÌÄÝÍÉÄÒÏ ÌÏÙÅÀßÄÏ-ÁÉÓ ÞÉÒÉÈÀÃÉ ÉÍÔÄÒÄÓÄÁÉÓ Ó×ÄÒÏÀ ÃÒÄÊÀÃÏÁÉÓ ÌÀÈÄÌÀÔÉÊÖÒÉ ÈÄÏÒÉÉÓ ÓáÅÀÃÀÓáÅÀ

Page 28: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

28 Our Calendar September 2–9, Batumi, Georgia

ÓÀÊÉÈáÄÁÉ: ÃÒÄÊÀÃÏÁÉÓ ÈÄÏÒÉÉÓ ÞÉÒÉÈÀÃÉ ÓÀÓÀÆÙÅÒÏ ÀÌÏÝÀÍÄÁÉÓ ÌÉÀáËÏÄÁÉÈÉ ÀÌÏ-áÓÍÄÁÉ; ÄÒÈÂÅÀÒÏÅÀÍÉ ÃÀ ÛÄÃÂÄÍÉËÉ, ÉÆÏÔÒÏÐÖËÉ ÃÀ ÀÍÉÆÏÔÒÏÐÖËÉ ÞÄËÄÁÉÓ ÂÀàÉÌ-ÅÉÓ, ÂÒÄáÉÓ, ÙÖÍÅÉÓ ÃÀ ÌÀÈÉ ÖÒÈÄÒÈÂÀÅËÄÍÀÓÈÀÍ ÃÀÊÀÅÛÉÒÄÁÖËÉ ßÒ×ÉÅÉ ÃÀ ÀÒÀßÒ×ÉÅÉÀÌÏÝÀÍÄÁÉ, ÒÏÌÄËÈÀÝ ÀØÅÈ ÀÒÀ ÌÀÒÔÏ ÈÄÏÒÉÖËÉ ÌÍÉÛÅÍÄËÏÁÀ, ÀÒÀÌÄà ÃÉÃÉ ÐÒÀØÔÉ-ÊÖËÉ ÂÀÌÏÚÄÍÄÁÀÝ ÓÀÌÛÄÍÄÁËÏ ÌÄØÀÍÉÊÀÓÀ, ÌÀÍØÀÍÀÈÌÛÄÍÄÁËÏÁÀÓÀ ÃÀ ÊÏÍÓÔÒÖØÝÉÀÈÀÌÃÂÒÀÃÏÁÉÓ ÂÀÆÒÃÉÓ ÓÀØÌÄÛÉ.

À. ÂÏÒÂÉÞÄÌ ÖÌÀÙËÄÓÉ ÔÄØÍÉÊÖÒÉ ÓÀÓßÀÅËÄÁËÄÁÉÓÀÈÅÉÓ ÄÒÈ ÄÒÈÌÀ ÐÉÒÅÄËÌÀÌÏÀÌÆÀÃÀ ÃÀ ØÀÒÈÖË ÄÍÀÆÄ ÂÀÌÏÓÝÀ ÈÄÏÒÉÖËÉ ÌÄØÀÍÉÊÉÓ ÓÒÖËÉ ÊÖÒÓÉ, ÒÏÌÄËÉÝÓÀÌÀÂÉÃÏ ßÉÂÍÀà ÉØÝÀ ÀÒÀÌÀÒÔÏ ÓÀØÀÒÈÅÄËÏÓ ÔÄØÍÉÊÖÒÉ ÉÍÔÄËÉÂÄÍÝÉÉÓÀÈÅÉÓ ÃÀÓÔÖÃÄÍÔÄÁÉÓÀÈÅÉÓ, ÀÒÀÌÄà ÚÅÄËÀÓÀÈÅÉÓ ÅÉÍÝ ÊÉ ÀÒÉÓ ÃÀÉÍÔÄÒÄÓÄÁÖËÉ ÌÄØÀÍÉÊÉÓ ÓÀÊÉ-ÈáÄÁÉÈ. ÀÌ ÓÀáÄËÌÞÙÅÀÍÄËÏÁÉÓÀÈÅÉÓ ÌÉÓ ÀÅÔÏÒÓ ÌÉÄÍÉàÀ ÓÀØÀÒÈÅÄËÏÓ ÓÀáÄËÌßÉ×ÏÐÒÄÌÉÀ. ãÄÒ ÊÉÃÄÅ ÂÀÓÖËÉ ÓÀÖÊÖÍÉÓ 30-ÀÍ ßËÄÁÛÉ À. ÂÏÒÂÉÞÄÌ, Í. ËÏÌãÀÒÉÀÓÈÀÍ,Å. àÄËÉÞÄÓÈÀÍ ÃÀ À. ÜÀáÔÀÖÒÈÀÍ ÄÒÈÀà ÐÏËÉÔÄØÍÉÊÖÒÉ ÉÍÓÔÉÔÖÔÉÓ ÓÔÖÃÄÍÔÄÁÉÓÈÅÉÓÐÉÒÅÄËÀà ÂÀÌÏÉÝÀ ÀÌÏÝÀÍÀÈÀ ÊÒÄÁÖËÉ “ÌÄÈÏÃÖÒÉ ÌÉÈÉÈÄÁÀÍÉ ÈÄÏÒÉÖË ÌÄØÀÍÉÊÀÛÉ”.

XX ÓÀÖÊÖÍÉÓ 60-ÉÀÍ ßËÄÁÛÉ ÓÀØÀÒÈÅÄËÏÓ ÔÄËÄÅÉÆÉÀÌ ÃÀÉßÚÏ ÓÀÓßÀÅËÏ ÔÄËÄËÄØ-ÝÉÄÁÉÓ ÂÀÃÀÝÄÌÀ. ÂÀÃÀÝÄÌÄÁÉÓ ÄÒÈ ÄÒÈÉ ÏÒÂÀÍÉÆÀÔÏÒÉ ÉÚÏ À. ÂÏÒÂÉÞÄ ÃÀ ßËÄÁÉÓÌÀÍÞÉËÆÄ ÊÉÈáÖËÏÁÃÀ ËÄØÝÉÄÁÓ ÈÄÏÒÉÖË ÌÄØÀÍÉÊÀÛÉ ÀÌ ÓÀÓßÀÅËÏ ÔÄËÄÂÀÃÀÝÄÌÀÛÉ.

ÐÒÏ×ÄÓÏÒÉ À. ÂÏÒÂÉÞÄ ÉÚÏ ÓÓÒ ÊÀÅÛÉÒÉÓ ÖÌÀÙËÄÓÉ ÃÀ ÓÀÛÖÀËÏ ÓÐÄÝÉÀËÖÒÉÂÀÍÀÈËÄÁÉÓ ÓÀÌÉÍÉÓÔÒÏÓ ÈÄÏÒÉÖËÉ ÌÄØÀÍÉÊÉÓ ÓÀÌÄÝÍÉÄÒÏ-ÌÄÈÏÃÖÒÉ ÓÀÁàÏÓ ÐÒÄÆÉÃÉ-ÖÌÉÓ, ÓÀØÀÒÈÅÄËÏÓ ÌÀÈÄÌÀÔÉÊÏÓÈÀ ÓÀÆÏÂÀÃÏÄÁÉÓ ÂÀÌÂÄÏÁÉÓ ßÄÅÒÉ. ÀÌÉÄÒÊÀÅÊÀÓÉÉÓÈÄÏÒÉÖËÉ ÌÄØÀÍÉÊÉÓ ÓÀÌÄÝÍÉÄÒÏ-ÌÄÈÏÃÖÒÉ ÓÀÁàÏÓ ÈÀÅÌãÃÏÌÀÒÄ.

1993 ßÄËÓ ÃÀßÄÓÃÀ ÓÀØÀÒÈÅÄËÏÓ ÓÀÉÍÑÉÍÒÏ ÀÊÀÃÄÌÉÉÓ ÀËÄØÓÉ ÂÏÒÂÉÞÉÓ ÓÀáÄËÏÁÉÓÐÒÄÌÉÀ, áÏËÏ ÔÄØÍÉÊÖÒ ÖÍÉÅÄÒÓÉÔÄÔÛÉ ÊÉ ÀËÄØÓÉ ÂÏÒÂÉÞÉÓ ÓÀáÄËÏÁÉÓ ÓÔÉÐÄÍÃÉÀ.ØÖÈÀÉÓÉÉÓ ÄÒÈ-ÄÒÈ ØÖÜÀÓ ÌÉÄÍÉàÀ À. ÂÏÒÂÉÞÉÓ ÓÀáÄËÉ.

Page 29: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÜÅÄÍÉ ÊÀËÄÍÃÀÒÉ 29

Professor Alexi Gorgidze(To the 105-th Birthday Anniversary)

Alexi Gorgidze was a prominent Georgian scientist-mathematician and specialist in mechanics, Honored Scientist(1962). State Prize Laureate (1997), Professor.

Alexi Gorgidze was born in Kutaisi on May 17, 1907. Even atKutaisi Technical High School, he displayed a keen interest andtalent in mathematics.

In 1924 A. Gorgidze entered the Department of Physics andMathematics of the Education Faculty of Tbilisi State Univer-sity. At that time there worked the founders of higher mathema-

tical education in Georgia Andrea Razmadze, Niko Muskhelishvili, Giorgi Nikoladze andArchil Kharadze.

In 1929 A. Gorgidze began working at the Department of Theoretical Mechanics ofthe Georgian Polytechnic Institute on Niko Muskhelishvili’s invitation.

In 1932 A. Gorgidze was offered a post-graduate studentship at Leningrad StateUniversity, where his supervisors of studies were outstanding scientists V. Smirnov andS. Mikhlin.

In 1935 A. Gorgidze finished his post-graduate studies and returned to Tbilisi. Hebegan working at Tbilisi State University and the Georgian Polytechnic Institute. Heparticipated energetically in the foundation of Tbilisi Institute of Mathematics.

In 1938 N. Muskelishvili proposed that A. Gorgidze was appointed the Head of theDepartment of Theoretical Mechanics of the Georgian Polytechnic Institute, which hehimself had been directing for 52 years. At the same time, A. Gorgidze continued workingat the Institute of Mathematics: first as a junior scientific worker and then as a scientificsecretary and a deputy director. After the establishment of the Georgian Academy ofSciences.

A. Gorgidze worked as an assistant president of the Academy over a period of years.In the 60-ies of the last century, on A. Gorgidze’s initiative Tbilisi Workshop on

Theoretical and Applied Mechanics was established. A. Gorgidze directed this workshoptill his death. Scientists from different countries took part in the Workshop.

A. Gorgidze was an author of many scientific works. The sphere of his scientific interestincluded various issues of the mathematical elasticity theory: approximated solutions tobasic boundary problems of the elasticity theory; linear and nonlinear problems associatedwith tension, torsion and bending of continuous and complex, isotropic and anisotropicbeams, which are not only of scientific significance, but also of practical importance for

Page 30: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

30 Our Calendar September 2–9, Batumi, Georgia

application to construction mechanics and for increasing the construction sustainability,etc.

A. Gorgidze was among the first to prepare and publish in Georgian a complete courseof theoretical mechanics for the institutions of technical higher education, which becamea handbook not only for Georgian intellectuals and students, but also for everybody whowas interested in the issues of mechanics. He was awarded the State Prize of Georgia forthis handbook.

In the 60-ies of the XX century the Georgian television began broadcasting the edu-cational lectures. A. Gorgidze was among organizers and delivered lectures in theoreticalmechanics for years. Professor A. Gorgidze was a member of the Scientific-MethodologicalCoordination Council on studying the problems of mathematics and mechanics at theGeorgian Academy of Sciences, a member of the presidium of the Scientific-MethodologicalCouncil of Theoretical Mechanics of the Higher and Special High Education Ministry ofthe USSR, a member of the Board of the Georgian Mathematical Society and the Chair-man of Transcaucasia Scientific-Methodological Council of Theoretical Mechanics.

In 1993 Alexi Gorgidze Prize was established by the Georgian Engineering Academy;at the Georgian Technical University, A. Gorgidze grant was founded. One of the streetsin the city of Kutaisi was called after A. Gorgidze.

Page 31: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÜÅÄÍÉ ÊÀËÄÍÃÀÒÉ 31

Professor George Lomadze(To the 100-th Birthday Anniversary)

Professor George Lomadze was a famous Georgian mathematician and teacher. Nowa-days his scientific works in the theory of numbers are considered as classics.

George Lomadze was born on December 27, 1911 in Moscow in the family of a militaryofficer. Since 1921 his family, after numerous relocations, settled in Tbilisi. Hard periodfor Georgia of that times, connected with its occupation by Soviet Russia, effected hislife too. That’s why he graduated from the physical-mathematical faculty of Tbilisi StateUniversity only in 1937. His supervisor was world-wide famous mathematician ArnoldWalfisz. The second world war interrupted his post-graduated course. In 1941-1946 he, asa military officer, served in the army. Only since 1946 he could continue his scientific workat Tbilisi Mathematical Institute (further it was called Razmadze Tbilisi MathematicalInstitute of the Georgian Academy of Sciences).

In 1948 G. Lomadze defended his Ph.D. thesis: ”On the representation of numbersas sums of squares”. Since 1948 to the last days of his life he worked at JavakhishviliTbilisi State University. In 1963 he successfully defended his doctoral dissertation at

Page 32: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

32 Our Calendar September 2–9, Batumi, Georgia

Leningrad (now St. Petersburg) State University. The work was dedicated to the studyof number of representations of numbers by the diagonal positive definite binary, ternaryand quaternary quadratic forms.

G. Lomadze combined intensive scientific work with fruitful pedagogical activity. Hishigh intellect, creativity and wide knowledge effect his fruitful scientific and teachingwork. He was conducting various courses of lectures for students at the university – maincourses in algebra and theory of numbers and some special courses. His high demandwith respect to his studens, young colleagues and foremost to himself is widely Known.

At the university G. Lomadze founded a scientific seminar on the actual problemsof number theory. Productive discussion of problems arising at seminar sessions madethe seminar an excellent school for young researchers. They had a good chance to growup under the direct guidance of the professor. His scientific results and activities stimu-lated the formation of a group of mathematicians, who are now successfully investigatingimportant and actual problems of the number theory.

G. Lomadze’s first-rate scientific results were published in the leading mathemati-cal journals and were reported at numerous mathematical congresses and conferences.G.Lomadze was profoundly respected as a highly skilled and productive mathematicianand his results were highly appreciated by outstanding mathematicians of modern times.Part of his methods, results and their applications were successfully generalized by Geor-gian and foreign mathematicians.

Professor Lomadze’s style of life, scientific work and pedagogical activity is an excellentexample of faithful service to science and people. He was awarded the title of ”HonoredGeorgian Scientist” and several medals of honour.

G. Lomadze’s scientific heritage is important and diverse. His early papers were ded-icated to the study of arithmetic function rs(n) – the number of representations of anatural number n as a sum of s squares of integers. Bulygin, Walfisz, Mordell, Hardy,Littlewood, Suetuna and Estermann, using or creating various methods, based on a purearithmetic approach, elliptic or modular functions theory, obtained important results inthis direction. G. Lomadze developed the researches and by uniform method generalizedmost of the results. Later on he returned to the problem and sharpened some of for-mulas for rs(n). The ”elegance” of obtained classic ”exact formulas” should be noted.Combining and further developing methods based on Jacobi theta-functions, modularforms, theta-functions with characteristics, Lomadse worked out a uniform general wayfor obtaining exact formulas for the number of representations of a natural number byany quadratic form of type

f = a1x21 + a2x

22 + · · ·+ asx

2s (1)

He had to study a behavior of corresponding modular forms. In order to illustratethe method G.Lomadze considered various cases of s and was able to obtain some exactformulas for the number of representations of n by the form (1). In the most difficult cases = 2 he previously introduced ”generalized singular series” and then solved the problem.

Page 33: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÜÅÄÍÉ ÊÀËÄÍÃÀÒÉ 33

Lomadze’s results made it possible to reveal the desired simple arithmetical meaningof the additional terms in most representation formulas. Lomadze solved the same prob-lems by constructing bases of special cusp form spaces in terms of generalized multipletheta-series with spherical functions. Lomadze studied the behavior of n-th order deriva-tives of ordinary theta-functions with characteristics with respect to the group Γ0(4N),constructed special type cusp forms and used them in the representation problems. Heobtained various significant results for nondiagonal quadratic forms too.

It’s impossible to discuss Lomadze’s all remarkable statements in such a short review.Some of his results were developed in works of his former students and foreign mathe-maticians, as Lomadze’s all results are of high theoretical importance and play valuablerole in further development of theory of numbers.

Guram Gogishvili, Teimuraz Vepkhvadze

Page 34: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
Page 35: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÜÅÄÍÉ ÊÀËÄÍÃÀÒÉ 35

ÐÒÏ×ÄÓÏÒÉ ÄËÉÆÁÀÒ ßÉÈËÀÍÀÞÄ(ÃÀÁÀÃÄÁÉÃÀÍ 100 ßËÉÓÈÀÅÉÓÀÃÌÉ)

ÝÍÏÁÉËÉ ØÀÒÈÅÄËÉ ÌÀÈÄÌÀÔÉÊÏÓÉ ÄËÉÆÁÀÒ ßÉÈËÀÍÀÞÄ ÃÀÉÁÀÃÀ ÁÏÒãÏÌÛÉ (ÓÀØÀÒ-ÈÅÄËÏ, ÒÏÌÄËÉÝ ÌÀÛÉÍ ÒÖÓÄÈÉÓ ÉÌÐÄÒÉÉÓ ÍÀßÉËÉ ÉÚÏ). 1933 ßÄËÓ ÃÀÀÌÈÀÅÒÀÈÁÉËÉÓÉÓ (ÌÀÛÉÍ ÓÔÀËÉÍÉÓ ÓÀáÄËÏÁÉÓ) ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ, 1937 ßÄËÓ ÃÀÉÝÅÀÓÀÊÀÍÃÉÃÀÔÏ ÃÉÓÄÒÔÀÝÉÀ (áÄËÌÞÙÅÀÍÄËÉ - Í. ÌÖÓáÄËÉÛÅÉËÉ), 1951 ßÄËÓ ÊÉ ÓÀÃÏØÔÏ-ÒÏ ÃÉÓÄÒÔÀÝÉÀ. 1955 ßËÉÃÀÍ ÉÓ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉÓ ÐÒÏ×ÄÓÏÒÉÀ.

ÄËÉÆÁÀÒ ßÉÈËÀÍÀÞÉÓ ÞÉÒÉÈÀÃÉ ÓÀÌÄÝÍÉÄÒÏ ÛÒÏÌÄÁÉ ÄÞÙÅÍÄÁÀ ×ÖÍØÝÉÏÍÀËÖÒ ÀÍÀ-ËÉÆÓÀ ÃÀ ÅÀÒÉÀÝÉÀÈÀ ÂËÏÁÀËÖÒ ÀÙÒÉÝáÅÀÓ. ÄËÉÆÁÀÒ ßÉÈËÀÍÀÞÄ ÀÒÉÓ ÐÉÒÅÄËÉØÀÒÈÖËÉ ßÉÂÍÄÁÉÓ ÀÅÔÏÒÉ ×ÖÍØÝÉÏÍÀËÖÒ ÀÍÀËÉÆÛÉ: "×ÖÍØÝÉÏÍÀËÖÒÉ ÀÍÀËÉÆÉÓ ÓÀ×ÖÞ-ÅËÄÁÉ" (ÈÁÉËÉÓÉ, 1964) ÃÀ "ÌÀÈÄÌÀÔÉÊÖÒÉ ÀÍÀËÉÆÉÓ ÓÀ×ÖÞÅËÄÁÉ ×ÖÍØÝÉÏÍÀËÖÒ ÓÉÅÒÝÄ-ÄÁÛÉ" (ÈÁÉËÉÓÉ, 1977).

Page 36: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

36 Our Calendar September 2–9, Batumi, Georgia

Professor Elizbar Citlanadze(To the 100th Birthday Anniversary)

A well-known Georgian mathematician Elizbar Citlanadze was born in Borjomi (Geor-gia, in that time a part of the Russian Empire). He graduated from Tbilisi (in thatStalin’s) State University, depended the Candidate Dissertation in 1937 (adviser – N.Muskhelishvili) and the Doctor Dissertation in 1951.

From 1955 Elizbar Citlanadze is a professor of Tbilisi State University.The main scientific works of professor Elizbar Citlanadze are dedicated to Functional

Analysis and Global Variational Calculus.Professor Elizbar Citlanadze is the author of the first Georgian books in Functional

Analysis: “Foundations of Functional Analysis” (Tbilisi, 1964) and “Foundations of Math-ematical Analysis in Functional Spaces” (Tbilisi, 1977).

Page 37: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÜÅÄÍÉ ÉÖÁÉËÀÒÄÁÉ 37

ÂÀÉÏÆ áÀÔÉÀÛÅÉËÉ – 90

ÍÉÊÏ ÌÖÓáÄËÉÛÅÉËÉÓ ÓÀáÄËÏÁÉÓ ÂÀÌÏÈÅËÉÈÉ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÉÓ ÌÈÀÅÀÒÉÌÄÝÍÉÄÒ-ÈÀÍÀÌÛÒÏÌÄËÉ, ×ÉÆÉÊÀ-ÌÀÈÄÌÀÔÉÊÉÓ ÌÄÝÍÉÄÒÄÁÀÈÀ ÃÏØÔÏÒÉ ÂÀÉÏÆ áÀÔÉÀÛÅÉËÉÃÀÉÁÀÃÀ ÈÁÉËÉÓÛÉ 1922 ß. 1940 ßÄËÓ ÂÀáÃÀ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉÓ×ÉÆÉÊÀ-ÌÀÈÄÌÀÔÉÊÉÓ ×ÀÊÖËÔÄÔÉÓ ÓÔÖÃÄÍÔÉ. ÌÄ-2 ÊÖÒÓÉÃÀÍ ÉÂÉ ÂÀÉßÅÉÄÓ ÓÀÌáÄÃÒÏÓÀÌÓÀáÖÒÛÉ. ÂÄÒÌÀÍÉÀ-ÓÀÁàÏÈÀ ÊÀÅÛÉÒÉÓ ÏÌÉÓ ÃÒÏÓ ÉÓ ÌÏØÌÄà ÀÒÌÉÀÛÉÀ. 1945 ß.ÃÄÌÏÁÉËÉÆÀÝÉÉÈ ÃÀÁÒÖÍÃÀ ÈÁÉËÉÓÛÉ, ÌÀÂÒÀÌ áÄËÀáËÀ ÉØÍÀ ÂÀßÅÄÖËÉ ÀÒÌÉÀÛÉ, ÓÀÉÃÀ-ÍÀÝ ÃÀÁÒÖÍÃÀ 1946 ß. ÃÀ ÂÀÀÂÒÞÄËÀ ÓßÀÅËÀ ÖÍÉÅÄÒÓÉÔÄÔÛÉ, ÒÏÌÄËÉÝ ÃÀÀÌÈÀÅÒÀ 1950ßÄËÓ. ÖÊÅÄ ÌÄ-5 ÊÖÒÓÉÓ ÓÔÖÃÄÍÔÌÀ ÃÀÉßÚÏ ÌÖÛÀÏÁÀ ËÀÁÏÒÀÍÔÀà ÓÀÓÏ×ËÏ ÓÀÌÄÖÒÍÄÏÉÍÓÔÉÔÖÔÛÉ. 1951 ß. ÂÀÉÌÀÒãÅÀ ÈÁÉËÉÓÉÓ ÓÀÒÊÉÍÉÂÆÏ-ÔÒÀÍÓÐÏÒÔÉÓ ÉÍÓÔÉÔÖÔÉÓ ÌÉÄÒÂÀÌÏÝáÀÃÄÁÖË ÊÏÍÊÖÒÓÛÉ ÃÀ ÃÀÉÍÉÛÍÀ ÀÓÉÓÔÄÍÔ-ÈÀÍÀÌÛÒÏÌËÀÃ. 1955 ß. ÈÁÉËÉÓÉÓÀÍÃÒÉÀ ÒÀÆÌÀÞÉÓ ÓÀáÄËÏÁÉÓ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÛÉ ÃÀÉÝÅÀ ÓÀÊÀÍÃÉÃÀÔÏ ÃÉÓÄÒÔÀÝÉÀÓÐÄÝÉÀËÏÁÉÈ ,,ÃÒÄÊÀÃÏÁÉÓ ÈÄÏÒÉÀ” (áÄËÌÞÙÅÀÍÄËÉ - ÀÌÁÒÏÓÉ ÒÖáÀÞÄ); ÀÌÀÅÄ ßÄËÓÃÀÉÍÉÛÍÀ ÃÏÝÄÍÔÉÓ ÈÀÍÀÌÃÄÁÏÁÀÆÄ, 1957 ß. ÐÒÏ×ÄÓÏÒ ÃÀÅÉÈ ÊÅÄÓÄËÀÅÀÓ ßÉÍÀÃÀÃÄÁÉÈÃÀÉÊÀÅÀ ÓÀØÀÒÈÅÄËÏÓ ÌÄÝÍÉÄÒÄÁÀÈÀ ÀÊÀÃÄÌÉÉÓ ÂÀÌÏÈÅËÉÈÉ ÝÄÍÔÒÉÓ ÓßÀÅËÖËÉ ÌÃÉÅÍÉÓÈÀÍÀÌÃÄÁÏÁÀ. 1964 ßËÉÃÀÍ ÉÓ ÀÍÃÒÉÀ ÒÀÆÌÀÞÉÓ ÓÀáÄËÏÁÉÓ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÉÓÖ×ÒÏÓÉ ÌÄÝÍÉÄÒ-ÈÀÍÀÌÛÒÏÌÄËÉÀ. 1969 ß. ÌÀÍ ÀÌÀÅÄ ÉÍÓÔÉÔÖÔÛÉ ÃÀÉÝÅÀ ÓÀÃÏØÔÏÒÏÃÉÓÄÒÔÀÝÉÀ ÓÐÄÝÉÀËÏÁÉÈ ,,ÃÒÄÊÀÃÏÁÉÓ ÈÄÏÒÉÀ”. 1973 ß. ÂÀÃÌÏÅÉÃÀ ÓÀÌÖÛÀÏÃ

Page 38: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

38 Anniversaries September 2–9, Batumi, Georgia

ÓÀØÀÒÈÅÄËÏÓ ÌÄÝÍÉÄÒÄÁÀÈÀ ÀÊÀÃÄÌÉÉÓ ÂÀÌÏÈÅËÉÈÉ ÝÄÍÔÒÛÉ Ö×ÒÏÓÉ ÌÄÝÍÉÄÒ-ÈÀÍÀ-ÌÛÒÏÌËÉÓ ÈÀÍÀÌÃÄÁÏÁÀÆÄ. 1975-1982 ßËÄÁÛÉ ÉÓ ÀÌÀÅÄ ÝÄÍÔÒÉÓ ÂÀÌÏÈÅËÉÈÉ ÌÀÈÄÌÀÔÉ-ÊÉÓ ÂÀÍÚÏ×ÉËÄÁÉÓ ÂÀÌÂÄÀ. 2010 ßËÉÃÀÍ ÉÍÓÔÉÔÖÔÉÓ ÌÈÀÅÀÒÉ ÌÄÝÍÉÄÒ-ÈÀÍÀÌÛÒÏÌÄ-ËÉÀ.

Â. áÀÔÉÀÛÅÉËÉÓ ÉÍÔÄÒÄÓÄÁÉÓ Ó×ÄÒÏÀ ÌÀÈÄÌÀÔÉÊÖÒÉ ×ÉÆÉÊÉÓÀ ÃÀ ÌÄØÀÍÉÊÉÓ ÀØÔÖÀËÖÒÉÓÀÊÉÈáÄÁÉ. ÉÂÉ ÀÅÔÏÒÉÀ ÌÒÀÅÀËÉ ÓÀÌÄÝÍÉÄÒÏ ÍÀÛÒÏÌÉÓÀ ÃÀ 2 ÌÏÍÏÂÒÀ×ÉÉÓÀ: ,,ÀËÌÀÆÉ-ÌÉÔÜÄËÉÓ ÀÌÏÝÀÍÀ ÄÒÈÂÅÀÒÏÅÀÍÉ ÃÀ ÛÄÃÂÄÍÉËÉ ÓáÄÖËÄÁÉÓÀÈÅÉÓ” (ÔÏÌÉ I, 1983 ß.,ÔÏÌÉ II, 1985 ß.) ÃÀ ,,ÄÒÈÂÅÀÒÏÅÀÍÉ ÃÀ ÛÄÃÂÄÍÉËÉ ÃÒÄÊÀÃÉ ÝÉËÉÍÃÒÄÁÉ” (1991 ß.).ÉÓ ÉÚÏ ÏÈáÉ ÓÀÊÀÍÃÉÃÀÔÏ ÃÉÓÄÒÔÀÝÉÉÓ ÓÀÌÄÝÍÉÄÒÏ áÄËÌÞÙÅÀÍÄËÉ.

ÀÌÑÀÌÀà ÌÖÛÀÏÁÓ ÍÀÒÄÅÈÀ ÈÄÏÒÉÀÓÀ ÃÀ ×ÀÁÄÒÉÓ ÐÏËÉÍÏÌÄÁÉÓ ÂÀÌÏÚÄÍÄÁÀÆÄ ÊÏÍ-×ÏÊÀËÖÒÉ ÄËÉ×ÓÄÁÉÓ ÃÒÄÊÀÃÏÁÉÓ ÛÄÓßÀÅËÉÓÀÈÅÉÓ.

ÓÀÌÄÝÍÉÄÒÏ ÌÉÅËÉÍÄÁÉÈ ÍÀÌÚÏ×ÉÀ ÜÄáÏÓËÏÅÀÊÉÀÛÉ, ÒÖÌÉÍÄÈÛÉ ÃÀ ÐÏËÏÍÄÈÛÉ.Â. áÀÔÉÀÛÅÉËÉ ÃÀØÏÒßÉÍÃÀ 1955 ßÄËÓ. ÌÉÓÉ ÌÄÖÙËÄ - ËÉÀÍÀ áÀÔÉÀÛÅÉËÉ-

ÛÀÅËÉÀÛÅÉËÉÓÀ - ÓÐÄÝÉÀËÏÁÉÈ ÌÀÈÄÌÀÔÉÊÏÓÉÀ. ÌÀÈ äÚÀÅÈ ÏÒÉ ØÀËÉÛÅÉËÉ - ÍÉÍÏÃÀ ÌÀÒÉÀÌ áÀÔÉÀÛÅÉËÄÁÉ (ÀÂÒÄÈÅÄ, ÌÀÈÄÌÀÔÉÊÏÓÄÁÉ) ÃÀ ÏÈáÉ ÛÅÉËÉÛÅÉËÉ.

ÅÖËÏÝÀÅÈ ÁÀÔÏÍ ÂÀÉÏÆÓ ÃÀÁÀÃÄÁÉÃÀÍ 90-Ä ßËÉÓÈÀÅÓ, ÅÖÓÖÒÅÄÁÈ ãÀÌÒÈÄËÏÁÀÓÃÀ ÌÉÓÉ ÓÀÚÅÀÒÄËÉ ÓÀØÌÉÀÍÏÁÉÓ ÜÅÄÖËÉ ÛÄÌÀÒÈÄÁÉÈ ÂÀÂÒÞÄËÄÁÀÓ.

ÓÀØÀÒÈÅÄËÏÓ ÌÀÈÄÌÀÔÉÊÏÓÈÀ ÊÀÅÛÉÒÉ,

ÓÀØÀÒÈÅÄËÏÓ ÔÄØÍÉÊÖÒÉ ÖÍÉÅÄÒÓÉÔÄÔÉÓ ÍÉÊÏ ÌÖÓáÄËÉÛÅÉËÉÓÓÀáÄËÏÁÉÓ ÂÀÌÏÈÅËÉÈÉ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÉ

Page 39: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÜÅÄÍÉ ÉÖÁÉËÀÒÄÁÉ 39

Gaioz Khatiashvili – 90

The Chief Researcher of Niko Muskhelishvili Institute of Computational Mathematicsof the Georgian Technical University, Doctor of Mathematics Gaioz Khatiashvili was bornin Tbilisi (Georgia). He enrolled faculty of Physics and Mathematics of Tbilisi (at thattime, Stalin) State University in 1939. From the second year of education, in 1940 he wascalled up for military service and during the whole war between Germany and Soviet Union(1941–1945) he participated in military operations of Soviet army. He was demobilized in1946 and graduated from the Tbilisi State University in 1950. In 1950–1957 he workedin Tbilisi Railway Transport Institute.

G. Khatiashvili defended his Candidate dissertation in 1955 (Tbilisi A. RazmadzeMathematical Institute in Elasticity Theory. His superviser was Professor A. Rukhadze).

In 1957 Professor David Kveselava, the director of the Computing Center of theAcademy of Science of Georgian SSR, proposed to G. Khatiashvili to take the positionof Scientific Secretary of the Center. He agreed and took over this position in 1957–1964years. In 1964–1973 he was the Senior Researcher at A. Razmadze Mathematical Institute,where he defended his Doctor thesis in Elasticity Theory.

From 1973 he returned to the Computing Center of the Academy of Science of Geor-gian SSR, first as the Senior Researcher and later, in 1975–1982 years, as the Head ofDepartment Computational Mathematics. From 2010 he is the Chief Researcher of Niko

Page 40: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

40 Anniversaries September 2–9, Batumi, Georgia

Muskhelishvili Institute of Computational Mathematics of the Georgian Technical Uni-versity.

G. Khatiashvili’s sphere of scientific interests incudes Mathematical Physics and Me-chanics. He is the author of numerous research articles and of two monographs: “Almansi-Mitchell Problems for Homogeneous and Composed Bodies (in Russian; vol. I “Met-zniereba”, Tbilisi, 1983; vol. II “Metzniereba”, Tbilisi, 1985) and “Homogeneous andComposed Elastic Cylinders” (in Russian; “Metzniereba”, Tbilisi, 1991). He was thescientific supervisor of four Candidate Dissertations.

At present he is still active and is engaged with problems of Mixture Theory, as well aswith the applications of Faber’s polynomials to the study of elasticity of confocal ellipses.

G. Khatiashvili was invited for the research work to Czechoslovakia, Romania andPoland.

G. Khatiashvili was married in 1955. His wife – Liana Khatiashvili-Shavliashvili, also isa mathematician. They have two daughters Nino and Mariam, which are mathematiciansas well, and four grandchildren.

We congratulate Gaioz Khatiashvili on the occasion of his 90th birthday anniversary,wish him a good health and the continuation of beloved scientific activity.

Georgian Mathematical Union,Niko Muskhelishvili Institute of Computational Mathematics

of the Georgian Technical University

Page 41: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÜÅÄÍÉ ÉÖÁÉËÀÒÄÁÉ 41

ÐÒÏ×ÄÓÏÒÉ ÃÀÅÉÈ ÂÏÒÃÄÆÉÀÍÉ – 75

ÌÏÊËÄ ÁÉÏÂÒÀ×ÉÖËÉ ÝÍÏÁÄÁÉ. ÐÒÏ×ÄÓÏÒÉ ÃÀÅÉÈ ÂÏÒÃÄÆÉÀÍÉ ÃÀÉÁÀÃÀ 1937 ßÄËÓ.1961 ßÄËÓ ÃÀÀÌÈÀÅÒÀ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉÓ ÌÄØÀÍÉÊÀ–ÌÀÈÄÌÀÔÉÊÉÓ×ÀÊÖËÔÄÔÉ. 1961-1964 ßËÄÁÛÉ ÓßÀÅËÏÁÃÀ ÀÓÐÉÒÀÍÔÖÒÀÛÉ. ÛÄÌÃÄ ÉÚÏ ÓÀØÀÒÈÅÄËÏÓÌÄÝÍÉÄÒÄÁÀÈÀ ÀÊÀÃÄÌÉÉÓ À. ÒÀÆÌÀÞÉÓ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÉÓ ÖÌÝÒÏÓÉ ÌÄÝÍÉÄÒÉ ÈÀÍÀ-ÌÛÒÏÌÄËÉ (1964-1968), É. ÅÄÊÖÀÓ ÂÀÌÏÚÄÍÄÁÉÈÉ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÉÓ Ö×ÒÏÓÉ ÌÄÝÍÉÄÒÈÀÍÀÌÛÒÏÌÄËÉ (1968-1969), ÐÀÒÉÆÉÓ ÖÍÉÅÄÒÓÉÔÄÔÉÓ ÒÉÝáÅÉÈÉ ÀÍÀËÉÆÉÓ ËÀÁÏÒÀÔÏÒÉÉÓÌÊÅËÄÅÀÒÉ, É. ÅÄÊÖÀÓ ÂÀÌÏÚÄÍÄÁÉÈÉ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÉÓ ÒÉÝáÅÉÈÉ ÌÄÈÏÃÄÁÉÓÂÀÍÚÏ×ÉËÄÁÉÓ ÂÀÌÂÄ. ÐÒÏ×ÄÓÏÒÉ Ã. ÂÏÒÃÄÆÉÀÍÉ áÄËÌÞÙÅÀÍÄËÏÁÃÀ ÂÀÍÚÏ×ÉËÄÁÀÛÉÌÉÌÃÉÍÀÒÄ ÓÀÌÄÝÍÉÄÒÏ ÊÅËÄÅÄÁÓ ÂÀÒÓÈÀ ÈÄÏÒÉÀÛÉ, ÌÄÔÄÏÒÏËÏÂÉÀÛÉ, ÄÊÏËÏÂÉÀÛÉ,ÌÀÂÍÉÔÖÒ äÉÃÒÏÃÉÍÀÌÉÊÀÛÉ, ÂÀÆÓÀÃÄÍÄÁÉÓ ÏÐÔÉÌÉÆÀÝÉÀÓÀ ÃÀ ÂÀÈÅËÄÁÛÉ, ÌÏÍÀßÉËÄÏÁÃÀÓÐÄÝÉÀËÖÒ ÓÀÌÄÝÍÉÄÒÏ ÊÅËÄÅÄÁÛÉ (1969-1979).

1979-1985 ßËÄÁÛÉ Ã. ÂÏÒÃÄÆÉÀÍÉ ÌÖÛÀÏÁÃÀ É. ÅÄÊÖÀÓ ÂÀÌÏÚÄÍÄÁÉÈÉ ÌÀÈÄÌÀÔÉÊÉÓÉÍÓÔÉÔÖÔÉÓ ÃÉÒÄØÔÏÒÉÓ ÌÏÀÃÂÉËÄà ÓÀÌÄÝÍÉÄÒÏ–ÊÅËÄÅÉÈÉ ÌÖÛÀÏÁÉÓ ÃÀÒÂÛÉ, áÏËÏ1985-2006 ßËÄÁÛÉ ÉÚÏ É. ÅÄÊÖÀÓ ÂÀÌÏÚÄÍÄÁÉÈÉ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÉÓ ÃÉÒÄØÔÏÒÉ ÃÀÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉÓ ÂÀÌÏÈÅËÉÈÉ ÌÀÈÄÌÀÔÉÊÉÓ ÊÀÈÄÃÒÉÓ ÂÀÌÂÄ. ÉÂÉáÄËÌÞÙÅÀÍÄËÏÁÃÀ ÉÍÓÔÉÔÖÔÛÉ ÌÉÌÃÉÍÀÒÄ ÓÀÌÄÝÍÉÄÒÏ–ÊÅËÄÅÉÈ ÓÀÌÖÛÀÏÄÁÓ, ÒÏÌËÄÁÉÝÄáÄÁÏÃÀ ÌÀÈÄÌÀÔÉÊÖÒÉ ×ÉÆÉÊÉÓÀ ÃÀ ÖßÚÅÄÔÉ ÔÀÍÉÓ ÌÄØÀÍÉÊÉÓ ÓáÅÀÃÀÓáÅÀ ÀÌÏÝÀÍÄÁÉÓÂÀÌÏÊÅËÄÅÀÓÀ ÃÀ ÂÀÈÅËÄÁÓ, ÃÒÄÊÀÃÉ ÍÀÒÄÅÄÁÉÓ ÈÄÏÒÉÉÓ ÀÌÏÝÀÍÄÁÓ, ÌÀÈÄÌÀÔÉÊÖÒÉ×ÉÆÉÊÉÓ ÆÏÂÉÄÒÈÉ ÂÀÍÔÏËÄÁÉÓÀÈÅÉÓ ÃÒÏÉÈ ÀÒÀËÏÊÀËÖÒ ÀÌÏÝÀÍÄÁÓ ÃÀ ÓáÅ. 2006-2009

Page 42: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

42 Anniversaries September 2–9, Batumi, Georgia

ßËÄÁÛÉ ÉÚÏ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉÓ ÓÒÖËÉ ÐÒÏ×ÄÓÏÒÉ. 2009 ßËÉÓÓÄØÔÄÌÁÒÉÃÀÍ ÊÉ ÉÅ.ãÀÅÀáÉÛÅÉËÉÓ ÓÀáÄËÏÁÉÓ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉÓÄÌÄÒÉÔÖÓ ÐÒÏ×ÄÓÏÒÉÀ.

ÐÒÏ×ÄÓÏÒÉ ÃÀÅÉÈ ÂÏÒÃÄÆÉÀÍÉ 1963 ßËÉÃÀÍ ÃÙÄÌÃÄ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒ-ÓÉÔÄÔÛÉ ÊÉÈáÖËÏÁÃÀ ËÄØÝÉÄÁÓ ÐÒÏÂÒÀÌÉÒÄÁÀÓÀ ÃÀ ÂÀÌÏÈÅËÉÈ ÌÀÈÄÌÀÔÉÊÀÛÉ, ÌÀÈÄÌÀ-ÔÉÊÖÒ ÌÏÃÄËÉÒÄÁÀÛÉ, ×ÖÍØÝÉÏÍÀËÖÒ ÀÍÀËÉÆÓÀ ÃÀ ÂÀÌÏÈÅËÉÈ ÌÀÈÄÌÀÔÉÊÀÛÉ, ÊÄÒÞÏ-ßÀÒÌÏÄÁÖËÉÀÍÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓ ÀÌÏáÓÍÉÓ ÒÉÝáÅÉÈÉ ÌÄÈÏÃÄÁÓÀ ÃÀ ÓáÅÀÓÀÂÍÄÁÛÉ.

Ã. ÂÏÒÃÄÆÉÀÍÌÀ 1966 ßÄËÓ ÃÀÉÝÅÀ ÓÀÊÀÍÃÉÃÀÔÏ, áÏËÏ 1981 ßÄËÓ ÓÀÃÏØÔÏÒÏÃÉÓÄÒÔÀÝÉÀ ÓÐÄÝÉÀËÏÁÉÈ "ÂÀÌÏÈÅËÉÈÉ ÌÀÈÄÌÀÔÉÊÀ" (ÌÏÓÊÏÅÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉ-ÔÄÔÉ). ÌÉÓÉ áÄËÌÞÙÅÀÍÄËÏÁÉÈ ÌÏÌÆÀÃÄÁÖËÉ ÃÀ ÃÀÝÖËÉÀ 17 ÓÀÊÀÍÃÉÃÀÔÏ ÃÀ 7ÓÀÃÏØÔÏÒÏ ÃÉÓÄÒÔÀÝÉÀ. ÐÒÏ×ÄÓÏÒÌÀ Ã.ÂÏÒÃÄÆÉÀÍÌÀ ÌÏÍÀßÉËÄÏÁÀ ÌÉÉÙÏ ÌÒÀÅÀËÉÓÀÄÒÈÀÛÏÒÉÓÏ ÈÖ ÀÃÂÉËÏÁÒÉÅÉ ÊÏÍÂÒÄÓÉÓ, ÓÉÌÐÏÆÉÖÌÉÓ, ÊÏÍ×ÄÒÄÍÝÉÉÓ, ÓÊÏËÉÓÏÒÂÀÍÉÆÄÁÀÓÀ ÃÀ ÜÀÔÀÒÄÁÀÛÉ ÂÀÌÏÈÅËÉÈÉ ÌÀÈÄÌÀÔÉÊÉÓ, ÌÄØÀÍÉÊÉÓ, ÂÀÒÓÈÀ ÈÄÏÒÉÉÓ,äÉÃÒÏÃÉÍÀÌÉÊÉÓ, ÌÀÂÍÉÔÖÒÉ äÉÃÒÏÃÉÍÀÌÉÊÉÓ, ÉÍ×ÏÒÌÀÔÉÊÉÓ Ó×ÄÒÏÛÉ (ÓÀÄÒÈÀÛÏÒÉÓÏÊÏÍÂÒÄÓÉ ÌÀÈÄÌÀÔÉÊÀÛÉ, IUTAM ÓÉÌÐÏÆÉÖÌÉ ÃÀ À.Û.). ÐÒÏ×ÄÓÏÒÉ Ã. ÂÏÒÃÄÆÉÀÍÉÓáÅÀÃÀÓáÅÀ ÃÒÏÓ ÌÉßÅÄÖËÉ ÉÚÏ ÌÒÀÅÀËÉ ØÅÄÚÍÉÓ ÓÀÌÄÝÍÉÄÒÏ–ÊÅËÄÅÉÈ ÝÄÍÔÒÛÉ ÓÀËÄØ-ÝÉÏ ÊÖÒÓÄÁÉÓ ßÀÓÀÊÉÈáÀà ÃÀ ÓÀÌÄÝÍÉÄÒÏ ÊÅËÄÅÄÁÉÓ ÜÀÓÀÔÀÒÄÁËÀÃ, ÊÏÍÂÒÄÓÄÁÛÉ, ÊÏÍ-×ÄÒÄÍÝÉÄÁÛÉ ÃÀ ÓÉÌÐÏÆÉÖÌÄÁÛÉ ÌÏÍÀßÉËÄÏÁÉÓ ÌÉÓÀÙÄÁÀÃ. ÉÂÉ ÀÒÉÓ 170–ÆÄ ÌÄÔÉÓÀÌÄÝÍÉÄÒÏ ÐÖÁËÉÊÀÝÉÉÓ, 4 ÂÀÌÏÂÏÍÄÁÉÓ (ÓÓÒÊ), 2 ÐÀÔÄÍÔÉÓ (ÀÛÛ, ÛÅÄÃÄÈÉ) ÃÀ 3ÌÏÍÏÂÒÀ×ÉÉÓ ÀÅÔÏÒÉ; ÀÒÉÓ ÓÀÉÍÑÉÍÒÏ ÀÊÀÃÄÌÉÓ ßÄÅÒÉ; ÓÀÄÒÈÀÛÏÒÉÓÏ ÀÊÀÃÄÌÉÉÓßÄÅÒÉ ÊÏÌÐÉÖÔÄÒÖË ÌÄÝÍÉÄÒÄÁÄÁÓÀ ÃÀ ÓÉÓÔÄÌÄÁÛÉ; ÓÀØÀÒÈÅÄËÏÓ ÓÀÁÖÍÄÁÉÓÌÄÔÚÅÄËÏÌÄÝÍÉÄÒÄÁÀÈÀ ÀÊÀÃÄÌÉÉÓ ÓÀÐÀÔÉÏ ÐÒÄÆÉÃÄÍÔÉ ÃÀ ÓáÅÀ; ÌÀÈÄÌÀÔÉÊÖÒÉ ÑÖÒÍÀËÄÁÉÓ ÓÀÒÄ-ÃÀØÝÉÏ ÊÏËÄÂÉÉÓ ßÄÅÒÉ, ÌÒÀÅÀËÉ ÓÀÄÒÈÀÛÏÒÉÓÏ ÂÒÀÍÔÉÓ áÄËÌÞÙÅÀÍÄËÉ ÃÀ ÌÊÅËÄÅÀÒÉ,ÓáÅÀÃÀÓáÅÀ ÓÀÌÄÝÍÉÄÒÏ ÃÀ ÓÀÌÈÀÅÒÏÁÏ ãÉËÃÏÄÁÉÓ, ÐÒÉÆÄÁÉÓ, ÌÄÃËÄÁÉÓ ÃÀ ÃÉÐËÏÌÄÁÉÓÌ×ËÏÁÄËÉ.

ÐÒÏ×ÄÓÏÒ ÃÀÅÉÈ ÂÏÒÃÄÆÉÀÍÉÓ ÓÀÌÄÝÍÉÄÒÏ ÌÏÙÅÀßÄÏÁÉÓ ÛÄÓÀáÄÁ. ÀØ ßÀÒÌÏÃÂÄÍÉ-ËÉÀ ÌÓÏ×ËÉÏÛÉ ÀÙÉÀÒÄÁÖËÉ ÌÄÝÍÉÄÒÉÓ, ÂÀÌÏÚÄÍÄÁÉÈÉ ÃÀ ÂÀÌÏÈÅËÉÈÉ ÌÀÈÄÌÀÔÉÊÉÓÖÃÉÃÄÓÉ ÓÐÄÝÉÀËÉÓÔÉÓ, ÀÊÀÃÄÌÉÓÊÏÓ À. ÓÀÌÀÒÓÊÉÓ ÃÀáÀÓÉÀÈÄÁÀ, ÒÏÌÄËÉÝ ÄáÄÁÀ ÐÒÏ×Ä-ÓÏÒ ÃÀÅÉÈ ÂÏÒÃÄÆÉÀÍÉÓ ÌÄÝÍÉÄÒÖË ÌÏÙÅÀßÄÏÁÀÓ. ÌÉÖáÄÃÀÅÀà ÉÌÉÓÀ, ÒÏÌ ÀÌ ÃÀáÀÓÉÀ-ÈÄÁÉÓ ÃÀßÄÒÉÃÀÍ ÂÀÒÊÅÄÖËÉ ÐÄÒÉÏÃÉÀ ÂÀÓÖËÉ, ÌÀÓ ÀÒ ÃÀÖÊÀÒÂÀÅÓ ÈÀÅÉÓÉ ÌÍÉÛÅÍÄËÏÁÀÃÀ, ÞÉÒÉÈÀÃÀÃ, ÓÒÖËÀà ÀÙßÄÒÓ ÐÒÏ×ÄÓÏÒ ÃÀÅÉÈ ÂÏÒÃÄÆÉÀÍÉÓ ÌÄÝÍÉÄÒÖË ÌÏÙÅÀßÄÏ-ÁÀÓ ÃÀ ÌÉÓ ÌÉÄÒ ÌÉÙÄÁÖËÉ ÛÄÃÄÂÄÁÉÓ ÌÍÉÛÅÍÄËÏÁÀÓ.

ÓÀØÀÒÈÅÄËÏÓ ÌÀÈÄÌÀÔÉÊÏÓÈÀ ÊÀÅÛÉÒÉ,

ÉÅÀÍÄ ãÀÅÀáÉÛÅÉËÉÓ ÓÀáÄËÏÁÉÓ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉÓÉËÉÓ ÅÄÊÖÀÓ ÓÀáÄËÏÁÉÓ ÂÀÌÏÚÄÍÄÁÉÈÉ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÉ

Page 43: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÜÅÄÍÉ ÉÖÁÉËÀÒÄÁÉ 43

Научная характеристика работ доктора физико-математических наук,профессора Д.Г.Гордезиани

Д.Г. Гордезиани является известным специалистом в области вычислительной и прик-ладной математики, внесшим своими трудами значительный вклад в науку. Его работыпосвящены различным актуальным вопросам современной математики – созданию и обо-снованию численных алгоритмов, в том числе и экономичных, для решения линейных инелинейных задач математической физики; исследованию математических моделей плас-тин и оболочек И.Н.Векуа; изучению вопросов корректности нового класса неклассичес-ких краевых задач (нелокальных краевых задач) определённого вида и их дискретизации;исследованию проблем математического моделирования на ЭВМ различных задач физи-ки, химии, строительной механики, газификации, движения селевых потоков и др.

Ранние работы Д.Г. Гордезиани посвящены конструированию и исследованию конеч-норазностных схем, в том числе схем повышенной точности для численного решениянекоторых нестационарных линейных и нелинейных уравнений параболического типа наразличных сетках (прямоугольных, ромбических). В них установлена сходимость постро-енных разностных схем, исследована их устойчивость и точность. Эти исследованияявляются развитием результатов академикаШ.Е.Микеладзе, полученных им в случае урав-нения теплопроводности.

В этот же период Д.Г.Гордезиани начаты исследования в области экономичных разнос-тных схем (локально-одномерный метод). Его работа 1965 года, посвященная исследова-нию локально-одномерных схем для параболических уравнений 2m-го порядка, являетсяфактически первой работой такого типа, где показано, что для уравнений высоких поряд-ков достаточно общего вида решение специальной одномерной системы (аддитивной мо-дели) совпадает в целых точках сетки по времени с решением многомерной задачи. Здесьже дано полное обоснование устойчивости и точности локально-одномерных схем дляуравнений 2m-го порядка. Эта работа привлекла внимание многих исследователей, дав-ших ей весьма высокую оценку (А.А. Самарский, Н.Н. Яненко), цитируется в работахряда специалистов, в частности, и в моей монографии.

Надо отметить, что именно первые работы Д.Г. Гордезиани являются основополагаю-щими в развитии в Грузии исследований такого важнейшего современного направлениявычислительной математики, как исследование экономичных алгоритмов для решениязадач математичнской физики (локально-одномерный метод, метод дробныхшагов, методдекомпозиции, метод расщепления, метод переменных направлении и т.д.), основы кото-рых были заложены в работах американских и советских учёных в конце 50-ых и начале60-ых годов (Дж. Дуглас, Г. Рекфорд, Д. Писмэн, Н.Н. Яненко, А.А. Самарский, Г.И. Мар-чук и др.).

В последующих работах этого цикла Д.Г. Гордезиани строились и исследовались ло-кально-одномерные схемы различного типа, схемы расщепления для нестационарныхмногомерных линейных уравнений в частных производных с переменными коэффициен-тами, а также нелинейных уравнений параболического и гиперболического типов.

Page 44: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

44 Anniversaries September 2–9, Batumi, Georgia

Необходимо отметить одну особенность рядя работ Д.Г. Гордезиани - исследованияалгоритмов в них ведутся на абстрактном уровне современными методами функциональ-ного анализа, полученные при этом результаты носят конкретный и прикладной характер.

В дальнейшем Д.Г. Гордезиани к разработке упомянутых вопросов привлекает моло-дых специалистов, разрабатывающих на высоком научном уровне некоторые современ-ные проблемы численного анализа и математического моделирования.

В 1968-72 годах Д.Г. Гордезиани предложил экономичеые алгоритмы нового типа длярешения нестационарных задач математической физики, названные им «усреднёнными»моделями, на основе которых построены и исследованы схемы параллельного счёта. Ре-зультаты указанных исследований были частично доложены на конгрессе математиковв Ницце в 1970 году (см. доклад А.А. Самарского «О работах по теории разностныхсхем»). Часть результатов опубликована во Франции в 1971-72 годах в период работыД.Г. Гордезиани в Лаборатории численного анализа Парижского университета под руко-водством акад. Ж.-Л. Лионса. Эти работы неоднократно цитируются (Ж.-Л. Лионс, Р. Те-мам, В.Л.Макаров и др.). Усреднённые модели или алгоритмы параллельного счёта сталиособенно актуальными с появлением многопроцессорных ЭВМ. Они успешно применя-ются для решения конкретных прикладных задач теории упругости, теории пластин иоболочек, магнитной гидродинамики и т.д. Отметим, что разрешающие формулы усред-нённых аддитивныхмоделей и схемД.Г. Гордезиани являются новыми, вызывают большойтеоретический интерес с точки зрения теории полугрупп, подобно известным формуламЛи-Троттера-Като-Чернова, и их обоснованию в общих функцоинальных пространствахпосвящено исследование американского учёного М. Лапидуса.

Большой цикл работД.Г. Гордезиани посвящён исследованию теории пластин и оболо-чек академика И.Н. Векуа, в частности, построенной на её основе математической моделипластин и оболочек, разработке на основе исследования её структурных и качественныхсвойств (разрешимость краевых задач, точность усечённых моделей и т.д.) совремённыхдискретных алгоритмов с целью реализации конкретных прикладных задач на ЭВМ (тон-кие оболочки, арочные пластины и другие строительные конструкции). Указанный циклработ был начат под влиянием и руководством акад. И.Н. Векуа. Результаты этих исследо-ваний (1969-80 годы) были доложены на различных международных и всесоюзных фору-мах и опубликованы в ДАН СССР в двух статьях (1974 г.), а также в других журналах.Ряд докладов по названной тематике был сделан в Парижском институте информатики иавтоматики в 1977 году.

Результаты исследований Гордезиани по теории И.Н. Векуа цитируются многими спе-циалистами, в том числе в трудах известных математиков Ф. Сьярле, М. Бернаду и др.

Часть работ Д.Г. Гордезиани посвящена некоторым проблемам неклассических крае-вых задач, например, нелокальной краевой задаче Бицадзе-Самарского (первая работаД.Г. Гордезиани опубликована в 1970 голу, вслед за совместной работой А.В. Бицадзе иА.А. Самарского, опубликованной в 1969 г.). Результаты Д.Г. Гордезиани по нелокальнымкраевым задачам стимулировали новые исследования специалистов в этом направлении ицитируются многими авторами как в статьях, так и в монографиях (работы А.В. Бицадзе,

Page 45: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÜÅÄÍÉ ÉÖÁÉËÀÒÄÁÉ 45

В.А. Ильина, В.А. Макарова, Б.П. Панеях и др.). Некоторые результаты автора былидоложены на семинаре Ж.-Л. Лионса в Париже (1977 г., Институт информатики и автома-тики).

В 1962 году на конгрессе математиков в Варшаве Д.Г. Гордезиани сделал доклад обисследовании иметодах численного решения нового вида нелинейного уравнения парабо-лического типа, возникающего при моделировании задач диффузии магнитного поля сучетом теплопроводности. Результаты этих исследований нашли практическое примене-ние и внедрены в институте атомной энергии им. И.В. Курчатова, в Сухумском физико-техническом институте.

Следует отметить, что и другие исследования, проводимые Д.Г. Гордезиани совместносо своими учениками и сотрудниками, нашли применение в технике, народном хозяйстве(расчет распространения селевых потоков, расчёт и оптимизация течения газа в городскихсетях, тепловых установок).

Наряду с научной деятельностью Д.Г. Гордезиани участвует в работе по созданиюспециальных строительных механизмов и имеет изобретения, запатентованныев США иШвеции.

Герой Социалистического Труда,Лауреат Ленинской и Государственной премии,академик А.А. Самарский

Page 46: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
Page 47: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÜÅÄÍÉ ÉÖÁÉËÀÒÄÁÉ 47

Professor David Gordeziani – 75

Brief Biography of the Speakers: David Gordeziani in 1961 graduated fromTbilisi State University, Department of Mathematics and Mechanics. In 1961-1964 post-graduate studentship; then he was junior research worker of A. Razmadze Institute ofMathematics, Georgian Academy of Sciences (1964-1968); Senior scientific worker at I.Vekua Institute of Applied Mathematics (1968-1969); Probationer of the Laboratory ofNumerical Analysis in the Paris University; head of the department of Numerical Methodsof I. Vekua Institute of Applied Mathematic; Supervised the scientific work of the depart-ment in shell theory, meteorology, ecology, magnetic hydro-dynamics, computation andoptimization of gas pipelines, took part in special scientific works(1969-1979); Deputy Di-rector of I. Vekua Institute of Applied Mathematics (1979-1985) where he supervised theInstitute scientific-research works; in 1985-2006 director of I. Vekua Institute of AppliedMathematics; head of Department of Computational mathematics of Tbilisi State Univer-sity; supervised the Institute scientific-research works concerning investigation and real-ization of different problems of mathematical physics and mechanics of continuum media,problems of the theory of elastic mixtures, nonlocal-in-time problems for some equationsof mathematical physics, mathematical models for computation of thermo-elastic state ofsome energetic plants; full professor of Tbilisi State University (2006-2009); from Septem-ber 2009 Emeritus at the Iv. Javakhishvili Tbilisi State University. Since 1963 till now

Page 48: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

48 Anniversaries September 2–9, Batumi, Georgia

read the lectures in programming and computational mathematics, mathematical mod-eling, functional analysis and computational mathematics, numerical methods of partialdifferential equations etc. at the Tbilisi State University. In 1966 defended Ph.D. thesisin specialty ”Computational mathematics”. In 1981 defended a thesis for a Doctor of Sci-ence (habilitation) degree in specialty ”Computational mathematics” at the Moscow StateUniversity. Supervised preparation and defences of 17 Candidate thesis and 7 thesis fora Doctor of Science degree (habilitation). He participated in organization and holding ofmany international, republic congresses, symposiums, conferences, schools on mathemat-ics, computational mathematics, mechanics, theory of shells, hydro-dynamics, magnetichydrodynamics, informatics (International Congresses of Mathematics, Athens Interdis-ciplinary Olympiad, IUTAM Symposium, etc.). Was invited to carry lecture courses andscientific researches, participation in congresses, conferences and symposiums in scientificcentres of many countries. He is the author of more than 170 scientific publications, 4inventions (USSR), 2 patents (USA, Sweden) and 3 Monographs; the member of the En-gineering Academy of Georgia; the member of the International Academy of ComputerSciences and Systems; the honorary president of Georgian Academy of Natural Sciences,etc.; the member of editorial board of mathematical journals, supervisor and team mem-ber in various international grants and owner of different scientific and governmentalawards, prizes, medals and diplomas.

Georgian Mathematical Union,Ilia Vekua Institute of Applied Mathematics

of Ivane Javakhishvili Tbilisi State University

Page 49: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÜÅÄÍÉ ÉÖÁÉËÀÒÄÁÉ 49

ÓÄÒÂÏ ÜÏÁÀÍÉÀÍÉ - 70

ÍÉÊÏ ÌÖÓáÄËÉÛÅÉËÉÓ ÓÀáÄËÏÁÉÓ ÂÀÌÏÈÅËÉÈÉ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÉÓ ÌÈÀÅÀÒÉÌÄÝÍÉÄÒ-ÈÀÍÀÌÛÒÏÌÄËÉ, ×ÉÆÉÊÀ-ÌÀÈÄÌÀÔÉÊÉÓ ÌÄÝÍÉÄÒÄÁÀÈÀ ÃÏØÔÏÒÉ ÓÄÒÂÏ ÜÏÁÀÍÉÀÍÉÃÀÉÁÀÃÀ ÈÁÉËÉÓÛÉ. 1965 ß. ÃÀÀÌÈÀÅÒÀ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉÓ ×ÉÆÉÊÉÓ×ÀÊÖËÔÄÔÉ. 1971 ßÄËÓ ÈÁÉËÉÓÉÓ ÀÍÃÒÉÀ ÒÀÆÌÀÞÉÓ ÓÀáÄËÏÁÉÓ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÛÉÃÀÉÝÅÀ ÓÀÊÀÍÃÉÃÀÔÏ ÃÉÓÄÒÔÀÝÉÀ ÓÐÄÝÉÀËÏÁÉÈ ,,ÌÀÈÄÌÀÔÉÊÖÒÉ ÀÍÀËÉÆÉ” (áÄËÌÞÙÅÀÍÄËÉ- ÐÒÏ×ÄÓÏÒÉ, ÀÌÑÀÌÀà ÀÊÀÃÄÌÉÊÏÓÉ, ÍÉÊÏ ÅÀáÀÍÉÀ); áÏËÏ 1985 ßÄËÓ - ÓÀÃÏØÔÏÒÏÃÉÓÄÒÔÀÝÉÀ ÌÏÓÊÏÅÛÉ Å.À. ÓÔÄÊËÏÅÉÓ ÓÀáÄËÏÁÉÓ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÛÉ ÓÐÄÝÉÀËÏÁÉÈ,,ÀËÁÀÈÏÁÉÓ ÈÄÏÒÉÀ ÃÀ ÌÀÈÄÌÀÔÉÊÖÒÉ ÓÔÀÔÉÓÔÉÊÀ”.

ÓÄÒÂÏ ÜÏÁÀÍÉÀÍÉÓ ÓÀÌÄÝÍÉÄÒÏ ÉÍÔÄÒÄÓÄÁÉÓ Ó×ÄÒÏ ÀËÁÀÈÏÁÉÓ ÈÄÏÒÉÉÓÀ ÃÀ ×ÖÍØÝÉ-ÏÍÀËÖÒÉ ÀÍÀËÉÆÉÓ ÌÉãÍÀÆÄÀ. ÓÀØÀÒÈÅÄËÏÛÉ ÌÀÍ ÃÀÉßÚÏ ÁÀÍÀáÉÓ ÓÉÅÒÝÄÛÉ ÌÍÉÛÅÍÄËÏÁÄ-ÁÉÀÍÉ ÓÔÀÝÉÏÍÀÒÖËÉ ÛÄÌÈáÅÄÅÉÈÉ ÐÒÏÝÄÓÄÁÉÓ ÓÉÓÔÄÌÀÔÖÒÉ ÛÄÓßÀÅËÀ. ÄÓ ÉÚÏ ÌÉÓÉÓÀÊÀÍÃÉÃÀÔÏ ÃÉÓÄÒÔÀÝÉÉÓ ÞÉÒÉÈÀÃÉ ÈÄÌÀ. ÛÄÌÃÄ ÉÓ ÃÀÉÍÔÄÒÄÓÃÀ ÁÀÍÀáÉÓ ÓÉÅÒÝÄÛÉÂÀÖÓÉÓ ÂÀÍÀßÉËÄÁÄÁÉÓ ÀÙßÄÒÉÓ ÐÒÏÁËÄÌÉÈ. ÀÌ ÐÒÏÁËÄÌÉÓ ÂÀÃÀßÚÅÄÔÉÓÀÈÅÉÓ ÌÀÍÂÀÌÏÉÚÄÍÀ ÛÄÌÊÒÄÁÉ ÏÐÄÒÀÔÏÒÄÁÉÓÀ ÃÀ ÅÄØÔÏÒÖËÉ ÛÄÌÈáÅÄÅÉÈÉ ÌßÊÒÉÅÄÁÉÓ ÈÄÏÒÉÉÓÀÐÀÒÀÔÉ. ÀÌ ÌÉÌÀÒÈÖËÄÁÉÈ ÌÉÙÄÁÖËÉ ÛÄÃÄÂÄÁÉ, ÌÉÓ ÌÉÄÒ ÐÉÒÏÁÉÈÀà ÊÒÄÁÀÃÉÅÄØÔÏÒÖËÉ ÌßÊÒÉÅÄÁÉÓ ãÀÌÈÀ ÀÒÉÓ ÓÔÒÖØÔÖÒÉÓ ÛÄÓßÀÅËÉÈ ÌÉÙÄÁÖË ÛÄÃÄÂÄÁÈÀÍÄÒÈÀÃ, ÃÀÄÃÏ ÓÀ×ÖÞÅËÀà ÌÉÓ ÓÀÃÏØÔÏÒÏ ÃÉÓÄÒÔÀÝÉÀÓ.

Ó. ÜÏÁÀÍÉÀÍÉ ÀÒÉÓ 70-ÆÄ ÌÄÔÉ ÓÀÌÄÝÍÉÄÒÏ ÓÔÀÔÉÉÓ ÀÅÔÏÒÉ ÃÀ ÄÒÈÉ ÌÏÍÏÂÒÀ×ÉÉÓ,,ÀËÁÀÈÖÒÉ ÂÀÍÀßÉËÄÁÀÍÉ ÁÀÍÀáÉÓ ÓÉÅÒÝÄÄÁÆÄ” ÈÀÍÀÀÅÔÏÒÉ (Í. ÅÀáÀÍÉÀÓÀ ÃÀ Å. ÔÀÒÉÄ-ËÀÞÄÓÈÀÍ ÄÒÈÀÃ). ÄÓ ÌÏÍÏÂÒÀ×ÉÀ ÂÀÌÏØÅÄÚÍÃÀ ÒÖÓÖËÀà 1985 ßÄËÓ, áÏËÏ ÉÍÂËÉÓÖ-ÒÀà 1987 ßÄËÓ. Ó. ÜÏÁÀÍÉÀÍÉ ÉÚÏ ÌÒÀÅÀËÉ ÓÀÄÈÀÛÏÒÉÓÏ ÊÏÍ×ÄÒÄÍÝÉÉÓ ÌÉßÅÄÖËÉ

Page 50: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

50 Anniversaries September 2–9, Batumi, Georgia

ÌÏÌáÓÄÍÄÁÄËÉ ÃÀ ÌÉßÅÄÖËÉ ÐÒÏ×ÄÓÏÒÉ ÐÏËÏÍÄÈÛÉ, ÀÌÄÒÉÊÉÓ ÛÄÄÒÈÄÁÖË ÛÔÀÔÄÁÛÉÃÀ ÄÓÐÀÍÄÈÛÉ. ÌÉÓÉ ÓÀÌÄÝÍÉÄÒÏ ÛÄÃÄÂÄÁÉ ÊÀÒÂÀÃÀÀ ÝÍÏÁÉËÉ ÓÐÄÝÉÀËÉÓÔÄÁÉÓÀÈÅÉÓ ÃÀÌÉÓ ÌÉÄÒ ÌÉÙÄÁÖËÉ ÄÒÈÉ ÄËÄÂÀÍÔÖÒÉ ÃÄÁÖËÄÁÀ ËÉÔÄÒÀÔÖÒÀÛÉ ÉßÏÃÄÁÀ ÒÏÂÏÒÝ,,ÜÏÁÀÍÉÀÍÉÓ ÔÒÀÍÓ×ÄÒÄÍÝÉÉÓ ËÄÌÀ”.

ÓÄÒÂÏ ÜÏÁÀÍÉÀÍÉ ÀÌÑÀÌÀÃ ÃÀÉÍÔÄÒÄÓÄÁÖËÉÀ ×ÖÍØÝÉÀÈÀ ÈÄÏÒÉÉÓ ÄÒÈ-ÄÒÈÉ ÚÅÄËÀÆÄÀÌÀÙÄËÅÄÁÄËÉ ÂÀÃÀÖßÚÅÄÔÄËÉ ÐÒÏÁËÄÌÉÈ - ÊÏËÌÏÂÏÒÏÅÉÓ ÂÀÃÀÍÀÝÅËÄÁÉÓ ÐÒÏÁËÄ-ÌÉÈ.

ÅÖËÏÝÀÅÈ ÌÀÓ ÃÀÁÀÃÄÁÉÃÀÍ 70-Ä ßËÉÓÈÀÅÓ, ÅÖÓÖÒÅÄÁÈ ãÀÌÒÈÄËÏÁÀÓ, ÛÄÌÃÂÏÌßÀÒÌÀÔÄÁÄÁÓ ÌÀÈÄÌÀÔÉÊÉÓÀ ÃÀ, ÀÂÒÄÈÅÄ, ÌÉÓÈÅÉÓ ÓÀÚÅÀÒÄËÉ àÀÃÒÀÊÉÓÀ ÃÀ ÃÉÃÉ ÜÏÂÁÖÒ-ÈÉÓ ÌÉÌÀÒÈÖËÄÁÄÁÉÈ.

ÓÀØÀÒÈÅÄËÏÓ ÌÀÈÄÌÀÔÉÊÏÓÈÀ ÊÀÅÛÉÒÉ,

ÓÀØÀÒÈÅÄËÏÓ ÔÄØÍÉÊÖÒÉ ÖÍÉÅÄÒÓÉÔÄÔÉÓ ÍÉÊÏ ÌÖÓáÄËÉÛÅÉËÉÓÓÀáÄËÏÁÉÓ ÂÀÌÏÈÅËÉÈÉ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÉ

Page 51: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÜÅÄÍÉ ÉÖÁÉËÀÒÄÁÉ 51

Sergei (Sergo) Chobanyan – 70

The Chief Researcher of the Niko Muskhelishvili Institute of Computational Mathe-matics of Georgian Technical University, Doctor of Mathematics Sergei (Sergo) was bornin Tbilisi (Georgia) and graduated from the Faculty of Physics of Tbilisi State Universityin 1965. S. Chobanyan defended his Candidate dissertation in 1971 (Tbilisi A. RazmadzeMathematical Institute with major “Mathematical Analysis”, advisor: Professor (nowAcademician) Niko Vakhania). He defended his Doctoral dissertation in 1985 at MoscowV.A. Steklov Mathematical Institute with major “Probability Theory and MathematicalStatistics”.

S. Chobanyan’s research area lies in the joint of Probability Theory and FunctionalAnalysis. He began in Georgia a systematic study of correlation theory of Banach spacevalued stationary random processes. This was the main topic of his candidate dissertation.Then he was interested in the problem of description of Gaussian distributions on Banachspaces. He was solving this problem by use of the tools of summing operators and thetheory of vector valued random series. The results obtained in this direction, alongwith the study of the problem of sum range of a conditionally convergent vector seriesconstitutes the basis of his doctoral dissertation.

S. Chobanyan is the author of more than 70 research articles and the monograph(jointly with N. Vakhania and V. Tarieladze) “Probability Distributions on Banach spaces”published in Russian in 1985 and in English in 1987. He was an invited speaker on many

Page 52: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

52 Anniversaries September 2–9, Batumi, Georgia

international mathematical conferences, a visiting professor in Poland, USA and Spain.His results are well-known for specialists, and one of the elegant statements obtained byhim is named in literature as “Chobanyan’s Transference Lemma”.

The subject of Chobanyan’s current interest is one of the most exciting unsolvedproblems of the function theory – the Kolmogorov Rearrangement Problem. Let us con-gratulate him on the occasion of his 70-th birthday, and wish a good health and furthersuccesses in mathematics and in his hobbies: chess and tennis.

Georgian Mathematical Union,Niko Muskhelishvili Institute of Computational Mathematics

of the Georgian Technical University

Page 53: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 53

Plenary TalksÐËÄÍÀÒÖËÉ ÌÏáÓÄÍÄÁÄÁÉ

Page 54: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
Page 55: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÐËÄÍÀÒÖËÉ ÌÏáÓÄÍÄÁÄÁÉ 55

Quantum XX Chain with InterfaceDionys Baeriswyl

Department of Physics, University of Fribourg, CH-1700 Fribourg,Switzerland

The one-dimensional XY model plays a central role in the theory of quantum phasetransitions. This talk will present recent results [1] on the isotropic version of the model,the XX chain - or rather ring - exposed to an inhomogeneous transverse field. Dependingon the field pattern we can model specific types of interfaces. In the step model the fieldpoints down to the left and up to the right. Another type of interface is formed by joiningthe ends of an odd-numbered chain subject to a staggered field. Various well-knownphenomena are found in these models such as proximity effects or Friedel oscillations.Of particular interest are degenerate interface states which may serve as well protectedquantum bits.

References[1] D. Baeriswyl and G. Ferraz, submitted to Phys. Rev. B.

Coshape Theory and its ApplicationsVladimer Baladze

Shota Rustaveli Batumi State University, Department of MathematicsBatumi, Georgia

email: [email protected]

It will be considered a construction of an abstract Coshape Category for an arbitrarycategory and its co-dense subcategory. In particular, a topological Coshape Theory oftopological spaces and continuous maps will be developed. Some applications in the(co)homology Theory will be given.

Page 56: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

56 Plenary Talks September 2–9, Batumi, Georgia

On the Distribution of the Steinitz FunctionalSergei Chobanyan1, Shlomo Levental2

1 Niko Muskhelishvili Institute of Computational Mathematics of the GeorgianTechnical University, Tbilisi, Georgia

2 Michigan State University, Department of Statistics and Probability,East Lansing, USA

email: [email protected]; [email protected]

For a natural number n let Πn be the group of all permutations of 1, . . . , n andx1, . . . , xn be a collection of elements of a normed space X such that

∑n1 xi = 0. Then

there exists an absolute constant C > 0 such that the following maximum inequality holdsfor any collection of signs θ1, . . . , θn and any t > 0:

cardπ ∈ Πn : max1≤k≤n

∥n∑

i=1

xπ(i)∥ > t ≤ Ccardπ ∈ Πn : max1≤k≤n

∥n∑

i=1

xπ(i)θi∥ >t

C.

The inequality is un-improvable (the inverse inequality also holds for some other con-stant) and generalizes well-known results due to Garsia, Maurey and Pisier, Kashin andSaakian, Chobanyan and Salehi, and Levental.

Mathematical Modelling and Numerical Solutionof Some Problems of Water Pollution

and Filtration Problems of LiquidsDavid Gordeziani

I. Javakhishvili Tbilisi State UnivesityTbilisi, Georgia

email: [email protected]

Having improved in various fields of science and technology and liberalizing the man-kind, using environment resources and more deeply interfering in the outer world, upsetthe existing balance of nature. The earth ecosystem is being destroyed and research of theways of its rehabilitation is one of the most important tasks of the contemporary world.

Mathematical modelling and application of numerical analysis enables to forecast theseor those parameters of water quality via computer simulation and thus becomes possibleto control and manage the current processes. This is cost-effective and preserves expenses

Page 57: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÐËÄÍÀÒÖËÉ ÌÏáÓÄÍÄÁÄÁÉ 57

that would be needed for the arrangement and conduction of experiments, and sometimesit appears to be the only way of studying relevant phenomena. Thus, mathematical mod-elling of diffusion processes in the environment and investigation of pollution problemsis one of the most actual and interesting challenges of applied and computational math-ematics. Therefore, all stages of mathematical modelling of that kind of problems arebeing constantly improved, refined and in some cases even simplified.

In the current work there are shortly described several methods and prospective di-rections of mathematical and numerical modelling that seem very promising and efficientfor further application and investigation of problems of quality control in water bodiesand filtration problems of liquids.

Namely there are considered

Part 1. certain linear non-classical problems for which issues of existence anduniqueness of solution are investigated, and finite-difference and decompositionmethods are developed for their solution

Part 2. various finite-difference algorithms are constructed and investigated forsolution of nonlinear initial-boundary value problems describing filtration processesof liquids.

Regarding the first part - big variety of non-linear mathematical models describingpollution processes exist, but in the current work we only focus on linear mathematicalmodels describing pollution transfer or, more generally, pollution diffusion processes inwater streams.

The literature concerning the research of problems and questions of mathematicalmodelling on the basis of classical equations of mathematical physics with classical initial-boundary conditions is rather rich and vas.

In some works on mathematical modelling of admixture diffusion processes in variousenvironments, the authors have encountered a specific type of equations that until recentlywere not used to describe the above mentioned processes. Such equations are known underthe name of “pluri-parabolic” equations. Theoretical issues and algorithms of numericalsolution of these types of equations with classical initial-boundary conditions are poorlystudied yet. Thus, the investigation of the mentioned problems has very substantialtheoretical and practical value.

It is also important to emphasize that in some cases during the process of mathematicalmodelling of pollution problems we deal with initial-boundary value problems with non-classical boundary conditions. Naturally the question of investigation of mathematicalproblems comes up that are based on classical equations of mathematical physics with non-classical (e.g. non-local) initial-boundary conditions. This problem has been addressedby many authors. However, it should be noted that very few studies are devoted to thenumerical solution of such problems.

Page 58: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

58 Plenary Talks September 2–9, Batumi, Georgia

Finally, mathematical models with non-classical equations and non-classical boundaryconditions are presented. Only a few papers deal with theoretical analysis and numericalsolution of such models.

In this part some mathematical models of the mentioned type are considered, arecarried out their analysis and for some of them and are suggested and studied respectivedifference methods.

In the second part there are developed: explicit algorithms with variable step intime; implicit schemes and corresponding iteration process; implicit, absolutely stable al-gorithms, based on classical asymmetric schemes, which allow to make calculation processexplicit, but they are less accurate than classical ones; asymmetric averaged schemes areconstructed, by means of which calculation can be conducted in explicit way, but time andspace grid step have strong limitations; calculation algorithms are realized on computer.

Effective Hamiltonian for the Half-FilledSpin-Asymmetric Hubbard Chain with Strong

and Alternating On-Site RepulsionInna Grusha, Giorgi Japaridze

E. Andronikashvili Institute of PhysicsIlia State University, Tbilisi, Georgia

We derive an effective spin Hamiltonian for the one-dimensional half-filled spin asym-metric ionic-Hubbard model in the limit of strong on-site repulsion. We have shownthat the effective Hamiltonian, which describes spin degrees of freedom of the initial lat-tice electron system is given by the Hamiltonian of the frustrated and anisotropic XXZHeisenberg chain with an additional alternating three spin coupling term in the presenceof alternating magnetic field.

Homotopy Algebras in Topological Field TheoryTornike Kadeishvili

A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State UniversityTbilisi, Georgia email: [email protected]

In some versions of Topological (quantum) field theory various types of homotopy(A∞, L∞, etc.) algebras or categories arise naturally. An important problem here

Page 59: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÐËÄÍÀÒÖËÉ ÌÏáÓÄÍÄÁÄÁÉ 59

is to recognize when these objects are weak equivalent. We are going to demonstratethe criterion of such equivalence using the author’s minimality theorem. The suitableobstruction theory will be presented also.

Continuous Homologies and CohomologiesLeonard Mdzinarishvili

Georgian Technical University, Department of MathematicsTbilisi, Georgia

email: [email protected]

It will be discussed basic construction and properties of continuous homologies andcohomologies.

ØÀÒÈÖËÉ ÄÍÉÓ ÔÄØÍÏËÏÂÉÆÄÁÖËÉ ÀÍÁÀÍÉÓÛÄÌÖÛÀÅÄÁÉÓ ÌÉÆÍÄÁÉ ÃÀ ÐÒÏÁËÄÌÄÁÉ

ÊÏÍÓÔÀÍÔÉÍÄ ×áÀÊÀÞÄ

ÓÀØÀÒÈÅÄËÏÓ ÔÄØÍÉÊÖÒÉ ÖÍÉÅÄÒÓÉÔÄÔÉ, ØÀÒÈÖËÉ ÄÍÉÓ ÔÄØÍÏËÏÂÉÄÁÉÓÓÀÓßÀÅËÏ-ÓÀÌÄÝÍÉÄÒÏ ÝÄÍÔÒÉ;

ÉÅ. ãÀÅÀáÉÛÅÉËÉÓ ÓÀáÄËÏÁÉÓ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ, ÉÍ×ÏÒÌÀÝÉÖËÉÔÄØÍÏËÏÂÉÄÁÉÓ ÃÄÐÀÒÔÀÌÄÍÔÉ, ÈÁÉËÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]

ÓÀØÀÒÈÅÄËÏÓ ÔÄØÍÉÊÖÒÌÀ ÖÍÉÅÄÒÓÉÔÄÔÌÀ ÃÀ ÉÅ. ãÀÅÀáÉÛÅÉËÉÓ ÓÀáÄËÏÁÉÓ ÈÁÉËÉÓÉÓÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÌÀ 2012 ßÄËÓ ÒÖÓÈÀÅÄËÉÓ ÄÒÏÅÍÖË ÓÀÌÄÝÍÉÄÒÏ ×ÏÍÃÛÉßÀÒÀÃÂÉÍÀ ßÉÍÀ ßËÄÁÛÉ ÓÀáÄËÌßÉ×Ï ÌÉÆÍÏÁÒÉÅÉ ÐÒÏÂÒÀÌÉÓ „ÊÏÌÐÉÖÔÄÒÉÓ ÓÒÖËÉÐÒÏÂÒÀÌÖË-ÌÏÌÓÀáÖÒÄÏÁÉÈÉ ÌÏØÝÄÅÀ ÁÖÍÄÁÒÉÅ ØÀÒÈÖË ÄÍÏÁÒÉÅ ÂÀÒÄÌÏÛÉ“ ÓÀ×ÖÞÅÄË-ÆÄ ÛÄÌÖÛÀÅÄÁÖËÉ ÏÒßËÉÀÍÉ ÐÒÏÄØÔÉ „ØÀÒÈÖËÉ ÄÍÉÓ ËÏÂÉÊÖÒÉ ÂÒÀÌÀÔÉÊÉÓ ÓÀ×ÖÞÅËÄÁÉÃÀ ÌÉÓÉ ÂÀÌÏÚÄÍÄÁÀ ÓÀÉÍ×ÏÒÌÀÝÉÏ ÔÄØÍÏËÏÂÉÄÁÛÉ“. ÐÒÏÄØÔÉÓ ÌÉÆÀÍÉÀ ØÀÒÈÖËÉ ÄÍÉÓÌÀÈÄÌÀÔÉÊÖÒÉ ÈÄÏÒÉÉÓ ÀÍÖ ØÀÒÈÖËÉ ÄÍÉÓ ËÏÂÉÊÖÒÉ ÂÒÀÌÀÔÉÊÉÓ ÛÄÌÖÛÀÅÄÁÀ ÃÀ ÀÌÈÄÏÒÉÀÆÄ ÃÀÚÒÃÍÏÁÉÈ áÌÉÈ ÌÀÒÈÅÀÃÉ ÀÍÖ ÌÏÓÀÖÁÒÄ ØÀÒÈÖËÉ ÉÍÔÄËÄØÔÖÀËÖÒÉÊÏÌÐÉÖÔÄÒÖËÉ ÓÉÓÔÄÌÉÓ ÓÀÝÃÄËÉ ÅÄÒÓÉÉÓ ÀÂÄÁÀ, ÒÀÝ, ÈÅÉÓ ÌáÒÉÅ, ØÀÒÈÖËÉ ÄÍÉÓÔÄØÍÏËÏÂÉÆÄÁÖËÉ ÀÍÁÀÍÉÓ ÓÀÝÃÄËÉ ÓÉÓÔÄÌÉÓ ÀÂÄÁÀÓ ÖÔÏËÃÄÁÀ.

ÀÌÀÓÈÀÍ, ÄÍÄÁÉÓ ÀÌÏÌßÖÒÀÅÉ ÔÄØÍÏËÏÂÉÆÄÁÉÓ ÌÉÆÍÉÈ ÌÀÈÉ ÌÊÀÝÒÉ ÌÀÈÄÌÀÔÉÊÖÒÉÂÒÀÌÀÔÉÊÄÁÉÓ ÛÄÌÖÛÀÅÄÁÉÓ ÐÒÏÝÄÓÄÁÉ 1950-ÉÀÍÉ ßËÄÁÉÃÀÍ ÌÉÌÃÉÍÀÒÄÏÁÓ ÃÀ ÀÌ ÊÅËÄÅÄÁÉÓÛÄÃÄÂÀÃ, ÃÙÄÓ, ÖÌÄÔÄÓÉ ÄÍÄÁÉÓÈÅÉÓ, ÖÊÅÄ ÀÒÓÄÁÏÁÓ ÌÀÈÉ ÈÉÈØÌÉÓ ÓÒÖËÉ ÔÄØÍÏËÏÂÉÆÄ-ÁÖËÉ ÀÍÁÀÍÉ. ÄÓ ÉÌÀÓ ÍÉÛÍÀÅÓ, ÒÏÌ ØÀÒÈÖËÉ ÄÍÉÓ ÔÄØÍÏËÏÂÉÆÄÁÖËÉ ÀÍÁÀÍÉÓ ÅÄÒ

Page 60: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

60 Plenary Talks September 2–9, Batumi, Georgia

ÛÄÌÖÛÀÅÄÁÉÓ ÛÄÌÈáÅÄÅÀÛÉ, ÔÄØÍÏËÏÂÉÆÄÁÖËÉ ÄÍÄÁÉÓ ÀÌ ÖÊÅÄ ÊÀÒÓ ÌÏÌÃÂÀÒ ÄÐÏØÀÛÉØÀÒÈÖËÉ ÅÄÒ ÛÄÞËÄÁÓ ÊÖËÔÖÒÉÓ ÌÀßÀÒÌÏÄÁÖËÉ ÄÍÉÓ ÃÙÄÅÀÍÃÄËÉ ÓÔÀÔÖÓÉÓ ÛÄÍÀÒÜÖ-ÍÄÁÀÓ [1].

ÌÏáÓÄÍÄÁÉÓÀÓ, ØÀÒÈÖËÉ ÄÍÉÓ ÔÄØÍÏËÏÂÉÆÄÁÖËÉ ÀÍÁÀÍÉÓ ÛÄÌÖÛÀÅÄÁÉÓ ÖÊÅÄ ÂÀÓÀÂÄÁÀÃÜÀÌÏÚÀËÉÁÄÁÖËÉ ÌÉÆÍÉÓ ÂÀÈÅÀËÉÓßÉÍÄÁÉÈ, ßÀÒÌÏÅÀÃÂÄÍ ÓáÅÀ ÄÍÄÁÈÀÍ ÛÄÃÀÒÄÁÉÈ ØÀÒ-ÈÖËÉ ÄÍÉÓ ÔÄØÍÏËÏÂÉÆÄÁÉÓ ÓÀÂÀÍÂÀÛÏà ÃÀÁÀËÉ áÀÒÉÓáÉÓ ÈÅÀËÓÀÜÉÍÏà ÃÀÌÀÃÀÓÔÖ-ÒÄÁÄË ÌÀÓÀËÀÓ ÃÀ, ÀÓÄÅÄ, áÄÃÅÀÓ ÉÌ ÐÒÏÁËÄÌÄÁÆÄ, ÒÏÌÄËÈÀ ÂÀÃÀßÚÅÄÔÉÓ ÂÀÒÄÛÄ ÄÓÓÀÂÀÍÂÀÛÏ ÜÀÌÏÒÜÄÍÀ ÅÄÒÀ×ÒÉÈ ÃÀÉÞËÄÅÀ.

ËÉÔÄÒÀÔÖÒÀ

[1] Ê.×áÀÊÀÞÄ, Ê.ÂÀÁÖÍÉÀ, Â.ÜÉÜÖÀ, À.ÌÀÓáÀÒÀÛÅÉËÉ, Ë.ÀÁÆÉÀÍÉÞÄ, Í.ÅÀáÀÍÉÀ, Í.×áÀÊÀÞÄ,Á.ÜÉØÅÉÍÉÞÄ, Ë.ÂÖÒÀÓÀÛÅÉËÉ, Í.ËÀÁÀÞÄ, Ì.ÁÄÒÉÀÛÅÉËÉ, ØÀÒÈÖËÉ ÉÍÔÄËÄØÔÖÀËÖÒÉÊÏÌÐÉÖÔÄÒÖËÉ ÓÉÓÔÄÌÉÓ ÊÏÍÓÔÒÖÉÒÄÁÉÓ ÌÉÆÍÄÁÉ ÃÀ ØÀÒÈÖËÉ ÄÍÉÓ ßÉÍÀÛÄ ÌÃÂÀÒÉÓÀ×ÒÈáÄÄÁÉ, ÀÒÍ.ÜÉØÏÁÀÅÀÓ ÓÀáÄËÏÁÉÓ ÄÍÀÈÌÄÝÍÉÄÒÄÁÉÓ ÉÍÓÔÉÔÖÔÉÓ VI ÒÄÓÐÖÁËÉ-ÊÖÒÉ ÊÏÍ×ÄÒÄÍÝÉÉÓ ,,ÁÖÍÄÁÒÉÅ ÄÍÀÈÀ ÃÀÌÖÛÀÅÄÁÀ” ÌÀÓÀËÄÁÉ, ÈÁÉËÉÓÉ, 2008, ÂÅ.23-24/ÂÅ.33–34.

Diffraction Problems on Periodic Metric GraphsVladimir S. Rabinovich

National Polytechnic Institute of Mexicoemail: [email protected]

The main aim of the talk is the Fredholm properties of a class of bounded linearoperators acting on weighted Lebesgue spaces on infinite metric graphs Γ periodic withrespect to the action of the group Zn. We consider operators A on such graphs whichlocally are usual pseudodifferential operators in the class OPS0 on every open edge of thegraph, and in a neighborhood of the every vertex of Γ the operators A are represented asmatrix Mellin pseudodifferential operators.

As applications we consider the integral operators on the graphs generated by thediffraction problems on graphs imbedded in Z2.

Page 61: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÐËÄÍÀÒÖËÉ ÌÏáÓÄÍÄÁÄÁÉ 61

ÖÒÀÍÂÏ ÊÅÀÍÔÏÒÖËÉ ÈÄÏÒÉÀáÉÌÖÒÉ ÒÖáÀÉÀ, ËÀËÉ ÔÉÁÖÀ, ÂÄËÀ àÀÍÊÅÄÔÀÞÄ

ÉÅ. ãÀÅÀáÉÛÅÉËÉÓ ÓÀá. ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ, ÈÁÉËÉÓÉÓÏáÖÌÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]; [email protected]

ÄÍÄÁÉ, ÓÀÃÀÝ ×ÖÍØÝÉÏÍÀËÖÒ ÈÖ ÐÒÄÃÉÊÀÔÖË ÓÉÌÁÏËÏÄÁÓ ÃÀ×ÉØÓÉÒÄÁÖËÉ ÀÃÂÉËÉÀ-ÍÏÁÀ ÀÒ ÀØÅÈ, ÁÏËÏ ßËÄÁÛÉ ÉÍÔÄÍÓÉÖÒÉ ÛÄÓßÀÅËÉÓ ÓÀÂÀÍÉ ÂÀáÃÀ ÌÀÈÉ ÂÀÌÏÚÄÍÄÁÉÓÓÀÊÌÀÏà ×ÀÒÈÏ Ó×ÄÒÏÓ ÂÀÌÏ [1]. ÖÒÀÍÂÏ ÄÍÄÁÛÉ, ÜÅÄÖËÄÁÒÉÅ, ÏÒÉ ÓÀáÉÓ ÝÅËÀÃÄÁÉÂÅáÅÃÄÁÀ: ÓÀÂÍÏÁÒÉÅÉ ÝÅËÀÃÄÁÉ, ÒÏÌÄËÈÀ ÜÀÍÀÝÅËÄÁÀ ÄÒÈÉ ÔÄÒÌÉÈ ÛÄÉÞËÄÁÀ ÃÀÌÉÌÃÄÅÒÏÁÉÓ ÝÅËÀÃÄÁÉ (ØÅÄÌÏÈ ÌÀÈ ÜÅÄÍ ÅÖßÏÃÄÁÈ ,,ÓÀÂÍÏÁÒÉÅ ÌÉÌÃÄÅÒÏÁÉÈ ÝÅËÀ-ÃÄÁÓ’’), ÒÏÌÄËÈÀ ÍÀÝÅËÀà ÛÄÓÀÞËÄÁÄËÉÀ ÔÄÒÌÈÀ ÓÀÓÒÖËÉ ÌÉÌÃÄÅÒÏÁÉÓ ÜÀÓÌÀ. ÆÄÌÏÈÀÙßÄÒÉËÉ ÄÍÄÁÉÓÀÂÀÍ ÂÀÍÓáÅÀÅÄÁÉÈ ÜÅÄÍÓ ÌÉÄÒ ÛÄÓßÀÅËÉËÉ ÖÒÀÍÂÏ ÊÅÀÍÔÏÒÖËÉÈÄÏÒÉÉÓ ÄÍÀÛÉ ÂÅáÅÃÄÁÀ ÏÒÉ ÔÉÐÉÓ ÌÉÌÃÄÅÒÏÁÉÓ ÝÅËÀÃÄÁÉ: À) ÓÀÂÍÏÁÒÉÅÉ ÌÉÌÃÄÅÒÏÁÉÓÝÅËÀÃÄÁÉ, ÒÏÌÄËÈÀ ÍÀÝÅËÀà ÛÄÓÀÞËÄÁÄËÉÀ ÔÄÒÌÈÀ ÓÀÓÒÖËÉ ÌÉÌÃÄÅÒÏÁÄÁÉÓ ÜÀÓÌÀ ÃÀÁ) ÐÒÏÐÏÆÉÝÉÖËÉ ÌÉÌÃÄÅÒÏÁÉÓ ÝÅËÀÃÄÁÉ, ÒÏÌÄËÈÀ ÍÀÝÅËÀà ÛÄÓÀÞËÄÁÄËÉÀ ×ÏÒÌÖËÀ-ÈÀ ÓÀÓÒÖËÉ ÌÉÌÃÄÅÒÏÁÄÁÉÓ ÜÀÓÌÀ. ÂÀÒÃÀ ÀÌÉÓÀ, ÀÌ ÈÄÏÒÉÉÓ ,,ÔÀÖÓ’’, ÀÒÓÄÁÏÁÉÓÀÃÀ ÆÏÂÀÃÏÁÉÓ ÊÅÀÍÔÏÒÄÁÉÓ ÀÃÂÉËÉÀÍÏÁÀ ÀÒ ÀÒÉÓ ÃÀ×ÉØÓÉÒÄÁÖËÉ – ÉÓÉÍÉ ÖÒÀÍÂÏÏÐÄÒÀÔÏÒÄÁÉÀ. ÀÌ ÏÐÄÒÀÔÏÒÄÁÉÓ ÂÀÍÓÀÆÙÅÒÀ áÃÄÁÀ ÛÀËÅÀ ×áÀÊÀÞÉÓ [2] ßÀÒÌÏÄÁÖËÉÏÐÄÒÀÔÏÒÄÁÉÓ ÛÄÌÏÔÀÍÉÓ ÒÀÝÉÏÍÀËÖÒÉ ßÄÓÄÁÉÓ ÜÀÒÜÏÛÉ, ÒÉÓ ÓÀ×ÖÞÅÄËÆÄ ÖÒÀÍÂÏÊÅÀÍÔÏÒÖË ÈÄÏÒÉÀÛÉ ÃÀÌÔÊÉÝÄÁÖË ÉØÍÀ Í. ÁÖÒÁÀÊÉÓ [3] ØÅÀÍÔÏÒÖË ÈÄÏÒÉÀÛÉÌÉÙÄÁÖËÉ ÛÄÃÄÂÄÁÉÓ ÀÍÀËÏÂÄÁÉ.

ÍÀÛÒÏÌÉ ÛÄÓÒÖËÄÁÖËÉÀ ÓÀØÀÒÈÅÄËÏÓ ÓÀÌÄÝÍÉÄÒÏ ×ÏÍÃÉÓ ÂÒÀÍÔÉÓ (D/16/4-120/11)×ÀÒÂËÄÁÛÉ.

ËÉÔÄÒÀÔÖÒÀ

[1] Kutsia T., Theorem Proving with Sequence Variables and Flexible Arity Symbols.In: M. Baaz and A. Voronkov, editors, Logic in Programming, Artificial intelligenceand Reasoning. Proceedings of the 9th International Conference LPAR 2002.Volume 2514 of Lecture Notesin Artificial Inteligence. Springer, 2002, 278-291.

[2] Pkhakadze Sh.; Some Problems of the Notation Theory; TSU,1977; 195pp.

[3] ÁÖÒÁÀÊÉ Í.; ÓÉÌÒÀÅËÄÈÀ ÈÄÏÒÉÀ; M 1965; 453Â.

Page 62: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

62 Plenary Talks September 2–9, Batumi, Georgia

On Boundary Value Problems in Circle PackingElias Wegert1

TU Bergakademie Freiberg, Germany

In the lecture we pose and study a discrete counterpart of nonlinear boundary valueproblems for holomorphic functions in the framework of circle packing. Though the clas-sical problem was introduced in Bernhard Riemann’s thesis in a geometric setting, it haslater mainly been considered in the context of integral equations and operator theory,and it took more than a hundred years until ideas from geometric function theory cameinto play again. The translation of Riemann–Hilbert problems to circle packing is theconsequent continuation of this metamorphosis back to geometry.

We begin with an introduction to classical nonlinear Riemann–Hilbert problems andsketch the fundamental of circle packing. In order to study the interplay of rigidityand flexibility of ensembles of circles we put them in a framework of smooth manifolds.This also provides access to a linear structure for advancing circle packing theory, and inparticular for studying various boundary value problems.

Finally we report on test calculations which show that solutions of the circle packingRiemann–Hilbert problem approximate the classical solutions with surprizing accuracy.

The talk is based on joint work with David Bauer (Leipzig), Frank Martin (Freiberg)and Ken Stephenson (Knoxville).

1supported by the Deutsche Forschungsgemeinschaft grant WE 1704/8-2

Page 63: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 63

Real and Complex AnalysisÍÀÌÃÅÉËÉ ÃÀ ÊÏÌÐËÄØÓÖÒÉ ÀÍÀËÉÆÉ

Page 64: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
Page 65: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÍÀÌÃÅÉËÉ ÃÀ ÊÏÌÐËÄØÓÖÒÉ ÀÍÀËÉÆÉ 65

Generalized Analytic FunctionsGeorge Akhalaia, Nino Manjavidze

I. Javakhishvili Tbilisi State UniversityGeorgian Technical University, Department of Mathematics

Tbilisi, Georgiaemail: [email protected]; [email protected]

In present work some results connected with the theory of generalized analytic func-tions are introduced. In spite of the fact that the problem of linear conjugation wasstudied for the generalized analytic functions and vectors and the progress achieved inresearch of elliptic systems, the connection between Riemann–Hilbert problem and ellipticsystems has not been noted until now. In our view this is a very important problem ofthe theory of generalized analytic functions.

On the Relationship between Conditionsof Differentiability and existence of Generalized

GradientLeri Bantsuri

Akaki Tsereteli State University, Department of MathematicsKutaisi, Georgia

email: [email protected]

Below everywhere we will assume that n ∈ N and n ≥ 2.For h ∈ Rn and i ∈ 1, n, denote by h(i) a point in Rn such that h(i)j = hj for every

j ∈ 1, n\i and h(i)i = 0. For i ∈ 1, n, let Li be a hyperplane h ∈ Rn : hi = 0.By Πi (i ∈ 1, n) denote the class of all sets ∆ ⊂ Rn with the properties: ∆ ∩ Li = ∅

and the origin 0 is a limit point for ∆.Let i ∈ 1, n, ∆ ∈ Πi and f be a function defined in a neighborhood of a point x ∈ Rn.

If there exists the limit lim∆∋h→0f(x+h)−f(x+h(i))

hi, then we call its value the partial (i,∆)-

derivative of f at x and denote it by Di,∆f(x).For an n-dimensional interval I =

∏ni=1[ai, bi] denote:li(I) = bi − ai (i ∈ 1, n) and

ri(I) = maxj =i lj(I)/li(I) (i ∈ 1, n).A basis of gradient generating(briefly, basis) will be defined as an n-tuple ∆ =

(∆1, ...,∆n), where ∆i ∈ Πi for every i ∈ 1, n.

Page 66: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

66 Real and Complex Analysis September 2–9, Batumi, Georgia

If for a basis ∆ = (∆1, ...,∆n) a function f has finite partial (i,∆i)-derivative for everyi ∈ 1, n at x then we will say that f has the ∆-gradient at x.

In the case ∆ = (Rn \ L1, ...,Rn \ Ln) the ∆-gradient is called the strong gradientand was introduced by O.Dzagnidze [1]. In [1] it was proved that if a function f has thestrong gradient at a point x, then f is differentiable at x and the converse assertion isnot true. G.G. Oniani [2] constructed a continuous function f : Rn → R such that f isdifferentiable almost everywhere but f does not has the strong gradient almost nowhere.The following generalization of this result is true.

Theorem. If for a basis ∆ = (∆1, . . . ,∆n) there exist a sequence of n-dimensionalintervals (Ik)k∈N, i ∈ 1, n and α > 0 with the properties: limk→∞ diamIk = 0, 0 is thecenter of Ik (k ∈ N), limk→∞ ri(Ik) = ∞ and |∆i ∩ Ik|/|Ik| ≥ α (k ∈ N); then there existsa continuous function f : Rn → R such that: 1)f is differentiable almost everywhere; 2)lim∆i∋h→0

f(x+h)−f(x+h(i))hi

= ∞ almost everywhere, and consequently, f does not has the∆-gradient almost nowhere.

References[1] O. P. Dzagnidze, Proc. A. Razmadze Math. Inst., 106 (1993), 7–48.[2] G. G. Oniani, Mat. Zametki 77 (2005), no. 1, 93–98.

Idea of Complex Conjugacy in Differential Geometry.Argument Variation Principle and Nevanlinna Type

Results for Conjugate SurfacesGrigor Barsegian

Institute of mathematics of the National Academy of Sciences of Armeniaemail: [email protected]

In this talk we introduce complex conjugate surfaces which, qualitatively speaking,are those surfaces whose spherical (Gaussian) image is a Riemann surface.

Investigations of similar surfaces seem to be promising due to the following reasons.On the one hand complex conjugate surfaces imply minimal surfaces. On the other handmany “usual surfaces” can be decomposed into some parts which either are complexconjugate or singular. Consequently the idea of complex conjugacy touches large classesof surfaces.

It turns out that some classical results in complex analysis have corresponding coun-terparts for complex conjugate surfaces: among them counterparts of argument variation

Page 67: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÍÀÌÃÅÉËÉ ÃÀ ÊÏÌÐËÄØÓÖÒÉ ÀÍÀËÉÆÉ 67

principle and of the first and second fundamental theorems of Nevanlinna value distribu-tion theory.

Classification of Hermitian Matrices with TheirPolynomial InvariantsNatela Chachava, Ilia Lomidze

University of Georgia, Physics DepartmentTbilisi, Georgia

email: [email protected]; [email protected]

A method for classification of n-th order Hermitian matrices in terms of polynomialinvariants of the unitary group U(n) is proposed. The method allows to found whethertwo n×n Hermitian matrices are unitary similar. The proposed set of invariants containscomplete information on the matrices eigenvalues as well as on the multiplicities andseparates the classes of equivalence – orbits of matrices. The minimal polynom of n× nHermitian matrix is presented in terms of the invariants proposed. Besides, it is foundthe mapping of the invariants set on the set of inverse power sums of matrices eigenvalues’multiplicities:

tk(P )|tk(P ) =m∑i=1

ripik, k = 1, 2, . . .

7→

tk(r)|tk(r) =

m∑i=1

ri−k, k = 1, 2, . . .

,

and the explicit formula for the multiplicity of given eigenvalue is derived. There areconsidered some examples which are important for quantum computing, e.g. separationof SU(n) matrices orbits under acting SU(n) group, n = 4, 5, 6, and SU(2)

⊗SU(2),

SU(2)⊗

SU(3) subgroups.

Page 68: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

68 Real and Complex Analysis September 2–9, Batumi, Georgia

The Representation of an Indefinite Integral witha Parameter by Double Exponential Series

Omar Dzagnidze1, Irma Tsivtsivadze2

1 Andrea Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State UniversityTbilisi, Georgia

2 Akaki Tsereteli State University, Kutaisi, Georgiae-mail: [email protected]; [email protected]

For a 2π-periodic in each variable function f : R2 → R which is integrable on [0, 2π]2

letf ∼ c00 +

∑|m|≥1

cm0eimx +

∑|n|≥1

c0neiny +

∑|m|≥1,|n|≥1

cmneimx+iny

be the corresponding double exponential Fourier series.Theorem 1. 1. For almost all x ∈ [0, 2π] and all y ∈ [0, 2π]∫ y

0

f(x, τ)dτ = c00y + y limh→0

∑|m|≥1

cm0eimxeim

h2

sinmh2

mh2

+ 2∑|n|≥1

c0nnein

y2 sinny

2+

+2 limh→0

∑|m|≥1,|n|≥1

cmn

neimxeim

h2 ein

y2 sinny

2

sinmh2

mh2

.

2. For all x ∈ [0, 2π] and almost all y ∈ [0, 2π]∫ x

0

f(t, y)dt = c00x+ 2∑|m|≥1

cm0

meim

x2 sinmx

2+ x lim

k→0

∑|n|≥1

c0neinyein

k2

sinnk2

nk2

+2 limk→0

∑|m|≥1,|n|≥1

cmn

meim

x2 einyein

k2 sinmx

2

sinnk2

nk2

.

Theorem 2. For almost all (x, y) ∈ [0, 2π]2 the following equalities hold:

1. c00hk+∑|m|≥1

cm0

meimx

(2iy sin2m

h

2+ k sinmh

)+∑|n|≥1

c0nneiny(2ix sin2 n

k

2+ h sinnk

)

+2∑

|m|≥1,|n|≥1

cmn

mn

[eimx+iny sin2 mh+ nk

2− eimx sin2m

h

2− einy sin2 n

k

2

]=

= o(|h|+ |k|), (h, k) → (0, 0) ;

Page 69: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÍÀÌÃÅÉËÉ ÃÀ ÊÏÌÐËÄØÓÖÒÉ ÀÍÀËÉÆÉ 69

2. y∑|m|≥1

cm0

meimx sin2m

h

2− 2

∑|m|≥1,|n|≥1

cmn

mneimxein

y2 sin2m

h

2sinny

2= o(|h|), h→ 0 ;

3. x∑|n|≥1

c0nneiny sin2 n

k

2− 2

∑|m|≥1,|n|≥1

cmn

mneinyeim

x2 sin2 n

k

2sinmx

2= o(|k|), k → 0 .

References[1] O. P. Dzagnidze, On the differentability of functions of two variables and indefinite

double integrals. Proc. A. Razmadze Math. Inst. 106 (1993), 7–48.[2] O. P. Dzagnidze, Some new results on the continuity and differentiability of functions

of several variables. Proc. A. Razmadze Math. Inst. 134 (2004), 1–138.[3] O. Dzagnidze, The smoothness of functions of two variables and double trigonomet-

ric series. Real Analysis Exchange 34(2) (2008/2009), 451–470.[4] O. Dzagnidze, Integration of double Fourier trigonometric series. Proc. A. Raz-

madze Math. Inst. 155 (2011), 110–112.

ÆÏÂÉÄÒÈÉ ÔÉÐÉÓ ×ÖÍØÝÉÏÍÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÏÌÀÒ ÂÉÅÒÀÞÄ

ÁÀÈÖÌÉÓ ÛÏÈÀ ÒÖÓÈÀÅÄËÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉÓ ÌÀÈÄÌÀÔÉÊÉÓ ÃÄÐÀÒÔÀÌÄÍÔÉ,ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ

email: [email protected]

ÍÀÛÒÏÌÛÉ ÂÀÍáÉËÖËÉÀ ÍÀÌÃÅÉËÉ ÝÅËÀÃÉÓ ×ÖÍØÝÉÀÈÀ ÓÀÓÒÖËÏ ÓÉÌÒÀÅËÄÄÁÉ, ÒÏÌËÄ-ÁÉÝ ÜÀÊÄÔÉËÉ ÀÒÉÀÍ ×ÖÍØÝÉÀÈÀ ÓÖÐÄÒÐÏÆÉÝÉÉÓ ÌÉÌÀÒÈ. ÀÌ ×ÖÍØÝÉÀÈÀ ÓÉÌÒÀÅËÄÄÁÆÄÂÀÍáÉËÖËÉÀ ÂÀÒÊÅÄÖËÉ ÔÉÐÉÓ ×ÖÍØÝÉÏÍÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉ, ÒÏÌÄËÈÀ ÀÌÏáÓÍÀÝ ÓÀÓÒÖ-ËÏ ãÂÖ×ÄÁÉÓ ÈÅÉÓÄÁÄÁÉÓ ÂÀÌÏÚÄÍÄÁÉÈ ÃÀÉÚÅÀÍÄÁÀ ßÒ×ÉÅ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÉÓ ÀÌÏáÓÍÀ-ÆÄ. ÃÀÌÔÊÉÝÄÁÖËÉÀ ÈÄÏÒÄÌÀ ÉÌÉÓ ÛÄÓÀáÄÁ, ÈÖ ÀÙÍÉÛÍÖËÉ ÔÉÐÉÓ ×ÖÍØÝÉÏÍÀËÖÒÂÀÍÔÏËÄÁÀÓ ÒÀ ÐÉÒÏÁÄÁÛÉ ÀØÅÓ ÄÒÈÀÃÄÒÈÉ ÀÌÏÍÀáÓÍÉ. ÂÀÍáÉËÖËÉÀ ÀÓÄÅÄ ÆÏÂÉÄÒÈÉÛÄÌÈáÅÄÅÀ, ÒÏÝÀ ÂÀÍÔÏËÄÁÀÓ ÀØÅÓ ÄÒÈÆÄ ÌÄÔÉ ÀÌÏÍÀáÓÍÉÝ.

Page 70: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

70 Real and Complex Analysis September 2–9, Batumi, Georgia

ÐÖÀÓÏÍÉÓ ÂÀßÀÒÌÏÄÁÖËÉ ÉÍÔÄÂÒÀËÉÓ ÓÀÓÀÆÙÅÒÏÌÍÉÛÅÍÄËÏÁÄÁÉÓ ÛÄÓÀáÄÁ

ÄÒÄÊËÄ ãÀ×ÀÒÉÞÄ

ÀÊÀÊÉ ßÄÒÄÈËÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ

ØÖÈÀÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÝÍÏÁÉËÉÀ, ÒÏÌ ÐÖÀÓÏÍÉÓ ÂÀßÀÒÌÏÄÁÖË ÉÍÔÄÂÒÀËÓ ßÄÒÔÉËÛÉ ÂÀÀÜÍÉÀ ÒÀÃÉÀËÖÒÉÓÀÓÀÆÙÅÒÏ ÌÍÉÛÅÍÄËÏÁÀ ÈÖ ÓÉÌÊÅÒÉÅÄÓ ÀÙÍÉÛÍÖË ßÄÒÔÉËÛÉ ÀØÅÓ ÓÉÌÄÔÒÉÖËÉ ßÀÒÌÏ-ÄÁÖËÉ. ÍÀÛÒÏÌÛÉ ÛÄÌÏÔÀÍÉËÉÀ ÞËÉÄÒÉ ÓÉÌÄÔÒÉÖËÉ ßÀÒÌÏÄÁÖËÉÓ ÝÍÄÁÀ ÃÀ ÍÀÜÅÄÍÄÁÉÀÐÖÀÓÏÍÉÓ ÂÀßÀÒÌÏÄÁÖËÉ ÉÍÔÄÂÒÀËÉÓ ÈÀÅÉÓÖ×ÀËÉ ÆÙÅÒÉÓ ÀÒÓÄÁÏÁÀ ÀÙÍÉÛÍÖË ßÄÒ-ÔÉËÛÉ.

On the Metric Kernel and Shell ProblemShadiman Kheladze

Institute of New Technologies, Tbilisi, Georgiaemail: [email protected]

This report gives a survey of the results on finding a metric kernel and a metric shellof sets of integrable functions whose Fourier series converge almost everywhere or in thesense of a metric.

At the Tetrad Representation of the Lorentz GroupIlia Lomidze, Jimsher Javakhishvili

University of Georgia, Physics DepartmentTbilisi, Georgia

email: [email protected]; [email protected]

Considering the Lorentz transformation as linear operator in pseudoeuclidean P n1,n−1

vector space

Λji (β) = δji +

(γ − 1 γβnµ

−γβnν −(γ − 1)nνnµ

)= δji +γβ(τin

j−niτj)+(γ−1)(τiτ

j−ninj), (1)

Page 71: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÍÀÌÃÅÉËÉ ÃÀ ÊÏÌÐËÄØÓÖÒÉ ÀÍÀËÉÆÉ 71

we found its eigenvectors

Xj =1√2(τj − nj), Yj =

1√2(τj + nj), mj, mjn

j = 0, (2)

and transform the operator to its canonical form:

Λji (β) = −m1

im1j −m2im2j + (γ − γβ)X iYj + (γ + γβ)Y iXj. (3)

We use the notations in (1)-(3):

δji is the Kroneker symbol; γ = (1− β2)−1/2, 0 ≤ β < 1;τi, ni,mi ∈ P n

1,n−1, τiτ i = +1; nini = m1im1

i = m2im2i = −1;

τini = τim1

i = τim2i = 0; m1im2

i = 0. nj = (n0, nµ) ∈ P n1,n−1, etc.

The latin indices take their values from set of integers 0, 1, . . . , n−1; the greekones - from set of integers 1, . . . , n− 1.The dummy indices are used to denote corresponding sums.

It is established that the canonical basis gives the light front tetrad representation in P 41,3,

which is widely known [1]. The corresponding metric tensor gets the nondiagonal form.We study a result of two consequently performed Lorentz transformations which is

known to be the Tomas precession and a boost combination. The correct considerationof these effects is subject of discussions up to now [2]. The method developed is ratherclear and mathematically strong, so the results obtained give us possibility clearly derivecorrect formulas.

References[1] Б. А. Дубровин, С. П. Новиков, А. Т.Фоменко, Современная геометрия. М., «Наука»,

1986, 272-285.[2] Г. Б. Малыкин, Прецессия Томаса: корректные и некорректные решения. УФН,

176 (2006), 8, 865-882; В. И. Ритус, О различии подходов Вигнера и Мёллера кописанию прецессии Томаса. УФН, 177 (2007), 1, 105-112.

Page 72: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

72 Real and Complex Analysis September 2–9, Batumi, Georgia

Liouville Theorems for the Systemsof Elliptic Equations

George MakatsariaSaint Andrew The First Called Georgian University

of Patriarchate of GeorgiaTbilisi, Georgia

email: [email protected]

By means of Liouville theorem one of the fundamental principles of complex analysisis illustrated. This gives us the possibility to define concretely the image of given com-plex analytic function on whole complex plane (entire function) with a priori structure(behavior) in the neighborhood of the point at infinity, e.g. power asymptotics.

Further generalization (extension) of indicated important result is the purpose andsubject of researches of many authors. These researches are done according to two direc-tions. The main point of the first direction is to investigate more general functional classes(e.g. general elliptic systems) instead of the classical analytic functions (Cauchy–Riemannclassical systems). The main point of the second one is to find the analogs of correspondingclassical a priori structure and to investigate its influence.

In this talk some well-known results with respect of above mentioned directions ofStone, Carleman and Vekua as well as the results of our recent researches are presented.

ÄÒÈÄÖËÏÅÀÍ ßÒÄÛÉ ãÀÌÄÁÀÃÉ ÂÒÀÃÉÄÍÔÉÓ ÌØÏÍÄäÀÒÌÏÍÉÖËÉ ×ÖÍØÝÉÄÁÉÓ ÓÀÓÀÆÙÅÒÏ ÈÅÉÓÄÁÄÁÉ

ÂÉÂËÀ ÏÍÉÀÍÉ, ÂÏÂÉ ÈÄÈÅÀÞÄ

ÀÊÀÊÉ ßÄÒÄÈËÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ,

ÆÖÓÔ ÃÀ ÓÀÁÖÍÄÁÉÓÌÄÔÚÅÄËÏ ÌÄÝÍÉÄÒÄÁÀÈÀ ×ÀÊÖËÔÄÔÉ, ÌÀÈÄÌÀÔÉÊÉÓ ÃÄÐÀÒÔÀÌÄÍÔÉ

ØÖÈÀÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÅÈØÅÀÈ D ÀÒÉÓ ÄÒÈÄÖËÏÅÀÍÉ ÙÉÀ ßÒÄ C ÊÏÌÐËÄØÓÖÒ ÓÉÁÒÔÚÄÆÄ, áÏËÏ Lp(D)(p>0) ËÄÁÄÂÉÓ ÓÉÅÒÝÄÀ, hp(D)–ÉÈ ÀÙÅÍÉÛÍÏÈ D–ÛÉ äÀÒÌÏÍÉÖËÉ ×ÖÍØÝÉÄÁÉÓ äÀÒÃÉ–ÒÉ-ÓÉÓ ÓÉÅÒÝÄ.

ÓÀÌÀÒÈËÉÀÍÉÀ ÛÄÌÃÄÂÉ ÈÄÏÒÄÌÄÁÉ:

ÈÄÏÒÄÌÀ 1. ÈÖ U : D → R äÀÒÌÏÍÉÖËÉ ×ÖÍØÝÉÀ ÀÊÌÀÚÏ×ÉËÄÁÓ ÐÉÒÏÁÀÓ gradU ∈L1(D), ÌÀÛÉÍ U ∈ h1(D).

Page 73: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÍÀÌÃÅÉËÉ ÃÀ ÊÏÌÐËÄØÓÖÒÉ ÀÍÀËÉÆÉ 73

ÈÄÏÒÄÌÀ 2. ÈÖ U : D → R äÀÒÌÏÍÉÖËÉ ×ÖÍØÝÉÀ ÀÊÌÀÚÏ×ÉËÄÁÓ ÐÉÒÏÁÀÓ gradU ∈L2(D), ÌÀÛÉÍ ÌÀÓ ÄÒÈÄÖËÏÅÀÍ ßÒÄßÉÒÆÄ ÈÉÈØÌÉÓ ÚÅÄËÂÀÍ ÂÀÀÜÍÉÀ ÓÀÓÒÖËÉ ÊÖÈáÖÒÉÆÙÅÀÒÉ f(θ) = lim

z→eiθU(z) ÃÀ ÓÒÖËÃÄÁÀ ÛÄÌÃÄÂÉ ÐÉÒÏÁÄÁÉ:

1) f ∈ L2[0; 2π],2)∫D

|U(z)| dσ < +∞,

3) ÀÒÓÄÁÏÁÓ M > 0 ÌÖÃÌÉÅÉ, ÉÓÄÈÉ, ÒÏÌ[ 2π∫

0

|f(θ + h)− f(θ)|2dθ] 1

2 ≤M |h| 12 .

ÈÄÏÒÄÌÀ 3. ÈÖ U : D → R äÀÒÌÏÍÉÖËÉ ×ÖÍØÝÉÀ ÀÊÌÀÚÏ×ÉËÄÁÓ ÐÉÒÏÁÀÓ∫D

(1− |z|2)(gradU)2dσ < +∞,

ÌÀÛÉÍ U ∈ h2(D).

ÈÄÏÒÄÌÀ 4. ÈÖ U : D → R äÀÒÌÏÍÉÖËÉ ×ÖÍØÝÉÀ ÀÊÌÀÚÏ×ÉËÄÁÓ ÐÉÒÏÁÀÓgradU ∈ L2(D), ÌÀÛÉÍ ÄÒÈÄÖËÏÅÀÍ ßÒÄßÉÒÆÄ ÈÉÈØÌÉÓ ÚÅÄËÂÀÍ, ÂÀÒÃÀ ÛÄÓÀÞËÏÀÍÖËÉ ÔÄÅÀÃÏÁÉÓ ÓÉÌÒÅÀËÉÓÀ, ÂÀÀÜÍÉÀ ÊÖÈáÖÒÉ ÆÙÅÀÒÉ.

ÄÓ ÈÄÏÒÄÌÄÁÉ ßÀÒÌÏÀÃÂÄÍÄÍ ÀÊÀÃÄÌÉÊÏÓ Ó.Ì. ÍÉÊÏËÓÊÉ ÌÉÄÒ ÂÀÓÖËÉ ÓÀÖÊÖÍÉÓ 60–ÉÀÍßËÄÁÛÉ ÌÉÙÄÁÖËÉ ÆÏÂÉÄÒÈÉ ÛÄÃÄÂÉÓ ÂÀÍÆÏÂÀÃÄÁÀÓ.

Ap ÓÉÅÒÝÉÓ ×ÖÍØÝÉÄÁÉÓ ÐÀÒÀÌÄÔÒÖËÉ ßÀÒÌÏÃÂÄÍÉÓÀÃÀ ÍÖËÏÅÀÍÉ ÓÉÌÒÀÅËÄÄÁÉÓ ÛÄÓÀáÄÁ

ÂÉÂËÀ ÏÍÉÀÍÉ, ÉÒÌÀ ßÉÅßÉÅÀÞÄ

ÀÊÀÊÉ ßÄÒÄÈËÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ

ØÖÈÀÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÀÅÙÍÉÛÍÏÈ Ap (p > 0) ÄÒÈÄÖËÏÅÀÍ ∆ = z ∈ C : |z| < 1 ßÒÄÛÉ ÀÍÀËÉÆÖÒ×ÖÍØÝÉÀÈÀ ÁÄÒÂÌÀÍÉÓ ÓÉÅÒÝÄ, áÏËÏ Hp-ÈÉ ÊÉ äÀÒÃÉÓ ÓÉÅÒÝÄ. Z(f)-ÉÈ ÀÙÅÍÉÛÍÏÈ×ÖÍØÝÉÉÓ ÍÖËÄÁÉÓ ÓÉÌÒÀÅËÄ.

ÈÖ f(z) =∞∑n=0

anzn ÃÀ α > 0, ÌÀÛÉÍ ×ÖÍØÝÉÄÁÓ:

D−αf(z) = f[α](z) =∞∑n=0

Γ(1 + n)

Γ(α + 1 + n)anz

n, Dαf(z) = f [α](z) =∞∑n=0

Γ(α+ 1 + n)

Γ(1 + n)anz

n,

ÛÄÓÀÁÀÌÉÓÀà ÄßÏÃÄÁÀÈ f ×ÖÍØÝÉÉÓ αÒÉÂÉÓ ßÉËÀÃÖÒÉ ÉÍÔÄÂÒÀËÉ ÃÀ ßÀÒÌÏÄÁÖËÉ.ÌÔÊÉÝÃÄÁÀ ÛÄÌÃÄÂÉ ÈÄÏÒÄÌÄÁÉ:

Page 74: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

74 Real and Complex Analysis September 2–9, Batumi, Georgia

ÈÄÏÒÄÌÀ 1. ÈÖ f ∈ Ap ÃÀ p ≥ 1, ÌÀÛÉÍ φ(z) =z∫0

f(t)dt ∈ Hq, ∀q ∈ (0, 1) ÃÀ

ÓÀÌÀÒÈËÉÀÍÉÀ ×ÏÒÌÖËÀ f(z) = ddz(BSF ), ÓÀÃÀÝ B ÀÒÉÓ φ-ÉÓ ÛÄÓÀÁÀÌÉÓÉ ÁËÉÀÛÊÉÓ

ÍÀÌÒÀÅËÉ, S ÓÉÍÂÖËÀÒÖËÉ ×ÖÍØÝÉÀÀ, áÏËÏ F ÂÀÒÄ ×ÖÍØÝÉÀÀ (S ÃÀ F ÀÉÂÄÁÀ φ×ÖÍØÝÉÉÓ ÌÄÛÅÄÏÁÉÈ).

ÈÄÏÒÄÌÀ 2. ÈÖ f ∈ Ap (0 < p < 1) ÃÀ α = 1 + [2p−1], ÌÀÛÉÍ f[α] ∈ H2,ÃÀ ÓÀÌÀÒÈËÉÀÍÉÀ ×ÏÒÌÖËÀ f(z) = Dα(BSF ), ÓÀÃÀÝ B, S ÃÀ F ÛÄÓÀÁÀÌÉÓÀÃßÀÒÌÏÀÃÂÄÍÄÍ f[α] ×ÖÍØÝÉÉÓ ÍÖËÄÁÉÓ ÛÄÓÀÁÀÌÉÓ ÁËÉÀÛÊÉÓ ÍÀÌÒÀÅËÓ, ÓÉÍÂÖËÀÒÖË ×ÖÍ-ØÝÉÀÓ ÃÀ ÂÀÒÄ ×ÖÍØÝÉÀÓ.

ÈÄÏÒÄÌÀ 3. ÅÈØÅÀÈ f ∈ Ap ÃÀ p ≥ 1. ÈÖ αn ∈ Z(b) ÃÀ ÌÉÓÉ ãÄÒÀÃÏÁÉÓÌÀÜÅÄÍÄÁÄËÉ ÌÄÔÉÀ ÄÒÈÆÄ, ÌÀÛÉÍ αn ∈ Z(f) ÃÀ ÉÓÉÍÉ ÀÊÌÀÚÏ×ÉËÄÁÄÍ ÁËÉÀÛÊÉÓ ÐÉÒÏÁÀÓ

∞∑n=0

(1− |αn|) < +∞.

ÈÄÏÒÄÌÀ 4. ÅÈØÅÀÈ f ∈ Ap, 0 < p < 1 ÃÀ α = 1 + [2p−1], ÈÖ αn ∈ Z(b) ÃÀÌÉÓÉ ãÄÒÀÃÏÁÉÓ ÌÀÜÅÄÍÄÁÄËÉ ÌÄÔÉÀ α-ÆÄ, ÌÀÛÉÍ αn ∈ Z(f) ÃÀ ÀÓÄÈÉ αn ÒÉÝáÅÄÁÉÀÊÌÀÚÏ×ÉËÄÁÄÍ ÁËÉÀÛÊÉÓ ÐÉÒÏÁÀÓ.

Divergence of Fourier Series with Respect to Systemsof Products of Bases

Giorgi OnianiAkaki Tsereteli State University, Department of Mathematics

Kutaisi, Georgiaemail: [email protected]

It is proved that the feature of function systems being products of quite general typebases is almost everywhere divergence of certain blocks (and consequently, almost ev-erywhere divergence in Prinsgheim sense) of Fourier series in integral classes wider thanL(ln+ L)n−1([0, 1]n).

Page 75: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÍÀÌÃÅÉËÉ ÃÀ ÊÏÌÐËÄØÓÖÒÉ ÀÍÀËÉÆÉ 75

A Description of Behaviors of Some Phase Motionsin R∞ in Terms of Ordinary and Standard

“Lebesgue Measures”Gogi R. Pantsulaia1, Givi P. Giorgadze2

1 I. Vekua Institute of Applied Mathematics, I. Javakhishvili Tbilisi State University,Discrete Mathematics and Theory of Algorithms, Tbilisi, Georgia

2 Georgian Technical University, Department of MathematicsTbilisi, Georgia

email: [email protected]; g−[email protected]

By using a technique developed in [1], we describe a new and essentially differentapproach for a solution of the old functional problem (a) posed by R. D. Carmichaelin [2] (cf. p. 199). More precisely, under some general restrictions, we express in anexplicit form the general solution of the non-homogeneous ordinary differential equationof the infinite order with real constant coefficients. In addition, we construct an invariantmeasure for the corresponding differential equation. By using the structure of the ”Fourierdifferential operator” in R∞, we give a certain approach for a solution of an initial valueproblem for a special class of linear and non-homogeneous partial differential equations(with constant coefficients) of infinite order in two variables. Also, we describe behaviorsof corresponding dynamical systems in R∞ in terms of ordinary and standard ”Lebesguemeasures” [3].

References[1] G. Pantsulaia and G. Giorgadze, On some applications of infinite-dimensional cel-

lular matrices, Georg. Inter. J. Sci. Tech., Nova Science Publishers, 3(1) (2011),107–129.

[2] R. D. Carmichael, Linear differential equations of infinite order, Bull. Amer. Math.Soc. 42 (4) (1936), 193–218.

[3] G. R. Pantsulaia, On ordinary and standard products of infinite family of σ-finitemeasures and some of their applications, Acta Math. Sin. (Engl. Ser.), 27(3)(2011), 477–496.

Page 76: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

76 Real and Complex Analysis September 2–9, Batumi, Georgia

On Cantor’s FunctionalsShakro Tetunashvili

I. Javakhishvili Tbilisi State University, A. Razmadze Mathematical InstituteGeorgian Technical University, Department of Mathematics

Tbilisi, Georgiaemail: [email protected]

We denote the trigonometric system defined on [0, 1] by T 1 = ti(τ)∞i=0, wheret0(τ) ≡ 1, t2i−1(τ) =

√2 cos 2πiτ and t2i(τ) =

√2 sin 2πiτ , i = 1, 2, . . . .

Let consider a trigonometric series∞∑i=0

aiti(τ). (1)

Definition 1. We say that a function f(τ) belongs to the class J(T 1) if there existsa series (1) such that equality

∞∑i=0

aiti(τ) = f(τ) holds true for any τ ∈ [0, 1].It is well-known that there exists such trigonometric series, that their sums are not in-

tegrable functions in the Lebesgue sense. On the other hand, the uniqueness of coefficientsof everywhere convergent trigonometric series follows from Cantor’s theorem.

Definition 2. We say that a sequence of functionals Gi(f(τ))∞i=0 is Cantor’s func-tionals sequence if for any function f ∈ J(T 1) and for every i = 0, 1, 2, . . . the equality

ai = Gi(f(τ))

holds.We consider a double trigonometric series

∞∑i=0

∞∑j=0

aijti(x1)tj(x2). (2)

The convergence of the series (2) will be understood as Pringsheim convergence.Let as consider a finite function F (x1, x2), where (x1, x2) ∈ [0, 1]2. The symbol

G2i (F (x1, x2)) means that Gi acts on a function F (x1, x2), where only x2 ∈ [0, 1] is an

independent variable and x1 is a fixed point of the set [0, 1]. Also, F (x1, x2) ∈ J(T 1) forany x1 ∈ [0, 1] and G1

i (f(x1)) = Gi(f(x1)). We established that it is possible to calculatecoefficients of convergent series (2) by iterated using of Cantor’s functionals. Namely, thefollowing holds true

Theorem. Let∞∑i=0

∞∑j=0

aijti(x1) · tj(x2) = F (x1, x2),

Page 77: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÍÀÌÃÅÉËÉ ÃÀ ÊÏÌÐËÄØÓÖÒÉ ÀÍÀËÉÆÉ 77

when (x1, x2) ∈ [0, 1]2. Then for every (i, j) ≥ (0, 0) an equality

aij = G1i

(G2

j(F (x1, x2)))

holds.

Boundedness of linear operators from generalizedgrand Lebesque spaces to generalized grand Morrey

spacesSalaudin Umarkhadzhiev

Chechen State University, Grozny, Russiaemail: [email protected]

Let 1 < p < ∞, 0 ≤ λ < 1, Ω ⊆ Rn and w be a weight function on Ω. The norm ingeneralized grand Lebesque space Lp)(Ω, wa) is defined as follows

∥f∥Lp)(Ω,wa) := sup0<ε<p−1

ε

1

p− ε∥f∥Lp−ε(Ω,waε),

where a a non-negative function on Ω.The classical weighted Morrey space is denoted by L p,λ(Ω, w) and is endowed by the

norm

∥f∥L p,λ(Ω,w) := supx∈Ω,r>0

|B(x, r)|λ

∫B(x,r)

|f(y)|p−εw(y)dy

) 1

p− ε,

where B(x, r) = y ∈ Rn : |y − x| < r and B(x, r) = B(x, r) ∩ Ω.The generalized grand Morrey space L p),λα(Ω, ρ) consists of functions f which have

the finite norm

∥f∥L p),λα (Ω,wa) := sup0<ε<p−1

ε

1

p− ε∥f∥L p−ε,λ+αε(Ω,waε) <∞,

where α is a real number and a is a non-negative function on Ω.If a ∈ L p,λ+αp(Ω, w), −λ

p≤ α <

1− λ

p, then

L p,λ(Ω, w) ⊂ L p),λα(Ω, wa) ⊂ L p−ε,λ+αε(Ω, waε), 0 < ε < p− 1.

Page 78: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

78 Real and Complex Analysis September 2–9, Batumi, Georgia

Theorem. IfT : Lp(Ω, w) → L p,λ(Ω, w)

is a bounded linear operator and

T : Lp−ε0(Ω, waε0) → L p−ε0,λ+αε0(Ω, waε0)

is bounded for some ε0 ∈ (0, p− 1) and some α ∈ R, then the mapping

T : Lp)(Ω, wa) → L p),λα(Ω, wa)

is bounded for all −λp≤ α <

1− λ

p a ∈ L p,λ+αp(Ω, w).

Page 79: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 79

Topology, Algebra and Number TheoryÔÏÐÏËÏÂÉÀ, ÀËÂÄÁÒÀ ÃÀ ÒÉÝáÅÈÀ ÈÄÏÒÉÀ

Page 80: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
Page 81: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÔÏÐÏËÏÂÉÀ, ÀËÂÄÁÒÀ ÃÀ ÒÉÝáÅÈÀ ÈÄÏÒÉÀ 81

Morava K-Theory Atlas for Finite GroupsMalkhaz Bakuradze

I. Javakhishvili Tbilisi State University, Tbilisi, Georgiaemail: [email protected]

Let finite group G is already known to be good in the sense of Hopkins-Kuhn-Ravenel,that is, K(s)∗(BG) is evenly generated by transferred Euler classes. Then even if the ad-ditive structure is calculated the multiplicative structure is still delicate task. Moreovereven if the multiplicative structure is already determined by representation theory, or Ghas exact Chern approximation in the terminology of Srtrickland, then the presentation ofK(s)∗(BG) in terms of formal griup law and splitting principle is not always convenient.In this project we work out in the explicit form the Morava K-theory rings for variousp-groups, for instance nonabelian 2-groups of order 64 from the Hall-Senior list. Previ-ously it was known by Schuster and Yagita that the Morava K-theory ring K(s)∗(BG)for the groups under consideration [1, 2] is evenly generated and [3, 4] is generated bytransferred Chern classes. We consider various 2-groups and in this way we check if all2-groups of order 64 are good and if their Morava K-theory rings are already determinedby representation theory. For the generating relations we follow certain plan proposedin our earlier work and proved to be sufficient for the modular p-groups and 2 groupsD,SD,QD,Q,G38, . . . , G41 [1, 2, 3, 4].

References[1] M. Bakuradze, Induced representations, transferred Chern classes and Morava rings

K(s)∗(BG): Some calculations, Proceedings of the Steklov Institute of Mathematics275 (2011), No. 1, 160–168.

[2] M. Bakuradze and M. Jibladze, Morava K-theory rings of groups G38, . . . , G41 oforder 32, Russian Math. Surveys 66 (2011), No. 5, 1003–1005.

[3] M. Bakuradze, Morava K-theory rings for the modular groups in Chern classes,K-Theory, 38 (2008), No. 2, 87–94.

[4] M. Bakuradze and V. Vershinin, Morava K-theory rings for the dihedral, semi-dihedral and generalized quaternion groups in Chern Classes, Proc. Amer. Math.Soc. 134 (2006), 3707–3714.

Page 82: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

82 Topology, Algebra and Number Theory September 2–9, Batumi, Georgia

On Homology and Shape Theories of CompactHausdorff Spaces

Vladimer BaladzeShota Rustaveli Batumi State University, Department of Mathematics

Batumi, Georgiaemail: [email protected]

The functors having main properties of classical homology and cohomology, shape andcoshape functors are essential in algebraic topology and Geometric Topology ([3], [4]).Systematically is increasing their number and role in the process of the reach of variousproblems of modern topology.

Let X be a compact Hausdorff space. Consider the set of all finite partitions of X ([2]).For each partitions α = F1, F2, . . . , Fn of X consider open swelling u = U1, U2, . . . , Unof closed covering α =

F1, F2, . . . , Fn

. The set Λ of all pairs λ = (α, u) defines the

Chogoshvili inverse system CH (X) = Xλ, pλλ′ ,Λ, where Xλ is the geometric realizationof the nerve N (uλ) of covering uλ = u and pλλ′ is the geometric realization of simplicialmap πλλ′ : N (uλ′) → N (uλ) induced by the refinement of α′ into α.

Let pλ : X → Xλ, λ ∈ Λ be the canonical map. The morphism p = [pλ] :X → CH (X) is called the Chogoshvili expansion of X. The usual Chogoshvili con-struction yields the functor Ch :Comp → pro − CW which induce the functor Chmaps :Compmaps → pro − CWmaps of mapping categories. Using the Chogoshvili inverse sys-tems instead of resolutions, Čech and Vietoris inverse systems the shape, strong shape andstrong extension shape theories and their (co)homology invariants of compact Hausdorffspaces will be investigated. In particular, our main aims are:

1. Development of shape, strong shape and strong extension shape theories;2. Construction and investigation of extraordinary homology theory of compact Haus-

dorff spaces, which is extension of Boltyanskii–Postnikov–Puppe homology theory of finiteCW-complexes ([1], [6]);

3. Investigation of conjecture: A homology theory Hn, ∂ on the category of compactHausdorff spaces is strong shape invariant if and only if it satisfies the strong excision ax-iom:(SE) for each compact Hausdorff pair (X,A) the quotient map p : (X,A) →

(X/A, ∗

)induces isomorphism (cf. [5]);

4. Definitions of concepts of the shapes and strong shapes of maps;5. Constructions of long exact sequences of maps for homotopy and (co)homology

pro-groups and groups.

References[1] V. G. Boltyanskii and M. M. Postnikov, On the fundamental concepts of alge-

braic topology. Axiomatic definition of cohomology groups. Soviet Math. Dokl. 1

Page 83: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÔÏÐÏËÏÂÉÀ, ÀËÂÄÁÒÀ ÃÀ ÒÉÝáÅÈÀ ÈÄÏÒÉÀ 83

(1960), 900–902.[2] G. C. Chogoshvili, On the homology of topological spaces. Bull. Georgian Acad.

Sci. 1(1) (1940), 337–340.[3] S. Mardešic, Strong Shape and Homology. Springer, 2000.[4] S. Mardešic and J. Segal, Shape theory-The Inverse System Approach. North-

Holland, Amsterdam, 1982.[5] P. Mrozik, Generalized Steenrod homology theories are strong shape invariants.

Homology, Homotopy Appl. 2(12) (2010), 1–23.[6] D. Puppe, Homotopiemengen und ihre induzierten Abbildungen I. Math. Z. 69

(1958), 299–344.

On Normal Homology and Cohomology TheoriesVladimer Baladze, Ruslan Tsinaridze

Shota Rustaveli Batumi State University, Department of MathematicsBatumi, Georgia

email: [email protected]; [email protected]

The normal Čech cohomology and the normal Čech homology theories based on alllocally finite normal open coverings of spaces where constructed by K. Morita [4].

In this paper we define the normal Alexander cohomology groups and the normalVietoris homology groups in terms of direct and inverse limits of the simplicial cohomologyand homology groups of the Vietoris complexes of the space indexed by the set of all locallyfinite normal open coverings, respectively. The main aim of our paper is to discuss, froma naive viewpoint, the Eilenberg-Steenrod axioms [8] for these cohomology and homologytheories.The following theorems are the central results (cf. [1-4], [6], [7]).

Theorem 1. The normal Alexander cohomology theory on the category of topologicalpairs with nonempty, normally embedded subspaces satisfies the relative homomorphismaxiom, the wedge axiom and all the Eilenber–Steenrod axioms.

Theorem 2. The normal Vietoris homology theory on the category of topological pairswith nonempty, normally embedded subspaces satisfies the relative homeomorphism axiom,wedge axiom and all the Eilenberg–Steenrod axioms except for the exactness axiom.

Theorem 3. The normal Čech cohomology groups and the normal Alexander coho-mology groups are isomorphic.

Theorem 4. The normal Čech homology group and the normal Vietoris homologygroups are isomorphic.

These cohomology and homology theories are shape invariant ([3], [5]). Besides, willbe discussed the uniform finite-valued (co)homology versions of constructed theories.

Page 84: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

84 Topology, Algebra and Number Theory September 2–9, Batumi, Georgia

References[1] C. H. Dowker, Homology groups of relations. Ann. Math. 56 (1952), 278–292.

[2] B. Günther, The Vietoris system in strong shape and strong homology. Fund. Math.141 (1992), 147–168.

[3] S. Mardešic and J. Segal, Shape theory – The inverse system approach. North-Holland, Amsterdam, 1982.

[4] K. Morita, Čech cohomology and covering dimension for topological spaces. Fund.Math. 87 (1975), 31-52.

[5] T. Porter, Čech homotopy. J. London Math. Soc. (2) 6 (1973), 429–436.

[6] S. Eilenberg and N. Steenrod, Foundations of algebraic topology. Princeton, 1952.

[7] T. Watanabe. Čech homology, Steenrod homology and strong homology I. Glas.Mat. Ser. III 22(42) (1987), 187–238.

Separable and Compact Soft Topological SpaceSadi Bayramov1, Ciğdem Gunduz (Aras)2

1 Department of Mathematics, Kafkas University, Kars, 36100-Turkey2 Department of Mathematics, Kocaeli University, Kocaeli, 41380-Turkey

email: [email protected]; [email protected]

Molodtsov initiated the concept of soft sets. Shabir and Naz [2] firstly introducedthe noton of soft topological which are defined over an initial universe with a fixed setof parameters and showed that a soft topological space gives a parameterized familyof topological spaces. Also they obtained some interesting results for soft separationaxioms.Theoretical studies of soft topological spaces have also been by some authors.In these studies the concept of soft point is given almost samely. Consequently, someresults of classical topology are not valid in soft topological spaces.In the present study,we introduce the concept of point to the theory of soft set. According to this definition,we investigate some basic notions of soft topological spaces. Later we give Ti− soft spaceand the relationships between them are discussed in detail. The separability in thesestudy is compared by others separability. Finally, we investigate soft compactness, softlocal compactness, soft paracompactness and some of its basic properties.

Page 85: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÔÏÐÏËÏÂÉÀ, ÀËÂÄÁÒÀ ÃÀ ÒÉÝáÅÈÀ ÈÄÏÒÉÀ 85

References[1] D. Molodtsov, Soft set theory- first results, Comput. Math. Appl. 37 (1999), 19–31.[2] M. Shabir and M. Naz, On soft topological spaces, Comput. Math. Appl. 61 (2011),

1786–1799.[3] H. Sabir and A. Bashir, Some properties of soft topological spaces, Comput. Math.

Appl. 62 (2011), 4058–4067.

Partial Continuity of Strong Homology Groupof Continuous Map

Anzor BeridzeShota Rustaveli Batumi State University, Department of Mathematics

Batumi, Georgiaemail: [email protected]

The spectral and the strong homology groups Hn(f ;G) and Hn(f ;G) of continuousmap f : X → Y were defined by V. Baladze [2] and A. Beridze [3] respectively. As it isknown in the classical case for each compact Hausdorf topological space X the spectraland the strong homology groups are connected by following formula:

0 → lim1Hn+1( Xα;G) → Hn(X;G) → Hn( X;G) → 0,

were X is inverse limit of inverse system of polyhedra X= (Xα, pαα′ ,A) [4], [5], [6]. In this

report we will show that for each continuous map f : X → Y of compact metric spacesthere exists the short exact sequence:

0 → lim1Hn+1( fα;G) → Hn(f ;G) → Hn( f ;G) → 0,

were f = limfα [1]. Besides, we will give the example of the map f : X → Y for whichlim1Hn+1( fα;G) = 0 and therefore Hn(f ;G) = Hn( f ;G).

References[1] V. Baladze, Approximation theorem for a map between spaces. Interim Report of

the Prague Topological Symposium, Mathematical Institute of Czechoslovak Academyof Sci., 1 (1987), 16.

Page 86: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

86 Topology, Algebra and Number Theory September 2–9, Batumi, Georgia

[2] V. Baladze, On the spectral (co)homology exact sequences of maps, to appear.[3] A. Beridze, Strong homology group of continuous map, to appear.[4] S. Mardesic, Strong Shape and Homology. Springer Monographs in Mathematics.

Springer-Verlag, Berlin, 2000.[5] L. D. Mdzinarishvili, On homology extensions. Glas. Mat. Ser. III 21(41) (1986),

no. 2, 455–482.[6] N. E. Steenrod, Regular cycles of compact metric spaces. Ann. of Math. (2) 41

(1940), 833–851.

Solution Bitsadze–Samarski Problem forthe Helmholtz Equations with Mathcad

Vakhtang BeridzeShota Rustaveli Batumi State University, Department of Computer Technology

Batumi, Georgiaemail: [email protected]

Let the domain G be a rectangle, G = [0, 1]× [0, 1], Γ- be the boundary of the domainG, 0 < x0 < 1, γ0 = (x0, y) : 0 ≤ y ≤ 1, γ = (1, y) : 0 ≤ y ≤ 1, a, b ∈ Lp (G), p > 2,0 ≤ q ∈ L∞ (G). In the domain G we consider the following Bitsadze-Samarski boundaryvalue problem [1] for Helmholtz Equation:

∂2u

∂x2+∂2u

∂y2− q (x, y)u = b (x, y) , (x, y) ∈ G,

u (x, y) = 0, (x, y) ∈ Γ\γ, (2)

u (1, y) = σu (x0, y) , 0 ≤ y ≤ 1, σ > 0.

For solving the problem (1), we consider the following iterative process [2]

∂2 uk+1

∂x2+∂2uk+1

∂y2− q (x, y)uk+1 = b (x, y) , (x, y) ∈ G,

uk+1 (x, y) = 0, (x, y) ∈ Γ\γ, (3)

uk+1 (1, y) = σuk (x0, y) , 0 ≤ y ≤ 1, σ > 0, k = 0, 1, 2, . . . .

Page 87: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÔÏÐÏËÏÂÉÀ, ÀËÂÄÁÒÀ ÃÀ ÒÉÝáÅÈÀ ÈÄÏÒÉÀ 87

For each k ∈ N, problem (2) is a Dirichlet problem. For the numerical solution ofthe Dirichlet problem built-in functions was used relax(a, b, c, d, e, f, u, rjac) onMathcad [3]. In particular, for the Helmholtz equation coefficients are ai,j = bi,j = ci,j =di,j = 1, ei,j = −4− qi,j;

The iterative process in Mathcad was recorded by means of a software unit. Theresults of numerical solutions are presented graphically.

References[1] A. V. Bitsadze and A. A. Samarski, On some simplest generalizations of elliptic

problems. (Russian) Dokl. AN SSSR 185 (1969), No. 2, 739–740.[2] D. G. Gordeziani, Methods for Solving a Class of Nonlocal Boundary Value Problems.

(Russian) Tbilis. Gos. Univ., Inst. Prikl. Mat., Tbilisi, 1981.[3] D. V. Kiryanov, Mathcad 14. (Russian) St. Petersburg.: BHV-Petersburg, 2007.

Centered Configurations of Open LinkagesGulnara Bibileishvili

Ilia State UniversityTbilisi, Georgia

email: [email protected]

We present results concerned with three classes of configurations in the planar modulispace M(L) of an open polygonal linkage L. Recall that the planar moduli space ofan open linkage with k links is a compact smooth manifold diffeomorphic to a (k − 1)-dimensional torus T k−1. A configuration V of linkage L is called aligned if all vertices lieon a straight line; cyclic if all of its vertices lie on a circle; tangential if all of its links aretangent to one and the same circle. The class of centered configurations is defined as theunion of the three above classes.

The reason for the term “centered” is that with each configuration of the first two typesone can naturally associate a center (circumcenter P (V ) or incenter Q(V ), respectively)while for an aligned configuration one can informally imagine that its center is a point “atinfinity” (in other words, in this context we consider a straight line as a “circle of infiniteradius”). Let C(L) (T (L)) denote the subsets of M(L) consisting of all cyclic (tangential)configurations. Sending a centered configuration to its center gives two natural mappings:P from C(L) to the plane and Q from T (L) to the plane.

Page 88: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

88 Topology, Algebra and Number Theory September 2–9, Batumi, Georgia

A big part of our results is concerned with describing the images of these two mappingsfor various classes of open linkages. In particular, we present a complete solution of thisproblem when the number of links k does not exceed four.

Moreover, we establish that the set QC(L) of all quasicyclic configurations is one-dimensional and give conditions which guarantee that this this set is a smooth submanifoldof the moduli space M(L). We also establish that the set T (L) of tangential configurationsis two-dimensional and give conditions which guarantee that its interior is a smoothsubmanifold of M(L).

Finally, we define two differentiable functions, s (spread) and A (oriented area) onM(L), such that the critical points of s are the aligned configurations, and the criticalpoints of A are certain cyclic configurations satisfying an additional geometric condition.We also give exact lower and upper bounds for the number of critical points on the set ofall open linkages with k ≤ 4 links.

Abelian and Nilpotent Varieties of 2-Step NilpotentPower GroupsTengiz Bokelavadze

Akaki Tsereteli State University, Department of MathematicsKutaisi, Georgia

email: [email protected]

We study the relationship between free groups of a given variety for various rings ofscalars. Varieties of abelian power groups are described. Besides, in the category of powergroups we give various analogues of the notion of an n-step nilpotent group and provetheir coincidence for n = 1; 2. It is shown that the tensor completion of a 2-step nilpotentgroup is also 2-step nilpotent. When defining the varieties of power groups we follow thestandard scheme [3]. It should however be said that the investigated case es- sentiallydiffers from the classical case. Firstly, the notion of a variety is considered depending ona ring of scalars. Secondly, a verbal subgroup is not generated, generally speaking, by themeanings of words defining a variety. However the tensor completion functor relates thevariety layers with respect to various rings of scalars.

References[1] Ph. Hall, The Edmonton Notes on Nilpotent Groups. Queen Mary College Mathe-

matics Notes. Mathematics Department, Queen Mary College, London, 1969.[2] M. Amaglobeli and T. Bokelavadze, Abelian and nilpotent varieties of power groups.

Georgian Math. J. 18 (2011), no. 3, 425–439.

Page 89: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÔÏÐÏËÏÂÉÀ, ÀËÂÄÁÒÀ ÃÀ ÒÉÝáÅÈÀ ÈÄÏÒÉÀ 89

[3] H. Neumann, Varieties of Groups. Springer-Verlag New York, Inc., New York, 1967.

On the Lattice Isomorphisms of 2-NilpotentW -Power Hall Groups and Lie Algebras

Tengiz Bokelavadze1, Maia Chabashvili21 Akaki Tsereteli state University, Department of Mathematics

Kutaisi, Georgia2 I. Javakhishvili Tbilisi State university, Tbilisi Georgia

email: [email protected]

The paper deals with lattice isomorphisms of 2-nilpotent Hall W -Power groups andLie algebras. The main definitions and notation are standard and can be found in [1-2]for W-power groups and in [5] for Lie algebras.

Proposition. A 2-nilpotent W -group X generated by two torsion-free elements x1, x2is a free nilpotent W-group if and only if the W -subgroup < [x1, x2] > is torsion-free.

A free 2-nilpotent W-group generated by two elements is denoted by Ω.In the generalcase not every lattice isomorphism f : L(X) → L(Y )is induced by an isomorphism orimplies an isomorphism. The following theorem is true.

Theorem 1. Let X and Y be torsion-free 2-nilpotent W -power groups over the ringsW1 and W2 , respectively. If X = Ω , then W1

∼= W2 and X ∼= Y .Remark. If we discard the condition X = Ω, then the theorem is true provided that

W1∼= W2 .Theorem 2 (fundamental theorem of projective geometry for W-power groups). Let X

and Y be W -power groups defined over the principal ideal domains W1 and W2, respectively;f : L(X) → L(Y ) be a lattice isomorphism. If X is a proper 2-nilpotent W -power group,then there exist an isomorphism σ : W1 →W2 and a σ-semilinear isomorphism µ : X → Ysuch that µ(A) = f(A) holds for every subgroup A ⊆ L(X).

References[1] Ph. Hall, The Edmonton Notes on Nilpotent Groups. Queen Mary College Mathe-

matics Notes. Mathematics Department, Queen Mary College, London, 1969.

[2] T. Bokelavadze, On some properties of W-power groups. Bull. Georgian Acad. Sci.172 (2005), no. 2, 202–204.

Page 90: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

90 Topology, Algebra and Number Theory September 2–9, Batumi, Georgia

[3] A. A. Lashkhi and T. Z. Bokelavadze, A subgroup lattice and the geometry ofHall’s W -power groups. (Russian) Dokl. Akad. Nauk 429 (2009), no. 6, 731–734;translation in Dokl. Math. 80 (2009), no. 3, 891–894.

[4] M. Amaglobeli and T. Bokelavadze, Abelian and nilpotent varieties of power groups.Georgian Math. J. 18 (2011), no. 3, 425–439.

[5] V. R. Varea, Lie algebras whose maximal subalgebras are modular. Proc. Roy. Soc.Edinburgh Sect. A 94 (1983), no. 1-2, 9–13.

Torsion Tensors of Pure Π-ConnectionsNejmi Cengiz

Faculty of Science, Department of Mathematics,Ataturk University, 25240, Turkey

email: [email protected]

Let S be a torsion tensor field of pure Π−connection ∇. We have following results:

1. The Π−connection ∇ is pure if and only if the torsion tensor of ∇ is pure.

2. The pure torsion tensor field of the Π−connection ∇ is a real model of the hyper-complex torsion tensor of hypercomplex connection

∗∇.

3. A torsion-free Π−connection ∇ is always pure.

4. If∗∇ is a torsion-free Π−connection, then

∗∇ with components

∗Γu

wv =στu

wveσ is atorsion-free connection.

Page 91: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÔÏÐÏËÏÂÉÀ, ÀËÂÄÁÒÀ ÃÀ ÒÉÝáÅÈÀ ÈÄÏÒÉÀ 91

Some Regular elements, Idempotents and RightUnits of Complete Semigroups of Binary Relations

Defined by Semilattices of the Class Right SideIncomplete Nets

Yasha DiasamidzeShota Rustaveli Batumi State University, Department of Mathemathics

Batumi, Georgiaemail: [email protected]

Let X be an arbitrary nonempty set, D be an X−semilattice of unions, i.e. such anonempty set of subsets of the set X that is closed with respect to the set−theoreticoperations of unification of elements from D, f be an arbitrary mapping of the set Xinthe semilattice D. To each such a mapping f we put into correspondence a binary relationαf on the set Xthat satisfies the condition αf =

∪x∈X (x × f (x)). The set of all such

αf (f : X → D) is denoted by BX (D). It is easy to prove that BX (D) is a semigroup withrespect to the operation of multiplication of binary relations, which is called a completesemigroup of binary relations defined by an X−semilattice of unions D.

Definition 1. Let Nm = 0, 1, 2, . . . ,m (m ≥ 1) be some subset of the set of allnatural numbers; s, k, q, p are some natural numbers and 1 ≤ q ≤ s− 1, 1 ≤ p ≤ k − 1.A subsemilattice

Q = Tij ⊆ X|i ∈ Ns, j ∈ Nk \ Ti′j′|q + 1 ≤ i′ ≤ s− 1; p+ 1 ≤ j′ ≤ k − 1

of the complete X−semilattice of unions D is called right side incomplete net whichcontains two subsets Q1 = T00, T10, . . . , Ts0, Q2 = T00, T01, . . . , T0k and satisfies thefollowing conditions:

a) T00 ⊂ T10 ⊂ · · · ⊂ Tq0 and T00 ⊂ T01 ⊂ · · · ⊂ T0k;b) Q1 ∩Q2 = T00 ;c) Trt = Tij if (r, t) = (i, j);d) the elements of the sets Q1 and Q2 are pairwise noncom-parable;e) Tij ∪ Ti′j′ = Trt, if r = max i, i′ and t = max j, j′;Note that the diagram of the semilattice D is shown in Fig. 1.

Fig. 1

In this paper, we investigate such a regular elements αand idempotents of the com-plete semigroup of binary relations BX (D) defined by semilattices of the class right sideincomplete nets, for which V (D,α) = Q. Also we described right units of the semigroup

Page 92: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

92 Topology, Algebra and Number Theory September 2–9, Batumi, Georgia

BX (Q). For the case where X is a finite set we derive formulas be means of which we cancalculate the numbers of regular elements, idempotents and right units of the respectivesemigroup.

References[1] Ya. I. Diasamidze, Complete semigroups of binary relations. J. Math. Sci., Plenum

Publ. Corp., New York, 117 (2003), No. 4, 4271–4319.[2] Ya. Diasamidze and Sh. Makharadze, Complete Semigroups of Binary Relations.

Sputnik +, Moscow, 2010, 1–657 (in Russian).[3] Ya. Diasamidze and Sh. Makharadze, Complete Semigroups of Binary Relations

Defined by X−Semilattices of Unions. J. Math. Sci., Plenum Publ. Corp., NewYork, 166 (2010), No. 5, 615–633.

Cyclic Configurations of Pentagon LinkagesEka Elerdashvili, Mamuka Jibladze, Giorgi Khimshiashvili

Georgian Technical University, Department of MathematicsTbilisi, Georgia

email: [email protected]

We investigate cyclic configurations of planar polygon and relate them to the topol-ogy of moduli space of the corresponding polygonal linkage. The main attention is givento quadrilateral and pentagon linkages. For a nondegenerate quadrilateral linkage, weprove that cyclic configurations are critical points of the signed area function on modulispace and their number is determined by the topology of moduli space. Moreover, cyclicconfigurations are critical points for the function defined as the product of lengths of twodiagonals. For nondegenerate pentagon linkages, it is established that cyclic configura-tions are again critical points of the signed area function but the number of critical pointsis not determined by the topology of moduli space.

Page 93: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÔÏÐÏËÏÂÉÀ, ÀËÂÄÁÒÀ ÃÀ ÒÉÝáÅÈÀ ÈÄÏÒÉÀ 93

Properties of the Certain Centro-SymmetricMatrices Similar To The Unit Matrix

Liana Karalashvili, Ketevan Kutkhashvili, David KalandarishviliUniversity of Georgia

Tbilisi, [email protected]

Among diversity of difference schemes it is worth to emphasize the method withoutsaturation based on the approximating formula of Sh. Mikeladze, which was applied tosolve the boundary value problem for quasi-linear partial differential equations of elliptictype. As a model boundary value problem for the Poisson equation in the rectangle incombination with the method of lines was considered. This approach gave a system ofordinary differential equations along m-1 lines parallel to the x-axis with matrices and

AU ′′ + h−2MU = F,

where M is a centro-symmetric three-diagonal matrix of the second order difference anda centro-symmetric matrix A which behaves as a unit matrix. There are given theoremswhich prove that nonsingular centro-symmetric matrix has m-multiple unit eigenvalue.For this purpose there are constructed transformation matrices, which reduce matrixAm+1 =

[a(m+1)ij

]m+1

1to the lower triangular matrix Lm+1 =

[l(m)ij

]m+1

1with the following

elements

l(m+1)il =

a(i−j+1)i−j+1,1, i ≥ j,

0, i < j, ∀i, j = 1,m+ 1,

and a(m)ij =

i∫i−1

z+1∫z

l(m)j (t)dtdz,

where l(m)j (t) are Lagrange fundamental polynomials.

References[1] L. Qaralashvili, M. Khmiadashvili, Special centro-symmetric matrices in numerical

solutions of elliptic equations, Abstracts, II International Conference of the GeorgianMathematical Union, Batumi, 2011.

Page 94: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

94 Topology, Algebra and Number Theory September 2–9, Batumi, Georgia

On Some Properties of Quasi-Diophantine Setsin Euclidean Spaces

Tamar KasrashviliGeorgian Technical University,

I. Vekua Institute of Applied MathematicsTbilisi, Georgia

email: [email protected]

Let D be a point-set (finite or infinite) in the n-dimensional Euclidean space Rn. Wesay that this D is a quasi-Diophantine set if the distance between any two points from Dis a rational number.

Investigation of the combinatorial structure of various quasi-Diophantine sets in Eu-clidean spaces is a rather attractive and important topic. Properties of various quasi-Diophantine point systems are considered in many works (see, for example, [1]–[3]).

Let X be a finite point-set in the Euclidean plane R2.We shall say that a line segment l is an edge of X if there exist two points from X

which are the end-points of l. This terminology is compatible with graph theory.Take any four points x, y, z and t fromX such that the intersection of the line segments

[x, y] and [z, t] is a singleton. The family of all singletons obtained in this manner willbe denoted by I(X). Note that if X contains at least three points, then X ⊂ I(X). Weshall say that a line segment l is admissible for X if its end-points belong to I(X) andthere exists an edge of X containing l.

Theorem 1. Let X be a finite quasi-Diophantine set in the space Rn. Then the lengthof each admissible line segment for X is a rational number.

In particular, if the points of a quasi-Diophantine set a, b, c, d are the verticesof quadrangular in Rn and [a, b]

∩[c, d] = x, then the set a, b, c, d, x is a quasi-

Diophantine set, too.Theorem 2. In the Euclidean plane R2 there exists a pentagon X which is a quasi-

Diophantine set but for which I(X) is not quasi-Diophantine.

References[1] W. Sierpinski, Sur les ensembles de points aux distances rationnelles situés sur un

cercle, Elem. Math. 14 (1959), 25–27.[2] A. Muller, Auf einem Kreis Liegende punktmengen ganzzahliger Entfernungen,

Elem. Math. 8 (1953), 37–38.[3] A. Kirtadze and T. Kasrashvili, On some properties of certain discrete points sets

in the Euclidean spaces, Proc. A. Razmadze Math. Inst. 159 (2012).

Page 95: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÔÏÐÏËÏÂÉÀ, ÀËÂÄÁÒÀ ÃÀ ÒÉÝáÅÈÀ ÈÄÏÒÉÀ 95

On One Hypothesis of MoskalenkoTariel Kemoklidze

Akaki Tsereteli state University, Department of MathematicsKutaisi, Georgia

Email: [email protected]

In theory of abelian groups and modules it is important to establish the condition,when founded endomorphism (automorphism) which maps one of the elements of groupto other one. One of this condition is fully transitivity (transitivity). A. I. Moskalenkotook the hypothesis into consideration according which cotorsion hull of separable p-groupA will be fully transitive only two cases: when A direct sum of ciclyc p-groups or torsioncomplete group. In the talk given some thesis are in faviur of this hypothesis.

ÐÉÒÅÄËÉ ÂÅÀÒÉÓ ÝÉÊËÖÒÀà ÛÄÖÙËÄÁÖËÉ ÓÉÓÔÄÌÉÓÛÄÓÀáÄÁ ÄËÉ×ÓÖÒÉ ÓÉÅÒÝÉÓ ÓÔÒÖØÔÖÒÉÓ ÌØÏÍÄÏÈáÂÀÍÆÏÌÉËÄÁÉÀÍ ÀÒÀÓÀÊÖÈÒÉÅ äÉÐÄÒÓÉÁÒÔÚÄÛÉ

ÒÀÑÃÄÍ áÀÁÖÒÞÀÍÉÀ

ÀÊÀÊÉ ßÄÒÄÈËÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ

ØÖÈÀÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÂÀÍÉáÉËÄÁÀ V4 ÆÄÃÀÐÉÒÉ ÂÀ×ÀÒÈÏÄÁÖË ÄÅÊËÉÃÖÒ E5 = E5∪E∗4 ÓÉÅÒÝÄÛÉ, ÓÀÃÀÝ E∗4ÀÒÉÓ ÄËÉ×ÓÖÒÉ ÏÈáÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÓÔÒÖØÔÖÒÉÓ ÌØÏÍÄ ÀÒÀÓÀÊÖÈÒÉÅÉ äÉÐÄÒÓÉÁÒÔÚÄ.

V4 ÆÄÃÀÐÉÒÓ ÌÉÅÖÄÒÈÏà ÌÏÞÒÀÅÉ ÒÄÐÄÒÉ R = A,Ai, A5 (i = 1, 2, 3, 4), A ∈ V4,Ai ∈ T4(A) (T4(A) ÌáÄÁÉ 4-ÓÉÁÒÔÚÄÀ V4 ÆÄÃÀÐÉÒÉÓÀÃÌÉ A ßÄÒÔÉËÛÉ), A5 ∈ N1(A)(N1(A) ÍÏÒÌÀËÉÀ V4-ÓÀÃÌÉ ÉÌÀÅÄ A ßÄÒÔÉËÛÉ), Ai, A5 ⊂ E∗4 .

ÅÈØÅÀÈ V4 ÆÄÃÀÐÉÒÆÄ ÌÏÝÄÌÖËÉÀ ÓÉÌÒÖÃÉÓ ßÉÒÈÀ (ω1, ω2, ω3, ω4) ÁÀÃÄ, áÏËÏR ÒÄÐÄÒÉ ÀÂÄÁÖËÉÀ ÀÌ ÁÀÃÉÓ ßÉÒÄÁÉÓÀÃÌÉ ÌáÄÁÄÁÆÄ. ÒÏÝÀ A ßÄÒÔÉËÉ ÀÙßÄÒÓV4 ÆÄÃÀÐÉÒÓ, ÌÀÛÉÍ, ÆÏÂÀà ÛÄÌÈáÅÄÅÀÛÉ, Ai,A5 ßÄÒÔÉËÄÁÉ E∗4 ÓÉÅÒÝÄÛÉ ÀÙßÄÒÄÍÏÈáÂÀÍÆÏÌÉËÄÁÉÀÍ (Ai), (A5) ÆÄÃÀÐÉÒÄÁÓ, ÒÏÌËÄÁÆÄÝ ÁÖÍÄÁÒÉÅÀà ÀÙÌÏÝÄÍÃÄÁÉÀÍ(ω1, ω2, ω3, ω4) ÁÒÔÚÄËÉ ÁÀÃÄÄÁÉ.

ÝÍÏÁÉËÉÀ, ÒÏÌ ÁÒÔÚÄË ÁÀÃÄÓ ÄßÏÃÄÁÀ ÐÉÒÅÄËÉ ÂÅÀÒÉÓ ÝÉÊËÖÒÀà ÛÄÖÙËÄÁÖËÉÓÉÓÔÄÌÀ, ÈÖ ÛÄÉÞËÄÁÀ ÁÀÃÉÓ ßÉÒÄÁÉÓ ÉÓÄÈÉ ÂÀÃÀÍÏÌÒÅÀ, ÒÏÌ ÀÌ ßÉÒÄÁÉÓÀÃÌÉ ÌáÄÁÄÁÆÄÀÒÓÄÁÖËÉ ×ÓÄÅÃÏ×ÏÊÖÓÄÁÉ ÂÀáÃÄÁÉÀÍ ÜÅÄÖËÄÁÒÉÅÉ ×ÏÊÖÓÄÁÉ.

ÃÀÌÔÊÉÝÄÁÖËÉÀ ÈÄÏÒÄÌÀ, ÒÏÌ A5 ßÄÒÔÉËÉÈ ÀÙßÄÒÉËÉ ÁÒÔÚÄËÉ ÁÀÃÄ (ω1, ω2, ω3, ω4)ßÀÒÌÏÀÃÂÄÍÓ ÐÉÒÅÄËÉ ÂÅÀÒÉÓ ÝÉÊËÖÒÀà ÛÄÖÙËÄÁÖË ÓÉÓÔÄÌÀÓ ÌÀÛÉÍ ÃÀ ÌáÏËÏà ÌÀÛÉÍ,

Page 96: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

96 Topology, Algebra and Number Theory September 2–9, Batumi, Georgia

ÒÏÝÀ V4 ÆÄÃÀÐÉÒÉ ÀÒÉÓ ÏÈáÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÛÄÖÙËÄÁÖËÉ ÓÉÓÔÄÌÀ ÓÉÌÒÖÃÉÓ ßÉÒÈÀ(ω1, ω2, ω3, ω4) ÁÀÃÉÓ ÌÉÌÀÒÈ.

ÀÙÓÀÍÉÛÍÀÅÉÀ, ÒÏÌ ÀÌ ÛÄÌÈáÅÄÅÀÛÉ (A5) ÆÄÃÀÐÉÒÉÝ áÃÄÁÀ ÏÈÂÀÍÆÏÌÉËÄÁÉÀÍÉ ÛÄÖÙËÄ-ÁÖËÉ ÓÉÓÔÄÌÀ (ω1, ω2, ω3, ω4) ÁÒÔÚÄËÉ ÁÀÃÉÓ ÌÉÌÀÒÈ.

Morse Functions on Shapes of LinkagesGiorgi Khimshiashvili

Ilia State UniversityTbilisi, Georgia

email: [email protected]

We discuss several Morse functions on the so-called planar shape space of a polygonallinkage. Recall that a k-bar linkage L(a) is defined by a k-tuple of positive numbers acalled its gauge. We will consider both open and closed linkages defined by a given gauge.A planar realization (configuration) V of an open k-bar linkage is an ordered (k+1)-tupleof points vi, i = 1, . . . , k + 1 in the Euclidean plane such that, for each i = 1, . . . , k, thedistance between vi and vi+1 is equal to ai. A planar realization of a closed k-bar linkageis defined similarly but additionally requires that vk+1 = v1. The shape space S(L) of(open or closed) k-bar linkage L is defined as the factor of the set of planar realizations ofL by the diagonal action of the group G of orientation preserving isometries of the plane.

Any G-invariant function on the set of realizations gives a function on the shape space.For any (open or closed) k-bar linkage the function A on S(L) is defined as the orientedarea of the polygon determined by vertices vi. For an open linkage, we define the functions (spread) on S(L) as the distance between the first and the last vertices. For a closedlinkage, we define the function E (electrostatic potential) on an open dense subset X(L)consisting of realizations V with pairwise distinct vertices, as the sum of inverses of thelengths of all diagonals of V .

For a generic gauge a, the shape space is a compact differentiable manifold so one canspeak of differentiable functions on it and each of these three functions is differentiable.Hence one can consider their critical points which will be in the focus of our discussion.

The following results obtained in our recent papers will be presented. We will describethe critical points of A and s in the shape space, show that they are generically non-degenerate in the sense of Morse theory, and give explicit formulas for Morse indices. Forthese two functions, we will also give exact lower and upper bounds for the number ofcritical points on the shape spaces of k-bar linkages.

The electrostatic potential E is also a Morse function on S(L(a)) for a generic gaugea. For k ≤ 5, we will give lower and upper bounds for the number of its critical pointsand discuss their connection with the so-called Maxwell conjecture on point charges.

Page 97: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÔÏÐÏËÏÂÉÀ, ÀËÂÄÁÒÀ ÃÀ ÒÉÝáÅÈÀ ÈÄÏÒÉÀ 97

Continuous Hu CohomologyLeonard Mdzinarishvili

Georgian Technical University, Department of MathematicsTbilisi, Georgia

email: [email protected]

In [1],[2], S.-T. Hu defined the continuous cohomology H∗c (X,G) of an arbitrary spaceX, where G is R (R is the real numbers field) or finite-dimensional vector group withEuclidean topology. He proved that if X is a compact Hausdorff space, there is anisomorphism H∗c (X,G) ≈ H

∗(X,G), where H

∗ is the Alexander-Spanier cohomology([1, Theorem 5.1], [2, Theorem 6.6]). In [3], the partially continuous Alexander-Spaniercohomology h∗(X,G) with coefficients is defined in an arbitrary topological abelian groupG and it is shown that if X is a compact Hausdorff or a metric space and G is anabsolute retract (AR), then there is an isomorphism H∗c (X,G) ≈ h

∗(X,G) ([3, Corollary

8.4]). In [4], it is proved that if X is a paracompact space and G = R, then there is anisomorphism h

∗(X,R) ≈ H

∗(X,R). Therefore if X is a compact Hausdorff or a metric

space then there is an isomorphism H∗c (X,R) ≈ H∗(X,R). Our aim is to define the

continuous Hu cohomology with coefficients in an arbitrary topological abelian group andto find the connection between this cohomology and the Alexander-Spanier cohomologyfor different groups of coefficients.

References[1] Sze-Tsen Hu, Cohomology rings of compact connected groups and their homoge-

neous spaces, Ann. of Math. 55 (1952), No. 2, 391–419.[2] Sze-Tsen Hu, Cohomology theory in topological groups, Michigan Math. J. 1 (1952),

11–59.[3] L. Mdzinarishvili, Partially continuous Alexander-Spanier cohomology theory, Pre-

print-Reihe, Topologie und Nichtcommutative Geometrie, Universität Heidelberg,Mathematisches Institut. Heft No 130, 1996.

[4] L. Mdzinarishvili and L. Chechelashvili, On connections of partially continuous sin-gular cohomologies and Alexander-Spanier cohomologies, J. Math. Sci., New York,152 (2008), No. 3, 404–435.

Page 98: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

98 Topology, Algebra and Number Theory September 2–9, Batumi, Georgia

Hypercombined NumbersGivi Mikiashvili

Niko Muskhelishvili Institute of Computational Mathematics of the Georgian TechnicalUniversity, Tbilisi, Georgia

email: [email protected]

It is known that the set of complex numbers admits an extension to the set of quaternions,in which the multiplication is not commutative.

We consider a way how the set of complex numbers can be extended for the multipli-cation to be commutative.

Let i, α, β be the imaginary units and define the multiplication rule as follows:

i · i = −1, α · α = 1, β · β = −1, i · α = α · i = β, i · β = β · i = −α, α · β = β · α = i .

An expression of the formz = a+ bi+ cα + dβ,

where a, b, c, d are real numbers, will be called a hypercombined number .For hypercombined numbers z1 = a1 + b1i+ c1α+ d1β, z2 = a2 + b2i+ c2α+ d2β, we

have:z1 + z2 = (a1 + a2) + (b1 + b2)i+ (c1 + c2)α+ (d1 + d2)β,and

z1 · z2 = (a1a2 − b1b2 + c1c2 − d1d2) + (a1b2 + b1a2 + c1d2 + d1c2)i+

(a1c2 − b1d2 + c1a2 − d1b2)α + (a1d2 + b1c2 + c1b2 + d1a2)β .

The multiplication of hypercombined numbers is commutative, associative distributive withrespect to the addition.

For a hypercombined number z = a+ bi+ cα + dβ:the pseudomodulus ω(z) is defined by the equality:

ω(z) = a4 + b4 + c4 + c4 + 2a2b2 + 2a2d2 + 2b2c2 + 2c2d2 − 2a2c2 − 2b2d2 − 8abcd ;

ω(z) = 0 if and only if a = c, b = d or a = −c, b = −d;If ω(z) = 0, then z has the inverse z−1, namely,

z−1 =a3 + ab2 − ac2 + ad2 − 2bcd

ω(z)+bd2 − ba2 − b3 − bc2 + 2acd

ω(z)i+

cb2 − ca2 + c3 + cd2 − 2abd

ω(z)α +

db2 − da2 − dc2 − d3 + 2abc

ω(z)β .

Page 99: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÔÏÐÏËÏÂÉÀ, ÀËÂÄÁÒÀ ÃÀ ÒÉÝáÅÈÀ ÈÄÏÒÉÀ 99

A note about Givi Mikiashvili and Hypercombined numbersVaja Tarieladze

Niko Muskhelishvili Institute of Computational Mathematics of the Georgian TechnicalUniversity, Tbilisi, Georgia

email: [email protected]

Givi Mikishvili (born in 1937) has graduated from Georgian Polytechnic Institute. Heworked at the Institute of Cybernetics and then at the Niko Muskhelishvili Institute ofComputational Mathematics. After retirement he has lost the ability to see and hear; hecan speak and now it is possible to communicate with him only by writing with his fingeron a smooth table. During my being in National Polytechnic Institute of Mexico (May,2012) I showed Mikiashvili’s manuscript to Professors Maria Elena Luna and MichaelShapiro, who are experts in Quaternion Analysis. They explained to me that a similarnumber system (bicomplex numbers) was found by Italian mathematician Corrado Segre(1863–1924) in 1892 [1] and then rediscovered in 1934 by Soviet mathematician V.V.Lyush [2]. The reader may look the references [3,4] for these and related number systems.

References[1] C. Segre, La Reppresentazioni Reali delle Forme Complesse a Gli Enti Iperalgebrici,

Math. Ann., 40 (1992), 413–467.[2] V. V. Lyush, A Theory of Universal Numbers and its Applications to Solution of

Algebraic Equations, (in Russian) Proceedings of all-Union Mathematical Congress,Leningrad, June, 24–30, 1934, v.II, Section talks, 49–56. Editorial of Academy ofSciences of USSR, Leningrad-Moscow, 1936.1

[3] I. L. Kantor, A. S. Solodovnikov, Hypercomplex numbers. An Elementary Introduc-tion to Algebra. Translated from Russian by A. Sheinitzer, Springer-Verlag, 1989.2

[4] D. Rochon, M. Shapiro, On algebraic properties of bicomplex and hyperbolic num-bers, Ann. Univ. Oradea, fasc. math., 2004, 71–110.

1I am grateful to Professor Michael Shapiro (Mexico City, Mexico) for sending to me a copy of [2].2I am grateful to Professor Omar Dzagnidze (Tbilisi, Georgia) for showing to me (Russian original of)

[3].

Page 100: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

100 Topology, Algebra and Number Theory September 2–9, Batumi, Georgia

Homological Methods in Category of Fuzzy SoftModules

Taha Yasin Ozturk, Ahmet KuçukDepartment of Mathematics, Ataturk University, Erzurum, 25000-Turkey

email: [email protected]; [email protected]

Many practical problems in economics, engineering, environment, social science, medi-cal science etc. cannot be dealt with by classical methods, because classical methods haveinherent difficulties. The reason for these difficulties may be due to the inadequacy ofthe theories of parameterization tools. Molodtsov initiated the concept of soft set theoryas a new mathematical tool for dealing with uncertainties. Different algebraic structerswere given in soft sets.We are forming a category by defining chain complexes and theirmorphisims in the category of fuzzy soft modules that was defined by Ç. Gunduz and S.Bayramov. We are investigating the properties of fuzzy soft chain complexes by givinghomology modules of fuzzy soft chain complexes. By defining the concept of fuzzy softhomotopia we prove that fuzzy soft homology modules are invariant according to thisrelation. Generally, the sequence of homology modules of fuzzy soft modules is not exact.We prove the exactness of the sequences of homology modules of fuzzy soft modules undersome conditions. By the use of this exact sequence there are some researches about thederivative functors of some functors.

References[1] Ç. Gunduz and S. Bayramov, Fuzzy Soft modules, Int. Math. Forum 6 (2011), No.

11, 517–527.[2] R. Ameri and M. M. Zahedi, Fuzzy chain complex and fuzzy homotopy, Fuzzy Sets

and Systems 112 (2000), 287–297.[3] T. Y. Ozturk and S. Bayramov, Category of chain complexes of soft modules, Int.

Math. Forum 7 (2012), No. 20, 981–992.

Page 101: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÔÏÐÏËÏÂÉÀ, ÀËÂÄÁÒÀ ÃÀ ÒÉÝáÅÈÀ ÈÄÏÒÉÀ 101

On Primitive Elements of Free Lie p-AlgebrasGiorgi Rakviashvili

Ilia State UniversityTbilisi, Georgia

email: [email protected]

Let Lp⟨X⟩ be a free Lie p-algebra with a set X of free generators. We say that elementsy1, y2, . . . , ym are primitive, if there exists a set Y of free generators of Lp⟨X⟩ such thaty1, y2, . . . , ym ⊆ Y .

In this talk a following theorem is presented:Theorem. Let I ⊆ Lp⟨X⟩ be a nonzero ideal such that Lp⟨X⟩/I is isomorphic to a free

Lie p-algebra Lp⟨Y ⟩ of a rank m. Then there exist primitive elements q1, q2, . . . , qn−m ⊆I which generate the ideal I.

We hope that this theorem is helpful to prove that a ∈ Lp⟨X⟩ is primitive if and onlyif Lp⟨X⟩/(a) is free, where (a) is a ideal of Lp⟨X⟩ generated by a.

On Hypercomplex StructuresArif A. Salimov

Faculty of Science, Department of Mathematics,Atatürk University, 25240, Turkey

email: [email protected]

A hypercomplex algebra is a real associative algebra with unit. A poly-affinor struc-ture on a manifold is a family of endomorphism fields (i.e. tensor fields of type (1,1)).If poly-affinor structure is an algebra (under the natural operations) isomorphic to ahypercomplex algebra, the poly-affinor structure is called hypercomplex. In this paperwe define some tensor operators which are applied to pure tensor fields.. Using theseoperators we study some properties of integrable commutative hypercomplex structuresendowed with a holomorphic torsion-free pure connection whose curvature tensor satisfythe purity condition with respect to the covariantly constant structure affinors.

Page 102: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

102 Topology, Algebra and Number Theory September 2–9, Batumi, Georgia

ÓÖÓÔÀà ËÏÊÀËÖÒÀà ÊÏÌÐÀØÔÖÒÉ ÔÏÐÏËÏÂÉÖÒÉÀÁÄËÉÓ ãÂÖ×ÄÁÉÓÀÈÅÉÓ ÌÀáÀÓÉÀÈÄÁÄËÈÀ ÈÄÏÒÉÉÓ

ÛÄÓÀáÄÁÏÍÉÓÄ ÓÖÒÌÀÍÉÞÄ

ÁÀÈÖÌÉÓ ÛÏÈÀ ÒÖÓÈÀÅÄËÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ, ÌÀÈÄÌÀÔÉÊÉÓ ÃÄÐÀÒÔÀÌÄÍÔÉ,ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]

ÜÅÄÍÓ ÌÉÄÒ ÍÀÛÒÏÌÛÉ [1] ÛÄÌÏÔÀÍÉËÉ ÉÚÏ ÓÖÓÔÀà ËÏÊÀËÖÒÀà ÊÏÌÐÀØÔÖÒÉ ÔÏÐÏ-ËÏÂÉÖÒÉ ÀÁÄËÉÓ ãÂÖ×ÉÓ ÝÍÄÁÀ, ÒÏÌÄËÉÝ ßÀÒÌÏÀÃÂÄÍÓ Í. ÅÉËÄÍÊÉÍÉÓ ÌÉÄÒ [2]ÂÀÍÌÀÒÔÄÁÖËÉ ÃÀ ÛÄÓßÀÅËÉËÉ Ä.ß. ÁÏàÊÏÅÀÍÉ ÔÏÐÏËÏÂÉÖÒÉ ÀÁÄËÉÓ ãÂÖ×ÉÓ ÝÍÄÁÉÓÂÀÍÆÏÂÀÃÏÄÁÀÓ.

ÂÀÍÌÀÒÔÄÁÀ 1. ÔÏÐÏËÏÂÉÖÒ ÀÁÄËÖÒ G ãÂÖ×Ó ÄßÏÃÄÁÀ ËÏÊÀËÖÒÀà ÓÖÓÔÀÃßÒ×ÉÅÀà ÊÏÌÐÀØÔÖÒÉ, ÈÖ ÉÂÉ ÛÄÉÝÀÅÓ ÓÖÓÔÀà ßÒ×ÉÅÀà ÊÏÌÐÀØÔÖÒ ÙÉÀ H ØÅÄãÂÖ×Ó.

ÂÀÍÌÀÒÔÄÁÀ 2. ÔÏÐÏËÏÂÉÖÒ ÀÁÄËÖÒ G ãÂÖ×Ó ÄßÏÃÄÁÀ ÓÖÓÔÀà ËÏÊÀËÖÒÀÃÊÏÌÐÀØÔÖÒÉ, ÈÖ ÓÒÖËÃÄÁÀ ÛÄÌÃÄÂÉ ÐÉÒÏÁÄÁÉ:

1) G ãÂÖ×ÉÓ ÍÖËÉÓ ÊÏÌÐÏÍÄÍÔÀ G0 ßÀÒÌÏÀÃÂÄÍÓ ËÏÊÀËÖÒÀà ÊÏÌÐÀØÔÖÒ ÔÏÐÏËÏ-ÂÉÖÒ ÀÁÄËÖÒ ãÂÖ×Ó;

2) ×ÀØÔÏÒ ãÂÖ×É G/G0 ËÏÊÀËÖÒÀà ÓÖÓÔÀà ßÒ×ÉÅÀà ÊÏÌÐÀØÔÖÒÉÀ;ÉÓÄÅÄ, ÒÏÂÏÒÝ ËÏÊÀËÖÒÀà ÊÏÌÐÀØÔÖÒ ÔÏÐÏËÏÂÉÖÒ ÀÁÄËÖÒ ãÂÖ×ÈÀ ÊËÀÓÛÉ

ÂÀÌÏÉÚÏ×À ÃÉÓÊÒÄÔÖËÉ ÃÀ ÊÏÌÐÀØÔÖÒÉ ãÂÖ×ÄÁÉÓ ÊËÀÓÄÁÉ, ÀÓÄÅÄ, ÓÖÓÔÀà ËÏÊÀËÖÒÀÃÊÏÌÐÀØÔÖÒ ãÂÖ×ÈÀ ÊËÀÓÛÉ ÂÀÌÏÉÚÏ×À ÊÅÀÆÉÃÉÓÊÒÄÔÖËÉ ÃÀ ÊÅÀÆÉÊÏÌÐÀØÔÖÒÉ ãÂÖ×ÄÁÉÓÊËÀÓÄÁÉ ÃÀ ÉÓÉÍÉ Ë. ÐÏÍÔÒÉÀÂÉÍÉÓ ÌÀáÀÓÉÀÈÄÁÄËÈÀ ÈÄÏÒÉÉÓ ÌÉáÄÃÅÉÈ, ÄÒÈÌÀÍÄÈÉÓÏÒÀÃÖËÄÁÉÀ.

ÀÃÂÉËÉ ÀØÅÓ ÛÄÌÃÄ ÈÄÏÒÄÌÄÁÓ:ÈÄÏÒÄÌÀ 1. ÅÈØÅÀÈ, ÔÏÐÏËÏÂÉÖÒÉ ÀÁÄËÖÒÉ G ãÂÖ×É ÊÅÀÆÉÃÉÓÊÒÄÔÖËÉÀ (ÊÅÀÆÉÊÏÌ-

ÐÀØÔÖÒÉÀ), ÌÀÛÉÍ ÌÉÓÉ ÌÀáÀÓÉÀÈÄÁÄËÈÀ G ãÂÖ×É ÊÅÀÆÉÊÏÌÐÀØÔÖÒÉÀ (ÊÅÀÆÉÃÉÓÊÒÄÔÖËÉÀ).ÈÄÏÒÄÌÀ 2. ÅÈØÅÀÈ, ÓÖÓÔÀà ËÏÊÀËÖÒÀà ÊÏÌÐÀØÔÖÒÉ ÀÁÄËÖÒÉ G ãÂÖ×É ÉÓÄÈÉÀ,

ÒÏÌ ÌÉÓÉ ÍÖËÉÓ ÊÏÌÐÏÍÄÍÔÀ ÊÏÌÐÀØÔÖÒÉÀ, ÃÀ G ÌÉÓÉ ÌÀáÀÓÉÀÈÄÁÄËÈÀ ãÂÖ×ÉÀ.ÌÔÊÉÝÃÄÁÀ, ÒÏÌ ÀÓÄÅÄ G ãÂÖ×É ßÀÒÌÏÀÃÂÄÍÓ ÓÖÓÔÀà ËÏÊÀËÖÒÀà ÊÏÌÐÀØÔÖÒ ãÂÖ×Ó,ÊÏÌÐÀØÔÖÒÉ ÍÖËÉÓ ÊÏÌÐÏÍÄÍÔÉÈ.

ËÉÔÄÒÀÔÖÒÀ

[1] Ï. ÓÖÒÌÀÍÉÞÄ, ÊÏÌÐÀØÔÖÒÉ ÃÀ ÓÖÓÔÀà ËÏÊÀËÖÒÀà ÊÏÌÐÀØÔÖÒÉ ÔÏÐÏËÏÂÉÖÒÉãÂÖ×ÄÁÉÓ ÆÏÂÉÄÒÈ ÈÅÉÓÄÁÀÈÀ ÛÄÓÀáÄÁ, ÈÁÉËÉÓÉÓ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÉÓ ÛÒÏÌÄÁÉ,Ô. LXX, 1982, 108–115;

[2] Í. ÅÉËÄÍÊÉÍÉ, ÁÏàÊÏÅÀÍÉ ÔÏÐÏËÏÂÉÖÒÉ ÀÁÄËÉÓ ãÂÖ×ÄÁÉ ÃÀ ÌÀÈÉ ÌÀáÀÓÉÀÈÄÁÄËÈÀÈÄÏÒÉÀ. ÌÀÈÄÌÀÔÉÊÉÓ ÛÒÏÌÄÁÉÓ ÊÒÄÁÖËÉ, Ô.24, 66, #2, 1949, 189-–226.

Page 103: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÔÏÐÏËÏÂÉÀ, ÀËÂÄÁÒÀ ÃÀ ÒÉÝáÅÈÀ ÈÄÏÒÉÀ 103

[3] Ï. ÓÖÒÌÀÍÉÞÄ, ÓÖÓÔÀà ßÒ×ÉÅÀà ÊÏÌÐÀØÔÖÒÉ ÔÏÐÏËÏÂÉÖÒÉ ÀÁÄËÉÓ ãÂÖ×ÄÁÉ.ÈÁÉËÉÓÉÓ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÉÓ ÛÒÏÌÄÁÉ. Ô.46, 1975, 77–108.

On a Special Class of Topological SpacesIvane Tsereteli

St. Andrew Georgian University,Department of Physical-Mathematical and Computer Sciences,

Tbilisi, Georgiaemail: [email protected]

Term “space” means topological space. All spaces below are at least Hausdorff. N (re-spectively, Rn (n > 0), Sn (n ≥ 0)) denotes the space of all positive integers (respectively,the n-dimensional Euclidean space, the standard n-dimensional sphere). TSM denotes theclass of all separable and metrizable spaces. |X| is the cardinality of a set (space) X. cstands for the cardinality of continuum. dim is the classical covering dimension function.A topological space X is called strongly rigid, if the only continuous maps of X into itselfare constant maps and the identity (see e.g., [1]). The class of all strongly rigid spaces isdenoted by Tsr. A subspace Y of a space X is proper provided there is a point x0 ∈ Xwith Y ⊂ X \ x0.

We say (see [2]) that a nonempty topological space X is topologically finite, iff for anyproper subspace Y ⊂ X there is no homeomorphism from X onto Y . Otherwise we saythat the (nonempty) space X is topologically infinite. The class of all topologically finitespaces is denoted by Ttf . Obviously, any finite space is topologically finite.

Proposition. For every integer n ≥ 0, Sn is topologically finite.Proposition. Let n ∈ N. Every subspace A ⊂ Rn with dimA = n is topologically

infinite.Proposition. Every countable (infinite) space X ∈ TSM is topologically infinite.Proposition. Every infinite 0-dimensional compact space with countable base is topo-

logically infinite.Proposition. Let (Xα)α∈I be a family of spaces at least one of which is topologically

infinite. Then the product∏α∈A

Xα is topologically infinite.

Proposition. The topological sum of any two connected and topologically finite spacesis topologically finite.

Theorem. For every n ∈ 0, 1, 2, . . . ∪∞, there exists a separable metrizable space

Xn with Xn ∈ Ttf \ Tsr, dimXn = n and |Xn| = c.

Page 104: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

104 Topology, Algebra and Number Theory September 2–9, Batumi, Georgia

References[1] J. J. Charatonik, On generalized rigidity, Houston J. Math. 26 (2000), no. 4,

639–660.[2] I. Tsereteli, Topological finiteness, Bernstein sets, and topological rigidity, Topology

Appl. 159 (2012), no. 6, 1645–1653.

On the Strong Uniform Homology TheoryLela Turmanidze

Shota Rustavely Batumi State University, Department of MathematicsBatumi, Georgia

email: [email protected]

In my report the strong homology theory on the category uniform spaces and uniformmaps will be constructed (cf. [2]) The Eilenberg-Steenrod axioms will be checked andproved that the uniform strong homology groups are invariants of Bauer uniform strongshape theory ([1], [3], [4]).

References[1] F. W. Bauer, A shape theory with singular homotopy. Pacific J. Math. 64 (1976),

25–65.[2] T. Miyata, Uniform shape theory. Glas. Mat. Ser. III 29(49) (1994), no. 1,

123–168.[3] L Turmanidze, On uniform strong shape theory. Bull. Georgian Acad. Sci. 167

(2003), no. 1, 19–23.[4] L. Turmanidze, Some Relations between bauer’s topological and uniform Strong

Shape Theories, Georgian MU Conference, 2011.

Page 105: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÔÏÐÏËÏÂÉÀ, ÀËÂÄÁÒÀ ÃÀ ÒÉÝáÅÈÀ ÈÄÏÒÉÀ 105

On the Number of Representations of PositiveIntegers by Some Diagonal Quadratic Forms

of 16 LevelTeimuraz Vepkhvadze

I. Javakhishvili Tbilisi state University, Faculty of Exact and Natural SciencesTbilisi, Georgia

email: [email protected]

By means of the theory of modular forms explicit (exact) formulas are derived for thenumber of representations of positive integers by the forms

f (k) =k∑

j=1

x2j + 49∑

j=k+1

x2j (k = 1, 2, . . . , 8).

The cases (k = 1, 2, 7) were considered by Lomadze.

References[1] G. Lomadze, On the number of representations of positive integers by the quadratic

form x21 + · · ·+ x28 + 4x29. Georgian Math. J. 8 (2001), no. 1, 111–127.[2] G. Lomadze, On the number of representations of positive integers by the quadratic

forms x21+x22+4(x23+ · · ·+x29) and x21+4(x22+ · · ·+x29). Proc. A. Razmadze Math.Inst. 127 (2001), 113–132.

[3] T. Vepkhvadze, Generalized theta-functions with characteristics and cusp formscorresponding to quadratic forms in nine variables. Bull. Georgian Acad. Sci., 5(2011), no. 2.

Page 106: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

106 Topology, Algebra and Number Theory September 2–9, Batumi, Georgia

Inverse Limits in the Category of Fuzzy Soft ModulesMurat Ibrahim Yazar1, Ciğdem Gunduz (Aras)2, Sadi Bayramov1

1 Department of Mathematics, Kafkas University, Kars, 36100-Turkey2 Department of Mathematics, Kocaeli University, Kocaeli, 41380-Turkeyemail: [email protected]; [email protected]; [email protected]

Many practical problems in economics, engineering, environment, social science, medi-cal science etc. cannot be dealt with by classical methods, because classical methods haveinherent difficulties. Probability theory, fuzzy sets, rough sets, and other mathematicaltools have their inherent difficulties. The reason for these difficulties may be due to theinadequacy of the theories of parameterization tools.

Molodtsov [4] initiated the concept of soft set theory as a new mathematical tool fordealing with uncertainties.

It is known that the inverse limit is not only an important concept in the categorytheory, but also plays an important role in topology, algebra, homology theory etc. Tothe date, inverse system and its limit was defined in the different categories. Furthermore,some of its properties was investigated. Gunduz and Bayramov [2] defined inverse (direct)system of fuzzy modules and their limits and obtained their properties. Gunduz andBayramov defined fuzzy soft modules [3]. Here, we investigate the properties of the functorlim←

by defining homology modules of fuzzy chain complexes of fuzzy soft modules. Weprove that the inverse system limit of exact sequence of fuzzy soft modules is exact.

2010 Mathematics Subject Classification. 18A72, 18G05, 18G10.Keywords. Soft set, soft module, Fuzzy soft module, inverse system, inverse limit.

References[1] R. Ameri and M. M. Zahedi, Fuzzy chain complex and fuzzy homotopy, Fuzzy sets

and systems 112 (2000), 287–297.[2] C. Gunduz (Aras) and S. Bayramov, Inverse and direct system in category of fuzzy

modules, Fuzzy Sets, Rough Sets and Multivalued Operations and Applications 2(2011), No. 1, 11–25.

[3] C. Gunduz (Aras) and S. Bayramov, Fuzzy soft modules, International Mathemat-ical Forum 6 (2011), No. 11, 517–527.

[4] D. Molodtsov, Soft set theory- first results, Comput. Math. Appl. 37 (1999), 19–31.

Page 107: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÔÏÐÏËÏÂÉÀ, ÀËÂÄÁÒÀ ÃÀ ÒÉÝáÅÈÀ ÈÄÏÒÉÀ 107

r-Orthomorphisms and Their Arens TriadjointsRuṣen Yilmaz1 and Yilmaz Altun2

1 Recep Tayyip Erdogan University, Faculty of Arts and Science,Department of Mathematics, Rize / Turkey

2 Artvin Coruh University, Faculty of Arts and Science, Department of Mathematics,Artvin / Turkey

email: [email protected]; [email protected]

We introduce a new concept of r-orthomorphism and prove that, for vector lattices Aand B, the Arens triadjoint T ∗∗∗ : (A′)′n × (A′)′n → (B′)′n of a positive r-orthomorphismT : A× A → B is a positive r-orthomorphism. This also generalizes results on the orderbidual of r-algebras in [R. Yilmaz, The bidual of r-algebras, Ukrainian MathematicalJournal, Vol. 63 (2011) no. 5, 833-837].

ÓÉÁÒÔÚÉÓ ÛÄ×ÀÓÄÁÉÓ ÛÄÓÀáÄÁ ÌÀáËÏÁÄËÉ ÀÒÄÈÀÊÅÀÆÉÊÏÍ×ÏÒÌÖË ÀÓÀáÅÄÁÛÉ

ËÄËÀ ÆÉÅÆÉÅÀÞÄ

ÀÊÀÊÉ ßÄÒÄÈËÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ

ØÖÈÀÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÏÒÀÃÁÌÖËÉ ÌÀáËÏÁÄËÉ ÀÒÄÄÁÉÓ ÓÉÀáËÏÅÉÓ ÌÉáÄÃÅÉÈ ÛÄ×ÀÓÄÁÖËÉÀ ÀÙÍÉÛÍÖËÉÀÒÄÄÁÉÓ ÊÀÍÏÍÉÊÖÒ ÀÒÄÄÁÆÄ ÊÅÀÆÉÊÏÍ×ÏÒÌÖËÀà ÂÀÃÀÌÓÀáÀÅÉ ×ÖÍØÝÉÉÓ ÓÀÓÀÆÙÅÒÏ ÌÍÉÛ-ÅÍÄËÏÁÄÁÉÓ ÓáÅÀÏÁÀ.

Page 108: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

108 Topology, Algebra and Number Theory September 2–9, Batumi, Georgia

Page 109: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 109

Differential Equations andMathematical Physics

ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉ ÃÀÌÀÈÄÌÀÔÉÊÖÒÉ ×ÉÆÉÊÀ

Page 110: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
Page 111: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉ . . . 111

On a Two Point Boundary Value Problemfor the System of the Linear Impulsive Equations

with SingularitiesMalkhaz Ashordia

A. Razmadze Mathematical Institute;Sukhumi State University, Faculty of Mathematics and Computer Sciences

Tbilisi, Georgiaemail: [email protected]

The Fredholm property for the impulsive problem with singularities

dxidt

= Pi(t) · x3−i + qi(t) (i = 1, 2), (1)

xi(τk+)− xi(τk−) = Gi(k) · x3−i(τk) + hi(k) (i = 1, 2; k = 1, 2, . . . ); (2)x1(a) = c1, x1(b) = c2, (3)

are considered, where Pi ∈ Lloc(]a, b[ ;Rni×n3−i), qi ∈ Lloc(]a, b[ ;R

ni), Gi(k) ∈ Rni×n3−i

and hi(k) ∈ Rni (i=1,2), ci ∈ Rni (i = 1, 2), n1 and n2 are natural numbers, and−∞ < a < τ1 < τ2 < · · · < b <∞ and lim

k→∞τk = b.

It is known that if Pi, qi (i = 1, 2) are integrable and∞∑k=1

(∥Gi(k)∥ + ∥hi(k)∥

)<

∞(i = 1, 2), then for defined conditions the problem (1),(2);(3) is Fredholm, i.e., it isuniquely solvable if and only if the corresponding homogeneous system dxi/dt = Pi(t) ·x3−i, xi(τk+) − xi(τk−) = Gi(k) · x3−i(τk) (i = 1, 2; k = 1, 2, . . . ) has only the trivialsolution under the conditions x1(a) = 0, x1(b) = 0.

We are interested in the case when the system (1),(2) has singularities at the points

a and b, i.e.,b∫a

∥Pi(t)∥dt +∞∑k=1

∥Gi(k)∥ = ∞ andb∫a

∥qj(t)∥dt +∞∑k=1

∥hj(k)∥ = ∞ for some

i, j ∈ 1, 2.Theorem. Let

b∫a

(∥P1(t)∥+ ∥q1(t)∥

)dt+

∞∑k=1

(∥G1(k)∥+ ∥h1(k)∥

)<∞,

∥F0(|P1|, |G1|; |P2|, |G2|)(a+, b−)∥+ ∥F0(|P1|, |G1|; |q2|, |h2|)(a+, b−)∥ <∞,

where F0 is some operator. Then problem (1),(2);(3) is Fredholm.Analogous results are established for the boundary condition x1(a) = c1, x2(b) = c2.

Page 112: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

112 Differential Equations . . . September 2–9, Batumi, Georgia

Acknowledgement. This work is supported by the Shota Rustaveli National ScienceFoundation (Grant No. FR/182/5-101/11).

On Conditions for the Well-Posedness of NonlocalBoundary Value Problems for Systems of a Class

of Linear Generalized Ordinary DifferentialEquations with Singularities

Malkhaz Ashordia, Nestan KekeliaA. Razmadze Mathematical Institute;

Sukhumi State University, Faculty of Mathematics and Computer SciencesTbilisi, Georgia

email: [email protected], [email protected]

The well-posedness question is considered for the singular generalized BVP

dxi(t)=xidai+1(t), dxn(t)=n∑

i=1

hi(t)xi(t)dbi(t) + df(t); ℓi(x1, . . . , xn)=0 (i=1, n), (1)

where ai, bi and fi have bounded variations on [a, b], hi is a function measurable withrespect to the measures µ(v(bi)), and ℓi is a linear bounded functional for i ∈ 1, . . . , n.

Under a solution of the BVP (1) we understand a vector-function satisfying the cor-responding integral equalities with the integral in the Lebesgue–Stieltjes sense.

Along with the problem (1) consider the perturbed BVP

dxi(t)=xidai+1(t), dxn(t)=n∑

i=1

hi(t)xi(t)dbi(t) + df(t); ℓi(x1, . . . , xn)=0 (i=1, n). (2)

Definition 1. The problem (1) is said to be well-posed if for an arbitrary f andc = (ci)

ni=1 the problem (2) is uniquely solvable and there exists a positive constant r,

independent of f and c, such that ∥x− x∥s ≤ r · (∥c∥+ ∥f − f∥s), where x = (xi)ni=1 and

x = (xi)ni=1, respectively, are solutions of the problems (1) and (2).

It is known that if the coefficients of the system (1) are integrable on [a, b], then theunique solvability of the problem (1), with some conditions, ensures its well-posedness.

We consider the case, when the system (1) is singular, i.e., some of the coefficientshi (i = 1, . . . , n), in general, are not integrable on [a, b] with respect to the correspondingmeasures, having singularities at some boundary or interior points of the interval [a, b].

Page 113: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉ . . . 113

Definition 2. The problem (1) is said to be conditionally well-posed if the assump-tions in Definition 1 are valid only for ci = 0 (i = 1, . . . , n).

In the singular case, there are established the conditions guaranteeing the the condi-tional well-posedness of the problem (1),(2), and the conditions for which this problem isconditionally well-posed but not well-posed.

Acknowledgement. Supported by the Sh. Rustaveli Nat. Science Found. (GrantNo. FR/182/5-101/11).

On One Nonlinear Characteristic ProblemRusudan Bitsadze

Georgian Technical UniversityFaculty of Informatics and Systems Management

Tbilisi, Georgiaemail: [email protected]

Suppose we are given two arcs γ1, γ2 drawn from the common point (a, f(a)) and letthem be given in the explicit form

γ1 : y = f1(x), b ≤ x ≤ a, b < 0, a > 0

andγ2 : y = f2(x), d ≤ x ≤ a, d < 0, f1(a) = f2(a), f ′1(a) = −f ′2(a).

Assume that the functions f1 and f2 are three times continuously differentiable and thearc γ1 monotonically ascends, whereas the arc γ2, vice versa, monotonically descends.

The characteristic problem. Find a regular hyperbolic solution u(x, y) of equation

u4yuxx − uyy = cx−2uu4y, c = const,

and, simultaneously with it, a domain of its extension when the curves γ1 and γ2 are thearcs of the characteristics, and the values

u(a, f1(a)) = ϑ, ux(a, f1(a)) = δ

are given at the common point.For any 0 < ε < q ≤ 1

2, there are regular hyperbolic solutions of the characteristic

problem represented in the explicit form in two non-intersection domains – in the char-acteristic triangle between the curves γ1 and γ2 and straight line x = ε, as well as in the

Page 114: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

114 Differential Equations . . . September 2–9, Batumi, Georgia

domain D from the opposite side of degeneration line, where D is bounded by arcs ofcharacteristic curves.

Boundary Value Problems for theHelmholtz Equation in Arbitrary 2D-Sectors

Roland Duduchava, David Kapanadze, George Tepnadze, Medea TsaavaAndrea Razmadze Mathematical Institute,

I. Javakhishvili Tbilisi State UniversityTbilisi, Georgia

email: [email protected]

We investigate different boundary value problems (with the Dirichlet, Neumann, mixedor impedance conditions) for the Helmholtz equation in 2D domains with angular pointson the boundary. We reduce the problem to the boundary pseudodifferential equationwhich is transformed equivalently to a system of singular integral equations with fixedsingularities in the kernels. Further we apply the results of [2, 3, 4] to derive the uniquesolvability criterion for the BVPs under consideration.

Next we consider the case when two domains with the common part of the boundaryhave different frequency parameter and derive results for BVPs similar to those mentionedabove.

The interest to such problems was revived recently by very modern and very importantinvestigations of Surface plasmon polaritons (SPPs), which is believed to play a crucialrole in the development and miniaturisation of photonic information processors. Somenew meta-materials, created artificially, have negative electric permittivity and magneticpermeability and composites of such materials with dielectrics, require investigation ofscattering of electromagnetic waves in domains with angular points on the boundary (see[1]). Moreover, even more difficulty is associated with the sign-changing of the leadingorder coefficients of the equation, which leads to the loss of ellipticity of the BVP.

The approach not only permits investigation of the solvability and equivalent reductionto a simple classical Fredholm integral equation on the boundary, but also allows to findprecise and detailed asymptotic of a solution in the vicinity of singular points on theboundary.

References[1] L. Chesnel and P. Ciarlet, Jr., Compact imbeddings in electromagnetism with in-

terfaces between classical materials and meta-materials, SIAM J. Math. Anal. 43(2011), 2150–2169.

Page 115: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉ . . . 115

[2] R. Duduchava, Integral Equations with Fixed Singularities. Teubner, Leipzig, 1979.[3] R. Duduchava, On general singular integral operators of the plane theory of elastic-

ity, Rendiconti Sem. Mat. Univers. e Politecn. Torino 42 (1984), 15–41.[4] R. Duduchava, General singular integral equations and basic theorems of the plane

theory of elasticity, Trudy Tbiliss. Mat. Inst. Razmadze 82 (1986), 45–89 (inRussian).

Dependence on Initial Conditions of a Solutionto a Mixed Problem with Periodic Boundary

Condition for a Class of Quasi-LinearEuler–Bernoulli Equation

Huseyin Halilov, Bahadir Ö. Güler, Kadir KutluRecep Tayyip Erdoǧan Üniversitesi Fen-Edebiyat Fakültesi Matematik Bölümü

53050 Rize, Turkeyemail: [email protected]; [email protected]; [email protected]

In this work, the dependency on initial conditions of the weak generalized solutionwhich existence and uniqueness are proved by us [5] of a mixed problem with periodicboundary condition for the following quasi-linear Euler–Bernoulli equation is studied

∂2u

∂t2− εb4

∂4u

∂t2∂x2+ a2

∂4u

∂x4= f(ε, t, x, u), (t, x) ∈ D0 < t ≤ T, 0 < x < π,

u(0, x, ε) = φ(x, ε), ut(0, x, ε) = ψ(x, ε) (0 ≤ x ≤ π, 0 ≤ ε ≤ ε0),

u(t, 0, ε) = u(t, π, ε), ux(t, 0, ε) = ux(t, π, ε),

ux2(t, 0, ε) = ux2(t, π, ε), ux3(t, 0, ε) = ux3(t, π, ε) (0 ≤ t ≤ T, 0 ≤ ε ≤ ε0).

References[1] H. I. Chandrov, On Mixed Problem for a Class of Quasilinear Hyperbolic Equation.

Tbilisi, 1970.[2] E. A. Conzalez-Velasco, Fourier Analysis and Boundary value Problems. Academic

Press, NYC, 1995.[3] V. A. Il’in, On solvability of mixed problems for hyperbolic and parabolic equations,

Uspehi Mat. Nauk 15 (1960), No. 2 (92) 97–154 (in Russian); translated as RussianMath. Surveys 15 (1960), No. 2, 85–142.

Page 116: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

116 Differential Equations . . . September 2–9, Batumi, Georgia

[4] H. Halilov, On the mixed problem for quasilinear pseudoparabolic equation. Appl.Anal. 75 (2000), No. 1-2, 61–71.

[5] H. Halilov, K. Kutlu, B. Ö. Güler, Solution of a mixed problem with periodic bound-ary condition for a quasi-linear Euler-Bernoulli equation. Hacet. J. Math. Stat. 39(2010), No. 3, 417–428.

On a Darboux Type Multidimensional Problemfor One Class of Second Order Nonlinear

Hyperbolic SystemsSergo Kharibegashvili1, Bidzina Midodashvili2

1 Georgian Technical University, Department of Mathematics2 I. Javakhishvili Tbilisi State University, Department of Computer Science

Tbilisi, Georgiaemail: [email protected]; [email protected]

Consider a semilinear hyperbolic system of the form

∂2ui∂t2

−n∑

j=1

∂2ui∂x2j

+ fi(u1, u2, . . . , uN) = Fi(x, t), i = 1, . . . , N, (1)

where f = (f1, . . . , fN), F = (F1, . . . , FN) are given vector functions while u = (u1, . . . , uN)is an unknown real vector-function, n ≥ 2, N ≥ 2.

Denote by D : t > |x|, xn > 0 the half of a light cone of the future bounded by thepart S0 : ∂D ∩ xn = 0 of the hyperplane xn = 0 and the half S : t = |x|, xn ≥ 0 ofthe characteristic conoid C : t = |x| of the system (1). Let DT := (x, t) ∈ D : t < T,S0T := (x, t) ∈ S0 : t ≤ T, ST := (x, t) ∈ S : t ≤ T, T > 0.

For the system of equations (1) consider a problem on finding a solution u(x, t) of thissystem by the boundary conditions

∂u

∂xn

∣∣∣∣∣S0T

= 0, u∣∣ST

= g, (2)

where g = (g1, . . . , gN) is a given vector-function on ST . In the case when T = ∞ we haveD∞ = D, S0

∞ = S0 and S∞ = S.

Page 117: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉ . . . 117

The problem (1), (2) represents a multidimensional version of the Darboux first prob-lem for the system (1), when one part of the problem data support represents a charac-teristic manifold, while another part is a time type manifold.

We give certain conditions for the nonlinear vector-function f = f(u) from (1), whichfulfilment ensures local or global solvability of the problem (1), (2), while in some casesthe problem (1), (2) will not have a global solution, though it will be locally solvable.

Some Nonlinear Variant of the Darboux TypeNonlocal ProblemMarine Menteshashvili

Niko Muskhelishvili Institute of Computational Mathematics of the Georgian TechnicalUniversity, Tbilisi, Georgia

email: [email protected]

We consider the questions related to the modified Darboux problem for a second orderquasilinear equation with real characteristics

uxx + (1 + ux + uy) · uxy + (ux + uy) · uyy = 0. (1)

Equation (1) judging by its characteristic roots λ1 = 1, λ2 = ux + uy, is hyperbolic.However the case is not excluded, where the values of these roots coincide and thereforeequation (1) itself parabolically degenerates. This happens for ux+uy = 1. Therefore theclass of hyperbolic solutions of the considered equation should be defined by the conditionux + uy − 1 = 0.

If we know the value of the sum of the first order derivatives ux, uy of the unknownsolution u(x, y):

ux(x0, y0) + uy(x0, y0) = α(x0, y0), (x0, y0) ∈ A,

where A is a set of points, then the characteristics of the family of the root λ2 arerepresentable as y−y0 = α(x0, y0)(x−x0). If α(x0, y0) = 1, (x0, y0) ∈ A, then the equationparabolically degenerates all over the straight line y − y0 = x− x0. If the condition

ux(x, 0) + uy(x, 0) = α(x), x ∈ [0, a] (2)

is fulfilled, the characteristics of the family of the root λ2 have the form y = α(x0)(x −x0), x0 ∈ [0, a], and they intersect with the straight line y = x at the point (µ(x0), µ(x0)),where

µ(x) =xα(x)

α(x)− 1.

Page 118: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

118 Differential Equations . . . September 2–9, Batumi, Georgia

The Darboux type nonlocal problem. Find a regular solution u(x, y) of equation(1) and, along with it, the domain of its propagation if it satisfies condition (2) and thenonlocal condition

u(x, 0) + β(x)u(µ(x), µ(x)) = φ(x), x ∈ [0, a], (3)

where α, β, φ ∈ C2[0, a] are given functions.Theorem. If conditions

|2α(x)− 1| > 1, −∞ < α′(x) < 0, x ∈ [0, a], β(0) = 1,

are fulfilled, then in the characteristic triangle there exists a unique regular solution of thenonlocal problem (1)–(3).

Acoustic Scattering by Inhomogeneous AnisotropicObstacle

David NatroshviliGeorgian Technical University, Department of Mathematics

Tbilisi, Georgiaemail: [email protected]

We consider the time-harmonic acoustic wave scattering by a bounded layered aniso-tropic inhomogeneity embedded in an unbounded or bounded anisotropic homogeneousmedium. The material parameters and the refractive index are assumed to be discon-tinuous across the interfaces between the inhomogeneous interior and homogeneous ex-terior regions. The corresponding mathematical problems are formulated as boundary-transmission problems for a second order elliptic partial differential equation of Helmholtztype with discontinuous variable coefficients. We show that the boundary-transmissionproblems with the help of localized potentials can be reformulated as a localized boundary-domain integral equations (LBDIE) systems and prove that the corresponding localizedboundary-domain integral operators (LBDIO) are invertible.

First we establish the equivalence between the original boundary-transmission prob-lems and the corresponding LBDIE systems which plays a crucial role in our analysis.Afterwards, we establish that the localized boundary domain integral operators obtainedbelong to the Boutet de Monvel algebra of pseudo-differential operators. And finally,applying the Vishik-Eskin theory based on the factorization method (the Wiener-Hopfmethod) we investigate Fredholm properties of the LBDIOs and prove their invertibil-ity in appropriate function spaces. This invertibility property implies then existence

Page 119: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉ . . . 119

and uniqueness results for the LBDIE systems and the corresponding original boundary-transmission problems.

Beside a pure mathematical interest these results can be applied in constructing andanalysis of numerical methods for solution of the LBDIE systems and thus the scatteringproblems in inhomogeneous anisotropic media.

This is a joint work with Otar Chkadua (Tbilisi State University, Georgia) and SergeyMikhailov (Brunel University of London, UK).

Acknowledgements: This research was supported by grant No. EP/H020497/1:“Mathematical analysis of Localized Boundary-Domain Integral Equations for Variable-Coefficient Boundary Value Problems” from the EPSRC, UK.

The Weighted Cauchy Problem for NonlinearSingular Differential Equations with Deviating

ArgumentsZaza Sokhadze

Akaki Tsereteli State University, Department of MathematicsKutaisi, Georgia

email: [email protected]

The sufficient conditions of well-posedness of the weighted Cauchy problem for non-linear differential equations with deviating arguments are established.

Acknowledgement. The present work is supported by Shota Rustaveli NationalFoundation (Project GNSF/ ST09-175-3-301).

Page 120: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

120 Differential Equations . . . September 2–9, Batumi, Georgia

General Constitutive Relation for ViscoelasticityContaining Fractional Derivatives

Teimuraz SurguladzeAkaki Tsereteli State University, Department of Mathematics

Kutaisi, Georgiaemail: [email protected]

As shown by Begley 1979 under uniaxial stress state the general constitutive relationcontaining fractional derivatives for a homogeneous viscoelastic material is given by(

1 +K∑k=1

akDβk

)(1 +

P∑p=1

bkDβp

)σ(t)

=

(1+

P∑p=1

bkDβp

)(λ0+

J∑j=1

λjDλj

)ε(t) + 2

(1+

K∑k=1

akDβk

)(µ0+

L∑l=1

µlDαl

)ε(t), (1)

where σ(t) is stress and ε(t) is strain.Theorem: Suppose that the constitutive relation for homogeneous isotropic materials

in the case of uniaxial dressed up state is given in the form of (1), then the relation (1) isequivalent to

ε = Π ∗ dσ,

where the function Π can be represented as a finite sum of functions of Mittag–Lefflertype.

Page 121: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 121

Probability and Statistics,Financial Mathematics

ÀËÁÀÈÏÁÉÓ ÈÄÏÒÉÀ ÃÀ ÓÔÀÔÉÓÔÉÊÀ,×ÉÍÀÍÓÖÒÉ ÌÀÈÄÌÀÔÉÊÀ

Page 122: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
Page 123: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÀËÁÀÈÏÁÉÓ ÈÄÏÒÉÀ ÃÀ ÓÔÀÔÉÓÔÉÊÀ ... 123

ÃÀÆÙÅÄÅÉÓ ÌÀáÀÓÉÀÈÄÁËÄÁÉÓ ÂÀÌÏÈÅËÉÓ ÌÀÒÊÏÅÉÓÌÏÃÄËÉ

ÌÀËáÀÆ ÊÖÝÉÀ, ÌÄÃÄÀ àÀÍÉÀ

ÓÏáÖÌÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ,ÌÀÈÄÌÀÔÉÊÉÓÀ ÃÀ ÊÏÌÐÉÖÔÄÒÖË ÌÄÝÍÉÄÒÄÁÀÈÀ ×ÀÊÖËÔÄÔÉ

ÈÁÉËÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]

ÃÀÌÆÙÅÄÅÉ ÃÀ ÃÀÆÙÅÄÖËÄÁÉ ÖÌÄÔÄÓ ÛÄÌÈáÅÄÅÀÛÉ ØÌÍÉÓ ÃÀÐÉÒÉÓÐÉÒÄÁÖËÈÀ ÓÉÓÔÄÌÀÓ,ÀÒÓÄÁÏÁÉÓÀÈÅÉÓ ÃÀÐÉÒÉÓÐÉÒÄÁÀ ÖÍÃÀ ÂÀÃÀßÚÃÄÓ ÖÒÈÉÄÒÈ ÊÏÌÐÒÏÌÉÓÄÁÉÓ ÓÀ×ÖÞÅÄËÆÄ.ÊÄÒÞÏÃ, ÐÒÄÌÉÄÁÉ ÄÒÈÉ ÌáÒÉÅ ÃÀ ÓÀÃÀÆÙÅÄÅÏ ÆÀÒÀËÉÓ ÀÍÀÆÙÀÖÒÄÁÀ, ÌÄÏÒÄ ÌáÒÉÅ,ÂÀÒÊÅÄÖËÉ ÀÆÒÉÈ, ÖÍÃÀ ÉÚÏÓ ÌÉÍÉÌÀËÖÒÉ. ÅÉÍÀÉÃÀÍ ÃÀÆÙÅÄÖËÈÀ ÓÀÃÀÆÙÅÄÅÏ ÌÏÈáÏÅ-ÍÄÁÉ ØÌÍÉÓ ÌÏÈáÏÅÍÀÈÀ ÍÀÊÀÃÓ (ßÀÒÌÏÀÃÂÄÍÓ ×ÉÍÀÍÓÖÒ ÍÀÊÀÃÓ), áÏËÏ ÃÀÌÆÙÅÄÅÉÅÀËÃÄÁÖËÉÀ ÀÀÍÀÆÙÀÖÒÏÓ ÆÀÒÀËÉ (ÌÏÄÌÓÀáÖÒÏÓ) ÃÀ ÀÌÉÔÏÌ ÀÓÄÈÉ ÀÌÏÝÀÍÄÁÉÓ ÂÀÃÀÓÀ-àÒÄËÀà ÛÄÓÀÞËÄÁÄËÉÀ ÌÀÓÏÁÒÉÅÉ ÌÏÌÓÀáÖÒÄÁÉÓ ÌÏÃÄËÄÁÉÓ ÂÀÌÏÚÄÍÄÁÀ. ÀÓÄÈÉ ÌÏÃÄ-ËÄÁÉ ÓÀÊÌÀÏà ÊÀÒÂÀà ÀÒÉÓ ÂÀÍÅÉÈÀÒÄÁÖËÉ ÃÀ ÀÓÀáÖËÉÀ ÛÄÓÀÁÀÌÉÓ ËÉÔÄÒÀÔÖÒÀÛÉ.

ÀÌÏÝÀÍÉÓ ÂÀÃÀßÚÅÄÔÀ ÂÀÍÓÀÊÖÈÒÄÁÉÈ ÌÀÒÔÉÅÃÄÁÀ, ÈÖ ÛÄÌÀÅÀËÉ ÍÀÊÀÃÄÁÉ ØÌÍÉÓÐÖÀÓÏÍÉÓ ÓÔÀÝÉÏÍÀËÖÒ ÍÀÊÀÃÄÁÓ, áÏËÏ ÌÏÌÓÀáÖÒÄÁÀ ÄØÓÐÏÍÄÍÝÉÀËÖÒÉ ÊÀÍÏÍÉÈ ÂÀÍÀ-ßÉËÄÁÖËÉ ÛÄÌÈáÅÄÅÉÈÉ ÓÉÃÉÃÄÀ. ÀÌ ÛÄÌÈáÅÄÅÀÛÉ ÓÉÓÔÄÌÀ ÛÄÉÞËÄÁÀ ÀÙÉßÄÒÏÓ ÌÀÒÊÏÅÉÓÃÉÓÊÒÄÔÖËÉ ÛÄÌÈáÅÄÅÉÈÉ ÐÒÏÝÄÓÉÈ ÀÍ ÌÀÒÊÏÅÉÓ ãÀàÅÄÁÉÈ.

ÊÏËÌÏÂÏÒÏÅÉÓ ÃÉ×ÄÒÄÍÝÉÀËÖÒ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÀ ÂÀÒÊÅÄÖËÉ ÓÀßÚÉÓÉ ÐÉÒÏÁÄ-ÁÉÈ, ÒÏÌÄËÉÝ ÛÄÄÓÀÁÀÌÄÁÀ ÊÏÍÊÒÄÔÖË ÌÀÒÊÏÅÉÓ ÃÉÓÊÒÄÔÖË ÌÏÃÄËÓ, ÒÏÂÏÒÝ ßÄÓÉ, ÚÏ-ÅÄËÈÅÉÓ ÀÌÏáÓÍÀÃÉÀ ËÀÐËÀÓÉÓ ÂÀÒÃÀØÌÍÀÈÀ ÔÄÒÌÉÍÄÁÛÉ ÌÀÉÍÝ. áÏËÏ ÉÌ ÛÄÌÈáÅÄÅÀÛÉ,ÈÖ ÀÙÌÏÜÍÃÀ, ÒÏÌ ÌÀÒÊÏÅÉÓ ÐÒÏÝÄÓÉ ÄÒÂÏÃÖËÉÀ, ÌÀÛÉÍ ÐÒÏÝÄÓÉÓ ÌÃÂÏÌÀÒÄÏÁÄÁÉÓÀ-ÈÅÉÓ ÀÒÓÄÁÏÁÓ ×ÉÍÀËÖÒÉ ÀËÁÀÈÏÁÄÁÉ, ÒÏÌÄËÈÀ ÌÍÉÛÅÍÄËÏÁÄÁÉÓ ÂÀÌÏÈÅËÀ ÃÀÉÚÅÀÍÄÁÀÂÀÒÊÅÄÖË ßÒ×ÉÅ ÂÀÍÔÏËÄÁÀÈÀ ÓÉÓÔÄÌÉÓ ÀÌÏáÓÍÀÆÄ.

ÀÓÄÈÉ ßÄÓÉÈ ÂÀÍÓÀÆÙÅÒÖËÉ ÀËÁÀÈÏÁÄÁÉÓ ÂÀÒÊÅÄÖËÉ ÊÏÌÁÉÍÀÝÉÄÁÉÈ ÛÄÓÀÞËÄÁÄËÉÀÓÉÓÔÄÌÉÓ ÓáÅÀÃÀÓáÅÀ ÌÀáÀÓÉÀÈÄÁËÄÁÉÓ ÃÀÃÂÄÍÀ, ÌÀÈ ÛÏÒÉÓ - ÓÀÊÏÌÐÒÏÌÉÓÏ.

Page 124: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

124 Probability and Statistics . . . September 2–9, Batumi, Georgia

Quantitative Characteristic of Stability ofMulticriteria Investment Problem with Wald’s

Efficiency CriteriaVladimir Emelichev, Vladimir Korotkov

Belarusian State University, Minskemail: [email protected]; [email protected]

We consider multicriteria discrete variant of Markowitz’s investment managing prob-lem [1]. We denote by: Nn = 1, 2, . . . , n a set of investment projects (assets); Nm a setof possible financial market states (situation); Ns a set of indicators of investment projectsefficiency; x = (x1, x2, . . . , xn)

T ∈ X ⊆ En an investment portfolio, where E = 0, 1,xj = 1 if project j ∈ Nn is implemented, xj = 0 otherwise. Here E = 0, 1.

Let the following vector objective function f(x,E)=(f1(x,E1),f2(x,E2), . . . ,fs(x,Es)),be given on a set of investment portfolios X whose components are Wald’s maximin cri-teria [2]

fk(x,Ek) = mini∈Nm

Eikx = mini∈Nm

∑j∈Nn

eijkxj → maxx∈X

, k ∈ Ns,

where Ek ∈ Rm×n is the k-th cut of matrix E = [eijk] ∈ Rm×n×s, Eik = (ei1k, ei2k, . . . , eink)is the i-th row of that cut.

A multicriteria investment Boolean problem Zs(E), s ∈ N, means the problem ofsearching the Pareto setP s(E).

As usual [3], the stability radius of the problem Zs(E), s ≥ 1, is defined as thenumber ρ(m,n, s) = sup Ξ, if Ξ = ∅, and ρ(m,n, s) = 0, if Ξ = ∅, where Ξ = ε >0 : ∀E ′ ∈ Ω(ε) (P s(E + E ′) ⊆ P s(E)), Ω(ε) = E ′ ∈ Rm×n×s : 0 < ∥E ′∥ < ε,∥E∥ = max

k∈Ns

∑i∈Nm

∑j∈Nn

|eijk|, E ′ = [e′ijk].

Theorem. Let P s(E) = X. Then the stability radius ρ(m,n, s) of multicriteriainvestment problem Zs(E), s ≥ 1, has the following lower and upper attainable bounds

φ(m,n, s) ≤ ρ(m,n, s) ≤ mnφ(m,n, s),

whereφ = φ(m,n, s) = min

x ∈P s(E)max

x′∈P s(x,E)mink∈Ns

maxi∈Nm

mini′∈Nm

(Ei′kx′ − Eikx).

P s(x,E) = x′ ∈ X : x′ ≻E

x,

x′ ≻E

x ⇔ f(x′, E) ≥ f(x,E) & f(x′, E) = f(x,E),

This work was supported by the Republican Foundation of Fundamental Research ofBelarus (project F11K-095).

Page 125: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÀËÁÀÈÏÁÉÓ ÈÄÏÒÉÀ ÃÀ ÓÔÀÔÉÓÔÉÊÀ ... 125

References[1] H. M. Markowitz, Portfolio Selection: Efficient Diversification of Investments. Ox-

ford: Blackwell, 1991.[2] A. Wald, Statistical Decision Functions. New York: Wiley, 1950.[3] V. A. Emelichev, E. Girlich, Yu. V. Nikulin, D. P. Podkopaev, Stability and regular-

ization of vector problems of integer linear programming. Optimization 51 (2002),No. 4, 645–676.

A Version of the Rearrangement TheoremGeorge Giorgobiani, Vaja Tarieladze

Niko Muskhelishvili Institute of Computational Mathematics of the Georgian TechnicalUniversity, Tbilisi, Georgia

email: [email protected]; [email protected]

We say that a sequence (xk)k∈N of elements of a topological vector space X satisfies the(σ,θ)-condition, if for any permutation σ : N → N there exists a sequence θ = (θ1, θ2, . . .)of ”signs” +1 and −1 such that the series

∑∞i=1 xσ(i)θi converges in X. Validity of the

following rearrangement theoremwas noticed in [1].Theorem 1. Let 0 < p ≤ 1 and (xn) be a sequence of elements of a p-normed space

X, which satisfies the (σ, θ)-condition, s ∈ X be an element such that some subsequence ofthe sequence (

∑nk=1 xk) converges in X to s. Then there exists a permutation σ : N → N

such that the sequence (∑n

k=1 xσ(k)) converges in X to s.The similar result remains true for general metrizable locally convex spaces [2].We plan to discuss the following refinement of Theorem 1 in case of a normed space.Theorem 2. Let (xn) be a sequence of elements of a normed space X, which satisfies

the (σ, θ)-condition, s ∈ X be an element such that some subsequence of the sequence(∑n

k=1 xk) converges in the weak topology of X to s. Then there exists a permutationσ : N → N such that the sequence (

∑nk=1 xσ(k)) converges in X to s.

The last theorem implies the following statement.Corollary 3. Let (xn) be a sequence of elements of a Hilbert space X for which∑∞

k=1 ∥xk∥2 < ∞, s ∈ X be an element such that some subsequence of the sequence(∑n

k=1 xk) converges in the weak topology of X to s. Then there exists a permutationσ : N → N such that the sequence (

∑nk=1 xσ(k)) converges in X to s.

This corollary strengthens the following assertion proved in [3] in incorrect way.Corollary 3. Let (xn) be a sequence of elements of a Hilbert space X for which∑∞

k=1 ∥xk∥2 < ∞, s ∈ X be an element such that some subsequence of the sequence

Page 126: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

126 Probability and Statistics . . . September 2–9, Batumi, Georgia

(∑n

k=1 xk) converges in the weak topology of X to s. Then there exists a permutationσ : N → N such that the sequence (

∑nk=1 xσ(k)) converges in the weak topology of

X to s.The work was partially supported by grants: EC FP7, INCO-2010-6, no. 266155 (the

first author) and GNSF/ST09_99_3-104 (the second author).

References[1] G. Giorgobiani, The structure of the set of sums of a conditionally convergent series

in a p-normed space. Bull. Acad. Sci. Georgian SSR 130 (1988), No. 3, 481–484.[2] M.-J. Chasco and S. Chobanyan, On rearrangements of series in locally convex

spaces. Michigan Math. J. 44 (1997), No. 3, 607–617.[3] B. K. Lahiri and S. K. Bhattacharya, A note on rearrangements of series. Math.

Student 64 (1995), No. 1-4, 141–145 (1996).

×ÉÍÀÍÓÖÒÉ ÒÉÓÊÉÓ ÌÀÒÈÅÉÓ ÆÏÂÉÄÒÈÉ ÌÄÈÏÃÉÈÄÌÖÒ ÊÏÊÏÁÉÍÀÞÄ

ÁÀÈÖÌÉÓ ÛÏÈÀ ÒÖÓÈÀÅÄËÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉÓ ÌÀÈÄÌÀÔÉÊÉÓ ÃÄÐÀÒÔÀÌÄÍÔÉÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]

ÍÀÛÒÏÌÛÉ ÀÙßÄÒÉËÉÀ ×ÉÍÀÍÓÖÒÉ ÏÐÄÒÀÝÉÄÁÉÓÀ ÃÀ ÒÉÓÊÉÓ ÓÀáÄÄÁÉ, ÒÉÓÊÉÓ ßÀÒÌÏØÌÍÉÓ×ÀØÔÏÒÄÁÉ.

ÂÀÍáÉËÖËÉÀ ×ÉÍÀÍÓÖÒÉ ÌÀÈÄÌÀÔÉÊÉÓ ÛÄÌÃÄÂÉ ÌÍÉÛÅÍÄËÏÅÀÍÉ ÀÌÏÝÀÍÄÁÉ: ÌÉÍÉÌÀËÖÒÉÒÉÓÊÉÓ ÌØÏÍÄ ×ÉÍÀÍÓÖÒÉ ÐÏÒÔ×ÄËÉÓ ÀÂÄÁÀ, ÒÏÌÄËÉÝ ÖÆÒÖÍÅÄËÚÏ×Ó ÛÄÌÏÓÀÅËÉÀÍÏÁÉÓ×ÉØÓÉÒÄÁÖË ÌÍÉÛÅÍÄËÏÁÀÓ; ÌÀØÓÉÌÀËÖÒÉ ÛÄÌÏÓÀÅËÉÀÍÏÁÉÓ ÌØÏÍÄ ×ÉÍÀÍÓÖÒÉ ÐÏÒÔ×ÄËÉÓÀÂÄÁÀ, ÒÏÌËÉÓ ÒÉÓÊÉ ÀÒ ÀÙÄÌÀÔÄÁÀ ×ÉØÓÉÒÄÁÖË ÃÀÃÄÁÉÈ ÌÍÉÛÅÍÄËÏÁÀÓ; ÓÒÖËÉ ÃÀÍÀßÉËÏÁÒÉÅÉ ÂÀÍÖÓÀÆÙÅÒÄËÏÁÉÓ ÐÉÒÏÁÄÁÛÉ ×ÉÍÀÍÓÖÒÉ ÏÐÄÒÀÝÉÉÓ ÂÀÍáÏÒÝÉÄËÄÁÉÓÏÐÔÉÌÀËÖÒÉ ÅÀÒÉÀÍÔÉÓ ÀÒÜÄÅÀ; ×ÏÒÅÀÒÃÖËÉ ÃÀ ×ÉÖÜÄÒÓÖËÉ ÊÏÍÔÒÀØÔÄÁÉÓ, ÏÐÝÉÏ-ÍÄÁÉÓÀ ÃÀ ÓÅÏÐÄÁÉÓ ÂÀÌÏÚÄÍÄÁÀ ÌÏÅËÄÍÄÁÉÓ ÀÒÀáÄËÓÀÚÒÄËÉ ÂÀÍÅÉÈÀÒÄÁÉÓÀÂÀÍ ÃÀÆÙÅÄÅÉÓÌÉÆÍÉÈ ÃÀ ÌÏÅËÄÍÄÁÉÓ áÄËÓÀÚÒÄËÉ ÂÀÍÅÉÈÀÒÄÁÉÓ ÛÄÌÈáÅÄÅÀÛÉ ÌÏÂÄÁÉÓ ÌÉÙÄÁÉÓ ÌÉÆÍÉÈ;×ÉÍÀÍÓÖÒÉ ÁÀÆÒÄÁÉÓ ÀÍÀËÉÆÉÓ ÓÀ×ÖÞÅÄËÆÄ ×ÉÍÀÍÓÖÒÉ ÐÒÏÝÄÓÉÓ ÀÃÄÊÅÀÔÖÒÉ ÌÏÃÄËÉÓÀÂÄÁÀ, ÌÉÓÉ ÂÀÌÏÚÄÍÄÁÉÈ ×ÉÍÀÍÓÖÒÉ ÉÍÓÔÒÖÌÄÍÔÄÁÉÓ ÛÄ×ÀÓÄÁÄÁÉÓ ÂÀÌÏÈÅËÀ ÃÀ ×ÉÍÀÍÓÖÒÉÏÐÄÒÀÝÉÉÓ ÛÄÃÄÂÄÁÉÓ ÐÒÏÂÍÏÆÉÒÄÁÀ.

Page 127: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÀËÁÀÈÏÁÉÓ ÈÄÏÒÉÀ ÃÀ ÓÔÀÔÉÓÔÉÊÀ ... 127

The Notion of Subgaussian Random Elementin Banach Spaces

Vakhtang Kvaratskhelia, Vaja Tarieladze, Nicholas VakhaniaNiko Muskhelishvili Institute of Computational Mathematics of the Georgian Technical

University, Tbilisi, Georgiaemail: [email protected]; [email protected];

[email protected]

Following [1] we call a real valued random variable ζ Subgaussian if for some a, 0 ≤a <∞, and for any real number t the following inequality holds: E et ζ ≤ e

a2 t2

2 .In [2] a random element ξ with values in a Banach space X is called Subgaussian (or

T -Subgaussian) if there exists a Gaussian covariance R : X∗ → X such that E e⟨x∗,ξ⟩ ≤

e12⟨Rx∗,x∗⟩ for all x∗ ∈ X∗. In [3] a random element ξ with values in a Banach space

X is called a Subgaussian (F -Subgaussian), if there exists a number C > 0 such thatE e⟨Rx∗,x∗⟩ ≤ e

C2

2⟨Rξx

∗,x∗⟩ for all x∗ ∈ X∗, where Rξ is the covariance operator of ξ. In [4]a random element ξ with values in a Banach space X is called weakly Subgaussian if for anycontinuous linear functional x∗ ∈ X∗ the random variable ⟨x∗, ξ⟩ is Subgaussian one. Inthe finite dimensional Banach spaces the concepts of the weak, T - and F -subgaussianitycoincide. In an infinite dimensional case there are examples of a.s. bounded centeredrandom elements which are neither T -Subgaussian, nor F -Subgaussian.

We will discuss the following result, which clarifies the relation between T - and F -subgaussianity in Banach spaces.

Theorem. For a Banach space X with an unconditional basis the following statementsare equivalent:

(i) X does not contain ln∞’s uniformly.(ii) Any F -Subgaussian random element with values in X is T -Subgaussian.

The work was supported by grant GNSF/ST09_99_3-104.

References[1] J. P. Kahane, Propriétés locales des fonctions à séries de Fourier aleatoires. Studia

Math. 19 (1960), 1–25.

[2] M. Talagrand, Regularity of gaussian processes. Acta Math. 159 (1987), No. 1-2,99–149.

[3] R. Fukuda, Exponential integrability of sub-Gaussian vectors. Probab. TheoryRelated Fields 85 (1990), No. 4, 505–521.

Page 128: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

128 Probability and Statistics . . . September 2–9, Batumi, Georgia

[4] N. Vakhania, On subgaussian random vectors in normed spaces. Bull. GeorgianAcad. Sci. 163 (2001), No. 1, 8–11.

On the Ornstein–Uhlenbeck Process in the BanachSpace

Badri MamporiaNiko Muskhelishvili Institute of Computational Mathematics of the Georgian Technical

University, Tbilisi, Georgiaemail: [email protected]

The Ornstein–Uhlenbeck process in a Banach space is considered as a solution of thelinear stochastic differential equation.

About Testing Hypotheses for Bernoulli RegressionFunction

RegressionElizbar Nadaraya, Petre Babilua, Grigol Sokhadze

I. Javakhishvili Tbilisi State University,Faculty of Exact an Natural Sciences, Department of Mathematics

Tbilisi, Georgiaemail: [email protected]; [email protected]; [email protected]

Let a random variable Y takes two values 1 and 0 with probabilities p (“success”) and1 − p (“failure”). i.e. p = p(x) = PY = 1| x, x ∈ [0, 1]. Let xi, i = 1, . . . , n, be thedivision points of the interval [0, 1] which are chosen from the relation

H(xi) =

xi∫0

h(u) du =2i− 1

2n, i = 1, . . . , n,

where h(x) is the known positive distribution density on [0, 1]. Let further Yi, i = 1, . . . , n,be independent Bernoulli random variables with PYi = 1| xi = p(xi), PYi = 0| x =

Page 129: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÀËÁÀÈÏÁÉÓ ÈÄÏÒÉÀ ÃÀ ÓÔÀÔÉÓÔÉÊÀ ... 129

1−p(xi). The problem consists in estimating the function p(x), x ∈ [0, 1], by the samplingY1, Y2, . . . , Yn. Such problems arise in particular in biology, in corrosion studies and soon.

As an estimate for p(x) we consider a statistic of the form

pn(x) = p1n(x)p−12n (x), pνn(x) =

1

nbn

n∑i=1

h−1(xi)K(x− xi

bn

)Y 2−νi , ν = 1, 2,

where K(x) ≥ 0 is some distribution density (kernel), K(x) = K(−x), K(x) = 0 when|x| ≥ τ > 0, bn is a sequence of positive numbers converging to zero, p ∈ C2[0, 1].

Denote Tn = nbn∫

Ωn(τ)

[pn(x)− p(x)

]2p22n(x) dx, Ωn = [τbn, 1− τbn].

We fond the limiting distribution of the statistic Tn.Theorem. If nb2n → ∞ and nb4n → 0 than

b−1/2n

Tn −∆(p)

σ(p)

d−→ N(0, 1),

Where ∆(p) =1∫0

p(x)(1−p(x)) dx∫|x|≤τ

K2(x) dx, σ2(p) = 21∫0

p2(x)(1−p(x))2 dx∫

|x|≤2τK2

0(x) dx,

K0=K ∗K.The conditions of the theorem gives us construction for goodness-of-fit tests based on

Tn with level α, 0 < α < 1 for cheking hypothesis H0 : p(x) = p0(x), x ∈ Ωn(τ). Criticalregion can be find from the inequality Tn ≥ qn(α).

Where qn(α) = ∆(P0) + λα√bn σ(P0), Φ(λα) = 1− α.

This goodness-of-fit is consistency and its power tends to 1 against any alternative.

A Test for Being GaussianMzevinar Pacacia1, Vaja Tarieladze2

1 Sokhumi State University, Tbilisi, Georgia2 Niko Muskhelishvili Institute of Computational Mathematics of the Georgian

Technical University, Tbilisi, Georgiaemail: [email protected]; [email protected]

The real random variables ξ1, ξ2 are called jointly Gaussian if for every (t1, t2) ∈ R2

the linear combination t1ξ1 + t2ξ2 is a (possibly degenerated) Gaussian random variable.We call a non-empty set T ⊂ R2 a Gaussianity test set, for short, a GT-set, if a pair of

Page 130: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

130 Probability and Statistics . . . September 2–9, Batumi, Georgia

real random variables ξ1, ξ2 is jointly Gaussian whenever for every (t1, t2) ∈ T the linearcombination t1ξ1 + t2ξ2 is a (possibly degenerated) Gaussian random variable.

WriteS1 := (t1, t2) ∈ R2 : t21 + t22 = 1 .

We plan to discuss a proof of the following theorem based on [1] and [2]:Theorem. For a non-empty set T ⊂ S1 the following statements are equivalent:(i) T is a GT-set.(ii) T is an infinite set.

References[1] G. G. Hamedani and M. M. Tata, On the determination of the bivariate Normal

Distribution from the distributions of Linear Combinations of the Variables. Amer.Math. Monthly 82 (1975), No. 9, 913–915.

[2] Yongzhao Shao and Ming Zhou, A characterization of multivariate normality throughunivariate projections. J. Multivariate Anal. 101 (2010), 2637–2640.

Cramer–Rao inequality in the Hilbert spaceOmar Purtukhia, Grigol Sokhadze, Zaza Khechinashvili

I. Javakhishvili Tbilisi State University, Department of Probability and StatisticsTbilisi, Georgia

email: [email protected]; [email protected]; [email protected]

Let Ω,F , P be the complete probability space and X = X(ω, θ) is the random ele-ment with values in real separable Hilbert space E. Here θ ∈ Θ ⊂ Ξ and Ξ is real separableBanach space with the norm ∥·∥Ξ. If the random elements X1, X2, . . . , Xn are the i.i.d. re-alizations of X, then (ℵ,ℜ, (P (θ, ·), θ ∈ Θ)) is the sequence of statistical structures, whereℵ = En, n = 1, 2, . . . , n is the Hilbert space generated by the sequence of random vari-ables X1, X2, . . . , Xn, ℜ is the σ-algebra generated by observable sets, P (θ, ·), θ ∈ Θis the system of probability measures generated by vector Y = (X1, X2, . . . , Xn) andP (θ, A) = P (Y −1(A)), A ∈ ℜ.

Let z(x) : ℵ → ℵ be the vector field with supx∈ℜ∥z′(x)∥ <∞. Suppose, that measureP (θ, ·) is differentiable along of vector field z(x) and has logarithmic derivative alongof vector field z(x) : βθ(z, x). For any fixed A ∈ ℜ and vector ϑ ∈ ℵ consider deriva-tive of function τ(θ) = P (θ, A) at the point θ along of ϑ. Denote this derivative as

Page 131: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÀËÁÀÈÏÁÉÓ ÈÄÏÒÉÀ ÃÀ ÓÔÀÔÉÓÔÉÊÀ ... 131

dθP (θ, A)ϑ. For fixed θ and ϑ the derivative dθP (θ, A)ϑ is a signed measure. Easy to seethat dθP (θ, ·)ϑ≪ P (θ, ·) and using Radon-Nicodym theorem there is the density lθ(x, ϑ).

Assumption 1. X(θ) = X(θ, ω) : Θ×Ω → ℵ and the derivative X ′(θ) by θ along ofϑ ∈ Ξ0 exists, where Ξ0 ⊂ Ξ is subset of Ξ. This derivative represents the linear mappingΞ → ℵ for each θ ∈ Θ. Moreover for any ϑ ∈ Ξ0 and θ ∈ Θ we have ∥X ′(θ)∥ℵ ∈ L2(Ω, P ).

Assumption 2. EX ′(θ)ϑ|X(θ) = x is strongly continuous function of x for anyϑ ∈ Ξ0, θ ∈ Θ.

Assumption 3. The family of measures P (θ, ·), θ ∈ Θ possess a logarithmic derivativeby parameter along of constant directions from tight in Ξ subspace Ξ0 ⊂ Ξ and lθ(x, ϑ) ∈L2(ℵ, P (θ)), ϑ ∈ Ξ0, θ ∈ Θ.

Assumption 4. The family of measures P (θ, ·), θ ∈ Θ possess logarithmic derivativealong of constant directions from tight in ℵ subspace ℵ0 ⊂ ℵ and βθ(x, h) ∈ L2(ℵ, P (θ)),h ∈ ℵ0, θ ∈ Θ.

Assumption 5. For the statistics T = T (x) : ℵ → R the following equality is true

∫ℜT (x)P (θ, dx) =

∫ℜT (x)dϑP (θ, dx).

Theorem (Cramer-Rao inequality). Let g(θ) = EθT (x). If the regularity assump-tions 1.- 5. are satisfied then

1. lθ(x, ϑ) = −βθ(x,Kθ,ϑ(x)), where Kθ,ϑ(x) = E

ddθX(θ)ϑ|X(θ) = x

;

2. V arT (x) ≥ (g′ϑ(θ))2

Eθl2θ(X,ϑ).

Multiplicators for WLLNAlexander Shangua, Vaja Tarieladze

Niko Muskhelishvili Institute of Computational Mathematics of the Georgian TechnicalUniversity, Tbilisi, Georgia

e-mail: [email protected]; [email protected]

We plan to discuss the following theorem:Theorem. Let (ξn) be a i.i.d symmetric random variables. Consider the statements:(i) The sequence

(∑nk=1 ξkn

)is bounded in probability.

(ii) supn nP [ξ1| > n] <∞.(iii) For every sequence of real numbers (αn) for which the sequence

(∑nk=1 |αk|n

)con-

verges to zero, the sequence(∑n

k=1 αkξkn

)converges to zero in probability.

Page 132: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

132 Probability and Statistics . . . September 2–9, Batumi, Georgia

(iv) For every sequence of real numbers (αn) for which limn αn = 0, the sequence(∑nk=1 αkξk

n

)converges to zero in probability.

Then (i) ⇐⇒ (ii) =⇒ (iii) =⇒ (iv).The equivalence (i) ⇐⇒ (ii) is known and it dues in fact to A. Kolmogorov.In general, (ii) may not imply that for every sequence of real numbers (αn) for which

limn αn = 0, the sequence(∑n

k=1 αkξkn

)converges to zero almost surely.

Page 133: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 133

Applied Logic and ProgrammingÂÀÌÏÚÄÍÄÁÉÈÉ ËÏÂÉÊÀ ÃÀ ÐÒÏÂÒÀÌÉÒÄÁÀ

Page 134: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
Page 135: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÂÀÌÏÚÄÍÄÁÉÈÉ ËÏÂÉÊÀ ÃÀ ÐÒÏÂÒÀÌÉÒÄÁÀ 135

Haskell ÒÄÊÖÒÓÉÖËÉ ×ÖÍØÝÉÄÁÉÓ ÀÍÀËÉÆÀÔÏÒÉÍÀÈÄËÀ ÀÒÜÅÀÞÄ

ÉÅ. ãÀÅÀáÉÛÅÉËÉÓ ÓÀáÄËÏÁÉÓ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ,ÆÖÓÔ ÃÀ ÓÀÁÖÍÄÁÉÓÌÄÔÚÅÄËÏ ÌÄÝÍÉÄÒÄÁÀÈÀ ×ÀÊÖËÔÄÔÉ

ÈÁÉËÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected], [email protected]

ÐÒÏÂÒÀÌÖËÉ ÖÆÒÖÍÅÄËÚÏ×ÉÓ ÌÀÙÀËÉ áÀÒÉÓáÉÓ ÌÉÙßÄÅÀ ÊÅËÀÅ ÒÜÄÁÀ ÀØÔÖÀËÖÒÓÀÌÄÝÍÉÄÒÏ ÃÀ ÔÄØÍÉÊÖÒ ÐÒÏÁËÄÌÀÃ. ÀÌ ÐÒÏÁËÄÌÉÓ ÂÀÃÀßÚÅÄÔÀÛÉ ÃÉà ÒÏËÓÈÀÌÀÛÏÁÓ ÐÒÏÂÒÀÌÖËÉ ÖÆÒÖÍÅÄËÚÏ×ÉÓ ÅÄÒÉ×ÉÊÀÝÉÀ.

ÂÀÍÅÉáÉËÏÈ ÅÄÒÉ×ÉÊÀÝÉÀ Model Checking-ÉÓ ÌÄÈÏÃÏËÏÂÉÉÓ ÂÀÌÏÚÄÍÄÁÉÈ. ÀÌÌÄÈÏÃÏËÏÂÉÉÓ ÌÉáÄÃÅÉÈ ÅÄÒÉ×ÉÊÀÝÉÀ ÌÃÂÏÌÀÒÄÏÁÓ ÛÄÌÃÄÂÛÉ: ×ÏÒÌÀËÖÒÀà ÛÄÌÏßÌÃÄÓ×ÏÒÌÀËÖÒÉ ÌÏÈáÏÅÍÄÁÉ ÐÒÏÂÒÀÌÖËÉ ÓÉÓÔÄÌÉÓ ÌÏØÌÄÃÄÁÄÁÉÓ ÛÄÓÀáÄÁ, ÒÏÌËÄÁÉÝ×ÏÒÌÀËÖÒÉ ÌÏÃÄËÉÓ ÓÀáÉÈÀÀ ßÀÒÌÏÃÂÄÍÉËÉ. ÅÀÜÅÄÍÏÈ, ÒÏÌ ×ÖÍØÝÉÏÍÀËÖÒÉ ÐÒÏÂ-ÒÀÌÄÁÉÓ ÅÄÒÉ×ÉÊÀÝÉÀ ÛÄÉÞËÄÁÀ ÂÀÍáÏÒÝÉÄËÃÄÓ ÀÌ ÌÄÈÏÃÏËÏÂÉÉÈ, ÈÖ ÂÀÌÏÅÉÚÄÍÄÁÈÓÉÄÁÓ, ÍÀÝÅËÀà ÌÃÂÏÌÀÒÄÏÁÄÁÉÓÀ, ÒÏÌÄËÉÝ ÀÒ ÀÒÓÄÁÏÁÓ ×ÖÍØÝÉÏÍÀËÖÒ ÄÍÄÁÛÉ. ÊÏÍ-ÊÒÄÔÖËÀÃ, ÂÀÌÏÅÉÚÄÍÏÈ Model Checking–ÉÓ ÌÄÈÏÃÏËÏÂÉÀ ÊÖÃÉÓÄÁÒÉÅÉ ÒÄÊÖÒÓÉÖËÉ×ÖÍØÝÉÄÁÉÓ ÅÄÒÉ×ÉÊÀÝÉÉÓÈÅÉÓ, ÒÏÌËÄÁÉÝ ×ÖÍØÝÉÏÍÀËÖÒ ÄÍÀ Haskell-ÆÄÀ ÜÀßÄÒÉËÉ.

Haskell–ÆÄ ÊÖÃÉÓÄÁÒÉ ÒÄÊÖÒÓÉÖËÉ ×ÖÍØÝÉÄÁÉ ÛÄÉÞËÄÁÀ ßÀÒÌÏÃÂÄÓ ÛÀÁËÏÍÉÓ ÓÀÛÖÀ-ËÄÁÉÈ, ÒÏÌÄËÓÀÝ ÀØÅÓ ÓÀáÄ:

f [ ] = g1 [ ] (1)f (x : xs) = g2(g3 x)(g4(f( g5 xs ))),

ÓÀÃÀÝ g1, g2, g3, g4 ÃÀ g5 ×ÖÍØÝÉÄÁÉ ßÀÒÌÏÀÃÂÄÍÓ ÉÌ ×ÖÍÝÉÄÁÓ, ÒÏÌËÄÁÉÝ ÃÀÌÏÊÉÃÄ-ÁÖËÉÀ ÀÌÏÝÀÍÉÓ ÌÉÆÍÄÁÆÄ: g1 ÀÒÉÓ ×ÖÍØÝÉÀ ÝÀÒÉÄËÉ ÓÉÉÓ ÃÀÓÀÌÖÛÀÅÄÁËÀà (ÉÂÉÀÖÝÉËÄÁÄËÉÀ ÒÄÊÖÒÓÉÖËÉ ×ÖÍØÝÉÉÓ ÂÀÍÓÀÆÙÅÒÉÓÀÓ), g2 ÀÒÉÓ ×ÖÍØÝÉÀ, ÒÏÌÄËÉÝ ÀÄÒÈÉ-ÀÍÄÁÓ ÓÉÉÓ ÈÀÅÉÓÀ ÃÀ ÊÖÃÉÓ ÃÀÌÖÛÀÅÄÁÉÓ ÛÄÃÄÂÄÁÓ, g3 ÀÒÉÓ ×ÖÍØÝÉÀ, ÒÏÌÄËÉÝ ÀÌÖÛÀÅÄÁÓÓÉÉÓ ÈÀÅÓ, g4 ×ÖÍØÝÉÀ ÀÌÖÛÀÅÄÁÓ ÓÉÉÓ ÊÖÃÉÓÈÅÉÓ ÒÄÊÖÒÓÉÖË ÂÀÌÏÞÀáÄÁÀÓ, áÏËÏ g5ÀÒÉÓ ×ÖÍØÝÉÀ, ÒÏÌÄËÉÝ ÀÌÖÛÀÅÄÁÓ ÀÒÀÝÀÒÉÄËÉ ÓÉÉÓ ÊÖÃÓ ÒÄÊÖÒÓÉÖË ÂÀÌÏÞÀáÄÁÀÌÃÄ.

ÛÄÉØÌÍÀ ÐÒÏÂÒÀÌÀ–ÀÍÀËÉÆÀÔÏÒÉ (ÒÄÀËÉÆÄÁÖËÉÀ Visual Studio 2010, C#-ÆÄ), ÒÏÌÄË-ÓÀÝ ÛÄÓÀÓÅËÄËÆÄ ÂÀÃÀÄÝÄÌÀ ÔÄØÓÔÖÒÉ ×ÀÉËÉ–ÌÏÝÄÌÖËÉ ×ÖÍØÝÉÉÓ ÂÀÍÓÀÆÙÅÒÉÓ ÔÄØÓÔÉHaskell–ÆÄ. ÂÀÌÏÚÄÍÄÁÖËÉÀ Haskell–ÉÓ ÓÔÀÍÃÀÒÔÖËÉ ÌÏÃÖËÉÓ Prelude–ÉÓ ÒÄÊÖÒÓÉÖËÉ×ÖÍØÝÉÄÁÉÓ ÐÏÓÔ×ÉØÓÖÒÉ ÜÀÍÀßÄÒÄÁÉ. ÐÒÏÂÒÀÌÀ ×ÖÍØÝÉÄÁÉÓ ÂÀÍÌÀÒÔÄÁÉÓ ÔÄØÓÔÓ ÛÄÀÃÀ-ÒÄÁÓ (1) ÛÀÁËÏÍÓ, ÛÄÃÄÂÀà ÊÉ ÃÀÀÁÒÖÍÄÁÓ g1,g2,g3,g4 ÃÀ g5 ×ÖÍØÝÉÄÁÉÓ ÊÏÍÊÒÄÔÖËÌÍÉÛÅÍÄËÏÁÄÁÓ.

[1]–ÛÉ ÌÏÝÄÌÖËÉÀ (1) ÛÀÁËÏÍÉÓ ÓÉÓßÏÒÉÓ ÃÀÌÔÊÉÝÄÁÀ ÓÔÒÖØÔÖÒÖËÉ ÉÍÃÖØÝÉÉÓÌÄÈÏÃÉ ÂÀÌÏÚÄÍÄÁÉÈ.

ÀÌÒÉÂÀÃ, ÍÄÁÉÓÌÉÄÒÉ Haskell–×ÖÍØÝÉÀ, ÒÏÌËÉÓ ÂÀÍÌÀÒÔÄÁÀÝ ÛÄÓÀÞËÏÀ ÊÖÃÉÓÄÁÒÉÒÄÊÖÒÓÉÉÓ ÂÀÌÏÚÄÍÄÁÉÈ, ÐÒÏÂÒÀÌÀ–ÀÍÀËÉÆÀÔÏÒÉÓ ÂÀÌÏÚÄÍÄÁÉÈ ÂÀÃÀÃÉÓ ÛÀÁËÏÍÆÄ.ÛÀÁËÏÍÉÓ ÓÉÓßÏÒÄ ÖÊÅÄ ÃÀÌÔÊÉÝÄÁÖËÉÀ, ÒÉÈÀÝ ÌÔÊÉÝÃÄÁÀ ÌÏÝÄÌÖËÉ ×ÖÍØÝÉÉÓ ÓÉÓßÏ-ÒÄÝ.

Page 136: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

136 Applied Logic and Programming September 2–9, Batumi, Georgia

ËÉÔÄÒÀÔÖÒÀ

[1] N. Archvadze and M. Nizharadze, Typical Template Verification for List Editing InHaskell Language. ISSN 1512-3979. pp. 170–172.

Measurability Properties of Sets and Functionsin Light of Additional Set-Theoretical Axioms

Mariam BeriashviliIv. Javakhishvili Tbilisi State University

Ph.D. Student of MathematicsTbilisi, Georgia

email: mariam−[email protected]

Among the standard axioms of set theory, the Axiom of Choice (AC) is a powerfulset-theoretical assertion which implies many extraordinary and interesting consequences(see, for instance, [1], [2]). Moreover, further additional set-theoretical axioms (e.g. theContinuum Hypothesis (CH), Martin’s axiom (MA), the existence of large cardinals, andothers) allow to obtain new deep results in real analysis and measure theory (see e.g. [3],[4], [5]).

We consider a modified version of the concept of measurability of sets and functions,and analyze this version from the point of view of additional set-theoretical axioms. Themain feature of such an approach is that the measurability is treated not only with respectto a concrete given measure, but also with respect to various classes of measures. So, fora class M of measures, the measurability of sets and functions has the following threeaspects: absolute measurability with respect to M; relative measurability with respect toM; absolute non-measurability with respect to M. With the aid of additional set theoreticalaxioms, we specify the above-mentioned aspects of measurability. In particular, it is shownthat:

(a) Bernstein sets can be characterized as absolutely non-measurable sets with respectto a certain natural class M0 of measures (recall that the existence of Bernstein sets isrelied on AC);

(b) Sierpinski sets can be characterized as hereditarily non-measurable sets (recall thatthe existence of Sierpinski sets needs CH);

(c) under MA, there exist absolutely non-measurable functions with respect to theclass of all nonzero sigma-finite diffused measures.

It is also investigated how the classes of absolutely measurable, relatively measurableand absolutely non-measurable functions (with respect to a fixed class M of measures)

Page 137: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÂÀÌÏÚÄÍÄÁÉÈÉ ËÏÂÉÊÀ ÃÀ ÐÒÏÂÒÀÌÉÒÄÁÀ 137

behave under action of standard operations, such as composition, addition, multiplication,limit operation, and so on.

References[1] H. Herrlich, The Axiom of Choice. Springer-Verlag, Berlin, 2006.[2] F. A. Medvedev, The Early History of the Axiom of Choice. Moscow, Nauka, 1982

(in Russian).[3] J. C. Oxtoby, Measure and Category. Springer-Verlag, New York, 1971.[4] K. Ciesielski, Set theoretic real analysis. J. Appl. Anal. 3 (1997), No. 2, 143–190.[5] A. B. Kharazishvili, Nonmeasurable Sets and Functions. Elsevier, Amsterdam, 2004.

×ÏÒÌÖËÉÓ áÉÓ ÓÀáÉÈ ßÀÒÌÏÌÃÂÄÍÉ ÐÒÏÂÒÀÌÀÂÄËÀ àÀÍÊÅÄÔÀÞÄ

ÉÅ. ãÀÅÀáÉÛÅÉËÉÓ ÓÀá. ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉÈÁÉËÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]

ÐÒÏÂÒÀÌÀ ÀÌÏßÌÄÁÓ ×ÏÒÌÖËÉÓ ÓÉÍÔÀØÓÖÒ ÓÉÓßÏÒÄÓ. ÛÄÌÃÄ ÐÏÖËÏÁÓ ÌÈÀÅÀÒÏÐÄÒÀÍÃÓ ÄÓ ÉØÍÄÁÀ ¬ (ÖÀÒÚÏ×À), ∧ (ÊÏÍÉÖÍØÝÉÀ), ∨ (ÃÉÆÉÖÍØÝÉÀ), → (ÉÌÐËÉÊÀÝÉÀ),= (ÔÏËÏÁÀ) ÃÀ ↔ (ÄÊÅÉÅÀËÄÍÝÉÀ) ÉÂÉ ÌÏÄØÝÄÅÀ áÉÓ ÈÀÅÛÉ. ¬-ÉÓ ÛÄÌÈáÅÄÅÀÛÉ áÄÂÀÂÒÞÄËÃÄÁÀ 1 ÔÏÔÉÈ, áÏËÏ ÚÅÄËÀ ÃÀÍÀÒÜÄÍÉÓ ÛÄÌÈáÅÄÅÀÛÉ áÄ ÂÀÂÒÞÄËÃÄÁÀ 2 ÔÏÔÉÈ,ÒÀÃÂÀÍ ÀÃÂÉËÉÀÍÏÁÉÓ ÌÉáÄÃÅÉÈ ÖÀÒÚÏ×À ÄÒÈÀÃÂÉËÉÀÍÉÀ, áÏËÏ ÚÅÄËÀ ÃÀÍÀÒÜÄÍÉÏÒÀÃÂÉËÉÀÍÉ.

ÀÓÄ ÂÀÂÒÞÄËÃÄÁÀ ÓÀÍÀÌ ÚÅÄËÀ ÏÐÄÒÀÍÃÉ ÀÒ ÂÀÒÃÀÉØÌÍÄÁÀ áÄÃ. ÚÏÅÄË ÔÏÔÆÄÊÖÒÓÏÒÉÓ ÃÀÃÄÁÉÈ ÐÒÏÂÒÀÌÀ ÈÅÀËÓÜÉÍÏÄÁÉÓÈÅÉÓ ÀÙÀÃÂÄÍÓ ×ÏÒÌÖËÉÓ ÛÄÓÀÁÀÌÉÓÍÀßÉËÓ [1].

ÍÀÛÒÏÌÉ ÛÄÓÒÖËÄÁÖËÉÀ ÓÀØÀÒÈÅÄËÏÓ ÓÀÌÄÝÍÉÄÒÏ ×ÏÍÃÉÓ ÂÒÀÍÔÉÓ (D/16/4-120/11)×ÀÒÂËÄÁÛÉ.

ËÉÔÄÒÀÔÖÒÀ

[1] Ivan Bratko, PROLOG Programming for Artificial Intelligence. Addison-WesleyPublishing Company Inc., 1986.

Page 138: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

138 Applied Logic and Programming September 2–9, Batumi, Georgia

Constraint Logic Programming for Hedgesand Context

Besik Dundua1, Temur Kutsia2

1 VIAM, Tbilisi State University, Georgia2 RISC, Johannes Kepler University, Linz, Austria

email: [email protected]; [email protected]

Constraint Logic Programming (CLP) extends logic programming with capabilitiesof constraint solving and constraint satisfaction over a predefined domain. The domainwe consider in this work is built from unranked trees. These are trees where differentnodes with the same label can have different number of children. They attracted con-siderable attention in recent years because of their wide range of applications. Theynaturally model XML documents, program schemata, ambients, multithreaded recursiveprogram configurations where the number of parallel processes is unbounded, variadicfunctions in various programming languages, etc. They are used in rewriting, knowledgerepresentation, program analysis and transformation, just to name a few.

The elements of the domain that we consider are hedges (sequences of unranked trees)and contexts (unranked trees with a single hole). Contexts can be applied to trees suchthat the argument tree replaces the hole in the context. At this stage, We considerpositive equational constraints over hedges and contexts in disjunctive normal form. Inthe constraints we permit four kinds of variables: tree variables for single trees, hedgevariables for hedges, function variables for function symbols (labels in trees), and contextvariables for contexts. Hedge and context variables can be restricted to belong someregular hedge or regular context languages. In general, the algorithm is incomplete,which is natural, because constraints may have infinitely many solutions [3, 2] and wecan not get completeness and termination at the same time. Even more, decidabilityof such constraints is an open problem (based on the similar open problem for contextunification [4]). Therefore, we may have non-termination even if the solution set is finite.

Taking into account these difficulties, our goal was to design a constraint solvingprocedure, which is sound, terminates on all inputs, simplifies constraints and detectsfailure as much as possible, and returns a partially solved form. The resulting algorithmis embedded in the CLP scheme [1], resulting into the language CLP(HC): constraint logicprogramming for hedges and contexts. We study syntactic restrictions of constraints whichguarantee completeness of the solving algorithm and restrictions on queries and clauseswhich lead to the generation of those restricted constraints.

Acknowledgments. This research has been Supported by the Georgian RustaveliNational Science Foundation under the project DI/16/4-120/11: Constraint Logic Pro-gramming over Unranked Terms and Hedges with Description Operators.

Page 139: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÂÀÌÏÚÄÍÄÁÉÈÉ ËÏÂÉÊÀ ÃÀ ÐÒÏÂÒÀÌÉÒÄÁÀ 139

References[1] Joxan Jaffar and Michael J. Maher, Constraint logic programming: A survey.

J. Log. Program., 19/20:503–581, 1994.[2] Temur Kutsia, Solving equations with sequence variables and sequence functions.

J. Symb. Comput., 42(3):352–388, 2007.[3] Jordi Levy, Linear second-order unification. In RTA, pages 332–346, 1996.[4] RTA list of open problems. Problem #90. Are context unification and linear second

order unification decidable?http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/90.html.

The Logical Computer Game for Pupils to StudyEnglish on the Basis of the Algorithm of Solving

the Bin Packing ProblemGenadi Fedulov, Lali Tibua, Tamaz Dzagania, Konstantine Babalian,

Nugzar IashviliI. Javakhishvili Tbilisi State University, Georgian Technical University

Tbilisi, Georgiaemail: [email protected]; [email protected]

During the years of work on the issues of packaging containers, it became clear thatthe results can be used to create intelligent computer games. The purpose of the computergame is packing into containers of single letters or words in such a way that would getthe word or sentence.

We present a Software Product “Intelligent Games” (part 4) for solving the One-Dimensional Bin Packing Problems. These games were developed with using InteractivePacking (part 3) of Software Product. Currently we have 12 games. Below we give thedescription for 6 games of 12.

Interactive Packing is intended to build solutions with the specified properties. Sinceour tool is able to find a solution for any sequence of items within each subset, usercan specify his own sequence. Our tool helps user to build his own solution using theUser-Specified Properties at every step. The interactive packing is performed in manualmode step-by-step. At each step a current position is a partial solution. Tool evaluates acurrent solution within a time interval, declared in “Response Time” field. Tool can giveone of the following answers: “Packing is not possible”, “Packing might exist”, “Packing

Page 140: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

140 Applied Logic and Programming September 2–9, Batumi, Georgia

exists” and others. According to the response, re-packing might be done. There are nomore than 40 weight buttons and 50 bin buttons on the computer screen. Each weightbutton represents a set of equal item sizes wi ki. To observe other sets of weights aportion of p(w) buttons should be loaded, 2 ≤ p(w) ≤ 40. Each bin button representsone bin. To see the other bins a portion of buttons should be loaded, 2 ≤ p(w) ≤ 50.Interactive Packing gives an opportunity to: view the weight and bin portions; redefinesizes of weight and bin portions; return to previous position and continue re-packing fromthis position; redefine “Response Time” (0,5 seconds by default) and so on.

We offer Intelligent Games that any man alive will enjoy. These games will be usefulfor children of any age to develop and improve their intelect: mental arithmetic, attentionconcentration, ability to estimate possibilities, case analysis, decision-making and so on.One can play within a given time limit or gambling as in a casino. Design of intelligentgames is similar to the design of interactive packing.

ÓÉÌÄÔÒÉÖËÉ ÃÀÛÉ×ÒÅÉÓ ÀáÀËÉ, ÌÏØÍÉËÉ ÀËÂÏÒÉÈÌÉäÉËÉÓ n-ÂÒÀÌÖËÉ ÌÄÈÏÃÉÓ ÂÀÌÏÚÄÍÄÁÉÈ

ÂÉÏÒÂÉ ÉÀÛÅÉËÉ

ÉÅ. ãÀÅÀáÉÛÅÉËÉÓ ÓÀáÄËÏÁÉÓ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉÈÁÉËÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÓÀÉÍ×ÏÒÌÀÝÉÏ-ÓÀÊÏÌÖÍÉÊÀÝÉÏ ÃÀ ÊÏÌÐÉÖÔÄÒÖËÉ ØÓÄËÄÁÉÓ ÃÀÝÅÉÓ ÀÖÝÉËÄÁËÏÁÀÌ ÃÀÊÒÉÐÔÏÀÍÀËÉÆÉÓ ÌÄÈÏÃÄÁÉÓ ÌÆÀÒÃÌÀ ÂÀÍÅÉÈÀÒÄÁÀÌ ÂÀÍÀÐÉÒÏÁÀ ÉÌÉÓ ÓÀàÉÒÏÄÁÀ, ÒÏÌÛÄÉØÌÍÀÓ ÀáÀËÉ ÀËÂÏÒÉÈÌÄÁÉ, ÒÏÌËÄÁÉÝ ÃÀÀÊÌÀÚÏ×ÉËÄÁÄÍ ÈÀÍÀÌÄÃÒÏÅÄ ÌÏÈáÏÅÍÄÁÓÃÀ ÒÀ ÈØÌÀ ÖÍÃÀ ÊÒÉÐÔÏÌÄÃÄÂÍÉ ÉØÍÄÁÉÀÍ ÓáÅÀÃÀÓáÅÀ ÛÄÔÄÅÄÁÉÓ ÌÉÌÀÒÈ.

ÀáÀËÉ ÁËÏÊÖÒÉ ÛÉ×ÒÄÁÉÓ ÛÄØÌÍÉÓ ÀÖÝÉËÄÁËÏÁÀ ÂÀÌÏßÅÄÖËÉÀ ÀÂÒÄÈÅÄ ÉÌÉÈÀÝ,ÒÏÌ ÉÍ×ÏÒÌÀÝÉÉÓ ÃÀÝÅÉÓ ÐÒÏÁËÄÌÉÓ ÂÀÃÀÓÀàÒÄËÀà ÊÏÍÊÒÄÔÖË ÂÀÒÄÌÏÛÉ áÛÉÒÀÃÌÏÉÈáÏÅÄÁÀ, ÒÏÌ ÛÉ×ÒÓ ÂÀÀÜÍÃÄÓ ÂÀÒÊÅÄÖËÉ ÃÀÌÀÔÄÁÉÈÉ ÈÅÉÓÄÁÄÁÉ, ÒÏÌËÄÁÉÝ ÓÀàÉÒÏÀÐÒÏÁËÄÌÉÓ ÓÒÖËÀà ÃÀ Ä×ÄØÔÖÒÀà ÂÀÃÀàÒÉÓÀÈÅÉÓ. ÀÓÄÈ ÛÉ×ÒÄÁÓ ÌÉÄÊÖÈÅÍÄÁÉÀÍ Tweak-able Block Cipher (TBC) ÛÉ×ÒÄÁÉÝ. Tweakable ÀÒÉÓ ÓÉÓÔÄÌÉÓ (ÀÍ ÐÒÏÂÒÀÌÉÓ) ÖÍÀÒÉ(ÈÅÉÓÄÁÀ) ÂÀÃÀÄßÚÏÓ ÌÏÝÄÌÖËÉ ÊÏÍÊÒÄÔÖËÉ ÀÌÏÝÀÍÉÓ ÛÄÓÀÁÀÌÉÓÀÃ. ÊÒÉÐÔÏÂÒÀ×ÉÀÛÉÁËÏÊÖÒÉ ÛÉ×ÒÄÁÉÓ ÌÉÌÀÒÈ ÄÓ ÔÄÒÌÉÍÉ ÍÉÛÍÀÅÓ, ÒÏÌ ÁËÏÊÖÒ ÛÉ×ÒÓ ÀØÅÓ ÖÍÀÒÉ ÄÒÈÉÃÀ ÉÂÉÅÄ ÙÉÀ ÔÄØÓÔÉ ÄÒÈÉ ÃÀ ÉÂÉÅÄ ÂÀÓÀÙÄÁÉÈ ÂÀÃÀÉÚÅÀÍÏÓ ÓáÅÀÃÀÓáÅÀ ÛÉ×ÒÏÔÄØÓÔÛÉ.ÜÅÄÍÉ ÀÌ ÔÄÒÌÉÍÉÓ ØÀÒÈÖË ÛÄÓÀÔÚÅÉÓÀà ÛÄÓÀÞËÄÁËÀà ÌÉÅÉÜÍÉÄÈ ÓÉÔÚÅÀ “ÌÏØÍÉËÉÓ”ÂÀÌÏÚÄÍÄÁÀ.

ÌÏáÓÄÍÄÁÀÛÉ ÂÀÍáÉËÖËÉÀ ÓÉÌÄÔÒÉÖËÉ ÃÀÛÉ×ÒÅÉÓ ÀáÀËÉ, ÌÏØÍÉËÉ (tweakable) ÀËÂÏ-ÒÉÈÌÉÓ ÀÂÄÁÉÓ ÓÀÊÉÈáÄÁÉ äÉËÉÓ n-ÂÒÀÌÖËÉ ÌÄÈÏÃÉÓ ÂÀÌÏÚÄÍÄÁÉÈ.

Page 141: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÂÀÌÏÚÄÍÄÁÉÈÉ ËÏÂÉÊÀ ÃÀ ÐÒÏÂÒÀÌÉÒÄÁÀ 141

ÀËÂÏÒÉÈÌÉÆÀÝÉÉÓÀ ÃÀ ÃÀÐÒÏÂÒÀÌÄÁÉÓ ÓßÀÅËÄÁÉÓÄÒÈÉ ÊÏÍÝÄ×ÝÉÉÓ ÛÄÓÀáÄÁ

ØÄÈÄÅÀÍ ÊÖÈáÀÛÅÉËÉ

ÓÀØÀÒÈÅÄËÏÓ ÖÍÉÅÄÒÓÉÔÄÔÉÓ ÌÀÈÄÌÀÔÉÊÉÓÀ ÃÀ ÉÍ×ÏÒÌÀÝÉÖËÉ ÔÄØÍÏËÏÂÉÄÁÉÓ ÓÊÏËÀÈÁÉËÉÓÉ, ÓÀØÀÒÈÅÄËÏ

email: [email protected]

ÊÏÌÐÉÖÔÄÒÖËÉ ÔÄØÍÉÊÉÓ ×ÀÒÈÏà ÂÀÅÒÝÄËÄÁÀÌ ÃÀ ÂÀÌÏÚÄÍÄÁÀÌ ÀÃÀÌÉÀÍÈÀ ÌÏÙÅÀßÄÏ-ÁÉÓ ÚÅÄËÀ Ó×ÄÒÏÛÉ ÂÀÌÏÉßÅÉÀ ÀáÀËÉ ÃÉÓÝÉÐËÉÍÉÓ, ÉÍ×ÏÒÌÀÔÉÊÉÓ ÂÀÜÄÍÀ. ÈÀÅÃÀÐÉÒÅÄ-ËÀà ÉÍ×ÏÒÌÀÔÉÊÀ ÌÏÉÀÆÒÄÁÏÃÀ ÒÏÂÏÒÝÃÀÌáÌÀÒÄ Ó×ÄÒÏ. ÌÀÂÒÀÌ ÛÄÌÃÂÏÌÛÉ ÛÄÓÀÞËÄ-ÁÄËÉ ÂÀáÃÀ ÌÉÓÉ ÂÀÝÉËÄÁÉÈ Ö×ÒÏ ÌÒÀÅÀËÌáÒÉÅÉ ÂÀÌÏÚÄÍÄÁÀ. ÉÍ×ÏÒÌÀÔÉÊÀ ÂÀÃÀÉØÝÀÃÀÌÏÖÊÉÃÄÁÄË, ÓÀÊÌÀÏà ÒÈÖË ÌÄÝÍÉÄÒÄÁÀÃ, ÒÏÌÄËÉÝ ÞÀËÉÀÍ ÓßÒÀ×Àà ÅÉÈÀÒÃÄÁÀ ÃÀ×ÀÒÈÏÅÃÄÁÀ ÖÀÌÒÀÅÉ ÓáÅÀÃÀÓáÅÀ ÌÉÌÀÒÈÖËÄÁÉÈ. ÌÀÂÒÀÌ ÉÂÉ ÞÉÒÉÈÀÃÀÃ, ÃÀÊÀÅÛÉÒÄÁÖ-ËÉÀ ÉÍ×ÏÒÌÀÝÉÉÓ ÛÄÍÀáÅÉÓ, ÃÀÌÖÛÀÅÄÁÉÓ ÃÀ ÂÀÃÀÝÄÌÉÓ ÐÒÏÝÄÓÄÁÈÀÍ ÊÏÌÐÉÖÔÄÒÉÓÓÀÛÖÀËÄÁÉÈ.

ÃÙÄÓÃÙÄÏÁÉÈ ÃÀÐÒÏÂÒÀÌÄÁÉÓ ÌÒÀÅÀËÉ ÄÍÀ ÀÒÓÄÁÏÁÓ. ÌÀÈÉ ÓÀÛÖÀËÄÁÉÈ ÓáÅÀÃÀÓáÅÀÔÉÐÉÓ ÀÌÏÝÀÍÄÁÉÓ ÀÌÏáÓÍÀ ÀÒÉÓ ÛÄÓÀÞËÄÁÄËÉ. ÌÀÂÒÀÌ ÃÀÐÒÏÂÒÀÌÄÁÉÓ ÍÄÁÉÓÌÉÄÒÄÍÀÆÄ ÊÀÒÂÉ ÐÒÏÂÒÀÌÖËÉ ÖÆÒÖÍÅÄËÚÏ×ÉÓ ÛÄØÌÍÉÓ ÓÀ×ÖÞÅÄËÉ ÍÄÁÉÓÌÉÄÒÉ ÐÒÏ×ÉËÉÓÐÒÏÂÒÀÌÉÓÔÉÓÀÈÅÉÓ ÀÒÉÓ ÀËÂÏÒÉÈÌÉÆÀÝÉÉÓ ÌÈÀÅÀÒÉ ÐÒÉÍÝÉÐÄÁÉ, ÅÉÍÀÉÃÀÍ ÀËÂÏÒÉÈÌÉ-ÆÀÝÉÉÓ ÓÀ×ÖÞÅËÄÁÉÓ ÝÏÃÍÀ ÄáÌÀÒÄÁÀ ÓÐÄÝÉÀËÉÓÔÓ Ö×ÒÏ ÓÉÓÔÄÌÖÒÀÃÌÉÖÃÂÄÓ ÃÀÓÌÖËÀÌÏÝÀÍÀÓ, ÔÄØÍÉÊÖÒÀà ÓßÏÒÀà ÌÏÀáÃÉÍÏÓ ÂÀÃÀÓÀßÚÅÄÔÉ ÐÒÏÁËÄÌÉÓ ×ÏÒÌÖËÉÒÄÁÀ.ÀÌÀÅÄ ÃÒÏÓ ÌÍÉÛÅÍÄËÏÅÀÍÉ ÒÏËÉ ÄÍÉàÄÁÀ ÌÏÍÀÝÄÌÈÀ ßÀÒÌÏÃÂÄÍÀÓ ÃÀ ÌÀÈÉ ÃÀÌÖÛÀÅÄÁÉÓÌÈÄËÉ ÐÒÏÝÄÓÉÓ ÂÀÈÅÀËÉÓßÉÍÄÁÀÓ.

ÀËÂÏÒÉÈÌÉÆÀÝÉÉÓ ÓßÀÅËÄÁÀÛÉ ÉÂÖËÉÓáÌÄÁÀ ÉÓÄÈÉ ÜÅÄÅÄÁÉÓ ÂÀÌÏÌÖÛÀÅÄÁÀ, ÒÀÝ ÐÒÏÂ-ÒÀÌÉÓÔÓ ÃÀÄáÌÀÒÄÁÀ, ÒÏÌ ÌÀÍ ÛÄÞËÏÓ ÈÀÅÉÓÉ ÍÀÀÆÒÄÅÉÓ ×ÏÒÌÀËÉÆÄÁÀ ÃÀ ÛÄÞËÏÓÀÂÄÁÖËÉ ÀËÂÏÒÉÈÌÉÓ ÀÍÀËÉÆÉ.

ÃÀÐÒÏÂÒÀÌÄÁÀ ÂÖËÉÓáÌÏÁÓ ÀÂÄÁÖËÉ ÀËÂÏÒÉÈÌÉÓ ÐÒÀØÔÉÊÖË ÒÄÀËÉÆÄÁÀÓ ÊÏÌÐÉÖ-ÔÄÒÆÄ ÃÀÐÒÏÂÒÀÌÄÁÉÓ ÒÏÌÄËÉÌÄ ÄÍÉÓ ÂÀÌÏÚÄÍÄÁÉÈ. ÒÀ ÈØÌÀ ÖÍÃÀ, ÀÌ ÛÄÌÈáÅÄÅÀÛÉÓÀàÉÒÏÀ ÀÌ ÊÏÍÊÒÄÔÖËÉ ÄÍÉÓ ÊÏÍÓÔÒÖØÝÉÄÁÉÓ ÃÀ ÌÀÍØÀÍÀÆÄ ÒÄÀËÉÆÄÁÉÓ ÔÄØÍÏËÏÂÉÄÁÉÓÝÏÃÍÀ, ÒÀÝÀÂÒÄÈÅÄ ÖÌÍÉÛÅÍÄËÏÅÀÍÄÓÉ ÓÀÊÉÈáÉÀ. ÌÀÂÒÀÌ ÒÏÌÄËÉ ÄÍÉÈ ÖÍÃÀ ÃÀÅÉßÚÏÈ,ÀÍ ÒÀ ÞÉÒÉÈÀÃÉ ÐÒÏÁËÄÌÄÁÉÀ, ÒÀÝ ÃÀÐÒÏÂÒÀÌÄÁÉÓ ÐÒÏÝÄÓÛÉ ÂÅáÅÃÄÁÀ, ÒÏÂÏÒÉÀ ÃÀ-ÐÒÏÂÒÀÌÄÁÉÓ ÖÊÄÈÄÓÉ ÓÔÉËÉ ÃÀ ÒÀÝ ÌÈÀÅÀÒÉÀ, ÒÀ ÖÃÄÅÓ ÓÀ×ÖÞÅËÀà ÚÅÄËÀ ×ÏÒÌÀËÖÒÄÍÀÓ? ÀÌ ÊÉÈáÅÄÁÆÄ ÌÒÀÅÀËÉ ÓáÅÃÀÓáÅÀ ÐÀÓÖáÉ ÀÒÓÄÁÏÁÓ.

ÌÈÀÅÀÒÉ ÚÖÒÀÃÙÄÁÀ ÀËÂÏÒÉÈÌÉÆÀÝÉÉÓ ÓßÀÅËÄÁÉÓ ÃÒÏÓ ÄØÝÄÅÀ ÛÄÌÀÅÀËÉ ÃÀ ÂÀÌÏÌÀ-ÅÀËÉ ÐÀÒÀÌÄÔÒÄÁÉÓ ÃÀÃÂÄÍÀÓ, ÌÀÈ ÓÔÒÖØÔÖÒÀÓ, ÌÀÍØÀÍÀÛÉ ÌÀÈÉ ßÀÒÌÏÃÂÄÍÉÓ ×ÏÒÌÄÁÓÃÀ ÌÀÈ ÖÒÈÉÄÒÈÊÀÅÛÉÒÓ; ÀÌÏÍÀáÓÍÉÓ ÌÉÙÄÁÉÓ ÏÐÔÉÌÀËÖÒÉ ÂÆÉÓ ÐÏÅÍÀÓ; ÀÌÏÝÀÍÉÓÈÀÍÌÉÌÃÄÅÒÖËÉ ÀÌÏáÓÍÉÓ ÃÀÂÄÂÌÅÀÓ ÃÀ ÀÍÀËÉÆÓ. ÛÄÌÏÈÀÅÀÆÄÁÖËÉÀ ÃÀ ÃÀÓÀÁÖÈÄÁÖËÉÀÀËÂÏÒÉÈÌÄÁÉÓ ÃÀ ÃÀÐÒÏÂÒÀÌÄÁÉÓ ÐÀÒÀËÄËÖÒÉ ÓßÀÅËÄÁÉÓ ÄÒÈÉ ÊÏÍÊÒÄÔÖËÉ ÌÉÃÂÏÌÀ.

Page 142: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

142 Applied Logic and Programming September 2–9, Batumi, Georgia

Formal Method of Service Oriented FunctionalDecomposition

Nikoloz Pachuashvili, Teimuraz KiviladzeSt. Andrew the First called Georgian University of the Patriarchy of Georgia,

Faculty of Physics, Mathematics and Computer Sciences, Tbilisiemail: [email protected]

Service-orientation as a software design paradigm, emphases separating solution logicinto different loosely coupled reusable and composable computing units - called services.Service reusability and composability are main design principles of service-orientation.Separated and centralized logic is easy to govern and reuse in different complex com-positions. Separation of concerns leads to functional decomposition of large probleminto smaller, related problems. Sometimes in practice, it is not easy to discover whatare distinct concerns of complex problem and how big system could be represented as acomposition of simple solutions. In this talk we will discuss one particular approach ofconcern identification. Using this approach, we are starting from conceptual descriptionof concerns with predefined descriptors having lattice structure. We have defined algo-rithm which is used to discover similarities between different descriptions and identifynew concept which corresponds to distinct concern of complex problem.

ÊÅÀÍÔÏÒÄÁÉÓ ÄËÉÌÉÍÀÝÉÀ ÊÅÀÍÔÏÒÄÁÉÀÍÐÒÏÐÏÆÉÝÉÖË ËÖÊÀÛÄÅÉÜÉÓ ËÏÂÉÊÀÛÉ

ÍÉÊÏËÏÆ ×áÀÊÀÞÄ

ÅÄÍÉÓ ÔÄØÍÉÊÖÒÉ ÖÍÉÅÄÒÓÉÔÄÔÉÉÅ. ãÀÅÀáÉÛÅÉËÉÓ ÓÀáÄËÏÁÉÓ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ

ÈÁÉËÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]

ÍÀÛÒÏÌÛÉ ÂÀÍÓÀÆÙÅÒÖËÉÀ, ÊÅÀÍÔÏÒÄÁÉÀÍÉ ËÖÊÀÛÄÅÉÜÉÓ ËÏÂÉÊÉÓ ÌÉÍÉÌÀËÖÒÉ ÂÀ×ÀÒ-ÈÏÄÁÀ ÒÏÌÄËÓÀÝ ÀØÅÓ ÊÅÀÍÔÏÒÄÁÉÓ ÄËÉÌÉÍÀÝÉÉÓ ÈÅÉÓÄÁÀ. ÀÌÉÓÀÈÅÉÓ ËÖÊÀÛÄÅÉÜÉÓËÏÂÉÊÀ ÂÀÅÀ×ÀÒÈÏÅÄÈ ÍÀÔÖÒÀËÖÒ ÒÉÝáÅÆÄ ÂÀÚÏ×ÉÓ ÚÅÄËÀ ÏÐÄÒÀÔÏÒÉÈ ÃÀ ÃÀÅÀÌÔÊÉ-ÝÄÈ ÛÄÃÄÂÀà ÌÉÙÄÁÖËÉ ËÏÂÉÊÉÓ ÓÉÓÒÖËÄ. ÀÌÉÓ ÛÄÌÃÄ ÌÀÊÍÏÖÔÏÍÉÓ ÈÄÏÒÄÌÉÓÂÀÌÏÚÄÍÄÁÉÈ ÂÀÍÅÓÀÆÙÅÒÄÈ ËÖÊÀÛÄÅÉÜÉÓ ËÏÂÉÊÉÓ àÄÛÌÀÒÉÔÖËÉ ×ÖÍØÝÉÄÁÉÓ Ä.ß. ÌÉÍÉÌÀØ-ÓÉÓ ßÄÒÔÉËÄÁÉ ÃÀ ÄÓ ßÄÒÔÉËÄÁÉ ÂÀÌÏÅÓÀáÄÈ ÍÀÔÖÒÀËÖÒ ÒÉÝáÅÆÄ ÂÀÚÏ×ÉÓ ÚÅÄËÀÏÐÄÒÀÔÏÒÉÈ ÂÀ×ÀÒÈÏÄÁÖËÉ ËÖÊÀÛÄÅÉÜÉÓ ËÏÂÉÊÉÓ ÄÍÀÛÉ. ÌÉÙÄÁÖËÉ ÛÄÃÄÂÄÁÉÓ ÛÄãÀÌÄ-ÁÉÈ ÌÉÅÉÙÄÈ ÒÏÌ ÍÀÔÖÒÀËÖÒ ÒÉÝáÅÆÄ ÂÀÚÏ×ÉÓ ÚÅÄËÀ ÏÐÄÒÀÔÏÒÉÈ ÂÀ×ÀÒÈÏÄÁÖË

Page 143: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÂÀÌÏÚÄÍÄÁÉÈÉ ËÏÂÉÊÀ ÃÀ ÐÒÏÂÒÀÌÉÒÄÁÀ 143

ËÖÊÀÛÄÅÉÜÉÓ ËÏÂÉÊÀÓ ÀØÅÓ ÊÅÀÍÔÏÒÄÁÉÓ ÄËÉÌÉÍÀÝÉÉÓ ÈÅÉÓÄÁÀ, ÀØÄÃÀÍ ÂÀÌÏÌÃÉÍÀÒÄÌÉÍÉÌÀËÖÒÉ ÂÀ×ÀÒÈÏÄÁÀ, ÒÏÌÄËÓÀÝ ÄÓ ÈÅÉÓÄÁÀ ÀØÅÓ, ÀÒÉÓ ÚÅÄËÀ ÌÀÒÔÉÅ ÒÉÝáÅÆÄÂÀÚÏ×ÉÓ ÏÐÄÒÀÔÏÒÉÈ ÂÀ×ÀÒÈÏÄÁÖËÉ ËÖÊÀÛÄÅÉÜÉÓ ËÏÂÉÊÀ. ÛÄÃÄÂÀÃ: ÍÀÔÖÒÀËÖÒ(ÌÀÒÔÉÅ) ÒÉÝáÅÆÄ ÂÀÚÏ×ÉÓ ÚÅÄËÀ ÏÐÄÒÀÔÏÒÉÈ ÂÀ×ÀÒÈÏÄÁÖË ËÖÊÀÛÄÅÉÜÉÓ ËÏÂÉÊÀÀÒÉÓ: ÓÄÌÀÍÔÉÊÖÒÀà ÓÒÖËÉ, ÀÌÏáÓÍÀÃÉ ÃÀ ÛÄÓÀÁÀÌÉÓÀà ÒÄÊÖÒÓÖËÀà ÂÀÃÀÈÅËÀÃÉ.

e-ÃÀÚÅÀÍÀÃÏÁÉÓ ÈÅÉÓÄÁÀ ÞËÉÄÒÀà Ä×ÄØÔÖÒÀÃÉÌÖÍÖÒÉ ÓÉÌÒÀÅÄËÄÁÉÓÀÈÅÉÓ

ÓÏ×Ï ×áÀÊÀÞÄ

ÓÀØÀÒÈÅÄËÏÓ ÓÀÐÀÔÒÉÀÒØÏÓ ßÌÉÍÃÀ ÀÍÃÒÉÀ ÐÉÒÅÄËßÏÃÄÁÖËÉÓ ÓÀáÄËÏÁÉÓ ØÀÒÈÖËÉÖÍÉÅÄÒÓÉÔÄÔÉ, ÉÅ. ãÀÅÀáÉÛÅÉËÉÓ ÓÀáÄËÏÁÉÓ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÔÄÔÉ

ÈÁÉËÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]

ÌÏáÓÄÍÄÁÀÛÉ ÂÀÍáÉËÖËÉÀ ÓÀÊÉÈáÄÁÉ ÃÀÊÀÅÛÉÒÄÁÖËÉ, ÒÄÊÖÒÓÖËÀà ÂÀÃÀÈÅËÀÃÉ ÓÉÌÒÀÅ-ËÄÄÁÉÓ ÉÄÒÀÒØÉÉÓÀÈÅÉÓ ÐÏÓÔÉÓ ÌÉÄÒ ÛÄÌÏÚÅÀÍÉË ÃÀÚÅÀÍÀÃÏÁÄÁÉÓ ÀËÂÏÒÉÈÌÖË ÝÍÄ-ÁÄÁÈÀÍ. ÊÄÒÞÏÃ, ÂÀÍáÉËÖËÉÀ ÞËÉÄÒÀà Ä×ÄØÔÖÒÉ ÉÌÖÍÖÒÏÁÉÓ e-ÃÀÚÅÀÍÀÃÏÁÉÓ ÉÄÒÀÒ-ØÉÖËÖËÏÁÉÓ ÐÒÏÁËÄÌÀ. ÃÀÌÔÊÉÝÄÁÖËÉÀ, ÒÏÌ ÈÖ a ÀÒÉÓ ÞËÉÄÒÀà Ä×ÄØÔÖÒÀà ÉÌÖÍÖÒÉe-áÀÒÉÓáÉ ÃÀ a e-ÃÀÚÅÀÍÀÃÉÀ b-ÆÄ, ÌÀÛÉÍ b-ÀÒÉÓ ÞËÉÄÒÀà Ä×ÄØÔÖÒÀà ÉÌÖÍÖÒÉ. ÌÀÛÉÍÒÏÝÀ Ä×ÄØÔÖÒÀà ÉÌÖÍÖÒÏÁÀ ÃÀ ÞËÉÄÒÀà Ä×ÄØÔÖÒÀà ÉÌÖÍÖÒÏÁÀ ÀÒ ÂÒÞÄËÃÄÁÀ ÆÄÅÉÈs-ÃÀÚÅÀÍÀÃÏÁÉÓ ÌÉÌÀÒÈ.

ÍÀÛÒÏÌÉ ÛÄÓÒÖËÄÁÖËÉÀ ÓÀØÀÒÈÅÄËÏÓ ÓÀÌÄÝÍÉÄÒÏ ×ÏÍÃÉÓ ÂÒÀÍÔÉÓ (D/16/4 –120/11) ÌáÀÒÃÀàÄÒÉÈ.

Page 144: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

144 Applied Logic and Programming September 2–9, Batumi, Georgia

Page 145: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 145

Logic of Natural Languages andComputational Linguistics

ÁÖÍÄÁÒÉÅÉ ÄÍÄÁÉÓ ËÏÂÉÊÀ ÃÀ ÂÀÌÏÈÅËÉÈÉËÉÍÂÅÉÓÔÉÊÀ

Page 146: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
Page 147: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÁÖÍÄÁÒÉÅÉ ÄÍÄÁÉÓ ËÏÂÉÊÀ . . . 147

Designing and Implementingan HPSG-Based Formal Grammar for Georgian

Lasha AbzianidzeThe Tilburg Center for Logic and Philosophy of Science,Department of Philosophy, Tilburg University, Tilburg

email: [email protected]

In the abstract, I outline the results of my master thesis [1] which was accomplishedduring The European Masters Program in Language and Communication Technologies1.

Due to the high demand for the systems capable of understanding human languages,many languages are studied from theoretical and computational points of view. Consider-ing that Georgian is poorly studied for these purposes, designing a formal computationalgrammar for Georgian should be estimated as a highly important and necessary task.

The formal grammar of Georgian (GeoGram) is based on the Head-Driven PhraseStructure Grammar (HPSG) formalism [3]. The formalism was chosen due to its ex-pressive power and mathematical foundation. GeoGram is implemented in trale [4] –expressive and faithful grammar implementation platform to “hand-written” HPSG the-ories. At the moment, GeoGram models morphology and syntax levels.

The syntax part covers: the verb complementation by nouns and pronouns (whereverb complements are verbal arguments of [2] marked with logical cases); the pro-dropproperty (by distinguishing explicit and implicit verb complements); adjunction of thenoun by quantifiers and adjectives (based on the logical declination of [2]); adjunction andcomplementation of the noun by possesive phrases which causes several syntactic readings(it is one of the original contributions of [1]); nominalized quantifiers and adjectives.

The morphology is modeled by lexical rules for nominals (pluralization, logical de-clension, possessivization and nominalization rules) and verbal polypersonal conjugation(organized in three main conjugation paradigms). They employ lexemes from the lexicon.

Further details on GeoGram can can be found at the following url:http://sites.google.com/site/lashabzianidze/thesis

References[1] L. Abzianidze, An HPSG-based formal grammar of a core fragment of Georgian

implemented in trale, Master Thesis, Charles University in Prague, 2011.[2] K. Pkhakadze, About Logical Declination and Lingual Relations in Georgian, Journal

of Georgian Language and Logic, pp. 19-77, 2005.[3] C. Pollard, I. A. Sag, Head-Driven Phrase Structure Grammar, 1994.[4] G. Penn, M.H. Abdolhosseini, The Attribute Logic Engine with TRALE extensions,

User’s Guide, 2003.

1I thank Erasmus Mundus for its financial support during the program.

Page 148: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

148 Logic of Natural Languages . . . September 2–9, Batumi, Georgia

Natural Language Generation of Tense and Aspectin a Narrative Context

Daan HenselmansEuropean Masters Program in Language and Communication Technologies,

Department of Intelligent Computer Systems, University of Malta,Department of Computational Linguistics and Phonetics, Saarland University, Germany

email: [email protected]

This abstract shortly describes my forthcoming master’s thesis, in the area of naturallanguage generation (nlg). It aims to use a machine learning (ml) approach to generatetense and aspect in English narratives.

The TimeBank corpus was developed as a means to use ml to extract temporal rela-tions from textual resources [2]. It consists of newspaper articles annotated with time lineinformation denoting events and times described in the text, and the temporal relationsbetween them [1]. Temporal relations have been statistically inferred from narrative textswith an accuracy as high as 93% [3].

The same corpus can be used for generation, by predicting the tense and aspect thatis most likely to be used given certain temporal data. nlg systems are used to generatetextual representations of formal data, such as weather reports from meteorological mea-surements [4]. A generation model of tense and aspect would mark a small step towardautomated generation of newspaper-like texts from formal temporal data.

To accomplish nlg of tense and aspect, I am using ml methods on the informationprovided by the TimeBank corpus. Given an event which needs to be expressed textuallyusing a certain verb stem, this allows prediction of the fully temporally inflected form.Some factors which play a part in this are the Vendlerian aspectual class of the verb, therelation the time of the event has to the current time, and the temporal relations an eventhas with respect to other events in the text. The thesis will be available August 2012.

References[1] J. F. Allen, Maintaining knowledge about temporal intervals, Artificial Intelligence

and Language Processing 26 (11), 1983.[2] D. Day, L. Ferro, R. Gaizauskas, P. Hanks, M. Lazo, J. Pustejovsky, R. Sauri, A.

See, A. Setzer, and B. Sundheim, The TIMEBANK Corpus, Corpus Linguistics,2003.

[3] I. Mani, B. Wellner, M. Verhagen, C. M. Lee, and J. Pustejovsky, Machine learningof temporal relations, In Proceedings of the 44th Annual Meeting of the Associationfor Computational Linguistics, 2006.

Page 149: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÁÖÍÄÁÒÉÅÉ ÄÍÄÁÉÓ ËÏÂÉÊÀ . . . 149

[4] E. Reiter, Natural Language Generation, In A. Clark, C. Fox, and S. Lappin (Eds.),Handbook of computational linguistics and natural language processing, John Wiley& Sons, 2006.

About the Contracting Symbols in Georgian andin Some Other Languages

Aleksandre MaskharashviliEuropean MSc in Human Language Science and Technology,

Department of Intelligent Computer Systems,Institute of Linguistics, University of Malta, Msida

email: [email protected]

In this abstract, we will shortly present the results and approaches which are beingdeveloped in my master thesis1. In this study we deal with some type of contractingsymbols, which exist in languages and which are expressed by some linguistic phenomena.

Broadly speaking, a contacting symbol of in a given natural language contracts themathematical expression of that mathematical system which naturally underlies this nat-ural language in humans. The problem of dealing with contracting symbols in formal lan-guages was encountered by N. Bourbaki [1]. In response to this problem, Sh. Pkhakadzein his monograph Notation Theory [2] developed the theory which allows one to makeconservative extension of any Sufficiently General mathematical language and theory byadding it different type contracting symbols in a formally justified, proved way.

In [3] and [4] K. Pkhakadze having Notation theory as a mathematical basementdescribed the core part of Georgian as a mathematical theory. In result, in [5], we declaredas a thesis that natural conscious Georgian language is a result of formal extension of thePrimary Mathematical Language. The current work has high value not only from logic ofnatural languages but also computational linguistics point of view, as the theory developedin it has been already used in our translator system, logical task solver, spell-checker.

References[1] N. Bourbaki, Eléments de Mathématique - Théorie des ensembles, Hermann, Paris,

1970.1“About the Contracting Symbols in Georgian and in Some Other Languages And Their Applications”

is being accomplished by me within the Erasmus Mundus European Masters Program in Language andCommunication Technologies (LCT), in the University of Malta and the University of Nancy2.I amgrateful to Erasmus Mundus for getting opportunity of writing this thesis.

Page 150: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

150 Logic of Natural Languages . . . September 2–9, Batumi, Georgia

[2] Sh. Pkhakadze, Some problems of the notation theory, Tbilisi University Press,Tbilisi, 1977 (in Russian).

[3] K. Pkhakadze, Pre-verbal Semantic Unit, Problem of Personal Signs, Integral andNon-Integral Verbal Semantics and Incomplete or First Semantic Classification ofGeorgian Verbs, “Main and Additional text-books in Contemporary Mathematicallinguistics” N1, “Universali”, 2004, pp.72–152 (In Georgian).

[4] K. Pkhakadze, About Logical Declination and Lingual Relations in Georgian, Journal“Georgian language and logic” N1, “Universali”, 2005, 19–77 (in Georgian).

[5] K. Pkhakadze, A. Maskharashvili and L. Abzianidze, Georgian Language’s The-ses, Seminar of I. Vekua Institute of Applied Mathematics REPORTS, 34 (2008),108–121.

ØÀÒÈÖËÉ ÛÉÍÀÀÒÓÏÁÒÉÅÀà ÌÊÉÈáÅÄË-ÌÓÌÄÍÄËÉÓÉÓÔÄÌÀ

ÊÏÍÓÔÀÍÔÉÍÄ ×áÀÊÀÞÄ, ÂÉÏÒÂÉ ÜÉÜÖÀ

ÓÀØÀÒÈÅÄËÏÓ ÔÄØÍÉÊÖÒÉ ÖÍÉÅÄÒÓÉÔÄÔÉ, ØÀÒÈÖËÉ ÄÍÉÓ ÔÄØÍÏËÏÂÉÄÁÉÓÓÀÓßÀÅËÏ-ÓÀÌÄÝÍÉÄÒÏ ÝÄÍÔÒÉ, ÈÁÉËÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]

ØÀÒÈÖËÉ ÛÉÍÀÀÒÓÏÁÒÉÅÀà ÌÊÉÈáÅÄË-ÌÓÌÄÍÄËÉ ÓÉÓÔÄÌÉÓ ÀÂÄÁÉÓ ÉÃÄÀ ÃÀ, ÀÓÄÅÄ, ÀÓÄÈÉÓÉÓÔÄÌÉÓ ÀÂÄÁÉÓ ÌÄÈÏÃÄÁÉ ÐÉÒÅÄËÀÃÉ ÓÀáÉÈ ÂÀÌÏÉÊÅÄÈÀ 2003-2007 ßËÄÁÛÉ ÓÀáÄËÌßÉ×ÏÌÉÆÍÏÁÒÉÅÉ ÐÒÏÂÒÀÌÉÓ „ÊÏÌÐÉÖÔÄÒÉÓ ÓÒÖËÉ ÐÒÏÂÒÀÌÖË-ÌÏÌÓÀáÖÒÄÏÁÉÈÉ ÌÏØÝÄÅÀÁÖÍÄÁÒÉÅ ØÀÒÈÖË ÄÍÏÁÒÉÅ ÂÀÒÄÌÏÛÉ“ ×ÀÒÂËÄÁÛÉ Ê.×áÀÊÀÞÉÓ áÄËÌÞÙÅÀÍÄËÏÁÉÈ ßÀÒÌÏÄ-ÁÖËÉ ÊÅËÄÅÄÁÉÓ ÛÄÃÄÂÀÃ.

ÌÏáÓÄÍÄÁÉÓÀÓ ÌÉÌÏÅÉáÉËÀÅÈ ÛÉÍÀÀÒÓÏÁÒÉÅÀà ÌÊÉÈáÅÄË-ÌÓÌÄÍÄËÉ ÓÉÓÔÄÌÉÓ ÀÌÂÄÁÌÄÈÏÃÄÁÓ. ÊÄÒÞÏÃ, ÌÉÌÏÅÉáÉËÀÅÈ ßÉÍÀ ßËÄÁÛÉ ÖÊÅÄ ÀÂÄÁÖË ØÀÒÈÖË ÌÒÀÅÀËáÌÏÅÀÍÌÊÉÈáÅÄË [1] ÃÀ ËÄØÓÉÊÖÒÀà ÛÄÆÙÖÃÖËÉ ØÀÒÈÖËÉ ÌÄÔÚÅÄËÄÁÉÓ ÀÌÏÌÝÍÏÁ [2] ÓÉÓÔÄÌÄÁÓ.ÀÌÀÓÈÀÍ, ÚÖÒÀÃÙÄÁÀÓ ÂÀÅÀÌÀáÅÉËÄÁÈ ÀÌ ÓÉÓÔÄÌÄÁÈÀÍ ÓÉÍÔÀØÓÖÒÉ ÀÍÀËÉÆÀÔÏÒÉÓ [3]ÉÍÔÄÂÒÉÒÄÁÉÈ ÃÀÂÄÂÌÉËÉ ÛÉÍÀÀÒÓÏÁÒÉÅÉ ÊÉÈáÅÉÓ ÃÀ ÓÌÄÍÉÓ ÌÀÒÄÀËÉÆÄÁÄËÉ ÓÉÓÔÄÌÉÓÀÍÖ ÛÉÍÀÀÒÓÏÁÒÉÅÀà ÌÊÉÈáÅÄË-ÌÓÌÄÍÄËÉ ÓÉÓÔÄÌÉÓ ÀÌÂÄÁ ÌÄÈÏÃÄÁÆÄ.

ØÀÒÈÖËÉ ÌÄÔÚÅÄËÄÁÉÓ ßÀÒÌÏÌØÌÍÄËÉ ÃÀ ÀÌÏÌÝÍÏÁÉ ÓÉÓÔÄÌÄÁÉÓ ÛÄØÌÍÀÆÄ ÌÖÛÀÏÁÀ1960-ÉÀÍÉ ßËÄÁÉÃÀÍ ÌÉÌÃÉÍÀÒÄÏÁÓ. ÌÉÖáÄÃÀÅÀà ÀÌÉÓÀ, ÆÄÌÏáÓÄÍÄÁÖËÉ ÌÄÔÚÅÄËÄÁÉÓÀÌÏÌÝÍÏÁÉ ÓÉÓÔÄÌÀ ÃÙÄÓ ÄÒÈÀÃÄÒÈÉ ÀÌ ÔÉÐÉÓ ÓÉÓÔÄÌÀÀ ØÀÒÈÖËÉÓÀÈÅÉÓ, ÒÀÝ ØÀÒÈÖËÉÄÍÉÓ ÃÀÝÅÉÓ ÃÀ, ÛÄÓÀÁÀÌÉÓÀÃ, ÌÉÓÉ ÀÖÝÉËÄÁÄËÉ ÔÄØÍÏËÏÂÉÆÄÁÉÓ ÄÒÏÅÍÖËÉ ÐÀÓÖáÉÓÌÂÄÁ-ËÏÁÉÓÀ ÃÀ ÀØ ÃÙÄÓ ÀÒÓÄÁÖËÉ ÓÀÄÒÈÏ ÌÓÏ×ËÉÏ ÓÔÀÍÃÀÒÔÄÁÉÓ ÂÀÈÅÀËÉÓßÉÍÄÁÉÈÝÀËÓÀáÀà ÖÍÃÀ ÛÄ×ÀÓÃÄÓ ÒÏÂÏÒÝ ÌÄÔÀà ÓÀÂÀÍÂÀÛÏ ÅÉÈÀÒÄÁÀ.

Page 151: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÁÖÍÄÁÒÉÅÉ ÄÍÄÁÉÓ ËÏÂÉÊÀ . . . 151

ËÉÔÄÒÀÔÖÒÀ

[1] ×áÀÊÀÞÄ Ê., ÜÉÜÖÀ Â., ÁÖÍÄÁÒÉÅÉ ØÀÒÈÖËÉ ÓÀÌÄÔÚÅÄËÏ ÄÒÈÄÖËÉÓ ÝÍÄÁÀ ÃÀØÀÒÈÖËÉ ÌÒÀÅÀËáÌÏÅÀÍÉ ÌÊÉÈáÅÄËÉ ÓÉÓÔÄÌÉÓ ÀÌÂÄÁÉ ÌÄÈÏÃÄÁÉÓÀ ÃÀ ÀÂÄÁÉÓÌÉÆÍÄÁÉÓ ÌÉÌÏáÉËÅÀ, ÓÀØÀÒÈÅÄËÏÓ ÔÄØÍÉÊÖÒÉ ÖÍÉÅÄÒÓÉÔÄÔÉÓ ØÀÒÈÖËÉ ÄÍÉÓÔÄØÍÏËÏÂÉÆÄÁÉÓ ÓÀÓßÀÅËÏ-ÓÀÌÄÝÍÄÉÒÏ ÝÄÍÔÒÉÓ ÛÒÏÌÄÁÉ, #1, 2011, ÂÅ. 31-51;

[2] ×áÀÊÀÞÄ Ê., ÜÉÜÖÀ Â., ÅÀÛÀËÏÌÉÞÄ À., ÀÁÆÉÀÍÉÞÄ Ë., ÌÀÓáÀÒÀÛÅÉËÉ À., ÜÉØÅÉÍÉÞÄ Ì.,ÂÀÁÖÍÉÀ Ê., ØÀÒÈÖËÉ ÄÍÉÓ ÃÀ ÀÆÒÏÅÍÄÁÉÓ ÌÀÈÄÌÀÔÉÊÖÒÉ ÈÄÏÒÉÉÓ ÃÀ ØÀÒÈÖËÉÉÍÔÄËÄØÔÖÀËÖÒÉ ÊÏÌÐÉÖÔÄÒÖËÉ ÓÉÓÔÄÌÉÓ ÛÄÌÖÛÀÅÄÁÉÓ ÌÉÆÍÄÁÉ ÃÀ ØÀÒÈÖËÉ ÄÍÉÓßÉÍÀÛÄ ÌÃÂÀÒ ÓÀ×ÒÈáÄÄÁÉ, ÓÀØÀÒÈÅÄËÏÓ ÓÀÐÀÔÒÉÀÒØÏÓ ßÌ. ÀÍÃÒÉÀ ÐÉÒÅÄËßÏ-ÃÄÁÖËÉÓ ÓÀáÄËÏÁÉÓ ØÀÒÈÖËÉ ÖÍÉÅÄÒÓÉÔÄÔÉ, 2009, ÂÅ. 1-24.

ØÀÒÈÖËÉ ÓÉÍÔÀØÓÖÒÉ ÀÍÀËÉÆÀÔÏÒÉÓ ßÉÍÀÓßÀÒÉÅÄÒÓÉÀ

ÊÏÍÓÔÀÍÔÉÍÄ ×áÀÊÀÞÄ, ÌÄÒÀÁ ÜÉØÅÉÍÉÞÄ

ÓÀØÀÒÈÅÄËÏÓ ÔÄØÍÉÊÖÒÉ ÖÍÉÅÄÒÓÉÔÄÔÉ, ØÀÒÈÖËÉ ÄÍÉÓ ÔÄØÍÏËÏÂÉÄÁÉÓÓÀÓßÀÅËÏ-ÓÀÌÄÝÍÉÄÒÏ ÝÄÍÔÒÉ, ÈÁÉËÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]

ÌÏáÓÄÍÄÁÉÓÀÓ ÌÉÌÏÅÉáÉËÀÅÈ 2011 ßÄËÓ ÀÂÄÁÖËÉ ØÀÒÈÖËÉ ÓÉÍÔÀØÓÖÒÉ ÀÍÀËÉÆÀÔÏ-ÒÉÓ ßÉÍÀÓßÀÒ ÅÄÒÓÉÀÓÀ ÃÀ ÌÉÓ ÀÌÂÄÁ ÌÄÈÏÃÄÁÓ. ÓÉÓÔÄÌÀ, ÒÏÌÄËÉÝ ØÀÒÈÖËÉ ÒÈÖËÉÃÀ ÌÀÒÔÉÅÉ ÈáÒÏÁÉÈÉ ßÉÍÀÃÀÃÄÁÄÁÉÈ ÀÂÄÁÖËÉ ÔÄØÓÔÄÁÉÓ ÓÉÍÔÀØÓÖÒÉ ÌÀÒÈËßÄÒÉÓÛÄÌÌÏßÌÄÁÄËÉ ÉÓÔÏÒÉÖËÀà ÐÉÒÅÄËÉ ÄØÓÐÄÒÉÌÄÍÔÖËÉ ÓÉÓÔÄÌÀÀ [2], ÀÂÄÁÖËÉÀ ØÀÒÈÖËÉÄÍÉÓ ÒÈÖËÉ ÈáÒÏÁÉÈÉ ßÉÍÀÃÀÃÄÁÄÁÉÓ ÀÒÀÓÒÖËÉ ÈÄÏÒÉÉÓ ÓÀ×ÖÞÅÄËÆÄ, ÒÏÌÄËÉÝØÀÒÈÖËÉ ÄÍÉÓ ÌÀÒÔÉÅÉ ÈáÒÏÁÉÈÉ ßÉÍÀÃÀÃÄÁÄÁÉÓ ÌÀÈÄÌÀÔÉÊÖÒÉ ÈÄÏÒÉÉÓ ÍÀßÉËÏÁÒÉÅÉÂÀ×ÀÒÈÏÄÁÉÓ ÛÄÃÄÂÉÀ.

ØÀÒÈÖËÉ ÓÉÍÔÀØÓÖÒÉ ÌÀÒÈËÌßÄÒÉÓ ÛÄØÌÍÀÆÄ ÌÖÛÀÏÁÀ 1960-ÉÀÍÉ ßËÄÁÉÃÀÍ ÌÉÌÃÉ-ÍÀÒÄÏÁÓ. ÌÉÖáÄÃÀÅÀà ÀÌÉÓÀ, ÃÙÄÌÃÄ, ÀÒÓÄÁÏÁÓ ØÀÒÈÖËÉ ÓÉÍÔÀØÓÖÒÉ ÌÀÒÈËÌßÄÒÉÓÌáÏËÏà ÉÓ ÓÀÝÃÄËÉ ÓÉÓÔÄÌÄÁÉ, ÒÏÌËÄÁÉÝ Ê.×áÀÊÀÞÉÓ ÌÀÒÔÉÅÉ ÈáÒÏÁÉÈÉ ßÉÍÀÃÀÃÄÁÄÁÉÓÌÀÈÄÌÀÔÉÊÖÒÉ ÈÄÏÒÉÉÓÀ ÃÀ ÀÌ ÈÄÏÒÉÉÓ ÓáÅÀÃÀÓáÅÀ ÂÀ×ÀÒÈÏÄÁÄÁÉÓ ÓÀ×ÖÞÅÄËÆÄÀ ÀÂÄ-ÁÖËÉ [2], [3]. ÄÓ ÝÀËÓÀáÀà ÀÃÀÓÔÖÒÄÁÓ ØÀÒÈÖËÉ ÄÍÉÓ ÀÌ ÉÓÔÏÒÉÖËÀà ÐÉÒÅÄËÉÌÀÈÄÌÀÔÉÊÖÒÉ ÈÄÏÒÉÉÓ ÌÀÙÀË ÐÒÏÃÖØÔÖËÏÁÀÓ (ÅÀÒÂÉÓÉÀÍÏÁÀÓ).

ÀÌÀÓÈÀÍ, ØÀÒÈÖËÉ ÄÍÉÓ ÃÀÝÅÉÓ ÃÀ, ÛÄÓÀÁÀÌÉÓÀÃ, ÌÉÓÉ ÀÖÝÉËÄÁÄËÉ ÔÄØÍÏËÏÂÉÆÄÁÉÓÄÒÏÅÍÖËÉ ÐÀÓÖáÉÓÌÂÄÁËÏÁÉÓÀ ÃÀ ÀØ ÃÙÄÓ ÀÒÓÄÁÖËÉ ÓÀÄÒÈÏ ÌÓÏ×ËÉÏ ÓÔÀÍÃÀÒÔÄÁÉÓÂÀÈÅÀËÉÓßÉÍÄÁÉÈ, ÉÓ, ÒÏÌ ÆÄÌÏÀÙÍÉÛÍÖËÉ ÀÍÀËÉÆÀÔÏÒÉ ÌÀÒÔÉÅÉ ÃÀ ÒÈÖËÉ ßÉÍÀÃÀÃÄ-ÁÄÁÉÈ ÀÂÄÁÖËÉ ÔÄØÓÔÄÁÉÓ ãÄÒãÄÒÏÁÉÈ ÄÒÈÀÃÄÒÈÉ ØÀÒÈÖËÉ ÓÉÍÔÀØÓÖÒÉ ÌÀÒÈËÌßÄ-ÒÉÀ, ÝÀËÓÀáÀà ÖÍÃÀ ÛÄ×ÀÓÃÄÓ ÒÏÂÏÒÝ ÌÄÔÀà ÓÀÂÀÍÂÀÛÏ ÅÉÈÀÒÄÁÀ.

Page 152: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

152 Logic of Natural Languages . . . September 2–9, Batumi, Georgia

ËÉÔÄÒÀÔÖÒÀ

[1] ×áÀÊÀÞÄ Ê., ËÏÂÉÊÖÒÉ ÁÒÖÍÄÁÉÓÀ ÃÀ ËÉÍÂÅÉÓÔÖÒÉ ÌÉÌÀÒÈÄÁÄÁÉÓ ÓÀÊÉÈáÉÓÀÈÅÉÓØÀÒÈÖËÛÉ, ÓÀÂÀÍÌÀÍÀÈËÄÁËÏ-ÓÀÌÄÝÍÉÒÏ ÑÖÒÍÀËÉ „ØÀÒÈÖËÉ ÄÍÀ ÃÀ ËÏÂÉÊÀ“,ÉÀÍÅÀÒÉ-ÉÅÍÉÓÉ (#1), „ÖÍÉÅÄÒÓÀËÉ”, 2005, ÂÅ.19-77;

[2] ×áÀÊÀÞÄ Ê., ÜÉØÅÉÍÉÞÄ Ì., ØÀÒÈÖËÉ ÌÀÒÔÉÅÉ ÃÀ ÒÈÖËÉ ßÉÍÀÃÀÃÄÁÄÁÉÓ ËÏÂÉÊÖÒÉÓÉÍÔÀØÓÉÓÀ ÃÀ ØÀÒÈÖËÉ ÌÀÒÈËÌßÄÒÉÓ ÀÌÂÄÁÉ ÌÄÈÏÃÄÁÉÓ ÃÀ ÀÂÄÁÉÓ ÌÉÆÍÄÁÉÓÌÉÌÏáÉËÅÀ, ÓÔÖ ØÀÒÈÖËÉ ÄÍÉÓ ÔÄØÍÏËÏÂÉÆÄÁÉÓ ÓÀÓßÀÅËÏ-ÓÀÌÄÝÍÄÉÒÏ ÝÄÍÔÒÉÓÛÒÏÌÄÁÉ, #1, 2011, 52-92;

[3] L. Abzianidze, An HPSG-based Formal Grammar of a Core Fragment of Geor-gian Implemented in TRALE, Master Thesis, Charles University in Prague, 2011,pp. 1–124.

The Allophone Database of the Georgian SpeechSynthesizer

Alexander VashalomidzeGeorgian Technical University, Center for Georgian Language Teqnology

Tbilisi, Georgiaemail: [email protected]

The construction of allophonic base for the synthesizer of speech is hard and com-plex process. In another work the allophones were represented by the tri-phones, wasdetermined the concept of the similarity of tri-phones and the classes of similarity.

Independently from concrete composition of classes always arises a question of se-lection of a representative for each class. The number of the variants of selection ofrepresentatives is astronomically large number; therefore it is necessary to determine thecriteria of selection. The rule of selection of representatives for each class is presented inthis work.

We select the representatives using, the so-called contextual matrices. For each unitof base, in our case for allophone, it is built a rectangular array (table). In the first lineand in the first column of the table the symbols of Georgian alphabet are written. Atthe intersections is given the frequency of appearance of the corresponding tri-phone ina large corpus of the texts. This table (with the appropriate volume of corpus) is theinvariant of language and it may be used in any tasks of processing the Georgian texts,including the task of the recognition of speech.

Page 153: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÁÖÍÄÁÒÉÅÉ ÄÍÄÁÉÓ ËÏÂÉÊÀ . . . 153

The rectangular minor of matrix, determined by the number field of the correspondingtable, corresponds to each class of similarity. Tri-phone, which corresponds to the maximalelement of minor (the mode), is the representative of class.

The described method of constructing of tables and selection of representatives doesnot depend on the selection of units and determining the classes.

For the contextual matrices the correlation matrix of contexts was built. Correlationmatrix helps us to determine the groups of the contextual-correlated phonemes and todetermine different contexts for them.

The concrete base of representatives is built.

Page 154: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

154 Logic of Natural Languages . . . September 2–9, Batumi, Georgia

Page 155: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 155

Mathematical Modeling and NumericalAnalysis

ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÀ ÃÀ ÒÉÝáÅÉÈÉ ÀÍÀËÉÆÉ

Page 156: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
Page 157: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÀ ÃÀ ÒÉÝáÅÉÈÉ ÀÍÀËÉÆÉ 157

On a Numerical Solution of One Nonlocal BoundaryValue Problem with Mixed Dirichlet–Neumann

ConditionsGivi Berikelashvili1,2, Nodar Khomeriki2

1 A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University2 Department of Mathematics, Georgian Technical University

Tbilisi, Georgiae-mail: [email protected]

Let Ω = x = (x1, x2) : 0 < xα < lα, α = 1, 2 be the rectangle with boundary Γ;Γ+1 = (l1, x2) : 0 < x2 < l2, Γ+2 = (x1, l2) : 0 ≤ x1 ≤ l2.

Consider the mixed boundary value problem: find a function u(x) such that

∆u = f(x) x ∈ Ω, (1)

u(x) = 0, x ∈ Γ+2,∂u

∂x1= g(x2), x ∈ Γ+1, (2)∫ l1

0

u(x1, x2) dx1 = 0, 0 < x2 < l2,

∫ l2

0

u(x1, x2) dx2 = 0, 0 < x1 < l1. (3)

We introduce the grid domains ωα = xα = iαhα : iα = 0, 1, . . . , nα hα = lα/nα,ωα = ωα ∩ (0, lα), ω = ω1 × ω2, γ+1 = (l1, x2) : x2 ∈ ω2, γ+2 = (x1, l2) : x1 ∈ ω1.

Let ~α = hα, xα ∈ ωα; ~α = hα/2, xα = 0; h = max(h1, h2).We approximate the problem (1)-(3) by the finite difference scheme:

yx1x1 + yx2x2 = T1T2f, x ∈ ω, (4)

− 2

h1yx1 + yx2x2 = T−1 T2f − 2

h1T2g, x ∈ γ+1, (5)

y = 0, x ∈ γ+2,∑ω1

~1y = 0, x2 ∈ ω2,∑ω2

~2y = 0, x1 ∈ ω1, (6)

where yxα , yxα denotes the backward and forward difference quotients, respectively in xαdirection and T1, T2, T

−1 are some averaging operators.

Theorem. Let the solution of the nonlocal boundary value problem problem (1)–(3)belong to the space Wm

2 (Ω), m > 1. Then, the discretization error of the finite differencescheme (4)–(6) in the discrete W 1

2 (ω)-norm is determined by the estimate

∥y − u∥W 12 (ω)

≤ chm−1∥u∥Wm2 (Ω), m ∈ (1, 3],

where the positive constant c does not depend on h and u.

Page 158: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

158 Mathematical Modeling . . . September 2–9, Batumi, Georgia

About New Mathematical Model“Beast - Predator-Victim”

Temur ChilachavaSokhumi State University

Department of Mathematics and Computer Science, the direction of mathematicalmodels and computational methods

Tbilisi, Georgiaemail: temo−[email protected]

In work the new nonlinear continuous mathematical model “beast - predator-victim”is presented. In model dynamics of three mutually antagonistic populations is considered.It is supposed that population of the victim eats vegetation and for it is fair or Malthusmodel (unlimited quantity of a food resource) or Pearl–Verhulst (limited quantity of afood resource). Population of predators eats only population of victims, and populationof beast both population of victims and predators. The model is described by nonlinearsystem of the differential equations and initial data.

dx(t)

dt= ax(t)− a1x

2(t)− bx(t)y(t)− cx(t)z(t),

dy(t)

dt= −dy(t) + d1x(t)y(t)− d2y(t)z(t),

dz(t)

dt= −d3z(t) + d4x(t)z(t) + d5z(t)y(t).

a, b, c, d, d1, d2, d3, d4, d5 > 0, a1 ≥ 0, x(t0) = x0, y(t0) = y0,z(t0) = z0, where x(t),y(t), z(t) respectively number of victims, predators and beast at the moment of time t. Inthe absence of beast or predators, the model Lotka–Volterra of two resisting types turnsout. In that specific case, (at certain ratios between model constants) integrated surfacesof system on which the ratio of quantity of predators with product of victims and beast,doesn’t change that testifies to a certain balance between types in the Nature (fauna) arereceived.

Page 159: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÀ ÃÀ ÒÉÝáÅÉÈÉ ÀÍÀËÉÆÉ 159

Three Layer Factorized Difference Schemesfor Solving the Systems of Differential Equations

of Parabolic Type with Mixed DerivativesFrancisco Criado1, Tinatin Davitashvili2, Hamlet Meladze3

1 Malaga University, Malaga, Spainemail: [email protected]

2 I. Javakhishvili Tbilisi State University, Tbilisi, Georgiaemail: [email protected]

3 St. Andrew the First Called Georgian University, Tbilisi, Georgiaemail: [email protected]

In this report the problem of construction of three-layer factorized scheme for solvingof mixed problem with first order boundary conditions for systems of linear equations ofparabolic type B ∂u

∂t= Lu + f is considered, where B is positively defined and symmet-

ric matrix, L is strong elliptic operator with variable coefficients, containing the mixedderivatives, u and f are n-dimensional vectors.

Is constructed absolutely stable three-layer factorized scheme, whose solution requiresno inversion of matrix B. Separately considered the case, when B is the unit matrix. Inthis case the absolutely stable three-layer factorized scheme is constructed.

For difference scheme the aprioristic estimation on layer in norm of mesh spaceW

(1)2

is received, on which basis convergence of solution of the difference scheme to the solutionof an initial problem is proved with the speed O(τ + h2) and in the second case with thespeed O(τ 2 + h2), where τ - the step of time grid and h - the step of space grid.

The received algorithms can be effectively used for multiprocessing computing systems.

Page 160: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

160 Mathematical Modeling . . . September 2–9, Batumi, Georgia

Mathematical Modeling of Leak Locationin Compound Gas Pipeline Network

Teimuraz Davitashvili, Givi Gubelidze, David Gordeziani,Archil Papukashvili, Meri Sharikadze

Faculty of Exact and Natural Sciences of I. Javakhishvili Tbilisi State University,I. Vekua Institute of Applied mathematics of I. Javakhishvili Tbilisi State University

Tbilisi, Georgiaemail: [email protected]; [email protected]; [email protected];

[email protected]

Analyses of a reliability of the main gas pipeline’s exploitation has shown high prob-ability of the main gas pipeline’s some sections damage and gas leakage and as a resultthe gas pressure and expenditure alteration when non-stationary processes are in progress[1-3]. After some time gas leakage (under some conditions), it is possible establishment anew stationary state of gas movement in the pipelines has stationary character. That isway it is necessary to study as a non-stationary stage as well the stationary stage of gasmovement in the pipelines having gas escape in the some sections of the main gas pipeline[1-2].

It is known analytical method of determination a large-scale gas escape location on thesimple section of main gas pipeline [1], using data of the gas pressures and expenditureat the entrance and ending of the gas pipeline. But this method cannot be used for maingas pipelines with several sections and branches if previously would not be discovered thelocation of the section with gas escape. The method offered by us is devoid from thisdefault.

So the problem can be formulated as follows: In the complex main gas pipeline withseveral branches and sections first of all the placement of the section having accidental gasescape is determined using minimal information (data of the gas pressures and expenditureat the main gas pipeline’s entrance and ending points before and after gas escape) and thendefined location of the accidental gas escape in the determined section of main pipeline.

In this article the above mentioned problem is studied.

References[1] A. Bushkovsky, Characteristic System of Distribution of Parameters, Moscow, Na-

uka, 1979.

[2] T. Davitashvili, G. Gubelidze and I. Samkharadze, Leak Detection in Oil and GasTransmission Pipelines, in Book “Informational and Communication Technologies -

Page 161: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÀ ÃÀ ÒÉÝáÅÉÈÉ ÀÍÀËÉÆÉ 161

Theory and Practice: Proceedings of the International Scientific Conference ICTMC-2010 Devoted to the 80th Anniversary of I.V. Prangishvili” Printer Nova, USA, 2011,pp. 134–139.

[3] T. Davitashvili, G. Gubelidze and I. Samkharadze, Prediction of Possible Points ofHydrates Origin in the Main Pipelines Under the Condition of Non-stationary Flow,World Academy of Science, Engineering and Teqnology 78 (2011), 1069–1074.

Solution of an Optimal Control Problemwith Mathcad

David Devadze, Vakhtang BeridzeShota Rustaveli Batumi State University, Department of Computer Technology

Batumi, Georgiaemail: [email protected]; [email protected]

Let the domain G be the rectangle, G = [0, 1] × [0, 1] , Γ- be the boundary of thedomain G, 0 < x0 < 1, γ0 = (x0, y) : 0 ≤ y ≤ 1, γ = (1, y) : 0 ≤ y ≤ 1, a, b, c, d ∈Lp (G) , p > 2, 0 ≤ q (x, y) ∈ L∞ (G) , U = [−1, 1] , Ω- set of all possible controlfunctions ω (x, y) : G → U. For each fixed ω ∈ Ω in the domain G we consider thefollowing Bitsadze–Samarski boundary value problem [1] for Helmholtz Equation:

∂2u

∂x2+∂2u

∂y2− q (x, y)u = a (x, y)ω (x, y) + b (x, y) , (x, y) ∈ G,

u (x, y) = 0, (x, y) ∈ Γ\γ, (4)u (1, y) = σu (x0,y) , 0 ≤ y ≤ 1, σ > 0.

Consider the functional I(u) =∫∫

G[c(x, y)u(x, y)+d(x, y)ω(x, y)]dxdy and pose the fol-

lowing optimal control problem: Find a function u0 (x, y) ∈ Ω, for which the solution ofthe problem (1) gives the functional I (u) a minimal value [2].

Theorem. Let ψ0 - a solution of the adjoint problem

∂2ψ

∂x2+∂2ψ

∂y2− q (x, y)ψ = −c (x, y) , (x, y) ∈ G\γ0,

ψ (x, y) = 0, (x, y) ∈ Γ , (5)∂ψ(x+0 , y

)∂x

−∂ψ(x−0 , y

)∂x

= σ∂ψ (1, y)

∂x, 0 ≤ y ≤ 1,

Page 162: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

162 Mathematical Modeling . . . September 2–9, Batumi, Georgia

then, for optimality (u0, ω0) if and only if the principle of minimum almost everywhereon G: infω∈U [d (x, y)− a (x, y)ψ0 (x, y)]ω = [d (x, y)− a (x, y)ψ0 (x, y)]ω0.

With the iterative process the solution of (1),(2) can lead to a solution of the Dirichletproblem. For the numerical solution of the Dirichlet problem built-in functions relax (a,b, c, d, e, f, u, rjac) were used on Mathcad.

References[1] A. V. Bitsadze and A. A. Samarski, On some simplest generalizations of elliptic

problems. (Russian) Dokl. AN SSSR 185 (1969), No. 2, 739–740.[2] H. V. Meladze, T. S. Tsutsunava and D. Sh. Devadze, An optimal control problem

for the first order quasi-linear differential equations with nonlocal boundary condi-tions on the plane. (Russian). TSU, Tbilisi, 1987, Dep. in Geo. ISTI, 25.12.1987,No. 372–587.

Numerical Modelling of Pollution SourcesOptimizationGeorge Geladze

Faculty of Exact and Natural Sciences of I. Javakhishvili Tbilisi State UniversityI. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University

Tbilisi, Georgiaemail: [email protected]

The two-dimensional numerical model of an aerosol distribution from an instant pointsource against of thermohydrodynamics of a mesoscale boundary layer of atmosphereis developed. With its help it has been investigated the contribution and influence onconsidered ecological process of such basic factors, as an aerosol source height, an aerosolsedimentation velocity, a background wind, atmosphere stratification. In this work thespecial place is given to a problem of an surface pollution. It depends essentially on asource pollution height; it decreases with its increase, i.e. the ecological situation underthe source improves. As the increase of an aerosol source height is connected with differenttechnical and economic problems same effect can often by achieving by preliminary heatingof an aerosol. This scenario is simulated By means of the present model. The firstnumerical experiments about of revelation of equivalence between increasing of pollutionsource height and degree of preliminary heating of an aerosol are received.

Page 163: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÀ ÃÀ ÒÉÝáÅÉÈÉ ÀÍÀËÉÆÉ 163

Mathematical Simulation of a Humidity ProcessesEnsemble

George Geladze, Meri Sharikadze, Manana TevdoradzeFaculty of Exact and Natural Sciences of I. Javakhishvili Tbilisi State University

I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State UniversityTbilisi, Georgia

email: [email protected]; [email protected];[email protected]

The ensemble of humidity processes (fogs, layered clouds) has been simulated on thebasis of the numerical model of a non-stationary mesoscale boundary layer of atmosphere(MBLA) developed by us. In this work the accent becomes on interaction and inter-conversion of humidity processes in the above-stated ensemble. Local circulation againstwhich process fog- and cloudformation develops is caused by a daily march of temperatureof an underlying surface. In the work process develops in time: in the end of the period ofheating and in the beginning of cooling (evening) of an underlying surface simultaneouspresence of a fog and of a cloud takes place. At the subsequent heating (at daybreak) ofan underlying surface there is a gradual emerging and horizontal expansion of fog edges;they constantly lose touch with an initial fog and continue to exist irrespective of it as alayered cloud. So, we have three layered clouds and one fog. At the further heating ofan underlying surface there is a gradual emersion of a fog. Therefore we receive ensemblefrom four layered clouds. Thus, during one day we have simultaneously a cloud and a fog,then three clouds and a fog, and at last four clouds. In modelling of the above-stated un-ordinary processes a determinative role are played relative humidity and turbulent regimeof MBLA. The results of calculations received at selection of special meteorological condi-tions are physically quite logical and possible, but occurrence of such humidity processesensembles in the nature are not known to us from materials of meteorological observation.Therefore it is possible to consider our work as numerical experiment. Further we will tryto find meteorological process corresponding to our results

Page 164: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

164 Mathematical Modeling . . . September 2–9, Batumi, Georgia

On One Nonlinear One-Dimensional Diffusion ModelTemur Jangveladze

Ilia Vekua Institute of Applied MathematicsIvane Javkhishvili Tbilisi State University

Caucasus UniversityTbilisi, Georgia

email: [email protected]

The one-dimensional analogue of the following nonlinear diffusion model is considered:

∂H

∂t= −rot (νmrotH) , (6)

cν∂θ

∂t= νm (rotH)2 + ε∇ (k∇θ) , (7)

where H = (H1, H2, H3) is a vector of magnetic field, θ – temperature, cν , νm and k char-acterize correspondingly heat capacity, electroconductivity and heat conductivity of themedium, that depends on temperature, ε = const > 0. System (1) describes propagationof magnetic field in the medium, and equation (2) describes temperature change at theexpense of Joule’s heating and heat conductivity.

Some aspects of investigation and numerical solution of one-dimensional version ofsystem (1), (2), in case of one-components magnetic field, are given, for example, in theworks [1]-[4].

Our aim is investigation and numerical solution of one-dimensional version of system(1), (2) in case of two-components magnetic field. Especially, the finite difference schemefor initial-boundary value problem for some kind of nonlinearities are constructed andinvestigated. The behavior of solutions as ε → 0 is also studied. The correspondingnumerical experiments are carried out.

References[1] I. O. Abuladze, D. G. Gordeziani, T. A. Dzhangveladze, T. K. Korshia, Discrete

Models for a Nonlinear Magnetic-Field Scattering Problem with Thermal Conduc-tivity. Differ. Uravn. 22 (1986), No. 7, 1119–1129 (in Russian). English transl.:Differ. Equ. 22 (1986), No. 7, 769–777.

[2] M. Gagoshidze, T. Jangveladze, On One Nonlinear Diffusion System. Rep. EnlargedSess. Semin. I.Vekua Appl. Math. 25 (2011), 39–43.

[3] T. Jangveladze, Additive Models for One Nonlinear Diffusion System. Rep. En-larged Sess. Semin. I.Vekua Appl. Math. 24 (2010), 66–69.

Page 165: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÀ ÃÀ ÒÉÝáÅÉÈÉ ÀÍÀËÉÆÉ 165

[4] D. Sun, V. S. Manoranjan, H. M. Yin, Numerical Solutions for a Coupled ParabolicEquations Arising Induction Heating Processe. Discrete Contin. Dyn. Syst. 2007,956–964.

On the Solution of an Equation for the Static StringNikoloz Kachakhidze, Nodar Khomeriki, Zviad Tsiklauri

Georgian Technical University, Department of MathematicsTbilisi, Georgia

email: [email protected]; [email protected]; [email protected]

We consider the methods of solution of the boundary value problem

φ

1∫0

w′2(x)dx

w′′(x) = f(x), 0 < x < 1, (8)

w(0) = w(1) = 0,

where φ(z) ≥ const > 0, 0 < z < ∞, which describes the static behavior of the stringwhen the relation between stress and strain is of nonlinear character. The question ofsolution exactness is studied. Results of computer-aided calculations are presented. Also,a two-dimensional analogue of equation (1) is considered.

The Numerical Solution of FractionalDifferential-Algebraic Equations (FDAEs)

Mesut Karabacak1, Muhammed Yigider2, Ercan Çelik1

1 Atatürk University Faculty of Science, Department of Mathematics, Erzurum-Turkey2 Erzincan University Faculty of Art and Science, Department of Mathematics,

Erzincan-Turkeyemail: [email protected]; [email protected]; [email protected]

In this paper, Numerical solution of Fractional Differential–Algebraic Equations(FDAEs) is considered. First Fractional Differential–Algebraic Equations(FDAEs) has

Page 166: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

166 Mathematical Modeling . . . September 2–9, Batumi, Georgia

been converted to power series. Then Numerical solution of Fractional Differential–AlgebraicEquations (FDAEs) is obtained.

Keywords. Differential-Algebraic Equations(DAEs), Fractional Differential-AlgebraicEquation (FDAEs), Power Series.

Mathematical Model of Information WarfareTaking into Account Technological Possibilities

of the PartiesNugzar Kereselidze

The Georgian university of St. Andrew at Patriarchate of GeorgiaSchool (Faculty) Mathematical modeling and computer technologies

Tbilisi, Georgiaemail: [email protected]

The mathematical model of information warfare, taking into account possibilities ofinformation technologies of the antagonistic parties is constructed. In particular, for abasis the mathematical model of ignoring of the parties [1] is chosen. According to thismodel, in principle the antagonistic parties can extend unlimited amount of informationat any moment. Actually, the amount of extended information is limited, and is definedby an appropriate level information technologies of warring parties. Taking into accountthis situation the following mathematical model - non-linear system of the differentialequations, is constructed and studied.

dN1(t)

dt= αN1(t)

(1− N1(t)

I1

)− βN3(t),

dN2(t)

dt= αN2(t)

(1− N2(t)

I2

)− βN3(t),

dN3(t)

dt= γ(N1(t) +N2(t)),

where I1, I2 respectively the maximum quantity of effectively extended information theantagonistic parties at the moment of time. N1(t), N2(t), the amount of informationextended by the antagonistic parties respectively. And N3(t) peacekeeping party. α-index of aggression of the antagonistic parties, β- index of readiness for reconciliation, γ-index of peacekeeping activity.

Page 167: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÀ ÃÀ ÒÉÝáÅÉÈÉ ÀÍÀËÉÆÉ 167

References[1] T. Chilachava and N. Kereselidze, About one mathematical model of the information

warfare. Fifth congress of mathematicians of Georgia. Abstracts of contributedtalks. Batumi/Kutaisi, October 9-12, 2009, p. 85.

On the Solution of One Nonlinear Elliptic EquationNino Khatiashvili, Kristina Pirumova, Manana Tevdoradze

I. Vekua Institute of Applied Mathematics, I. Javakhishvili Tbilisi State UniversityTbilisi, Georgia

email: [email protected]

In the talk the following problem will be presented.Problem. In R3 to find continuous function u having second order derivatives, van-

ishing at infinity and satisfying the equation

∆u+ λu3 = A0u, (1)

where λ is some parameter.By introducing new function and using Taylor series the equation is reduced to the

approximate nonlinear elliptic equation. The effective solutions of this equation vanishingat infinity are obtained and are given by the formula

u = R sin e−α|x|−β|y|−γ|z|−D,

where R is some constant, D > 0 is the constant for which e−4D is sufficiently small andthe constants λ, α, β, γ > 0 satisfy the conditions

α2 + β2 + γ2 = A0, λR2 =4

3A0,

where A0 > 0 is the constant.

Page 168: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

168 Mathematical Modeling . . . September 2–9, Batumi, Georgia

Variational Iteration Method for Fuzzy FractionalDifferential Equations with UncertaintyEkhtiar Khodadadi1, Ercan Çelik2, Faruk Düşünceli2

1 Islamic Azad University, Malekan Branch, Malekan, Iran2 Atatürk University Faculty of Science, Department of Mathematics, Erzurum-Turkey

email: [email protected]; [email protected]; [email protected]

In this paper the variational iteration method is used to solve the fractional differentialequations with fuzzy initial condition. We consider a differential equation of fractionalorder with uncertainty and present the concept of solution. We compared the results withtheir exact solutions in order to demonstrate the validity and applicability of the method.

Key words: Fuzzy number, Fuzzy initial value problems, Riemann–Liouville frac-tional derivative, Mittag-Leffler function, Variational iteration method.

On Numerical Resolution of One Systemof Nonlinear Integro-Differential Equations

Zurab KiguradzeIlia Vekua Institute of Applied MathematicsIvane Javkhishvili Tbilisi State University

Faculty of Exact and Natural SciencesTbilisi, Georgia

email: [email protected]

The following initial-boundary value problem is studied:

∂ui∂t

=

(1 +

∫ t

0

∫ 1

0

[(∂u1∂x

)2

+

(∂u2∂x

)2]dxdτ

)∂2ui∂x2

+ fi(x, t),

ui(0, t) = ui(1, t) = 0, 0 ≤ t ≤ T, (9)ui(x, 0) = ui0(x), x ∈ [0, 1],

where T = Const > 0 and ui0(x), i = 1, 2 are given functions.The approximation uhi ∈ Sh to ui is defined by as follows: Find a pair uhi ∈ Sh such

that⟨vhi ,

∂uhi∂t

⟩+

⟨(1 +

∫ t

0

∫ 1

0

[(∂uh1∂x

)2

+

(∂uh2∂x

)2]dxdτ

)∂uhi∂x

,∂vhi∂x

⟩=< fi, v

hi >,

Page 169: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÀ ÃÀ ÒÉÝáÅÉÈÉ ÀÍÀËÉÆÉ 169

and< vhi , u

hi (x, 0) >=< vhi , ui0(x) >, ∀vhi ∈ Sh,

where Sh is a finite-dimensional subspace of the linear space H of functions ui satisfyingthe boundary conditions in (1) for each t and i = 1, 2.

The following theorem is proven:Theorem. The error in the finite element approximation uhi satisfies the inequality

|||ui − uhi |||1 ≤ hj−1

c1h

2 ||ui0||2 + c2h2

∣∣∣∣∣∣∣∣∣∣∣∣∂ui∂t

∣∣∣∣∣∣∣∣∣∣∣∣20

+ c3|||ui|||20 + c4h2(j−1)

2∑m=1

|||um|||20

+ c5

[2∑

m=1

(c6h

j−1 |||um|||20 + c7[]um[])]2

1/2

,

where

|||E|||r =

[∫ T

0

∫ 1

0

(r∑

j=0

∣∣∣∣∂jE(x, t)∂xj

∣∣∣∣2)dxdt

]1/2, []u[] =

∫ T

0

∫ 1

0

|u| dxdτ

and ck, k = 1, 2, . . . , 7, denote positive constants.The issue above, jointly with author, was the subject of recent investigations of Prof.

T. Jangveladze, Prof. B. Neta and Prof. S. Reich.

The Approximate Solution of a NonhomogeneousDifferential Equation

Vladimer OdishariaDepartment of Mathematics, I. Javakhishvili Tbilisi State University

Tbilisi, Georgiaemail: [email protected]

The following initial boundary value problem is considered

wtt −(λ+

8

π3

∫Ω

|∇w|2 dx)

∆w = f (x, t) , 0 < t ≤ T , x ∈ Ω, (1)

w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ Ω,

w(x, t) = 0, x ∈ ∂Ω, 0 ≤ t ≤ T, (2)

Page 170: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

170 Mathematical Modeling . . . September 2–9, Batumi, Georgia

wherex = (x1, x2, x3), Ω = (x1, x2, x3)|0 < xi < π, i = 1, 2, 3, ∂Ω is the boundary ofthe domain Ω,w0(x),w1(x) and f (x, t) are given functions, λ > 0 and Tare the knownconstants.

Equation (1) is a three-dimensional nonhomogeneous analogue of the Kirchhoff equa-tion [1]

wtt =

(1 +

∫ 1

0

w2xdx

)wxx (3)

describing the oscillation of a string. The problem of solvability of (3) equation was forthe first time studied by S. Bernstein. Later, many researchers showed an interest inequations of Kirchhoff type (see e.g. [2]–[5]).

Here we present a numerical algorithm of problem (1),(2). Step-by-step discretizationwith respect to a spatial and a time variables is carried out. To solve the resulting cubicsystem we use the Jacobi iteration method. The error of this method is estimated.

References[1] G. Kirchhoff, Vorlesungen Über Mechanik, Teubner, Leipzig, 1883.[2] L. Medeiros, I. Limaco and S. Menezes, Vibrations of an elastic strings: Mathemat-

ical Aspects, I and II., J. Comput. Anal. Appl. 4 (2002), no. 3, 211–263.[3] J. Peradze, A numerical algorithm for the nonlinear Kirchhoff string equation, Nu-

mer. Math. 102 (2005), no. 2, 311–342.[4] J. Peradze, An approximate algorithm for a Kirchhoff wave equation, SIAM J.Numer.

Anal. 47 (2009), issue 3, 2243–2268.[5] K. Odisharia, V. Odisharia and J. Peradze, On the exactness of an iteration method

for one non-linear oscillation equation, Proceedings in Applied Mathematics andMechanics 10 (2010), issue 1, December, 49–50.

Page 171: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÀ ÃÀ ÒÉÝáÅÉÈÉ ÀÍÀËÉÆÉ 171

Classification of Factors that Affect the Speedof the RSA Cryptosystem

İsrafil Okumuş1, Ercan Çelik2

1 Erzincan University Faculty of Art and Science, Department of Mathematics,Erzincan-Turkey

2 Atatürk University Faculty of Science, Department of Mathematics, Erzurum-Turkeyemail: [email protected]; [email protected]

The RSA is asymmetric encryption method widely used for information security anddigital signature. In this papers, firstly, RSA Cryptosystem were announced. Then,factors affecting time of encryption and decryption of RSA cryptosystem were examined.Finally the algorithms developed to shorten time of encryption and decryption of RSAcryptosystem were classified under two topics.

Keywords: RSA, Variation of RSA, Key Generation, Algorithms.

On One Finite-difference Method for Investigationof Stressed State of Composite Bodies Weakened

by CracksArchil Papukashvili, David Gordeziani, Teimuraz Davitashvili,

Meri SharikadzeFaculty of Exact and Natural Sciences of Iv. Javakhishvili Tbilisi State University,

I. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Tbilisi State UniversityTbilisi, Georgia

email: [email protected], [email protected],[email protected], [email protected]

Study of boundary value problems for the composite bodies weakened by cracks has agreat practical significance. Mathematical model investigated boundary value problemsfor the composite bodies weakened by cracks in the first approximation can be basedon the equations of anti-plane approach of elasticity theory for composite (piece-wisehomogeneous) bodies. When cracks intersect an interface or penetrate it at all sorts ofangle on the base of the integral equations method is studied in the works [1]–[3]. Inthe present article finite-difference solution of anti-plane problems of elasticity theoryfor composite (piece-wise homogeneous) bodies weakened by cracks is presented. The

Page 172: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

172 Mathematical Modeling . . . September 2–9, Batumi, Georgia

differential equation with corresponding initial boundary conditions is approximated byfinite-differential analogies in the rectangular quadratic area. Such kind set of the problemgives opportunity to find directly numeral values of shift functions in the grid points. Thesuggested calculation algorithms have been tested for the concrete practical tasks. Theresults of numerical calculations are in a good degree of approach with the results oftheoretical investigations.

References[1] A. Papukashvili, Antiplane problems of theory of elasticity piecewice-homogeneous

orthotropic plane slackened with cracks. Bull. Georgian Acad. Sci. 169 (2004),No. 2, 267–270.

[2] A. Papukashvili, About of one boundary problem solution of antiplane elasticitytheory by integral equation methods. Rep. Enlarged Session Semin. I. Vekua Inst.Appl. Math. 24 (2010), 99–102.

[3] A. Papukashvili, M. Sharikadze, and G. Kurdghelashvili, An approximate solutionof one system of the singular integral equations. Rep. Enlarged Session Semin. I.Vekua Inst. Appl. Math. 25 (2011), 95–98.

A Numerical Method for a Beam EquationJemal Peradze

I. Javakhishvili Tbilisi State University, Georgian Technical University,Tbilisi, Georgia

email: [email protected]

Let us consider the nonlinear differential equation

uiv(x)−m

(∫ L

0

u′2(x) dx

)u′′(x) = f(x), (1)

0 < x < L,

with the boundary conditions

u(0) = u(L) = 0, u′′(0) = u′′(L) = 0. (2)

Here u(x), 0 ≤ x ≤ L, is the function to be found and m(λ) ≥ const > 0, 0 ≤ λ < ∞,and f(x), 0 < x < L, are the given functions.

Page 173: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÀ ÃÀ ÒÉÝáÅÉÈÉ ÀÍÀËÉÆÉ 173

Equation (1) is the stationary problem associated with the equation

utt(x, t) + uxxxx(x, t)−(α0 + α1

∫ L

0

u2x(x, t) dx

)uxx(x, t) = 0,

0 < x < L, 0 < t ≤ T,

α0, α1 ≥ const > 0, which was proposed by Woinowsky–Krieger in 1950 as a model forthe deflection of an extensible dynamic beam with hinged ends.

To approximate the solution of problem (1), (2) the Galerkin method and the Newto-nian iteration process are used. The accuracy of algorithm is discussed.

Accelerating the Convergence of TrigonometricInterpolation via Polynomial and Rational

CorrectionsArnak Poghosyan

Institute of Mathematics of National Academy of Sciences of ArmeniaYerevan, Republic of Armeniaemail: [email protected]

It is well known that reconstruction of a smooth on [−1, 1] function by the classicaltrigonometric interpolation

IN(f) =N∑

n=−N

fneiπnx,

fn =1

2N + 1

N∑k=−N

f(xk)e−iπnxk , xk =

2k

2N + 1

is noneffective when the 2-periodic extension of the interpolated function is discontinuouson the real line. The oscillations caused by the Gibbs phenomenon are typically propa-gated into regions away from the singularities and degrade the quality of interpolation.

We consider the convergence acceleration of the classical trigonometric interpola-tion via polynomial and rational (by eiπx) corrections. Polynomial correction is knownas the Krylov–Lanczos approach ([1], [2]). Rational corrections follow the idea of theFourier–Pade approximation [3].

The resulting interpolation IN,q,p(f) is a sum of a polynomial in the form of a linearcombination of the Bernoulli polynomials with q jumps in the coefficients, trigonometric

Page 174: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

174 Mathematical Modeling . . . September 2–9, Batumi, Georgia

interpolation of a smooth function and rational corrections where p is the order of de-nominator. Such interpolations include an unknown parameter which determination is acrucial problem for rational corrections.

We reveal some theoretical estimates for convergence of the suggested interpolations,discuss the problem of parameter determination, present some results of numerical exper-iments and show how the parameters can be chosen in practical problems.

References[1] A. Krylov, On approximate calculations. Lectures delivered in 1906, Tipolitography

of Birkenfeld, Petersburg, 1907.

[2] C. Lanczos, Discourse on Fourier Series, Oliver and Boyd, Edinburgh, 1966.

[3] G. A. Baker, and P. Graves-Morris, Padė Approximants, Encyclopedia of mathe-matics and its applications. Vol. 59, 2nd ed., Cambridge Univ. Press, Cambridge,1996.

On a Convergence of the Quasi-PeriodicInterpolationLusine Poghosyan

Institute of Mathematics, National Academy of SciencesYerevan, Republic of Armenia

email: [email protected]

We consider the problem of function interpolation by its discrete Fourier coefficients

fn =1

2N +m+ 1

N∑k=−N

f

(k

N

)e−

2iπnk2N+m+1 , m ∈ Z, m ≥ 0,

calculated over the equidistant grid k

Non [−1, 1] including also the endpoints of the

interval. The solution of this problem we seek in the form

IN(f, x) =N∑

n=−N

Fne2iπnNx2N+m+1 ,

Page 175: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÀ ÃÀ ÒÉÝáÅÉÈÉ ÀÍÀËÉÆÉ 175

where unknown coefficients Fn can be determined from condition of exactness for quasi-periodic functions

e2iπnNx2N+m+1 , n = −N, . . . , N.

This condition leads to determination of Fn as follows

Fn = fn +m∑j=1

θjnfN+j,

where θjn is the solution of linear system with Vandermonde matrix.The resultant interpolation was first discovered by academician Nersessian (see [1]) and

was called full and quasi-periodic interpolation. We investigate the convergence of quasi-periodic interpolation in dependent on parameter m, present some results of numericalexperiments and discuss its advantages over the classical trigonometric interpolation.

2010 Mathematics Subject Classification. 42A15, 65T40.Keywords. Trigonometric interpolation, quasi-periodic interpolation.

References[1] A. Nersessian and N. Hovhannesyan, Quasiperiodic interpolation. Reports of NAS

RA 101(2) (2006), 1–6.

Simulation of Plasmonic structures by UsingMethod of Auxiliary Sources

K. Tavzarashvili1, G. Ghvedashvili21University of Georgia (UG)Department of Engineering

email: [email protected]. Javakhishvili Tbilisi State University

Department of Electric and Electrical Engineeringemail: [email protected]

Plasmonic and Plasmonic Metamaterials that are promising to revolutionize ways ofgenerating, controlling and processing light in the nanoscale and expected to have a strongimpact on future developments in the technological applications range from nano-lasersto optical nano-waveguides to artificial media with unusual and exotic optical propertiesunattainable in natural materials.

Page 176: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

176 Mathematical Modeling . . . September 2–9, Batumi, Georgia

Optical properties of plasmonic nanostructures are often accessed by evaluating theirinteraction with light by means of rigorous numerical methods. Such analysis allowsthe reliable prediction of any measurable quantity, whereas insights into the physicalmechanisms that govern the observable effects require an intense interpretation of thesequantities.

Because of the strong enhancement Plasmonic effects, accurate simulation is extremelydemanding. First of all, only a full, vectorial field analysis can take the strong couplingsufficiently well into account. Secondly, even simple plasmonic structures are considerablysmaller than the optical wavelength. Finally, numerical inaccuracies strongly disturb theoptimization process. As a result, the numerical models become rather large, i.e., time-and memory-consuming.

The Generalized Multipole Method (GMT) is a relatively new and fast advancingmethod. It did not find that much interest compared to other methods. But nowadaysit popularity is steadily increasing. Extensions and enhancement to the methods andcomputer codes are continuously being published, which broaden the scope of the meth-ods. The Method of Auxiliary Sources (MAS) is the most general implementation of theGMT. MAS is the semi-analytic Maxwell solver for computational electrodynamics in thefrequency domain and can handle various electromagnetic (EM) problems on the personalcomputers while. A reason for using frequency domain solvers is that it is much easierand natural to work with dispersive, i.e., frequency dependent materials such as metalsat optical frequencies.

Page 177: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 177

Mathematical Education and HistoryÌÀÈÄÌÀÔÉÊÖÒÉ ÂÀÍÀÈËÄÁÀ ÃÀ ÉÓÔÏÒÉÀ

Page 178: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
Page 179: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÌÀÈÄÌÀÔÉÊÖÒÉ ÂÀÍÀÈËÄÁÀ ÃÀ ÉÓÔÏÒÉÀ 179

ÀËÁÀÈÏÁÀ ÃÀ ÓÔÀÔÉÓÔÉÊÉÓ ÄËÄÌÄÍÔÄÁÉÓ ÓßÀÅËÄÁÀIB ÓÀÃÉÐËÏÌÏ ÐÒÏÂÒÀÌÉÓ ÌÉáÄÃÅÉÈ

ÐÄÔÒÄ ÁÀÁÉËÖÀ

ÉÅ. ãÀÅÀáÉÛÅÉËÉÓ ÓÀáÄËÏÁÉÓ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ,ÆÖÓÔ ÃÀ ÓÀÁÖÍÄÁÉÓÌÄÔÚÅÄËÏ ÌÄÝÍÉÄÒÄÁÀÈÀ ×ÀÊÖËÔÄÔÉ;

ÄÅÒÏÐÖËÉ ÓÊÏËÀ,ÈÁÉËÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]

ÍÀÛÒÏÌÛÉ ÛÄÌÏÈÀÅÀÆÄÁÖËÉÀ ÀËÁÀÈÏÁÉÓ ÈÄÏÒÉÉÓÀ ÃÀ ÓÔÀÔÉÓÔÉÊÉÓ ÄËÄÌÄÍÔÄÁÉÓÓßÀÅËÄÁÉÓ ÈÀÅÉÓÄÁÖÒÄÁÀÍÉ ÓÀÄÒÈÀÛÏÒÉÓÏ ÁÀÊÀËÀÅÒÉÀÔÉÓ ÓÀÃÉÐËÏÌÏ ÐÒÏÂÒÀÌÉÓ ÌÉ-áÄÃÅÉÈ. ÂÀÍáÉËÖËÉÀ ÌÏÓßÀÅËÉÓÀÈÅÉÓ ÓÀÉÍÔÄÒÄÓÏ ÀËÁÀÈÖÒ-ÓÔÀÔÉÓÔÉÊÖÒÉ ÀÌÏÝÀÍÄÁÉÃÀ ÌÀÈÉ ÀÌÏáÓÍÉÓ ÓáÅÀÃÀÓáÅÀ ÌÄÈÏÃÄÁÉ. ÂÀÃÌÏÝÄÌÖËÉÀ ÀÓÄÅÄ ÔÄØÍÏËÏÂÉÄÁÉÓ ÂÀÌÏÚÄÍÄ-ÁÉÈ ÒÄÀËÖÒÉ ÐÒÏÁËÄÌÄÁÉÓ ÀËÁÀÈÖÒ-ÓÔÀÔÉÓÔÉÊÖÒÉ ÌÄÈÏÃÄÁÉÈ ÀÌÏáÓÍÀ ÃÀ ÌÀÈÉßÀÒÌÏÃÂÄÍÀ ÐÒÏÄØÔÄÁÉÓ ÓÀáÉÈ. ÌÏÝÄÌÖËÉ ÓÀÊÉÈáÄÁÉ ÛÄÃÀÒÄÁÖËÉÀ ÓÀØÀÒÈÅÄËÏÓÄÒÏÅÍÖË ÓÀÓßÀÅËÏ ÂÄÂÌÀÓ ÃÀ ÌÏÝÄÌÖËÉÀ ÛÄÃÀÒÄÁÉÈÉ ÀÍÀËÉÆÉ.

ÆÏÂÉÄÒÈÉ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÉÓ ÀËÂÄÁÒÖËÉ ÃÀÀÒÉÈÌÄÔÉÊÖËÉ áÄÒáÄÁÉÌÀÍÀÍÀ ÃÄÉÓÀÞÄ, ÅËÀÃÉÌÄÒ ÀÃÄÉÛÅÉËÉ

ÀÊÀÊÉ ßÄÒÄÈËÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ,

ØÖÈÀÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÃÀßÚÄÁÉÈ ÊËÀÓÄÁÛÉ ÌÀÈÄÌÀÔÉÊÉÓ ÛÄÓßÀÅËÉÓÀÓ ÂÀÍÓÀÊÖÈÒÄÁÖËÉ ÚÖÒÀÃÙÄÁÀ ÄÈÌÏÁÀÀÌÏÝÀÍÄÁÉÓ ÛÄÓßÀÅËÀÓ. ÐÉÒÅÄËÉ ÊËÀÓÉÃÀÍÅÄ ÉßÚÄÁÀ ÌÀÒÔÉÅ ÀÌÏÝÀÍÄÁÆÄ ÌÖÛÀÏÁÀ, ÒÀÈÀÌÏÓßÀÅËÄÓ ÀÃÒÄÖË ÀÓÀÊÉÃÀÍÅÄ ÂÀÍÖÅÉÈÀÒÃÄÓ ÀØÔÉÖÒÉ, ÛÄÌÏØÌÄÃÄÁÉÈÉ, ÊÒÉÔÉÊÖËÉÀÆÒÏÅÍÄÁÉÓ ÖÍÀÒÉ. ÌÏÓßÀÅËÄÌ ÖÍÃÀ ÛÄÞËÏÓ ÀÌÏÝÀÍÉÓ ÐÉÒÏÁÉÓ ÂÀÀÆÒÄÁÀ, ÂÀÀÒÊÅÉÏÓÀÌÏÝÀÍÉÓ ÔÄØÓÔÛÉ ÛÄÌÀÅÀË ÓÉÃÉÃÄÄÁÓ ÛÏÒÉÓ ÊÀÅÛÉÒÉ. ÛÉÍÀÀÒÓÉÀÍÀà ÂÀÉÀÆÒÏÓ ÀÌÏÝÀÍÉÓÓÔÒÖØÔÖÒÀ ÃÀ ÛÄÞËÏÓ ØÀÒÈÖË ÓÀÌÄÔÚÅÄËÏ ÄÍÀÆÄ ÃÀßÄÒÉËÉ ÀÌÏÝÀÍÉÓ ÌÀÈÄÌÀÔÉÊÖÒÉ×ÏÒÌÖËÉÒÄÁÀ. ÜÀÄÒÈÏÓ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÉÓ ÞÉÄÁÉÓ ÐÒÏÝÄÓÛÉ ÛÄÌÏØÌÄÃÄÁÉÈÀÃ. ÛÄÞËÏÓÄÒÈÉ ÃÀ ÉÂÉÅÄ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÉÓ ÓáÅÀÃÀÓáÅÀ áÄÒáÉÈ ÉÍÔÄÒÐÒÄÔÀÝÉÀ. ÍÀÛÒÏÌÛÉÌÏÝÄÌÖËÉÀ ÒÀÌÃÄÍÉÌÄ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÉÓ ÒÏÂÏÒÝ ÀËÂÄÁÒÖËÉ, ÉÓÄ ÀÒÉÈÌÄÔÉÊÖËÉáÄÒáÄÁÉ, ÒÏÌÄËÈÀ ÀÈÅÉÓÄÁÀÝ ÌÏÓßÀÅËÄÓ ÂÀÍÖÅÉÈÀÒÄÁÓ ÛÄÌÏØÌÄÃÄÁÉÈ, ÊÒÉÔÉÊÖË ÀÆÒÏÅ-ÍÄÁÀÓ. áÄËÓ ÛÄÖßÚÏÁÓ ÌÀÈÄÌÀÔÉÊÖÒÉ ÖÍÀÒ-ÜÅÄÅÄÁÉÓ ÜÀÌÏÚÀËÉÁÄÁÀÓ, ÓßÏÒÉ ËÏÂÉÊÖÒÉ,ÊÒÉÔÉÊÖËÉ, ÀÍÀËÉÔÉÊÖÒÉ ÀÆÒÏÅÍÄÁÉÓ ÂÀÍÅÉÈÀÒÄÁÀÓ. ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÉÓÀÓ ÌÏÓßÀÅËÄÖÍÃÀ ÉÚÏÓ ÜÀÒÈÖËÉ ÀØÔÉÖÒÀà ÀÌÏáÓÍÉÓ ÞÉÄÁÉÓ ÐÒÏÝÄÓÛÉ, ÒÏÌ ÈÅÉÈÏÍ ÛÄÞËÏÓ

Page 180: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

180 Mathematical Education and History September 2–9, Batumi, Georgia

ÀÌÏÝÀÍÉÓ ÌÏÝÄÌÖË ÓÉÃÉÃÄÄÁÓ ÛÏÒÉÓ ÌÀÈÄÌÀÔÉÊÖÒÉ ÊÀÍÏÍÆÏÌÉÄÒÄÁÉÓ ÃÀÃÂÄÍÀ, ÛÄÄÞËÏÓÀÍÀËÉÆÉÓ ÂÀÊÄÈÄÁÀ ÃÀ ÚÅÄËÀÆÄ ÏÐÔÉÌÀËÖÒÉ, ÒÀÝÉÏÍÀËÖÒÉ ÂÆÉÓ ÀÌÏÒÜÄÅÀ.

ÌÏÓßÀÅËÉÓÀÃÌÉ ÂÀÃÀÝÄÌÖËÉ ÝÏÃÍÀ ÀÒ ÖÍÃÀ ÉÚÏÓ ÌáÏËÏà ÉÍ×ÏÒÌÀÝÉÖËÉ, ÌÈÀÅÀÒÉÀÌÏÓßÀÅËÉÓ ÀÆÒÏÅÍÄÁÉÓ ÂÀÍÅÉÈÀÒÄÁÀ.

ÌÀÈÄÌÀÔÉÊÉÓ ÓÀÖÍÉÅÄÒÓÉÔÄÔÏ ÓÐÄÝÉÀËÖÒÉ ÓÀÓßÀÅËÏÊÖÒÓÄÁÉÓ ÀÂÄÁÉÓ ÄÒÈÉ ÌÄÈÏÃÉÓ ÛÄÓÀáÄÁ

ÂÖÒÀÌ ÂÏÂÉÛÅÉËÉ

ÓÀØÀÒÈÅÄËÏÓ ÓÀÐÀÔÒÉÀÒØÏÓ ßÌÉÃÀ ÀÍÃÒÉÀ ÐÉÒÅÄËßÏÃÄÁÖËÉÓ ÓÀáÄËÏÁÉÓ ØÀÒÈÖËÉÖÍÉÅÄÒÓÉÔÄÔÉ, ×ÉÆÉÊÀ-ÌÀÈÄÌÀÔÉÊÖÒ ÃÀ ÊÏÌÐÉÖÔÄÒÖË ÌÄÝÍÉÄÒÄÁÀÈÀ ×ÀÊÖËÔÄÔÉ

ÈÁÉËÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]

ÂÀÌÏÚÄÍÄÁÉÈÉ ÌÀÈÄÌÀÔÉÊÉÓ ÓÀÖÍÉÅÄÒÓÉÔÄÔÏ ÓÀÓßÀÅËÏ ÃÉÓÝÉÐËÉÍÄÁÉÓ ÂÀÃÀÝÄÌÉÓÀÓÆÏÂÀÃÉ ÈÄÏÒÉÖËÉ ÓÀÓßÀÅËÏ ÊÖÒÓÄÁÉÓ ÀÂÄÁÀ, ÊÅËÄÅÉÓ ÌÀÈÄÌÀÔÉÊÖÒÉ ÀÐÀÒÀÔÉÓ ÓßÀÅËÄÁÀÀÌÑÀÌÀÃ, ÞÉÒÉÈÀÃÀÃ, áÏÒÝÉÄËÃÄÁÀ ÌáÏËÏà ÌßÚÏÁÒÉ, ÀÁÓÔÒÀØÔÖËÉ ÈÄÏÒÉÉÓ „ÔÒÀÃÉ-ÝÉÖËÉ“ ÂÀÃÀÝÄÌÉÈ ÃÀ ÛÄÌÃÄ ÂÀÌÏÚÄÍÄÁÉÈÉ ÀÓÐÄØÔÄÁÉÓ ßÀÒÌÏÜÄÍÉÈ, ÀÍ ßÉÍÀÓßÀÒÉÊÏÍÊÒÄÔÖËÉ ÓÀÌÏÔÉÅÀÝÉÏ ÀÌÏÝÀÍÄÁÉÓ ÂÀÍáÉËÅÉÈ ÃÀ ÛÄÌÃÄ ÓÀÈÀÍÀÃÏ ÌÀÈÄÌÀÔÉÊÖÒÉÈÄÏÒÉÉÓ ÂÀÃÀÝÄÌÉÈ.

ÓßÀÅËÄÁÉÓ Ä×ÄØÔÉÀÍÏÁÉÓ ÂÀÆÒÃÉÓ ÖÌÍÉÛÅÍÄËÏÅÀÍÄÓÉ ÀÌÏÝÀÍÀ ßÀÒÌÀÔÄÁÉÈ ÂÀÃÀßÚÃÄ-ÁÀ, ÈÖ ÓÔÖÃÄÍÔÄÁÓ (ÌÀÈ ÛÏÒÉÓ ÌÀÂÉÓÔÒÀÍÔÄÁÓÀÝ) ÈÀÅÉÃÀÍÅÄ ÂÀÖÌÚÀÒÃÄÁÀÈ ÂÀÍÝÃÀ, ÒÏÌÌÀÈÄÌÀÔÉÊÉÓ ÄÓÀ ÈÖ ÉÓ ÌÄÈÏÃÉ, ÒÏÌÄËÓÀÝ ÉÓÉÍÉ ÛÄÉÓßÀÅËÉÀÍ, ÀÒÓÄÁÉÈÀà ÖÊÀÅÛÉÒ-ÃÄÁÀ ÌÀÈÉ ÉÍÔÄÒÄÓÄÁÉÓ Ó×ÄÒÏÓ (ÌÀÂÀËÉÈÀÃ, ÊÏÌÐÉÖÔÄÒÖË ÌÄÝÍÉÄÒÄÁÀÈÀ ÓÀ×ÖÞÅËÉÀÍÛÄÓßÀÅËÀÓ) ÃÀ ÓÀÂÍÉÓ ÛÄÓßÀÅËÉÓ ÌÈÄËÉ ÐÒÏÝÄÓÉÝ ÌÖÃÌÉÅÀà ÀáÃÄÍÓ ÀÌ ÊÀÅÛÉÒÉÓÃÄÌÏÍÓÔÒÉÒÄÁÀÓ.

ÌÏáÓÄÍÄÁÀÛÉ ßÀÒÌÏÃÂÄÍÉËÉÀ ÞÉÒÉÈÀÃÉ ÐÒÉÍÝÉÐÄÁÉ ÌÀÈÄÌÀÔÉÊÉÓ ÓÐÄÝÉÀËÖÒÉ ÓÀÓßÀÅ-ËÏ ÊÖÒÓÄÁÉÓ ÉÓÄÈÉ ÀÂÄÁÉÓ, ÒÏÌÄËÉÝ ÈÀÅÉÃÀÍÅÄ ÏÒÉÄÍÔÉÒÄÁÖËÉÀ ÀÁÓÔÒÀØÔÖË ÌÀÈÄÌÀ-ÔÉÊÖÒ ÌÄÈÏÃÄÁÓÀ ÃÀ ÊÏÍÊÒÄÔÖË ÀÌÏÝÀÍÄÁÓ ÛÏÒÉÓ ÌàÉÃÒÏ ÊÀÅÛÉÒÉÓ ßÀÒÌÏÜÄÍÀÆÄ -ÆÏÂÀà ÌÄÈÏÃÄÁÀÌÃÄ ÌÉÓÅËÀ áÃÄÁÀ ÊÀÒÂÀà ÛÄÒÜÄÖËÉ ÊÏÍÊÒÄÔÖËÉ ÀÌÏÝÀÍÄÁÉÓ ÂÀÍáÉËÅÉÓÊÅÀËÏÁÀÆÄ. ÀÌ ÃÒÏÓ ÃÀÉÓÌÄÁÀ ÀÌÏÝÀÍÉÓ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÓ ÀÂÄÁÉÓ, äÉÐÏÈÄÆÀÈÀÞÉÄÁÉÓÀ ÃÀ ÛÄÒÜÄÅÉÓ, ÃÀÌÔÊÉÝÄÁÉÓ ÐÒÏÁËÄÌÄÁÉ, ÛÄÌÃÄ ÊÉ - ÀÌÏÝÀÍÉÓ ÂÀÍÆÏÂÀÃÄÁÀÈÀÃÀ ÌÀÈÉ ÊÅËÄÅÉÓ, ÌÉÙÄÁÖËÉ ÛÄÃÄÂÄÁÉÓ ÀáÀË ÂÀÌÏÚÄÍÄÁÀÈÀ ÞÉÄÁÉÓÀ ÃÀ ÂÀÃÀßÚÅÄÔÉÓÐÒÏÁËÄÌÄÁÉ. ÀÓÄÈÉ ÌÉÃÂÏÌÀ ÀÉÏËÄÁÓ ÊÖÒÓÉÓ ÂÀÃÀÝÄÌÉÓÀÓ ßÀÌÏàÒÉË ÀÒÀÄÒÈ ÓÉÒÈÖ-ËÄÓ (ÌÀÈ ÛÏÒÉÓ ÌÄÈÏÃÉÊÖÒÓÀÝ), ÆÒÃÉÓ ÓÔÖÃÄÍÔÈÀ ÌÏÔÉÅÀÝÉÀÓ, Ö×ÒÏ ÁÖÍÄÁÒÉÅÓ áÃÉÓÈÄÏÒÉÖËÉ ÌÀÓÀËÉÈ ÃÀÉÍÔÄÒÄÓÄÁÀÓ ÃÀ ÌÉÓ ÀÙØÌÀÓ. ÀÓÄÈÉ ÊÖÒÓÄÁÉÓ ÀÂÄÁÉÓ ÊÏÍÊÒÄÔÖËÉÝÃÄÁÉ ÌÓÏ×ËÉÏÓ ÆÏÂÉÄÒÈ ßÀÌÚÅÀÍ ÓÀÓßÀÅËÏ ÝÄÍÔÒÛÉ ßÀÒÌÀÔÄÁÉÈÀÀ ÒÄÀËÉÆÄÁÖËÉ.

ÌÀÈÄÌÀÔÉÊÉÓ ÓßÀÅËÄÁÉÓÀÃÌÉ ÀÓÄÈÉ ÌÉÃÂÏÌÀ ÓÀÓÊÏËÏ ÊÖÒÓÉÓ ÀÂÄÁÉÓ ÃÒÏÓÀÝ ÀØÔÖÀ-ËÖÒÉÀ.

Page 181: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÌÀÈÄÌÀÔÉÊÖÒÉ ÂÀÍÀÈËÄÁÀ ÃÀ ÉÓÔÏÒÉÀ 181

×ÖÒÉÄÓ ÌßÊÒÉÅÉÓ ÂÀÌÏÚÄÍÄÁÉÓ ÛÄÓÀáÄÁ ÒÉÝáÅÉÈÉÌßÊÒÉÅÉÓ ãÀÌÉÓ ÂÀÌÏÈÅËÀÛÉ

ÌÀÊÀ ËÏÌÈÀÞÄ, ËÀÌÀÒÀ ÝÉÁÀÞÄ

ÀÊÀÊÉ ßÄÒÄÈËÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ,

ÆÖÓÔ ÃÀ ÓÀÁÖÍÄÁÉÓÌÄÔÚÅÄËÏ ÌÄÝÍÉÄÒÄÁÀÈÀ ×ÀÊÖËÔÄÔÉ, ÌÀÈÄÌÀÔÉÊÉÓ ÃÄÐÀÒÔÀÌÄÍÔÉ

ØÖÈÀÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]; [email protected]

ÈÀÍÀÌÄÃÒÏÅÄ ÌÄÈÏÃÄÁÓ ÛÏÒÉÓ ÂÀÍÓÀÊÖÈÒÄÁÖËÉ ÌÍÉÛÅÍÄËÏÁÉÓÀÀ ÐÄÒÉÏÃÖËÉ ×ÖÍ-ØÝÉÉÓ ÖÌÀÒÔÉÅÄÓ ÐÄÒÉÏÃÖË ×ÖÍØÝÉÄÁÀà ÃÀÛËÉÓ ÌÄÈÏÃÉ, ÒÏÌËÉÓ ÓßÀÅËÄÁÀÝ ÓÀàÉÒÏÀÖÌÀÙËÄÓÉ ÓÊÏËÉÓ ÆÖÓÔ ÃÀ ÓÀÁÖÍÄÁÉÓÌÄÔÚÅÄËÏ ÌÄÝÍÉÄÒÄÁÀÈÀ ×ÀÊÖËÔÄÔÉÓ ÓÔÖÃÄÍÔÄÁÉ-ÓÀÈÅÉÓ.

ÌÏáÓÄÍÄÁÀÛÉ ÂÀÍáÉËÖËÉÀ [−π;π] ÓÄÂÌÄÍÔÆÄ ÉÍÔÄÂÒÄÁÀÃÉ 2π ÐÄÒÉÏÃÉÓ f(x) ×ÖÍØÝÉÉÓÂÀÛËÀ ×ÖÒÉÄÓ ÔÒÉÂÏÍÏÌÄÔÒÉÖË ÌßÊÒÉÅÀà ÃÀ ÂÀÌÏÈÅËÉËÉÀ ÒÉÝáÅÉÈÉ ÌßÊÒÉÅÄÁÉÓãÀÌÄÁÉ ×ÖÒÉÄÓ ÌßÊÒÉÅÉÓ ÂÀÌÏÚÄÍÄÁÉÈ.

ÝÍÏÁÉËÉÀ, ÒÏÌ ÈÖ [−π; π] ÓÄÂÌÄÍÔÆÄ ÉÍÔÄÂÒÄÁÀÃÉ 2π ÐÄÒÉÏÃÉÓ ×ÖÍØÝÉÀ ÉÛËÄÁÀ

ÔÒÉÂÏÍÏÌÄÔÒÉÖË ÌßÊÒÉÅÀÃ: f(x) ∼ a02

+∞∑k=1

(ak cos kx+ bk sin kx), ÓÀÃÀÝ

an =1

π

π∫−π

f(x) cosnx dx (n = 0, 1, . . . ), bn =1

π

π∫−π

f(x) sinnx dx (n = 1, 2, . . . ),

ÄßÏÃÄÁÀ ×ÖÒÉÄÓ ÔÒÉÂÏÍÏÌÄÔÒÉÖËÉ ÌßÊÒÉÅÉ, áÏËÏ an ÃÀ bn ÊÏÄ×ÉÝÉÄÍÔÄÁÓ f(x)×ÖÍØÝÉÉÓ ×ÖÒÉÄÓ ÊÏÄ×ÉÝÉÄÍÔÄÁÉ

ÃÀÌÔÊÉÝÄÁÖËÉÀ ÈÄÏÒÄÌÀ, ÒÏÌ ÈÖ 2π ÐÄÒÉÏÃÉÓ f(x) ×ÖÍØÝÉÀ [−π; π] ÓÄÂÌÄÍÔÆÄÉÛËÄÁÀ ÈÀÍÀÁÒÀà ÊÒÄÁÀà ÔÒÉÂÏÍÏÌÄÔÒÉÖË ÌßÊÒÉÅÀÃ, ÌÀÛÉÍ ÄÓ ÌßÊÒÉÅÉ f(x) ×ÖÍØÝÉÉÓ×ÖÒÉÄÓ ÌßÊÒÉÅÉÀ.

ÂÀÍáÉËÖËÉÀ ÛÄÌÈáÅÄÅÄÁÉ, ÒÏÝÀ f(x) ×ÖÍØÝÉÀ ËÖßÉÀ ÃÀ ÊÄÍÔÉÀ ÝÀË-ÝÀËÊÄ, ÛÄÓÀÁÀÌÉ-ÓÀà ÂÀÌÏÈÅËÉËÉÀ ×ÖÒÉÄÓ an ÃÀ bn ÊÏÄ×ÉÝÉÄÍÔÄÁÉ ÃÀ f(x) ×ÖÍØÝÉÀ ÂÀÛËÉËÉÀ ×ÖÒÖÓÌßÊÒÉÅÉÓ ÓÀáÉÈ.

ÀÂÒÄÈÅÄ ÂÀÍáÉËÖËÉÀ ÛÄÌÈáÅÄÅÀ, ÒÏÝÀ f(x) ×ÖÍØÝÉÀ ÌÏÝÄÌÖËÉÀ ÌáÏËÏà [a;π]ÓÀÂÌÄÍÔÆÄ ÓÀÃÀÝ −π < a < π ÃÀ ÛÄÌÈáÅÄÅÀ, ÒÏÝÀ f(x) ÌÏÝÄÌÖËÉÀ [0; π] ÓÄÂÌÄÍÔÆÄ.

ÌÏáÓÄÍÄÁÉÓ ÁÏËÏÓ ÀÌÏáÓÍÉËÉÀ ÒÀÌÏÃÄÍÉÌÄ ÌÀÂÀËÉÈÉ, ÓÀÃÀÝ ×ÖÒÉÄÓ ÌßÊÒÉÅÉÓÂÀÌÏÚÄÍÄÁÉÈ ÂÀÌÏÈÅËÉËÉÀ ÆÏÂÉÄÒÈÉ ÓÀáÉÓ ÒÉÝáÅÉÈÉ ÌßÊÒÉÅÉÓ ãÀÌÉ. ÍÀÛÒÏÌÉÓÞÉÒÉÈÀÃÉ ÌÉÆÀÍÉÀ ×ÖÒÉÄÓ ÔÒÉÂÏÍÏÌÄÔÒÉÖËÉ ÌßÊÒÉÅÄÁÉÓ ÂÀÌÏÚÄÍÄÁÀ ÆÏÂÉÄÒÈÉ ÓÀáÉÓÒÉÝáÅÉÈÉ ÌßÊÒÉÅÄÁÉÓ ãÀÌÉÓ ÂÀÌÏÈÅËÀÛÉ. ÀÌÉÈ ÌÉÔÉÈÄÁÖËÉÀ ÉÌ ÉÍÔÄÒÃÉÓÝÉÐËÉÍÀÒÖËÊÀÅÛÉÒÆÄ, ÒÏÌÄËÉÝ ÀÒÓÄÁÏÁÓ ×ÖÒÉÄÓ ÔÒÉÂÏÍÏÌÄÔÒÉÖË ÌßÊÒÉÅÄÁÓÀ ÃÀ ÒÉÝáÅÉÈÌßÊÒÉÅÄÁÓ ÛÏÒÉÓ.

Page 182: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

182 Mathematical Education and History September 2–9, Batumi, Georgia

ÄÊÏÍÏÌÉÊÖÒÉ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓ ÌÃÂÒÀÃÏÁÉÓÓÀÊÉÈáÉÓ ÓßÀÅËÄÁÉÓ ÆÏÂÉÄÒÈÉ ÀÓÐÄØÔÉ

ÝÉÝÉÍÏ ÓÀÒÀãÉÛÅÉËÉ

ÁÀÈÖÌÉÓ ÛÏÈÀ ÒÖÓÈÀÅÄËÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ, ÊÏÌÐÉÖÔÄÒÖËÉÔÄØÍÏËÏÂÉÄÁÉÓ ÃÄÐÀÒÔÀÌÄÍÔÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]

ÄÊÏÍÏÌÉÊÉÓ ÓÐÄÝÉÀËÏÁÉÓ ÓÔÖÃÄÍÔÄÁÈÀÍ ÃÀ ÀÒÀ ÌÀÒÔÏ ÌÀÈÈÀÍ, ÚÏÅÄËÉ ÀáÀËÉÓÀÂÍÉÓ ÓßÀÅËÄÁÉÓÀÓ ÓÔÖÃÄÍÔÉ ÓÅÀÌÓ ÛÄÊÉÈáÅÀÓ ”ÓÀà ÂÀÌÏÅÉÚÄÍÄÁ?”. ÀÌÃÄÍÀÃ, ÓßÀÅËÄÁÉÓÐÒÏÝÄÓÛÉ ÂÀÍÓÀÊÖÈÒÄÁÖËÉ ÌÍÉÛÅÍÄËÏÁÀ ÄÍÉàÄÁÀ ÐÒÀØÔÉÊÉÃÀÍ ÀÙÄÁÖËÉ ÀÌÏÝÀÍÄÁÉÓ ÀÌÏá-ÓÍÀÓ.

ÒÏÂÏÒÝ ÝÍÏÁÉËÉÀ, ÐÒÀØÔÉÊÖËÉ ÄÊÏÍÏÌÉÊÖÒÉ áÀÓÉÀÈÉÓ ÀÌÏÝÀÍÄÁÉÓ ÀÌÏáÓÍÉÓ ÃÒÏÓ,ÃÀÓÀÁÖÈÄÁÖËÉ ÃÀ ÌÀÈÄÌÀÔÉÊÖÒÀà ÓßÏÒÀà ÂÀÃÀßÚÅÄÔÉËÉ ÏÐÔÉÌÀËÖÒÉ ÀÌÏÍÀáÓÍÉÓÌÉÓÀÙÄÁÀÃ, ÂÀÌÏÉÚÄÍÄÁÀ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÀ. ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÉÓ ÓßÀÅ-ËÄÁÉÓ ÃÒÏÓ ÂÀÍÓÀÊÖÈÒÄÁÖËÉ ÌÍÉÛÅÍÄËÏÁÀ ÄÍÉàÄÁÀ ÓÔÖÃÄÍÔÈÀ ÃÀÉÍÔÄÒÄÓÄÁÀÓ ÐÒÀØÔÉÊÖ-ËÉ ÀÌÏÝÀÍÄÁÉÈ.

ÄÒÈ–ÄÒÈÉ ÊÀÒÂÀà ÍÀÝÍÏÁÉ ÈÄÌÀ ÀÒÉÓ ßÒ×ÉÅÉ ÓÀÌÏÃÄËÏ ÀÌÏÝÀÍÄÁÉ. ÉÌ ÐÒÀØÔÉÊÖËÀÌÏÝÀÍÀÈÀ ÛÏÒÉÓ, ÒÏÌÄËÉÝ ÌÀÈÄÌÀÔÉÊÖÒÉ ÌÏÃÄËÉÒÄÁÉÓ ÌÄÈÏÃÉÈ ÉáÓÍÄÁÀ, ×ÒÉÀÃÓÀÉÍÔÄÒÄÓÏÀ ÄÊÏÍÏÌÉÊÖÒÉ ÀÌÏÝÀÍÄÁÉ, ÒÏÌÄËÈÀ ÀÍÀËÉÆÉ ÃÀ ÛÄ×ÀÓÄÁÀ ÌÏÉÈáÏÅÓ ÏÒÀÃÏ-ÁÉÓ ÈÄÏÒÉÉÓ ÂÀÌÏÚÄÍÄÁÀÓ. ÜÄÌÓ ÌÉÆÀÍÓ ÛÄÀÃÂÄÍÓ ÄÊÏÍÏÌÉÊÖÒÉ ÀÌÏÝÀÍÉÓ ÀÌÏÍÀáÓÍÉÓÌÃÂÒÀÃÏÁÉÓ ÓÀÊÉÈáÉÓ ÓßÀÅËÄÁÉÓ ÆÏÂÉÄÒÈÉ ÀÓÐÄØÔÉÓ ÂÀÍáÉËÅÀ.

ÏÒÀÃÏÁÉÓ ÞÉÒÉÈÀÃÉ ÈÄÏÒÄÌÄÁÉÃÀÍ ÂÀÌÏÌÃÉÍÀÒÄ, ÈÖÊÉ ÄÒÈ-ÄÒÈÉ ÀÌÏÝÀÍÉÓ ÒÏÌÄ-ËÉÙÀÝ ÛÄÆÙÖÃÅÀ ÏÐÔÉÌÀËÖÒÉ ÂÄÂÌÉÈ ÉØÝÄÅÀ ÌÊÀÝÒ ÖÔÏËÏÁÀÃ, ÌÀÛÉÍ ÏÒÀÃÖËÉÀÌÏÝÀÍÉÓ ÏÐÔÉÌÀËÖÒ ÂÄÂÌÀÛÉ ÛÄÓÀÁÀÌÉÓÉ ÊÏÌÐÏÍÄÍÔÉ ÍÖËÉÓ ÔÏËÉÀ ÃÀ ÀÓÄÅÄ ÈÖÊÉÄÒÈ-ÄÒÈÉ ÀÌÏÝÀÍÉÓ ÏÐÔÉÌÀËÖÒ ÂÄÂÌÀÛÉ ÒÏÌÄËÉÙÀÝ ÊÏÌÐÏÍÄÍÔÉ ÌÊÀÝÒÀÃ ÃÀÃÄÁÉÈÉÀ,ÌÀÛÉÍ ÏÒÀÃÖË ÀÌÏÝÀÍÀÛÉ ÛÄÓÀÁÀÌÉÓÉ ÛÄÆÙÖÃÅÀ ÏÐÔÉÌÀËÖÒÉ ÂÄÂÌÉÈ ÖÍÃÀ ÉØÝÄÓ ÌÊÀÝÒÖÔÏËÏÁÀÃ.

ÀØÄÃÀÍ ÂÀÌÏÌÃÉÍÀÒÄ, ÏÒÀÃÖËÉ ÛÄ×ÀÓÄÁÄÁÉ ÛÄÉÞËÄÁÀ ÂÀÌÏÃÂÄÓ ÒÄÓÖÒÓÄÁÉÓ ÃÄ×ÉÝÉ-ÔÖÒÏÁÉÓ ÆÏÌÀÃ. ÃÄ×ÉÝÉÔÖÒÉ ÒÄÓÖÒÓÓ (ßÀÒÌÏÄÁÉÓ ÏÐÔÉÌÀËÖÒÉ ÂÄÂÌÉÓ ÌÉáÄÃÅÉÈÓÒÖËÀà ÂÀáÀÒãÖËÓ) ÀØÅÓ ÃÀÃÄÁÉÈÉ ÛÄ×ÀÓÄÁÀ, áÏËÏ ÍÀÌÀÔ ÒÄÓÖÒÓÓ ÀØÅÓ ÍÖËÏÅÀÍÉÛÄ×ÀÓÄÁÀ.

ÏÒÏÁÉÈÉ ÛÄ×ÀÓÄÁÄÁÉÓ ÂÀÌÏÚÄÍÄÁÉÈ ÅÀáÃÄÍÈ ÀÌÏÝÀÍÉÓ ÌÃÂÒÀÃÏÁÉÓ ÀÍÀËÉÆÓ. ÂÀÍÅÓÀÆ-ÙÅÒÀÅÈ ÐÉÒÃÀÐÉÒÉ ÀÌÏÝÀÍÉÓ ßÒ×ÉÅ ÛÄÆÙÖÃÅÀÈÀ ÓÉÓÔÄÌÉÓ ÈÉÈÏÄÖËÉ ÈÀÅÉÓÖ×ÀËÉßÄÅÒÉÓ ÝÅËÉËÄÁÉÓ ÉÓÄÈ ÉÍÔÄÒÅÀËÓ, ÒÏÌÄËÛÉÝ ÛÄÓÀÁÀÌÉÓÉ ÏÒÀÃÖËÉ ÀÌÏÝÀÍÉÓ ÏÐÔÉÌÀ-ËÖÒÉ ÀÌÏÍÀáÓÍÉ ÒÜÄÁÀ ÖÝÅËÄËÉ. ÂÀÍÅÓÀÆÙÅÒÀÅÈ ÏÒÀÃÖËÉ ÛÄ×ÀÓÄÁÄÁÉÓ ÌÃÂÒÀÃÏÁÉÓÉÍÔÄÒÅÀËÄÁÓ ÛÄÌÀÅÀËÉ ÊÏÌÐÏÍÄÍÔÄÁÉÓ ÚÏÅÄËÉ ÝÅËÉËÄÁÉÓ ÃÒÏÓ. ÒÏÂÏÒÝ ÝÀË-ÝÀËÊÄ,ÀÓÄÅÄ ÄÒÈÃÒÏÖËÉ ÝÅËÉËÄÁÉÓÀÓ. ÂÀÍÅÓÀÆÙÅÒÀÅÈ ÐÉÒÃÀÐÉÒÉ ÀÌÏÝÀÍÉÓ ÌÉÆÍÉÓ ×ÖÍØÝÉÉÓÌÀØÓÉÌÀËÖÒÉ ÌÍÉÛÅÍÄËÏÁÉÓ ÍÀÆÒÃÓ, ÛÄÌÀÅÀËÉ ÌÏÍÀÝÄÌÄÁÉÓ ÒÀÏÃÄÍÏÁÉÓ ÃÀÃÂÄÍÉËÓÀÆÙÅÒÄÁÛÉ ÝÅËÉËÄÁÉÓ ÃÒÏÓ. ÓÀÉËÖÓÔÒÀÝÉÏà ÂÀÍÉáÉËÄÁÀ ÊÏÍÊÒÄÔÖËÉ ÀÌÏÝÀÍÀ.

Page 183: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÌÀÈÄÌÀÔÉÊÖÒÉ ÂÀÍÀÈËÄÁÀ ÃÀ ÉÓÔÏÒÉÀ 183

ÌÀÈÄÌÀÔÉÊÉÓ ÌÀÓßÀÅËÄÁÄËÈÀ ÓÀÓÄÒÔÉ×ÉÊÀÝÉÏÂÀÌÏÝÃÉÓ ÌÏÌÆÀÃÄÁÉÓÀÈÅÉÓ

ÂÒÉÂÏË ÓÏáÀÞÄ, ÐÄÔÒÄ ÁÀÁÉËÖÀ

ÉÅ. ãÀÅÀáÉÛÅÉËÉÓ ÓÀáÄËÏÁÉÓ ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ,ÆÖÓÔ ÃÀ ÓÀÁÖÍÄÁÉÓÌÄÔÚÅÄËÏ ÌÄÝÍÉÄÒÄÁÀÈÀ ×ÀÊÖËÔÄÔÉ

ÈÁÉËÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]; [email protected]

ÌÏÝÄÌÖËÉÀ ÌÀÈÄÌÀÔÉÊÉÓ ÌÀÓßÀÅËÄÁËÉÓ ÓÀÓÄÒÔÉ×ÉÊÀÝÉÏ ÂÀÌÏÝÃÉÓ ÓÔÒÖØÔÖÒÀ. ÒÏ-ÂÏÒÝ ÝÍÏÁÉËÉÀ ÂÀÌÏÝÃÀ ÛÄÃÂÄÁÀ ÓÀÂÍÏÁÒÉÅÉ ÃÀ ÌÄÈÏÃÖÒÉ ÍÀßÉËÄÁÉÓÂÀÍ. ÍÀÛÒÏÌÛÉÌÏÝÄÌÖËÉÀ ÌÈÄËÉ ÒÉÂÉ ÀØÔÉÅÏÁÄÁÉ ÂÀÌÏÝÃÉÓ ÓÀÂÍÏÁÒÉÅÉ ÍÀßÉËÉÓ ßÀÒÌÀÔÄÁÉÈ ÜÀÓÀÁÀ-ÒÄÁËÀÃ, ÌÀÂÀËÉÈÀÃ, ÓáÅÀÃÀÓáÅÀ ÓÀÊÉÈáÄÁÉÓ ÛÄÓßÀÅËÀ-ÂÀÙÒÌÀÅÄÁÀ ÃÀ À.Û. ÀÓÄÅÄÃÄÔÀËÖÒÀà ÀÒÉÓ ÂÀÃÌÏÝÄÌÖËÉ ÌÄÈÏÃÖÒÉ ÍÀßÉËÉÓ ÀØÔÉÅÏÁÄÁÉ: ÛÄ×ÀÓÄÁÉÓ ÓØÄÌÄÁÉ ÃÀÒÄÊÏÌÄÍÃÀÝÉÄÁÉ; ÂÀÊÅÄÈÉËÉÓ ÃÀÂÄÂÌÅÉÓ ÃÀ ÜÀÔÀÒÄÁÉÓ ÐÒÉÍÝÉÐÄÁÉ ÃÀ ÈÀÅÉÓÄÁÖÒÄÁÀÍÉ;ÐÒÏÁËÄÌÖÒÉ ÃÀÅÀËÄÁÄÁÉÓ ÀÌÏáÓÍÉÓ ÂÆÄÁÉ ÃÀ ÌÀÈÉ ÓßÀÅËÄÁÉÓ ÌÄÈÏÃÄÁÉ. ÀÓÄÅÄ ÁËÖÌÉÓÔÀØÓÏÍÏÌÉÉÓ ÂÀÌÏÚÄÍÄÁÀ ÓÀÓßÀÅËÏ ÐÒÏÝÄÓÛÉ.

ÒÉÝáÅÉÈ ÌßÊÒÉÅÈÀ ÂÀÌÒÀÅËÄÁÉÓÀ ÃÀ ÂÀÚÏ×ÉÓÓßÀÅËÄÁÀ

ËÀÌÀÒÀ ÝÉÁÀÞÄ, ÌÀÊÀ ËÏÌÈÀÞÄ

ÀÊÀÊÉ ßÄÒÄÈËÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉ,ÆÖÓÔ ÃÀ ÓÀÁÖÍÄÁÉÓÌÄÔÚÅÄËÏ ÌÄÝÍÉÄÒÄÁÀÈÀ ×ÀÊÖËÔÄÔÉ, ÌÀÈÄÌÀÔÉÊÉÓ ÃÄÐÀÒÔÀÌÄÍÔÉ

ØÖÈÀÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]; [email protected]

ÌÏáÓÄÍÄÁÀÛÉ ÂÀÍáÉËÖËÉÀ, ÈÖ ÒÏÂÏÒ ÖÍÃÀ ÉÓßÀÅËÄÁÏÃÄÓ ÒÉÝáÅÉÈ ÌßÊÒÉÅÈÀÂÀÌÒÀÅËÄÁÉÓÀ ÃÀ ÂÀÚÏ×ÉÓ ÓÀÊÉÈáÄÁÉ ÖÌÀÙËÄÓÉ ÓÊÏËÉÓ ÌÀÈÄÌÀÔÉÊÉÓ ÊÖÒÓÛÉ, ÊÄÒÞÏÃ,ÆÖÓÔ ÃÀ ÓÀÁÖÍÄÁÉÓÌÄÔÚÅÄËÏ ÌÄÝÍÉÄÒÄÁÀÈÀ ×ÀÊÖËÔÄÔÉÓ ÌÀÈÄÌÀÔÉÊÉÓ ÓÐÄÝÉÀËÏÁÉÓ ÓÔÖ-ÃÄÍÔÄÁÉÓÀÈÅÉÓ.

ÜÅÄÍÉ ÌÉÆÀÍÉÀ ÂÀÍÅÌÀÒÔÏÈ∞∑n=1

an (1) ÃÀ∞∑n=1

bn (2) ÌßÊÒÉÅÄÁÉÓ ÍÀÌÒÀÅËÉ ÌßÊÒÉÅÉ.

ÒÏÝÀ ÏÒÉ ãÀÌÉ ÄÒÈÌÀÍÄÈÆÄ ÌÒÀÅËÃÄÁÀ, ÛÄÃÄÂÀà ÃÉÓÔÒÉÁÖÝÉÖËÏÁÉÓ ÊÀÍÏÍÉÓ ÈÀÍÀáÌÀÃ,ÌÉÉÙÄÁÀ ÐÉÒÅÄËÉ ãÀÌÉÓ ÚÅÄËÀ ÛÄÓÀÊÒÄÁÉÓ ÍÀÌÒÀÅËÄÁÉ ÌÄÏÒÄ ãÀÌÉÓ ÍÄÁÉÓÌÉÄÒ ÛÄÓÀÊÒÄÁÆÄ.ÀÌÉÔÏÌ (1) ÃÀ (2) ÌßÊÒÉÅÄÁÉÓ ÍÀÌÒÀÅËÉÓ ÛÄÃÂÄÍÉÓÀÓ ÓÀàÉÒÏÀ ÂÀÍÅÉáÉËÏÈ ÚÅÄËÀanbm ÍÀÌÒÀÅËÉÓ ÌßÊÒÉÅÉ. ÌÀÂÒÀÌ ÅÉÝÉÈ, ÒÏÌ ÌßÊÒÉÅÉÓ ßÄÅÒÈÀ ÃÀËÀÂÄÁÀ ÂÀÅËÄÍÀÓ

Page 184: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

184 Mathematical Education and History September 2–9, Batumi, Georgia

ÀáÃÄÍÓ ÌßÊÒÉÅÉÓ ÊÒÄÁÀÃÏÁÀÆÄ ÃÀ ÌÉÓÉ ãÀÌÉÓ ÓÉÃÉÃÄÆÄ, ÀÌÉÔÏÌ ÉÓÌÉÓ ÊÉÈáÅÀ ÈÖÒÀ ÌÉÌÃÄÅÒÏÁÉÈ ÖÍÃÀ ÃÀÅÀËÀÂÏÈ anbm ÛÄÓÀÊÒÄÁÄÁÉ „ÍÀÌÒÀÅËÉ ÌßÊÒÉÅÉÓ“ ÛÄÃÂÄÍÉÓÃÒÏÓ. ÀÓÄÈÉ ÍÀÌÒÀÅËÄÁÉÓ ÃÀËÀÂÄÁÉÓ ÜÅÄÖËÄÁÒÉÅÉ ßÄÓÉ ÌÉÉÙÄÁÀ ÌÀÈÉ ÉÍÃÄØÓÄÁÉÓãÀÌÉÓ ÓÉÃÉÃÉÓ ÌÉáÄÃÅÉÈ. ÛÄÌÏÔÀÍÉËÉÀ ÛÄÌÃÄÂÉ ÂÀÍÌÀÒÔÄÁÀ: (1) ÃÀ (2) ÌßÊÒÉÅÄÁÉÓ

ÍÀÌÒÀÅËÉ ÄßÏÃÄÁÀ∞∑n=1

ϖ (3) ÌßÊÒÉÅÓ, ÓÀÃÀÝ ϖ =∞∑n=1

akbm−k+1.

ÓÀÆÏÂÀÃÏà (1) ÃÀ (2) ÌßÊÒÉÅÄÁÉÓ ÊÒÄÁÀÃÏÁÉÓ ÛÄÌÈáÅÄÅÀÛÉ ÌÀÈÉ (3) ÍÀÌÒÀÅËÉÌßÊÒÉÅÉ ÓÀÅÀËÃÄÁÖËÏ ÀÒ ÀÒÉÓ ÊÒÄÁÀÃÉ ÉÚÏÓ; ÌÀÂÒÀÌ ÈÖ (1) ÃÀ (2) ÌßÊÒÉÅÄÁÓ Ö×ÒÏÌÊÀÝÒ ÐÉÒÏÁÄÁÓ ÌÏÅÈáÏÅÈ, ÛÄÓÀÞËÄÁÄËÉÀ ÃÀÅÀÓÊÅÍÀÈ (3) ÌßÊÒÉÅÉÓ ÊÒÄÁÀÃÏÁÀ ÃÀÃÀÅÀÃÂÉÍÏÈ (3) ÌßÊÒÉÅÉÓ ãÀÌÉÓ ÊÀÅÛÉÒÉ (1) ÃÀ (2) ÌßÊÒÉÅÄÁÉÓ ãÀÌÄÁÈÀÍ. ÍÀÜÅÄÍÄÁÉÀ,ÒÏÌ ÈÖ (1) ÃÀ (2) ÌßÊÒÉÅÄÁÉÃÀÍ ÄÒÈ-ÄÒÈÉ ÌÀÉÍÝ ÀÁÓÏËÖÔÖÒÀà ÊÒÄÁÀÃÉÀ, ÌÀÛÉÍÌÀÈÉ ÍÀÌÒÀÅËÉ ÊÒÄÁÀÃÉÀ ÃÀ ÌÉÓÉ ãÀÌÉ ÈÀÍÀÌÀÌÒÀÅËÉ ÌßÊÒÉÅÄÁÉÓ ãÀÌÄÁÉÓ ÍÀÌÒÀÅËÉÓÔÏËÉÀ.

ÒÀÝ ÛÄÄáÄÁÀ ÒÉÝáÅÉÈÉ ÌßÊÒÉÅÄÁÉÓ ÂÀÚÏ×ÀÓ, ÉÓ ÂÀÍÌÀÒÔÄÁÖËÉÀ ÛÄÌÃÄÂÍÀÉÒÀÃ:∞∑n=1

cn (4) ÌßÊÒÉÅÓ ÄßÏÃÄÁÀ (1) ÌßÊÒÉÅÉÓ (2) ÌßÊÒÉÅÆÄ ÂÀÚÏ×ÉÓÀÓ ÌÉÙÄÁÖËÉ ÂÀÍÀÚÏ×É,

ÈÖ∞∑n=1

cn ·∞∑n=1

bn =∞∑n=1

an, ÓÀÃÀÝ cn = an−c1bn−c2bn−1−···–cn−1b2b1

(5).

ÉÓÄÅÄ ÒÏÂÏÒÝ ÂÀÌÒÀÅËÄÁÉÓÀÓ, ÀØÀÝ ÈÖ (1) ÃÀ (2) ÌßÊÒÉÅÉ ÀÁÓÏËÖÔÖÒÀà ÊÒÄÁÀÃÉÀ,ÌÀÛÉÍ (4) ÌßÊÒÉÅÉ ÊÒÄÁÀÃÉÀ. ÐÒÀØÔÉÊÖËÀÃ, ÌßÊÒÉÅÉ ÌßÊÒÉÅÆÄ ÛÄÉÞËÄÁÀ ÂÀÉÚÏÓ ÊÖÈáÉÈÉÌÀÅÄ ßÄÓÉÈ, ÒÏÂÏÒÉÈÀÝ ÌÒÀÅßÄÅÒÉ ÉÚÏ×À ÌÒÀÅÀËßÄÅÒÆÄ. ÀÌÉÓ ÓÀÉËÖÓÔÒÀÝÉÏÃÌÏÚÅÀÍÉËÉÀ ÌÀÂÀËÉÈÉ, ÒÏÌÄËÉÝ ÀÌÏáÓÍÉËÉÀ ÏÒÉÅÄ áÄÒáÉÈ, ÓÀÃÀÝ ÌÉÙÄÁÖËÉÀ ÄÒÈÉÃÀ-ÉÂÉÅÄ ÐÀÓÖáÉ.

Using a Modern Information Technology to TeachHigh Mathematics in a Technical College

Luiza UmarkhadzhievaGrozny State Oil Technical University, Grozny, Russia

email: [email protected]

The solution of professionally designed tasks by mathematical modeling requires alot of time. To save the time in computing tasks, you can apply special programs suchas Mathcad, Maple, Matlab, etc., that can for a short time exactly or approximatelycompute derivatives, integrals, differential equations, find solutions, and so etc., thatis, almost every action that we teach students in practical classes. Moreover, mentionedprograms allow you to demonstrate the solution in a short time and avoid time consumingroutine computations.

Page 185: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÌÀÈÄÌÀÔÉÊÖÒÉ ÂÀÍÀÈËÄÁÀ ÃÀ ÉÓÔÏÒÉÀ 185

The most practical among programs for computer mathematics in terms of teachingand application is a Mathcad. The Maple has big opportunities for character transfor-mations and calculations. Maple is a package for analytical calculations on a computerthat contains more than two thousand commands that enable you to solve problems ofalgebra, geometry, calculus, differential equations, statistics, and mathematical physics.Both systems remove a psychological barrier in studying mathematics by making easier tosolve complex mathematical problems. Proper use of systems of computer mathematicsin the teaching process enhances the fundamental mathematical and technical education,promotes the genuine integration of theory and practice.

Using modern software applications in the study of high mathematics can significantlysave time it takes to “hand work” – the usual analytic transformation and calculation ofderivatives, integrals, the solution of various equations. The time we gain can be usedfor practical interpretation of analytical results received by the same system of computermathematics.

Page 186: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

186 Mathematical Education and History September 2–9, Batumi, Georgia

Page 187: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 187

Continuum MechanicsÖßÚÅÄÔ ÂÀÒÄÌÏÈÀ ÌÄØÀÍÉÊÀ

Page 188: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ
Page 189: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÖßÚÅÄÔ ÂÀÒÄÌÏÈÀ ÌÄØÀÍÉÊÀ 189

Some Synergetic Treatments of Wave Dynamicsin Application to Stochastic Processes in

Semiconductors, Traffic Flow, Fracture MechanicsAleksander G. Bagdoev

Institute of Mechanics NAS RA, Yerevanemail: [email protected]

In present paper are offered series of phenomenological models, using application ofmethods of nonlinear wave dynamics to study of processes on micro-mezo-macro levelsand their transition to the macro fracture.

1. For known Gurson-Tvergard-Needelman model, describing dynamics of microspores,in equation of porosity, instead of gaussian distribution for probability density, isintroduced its nonlinear generalization, which can be calculated for different valuesof nonlinearity coefficient, and can be carried out comparison with experiments.

2. On the base of many modern investigations on processes in fracture mechanics,where it is shown universal character of these processes with respect to differentmaterials and loads, it is carry out analogy among processes of Gunn’s instability insemiconductors, described by one nonlinear diffusion equation for electrical field onaccount of relaxation terms, supplemented by delta-fluctuations, also in presence ofexperimental dependence graph of velocity of electrons from electrical field, solvedby Haken and Nakamura by method of expansion on plane waves and determinationof effective formulae for final stationary stable state after phase transition, processof traffic flow on crowded roads investigated by Lighthill and Whitham by simpleeffective method of kinematics waves, where, obtained by them gas-dynamics equa-tion of mass continuity for machines density, is supplemented by same form, asproblem of semiconductors, graph represented relation of current and density forthe traffic flow.Analogously to that, what is carried out in works of famous physics in study oftraffic flow, to mentioned nonlinear equation are added diffusion, relaxation andfluctuations terms in complete correspondence with equation for semiconductors.All solutions for traffic flow, including phase transition to bottleneck, are carriedout identically with above mentioned solutions for semiconductors, besides due to ofmethod of nonlinear waves is carried out supplementation of nonlinearity in Fokker-Plank equation and are studied spatial stochastic problems where stationary solutionalready is function from coordinate.

3. All these considerations are transmitted on phenomenological description of problemof motion of micro pores with abrupt phase transition to macro fracture, describing

Page 190: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

190 Continuum Mechanics September 2–9, Batumi, Georgia

by same model equation as for semiconductors and traffic flow, however alreadywritten for porosity by determination of its value in stationary state, as well as ofcorresponding probability. This allows examine fracture’s criteria.In former paper we carried out same simulations and analogies on the base of two-component Biot equations, where in pores also there is electrical fluid, and is usedderived previously model evolution equation written for velocity of carcass particles,for nonlinear slow wave.

Effective Solution of the Dirichlet BVP of the LinearTheory of Thermoelasticity with Microtemperatures

for a Spherical RingLamara Bitsadze

I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State UniversityTbilisi, Georgia

email: [email protected]

In this paper the expansion of regular solution for the equations of the theory of ther-moelasticity with microtemperatures is obtained, that we use for explicitly solving theDirichlet boundary value problem (BVP) (we assume that on the boundary of sphericalring the displacement vector, the microtemperature vector and the temperature are given)for the equations of the linear equilibrium theory of thermoelasticity with microtemper-atures for the spherical ring. The obtained solutions are represented as absolutely anduniformly convergent series.

References[1] D. Iesan and R. Quintanilla, On a theory of thermoelasticity with microtempera-

tures. J. Thermal Stresses 23 (2000), No. 3, 199–215.[2] A. Scalia, M. Svanadze and R. Tracina, Basic theorems in the equilibrium theory of

thermoelasticity with microtemperatures. J. Thermal Stresses 33 (2010), 721–753.[3] D. G. Natroshvili and M. G. Svanadze, Some dynamic problems of coupled ther-

moelasticity for piecewise-homogeneous bodies. (Russian) Tbiliss. Gos. Univ. Inst.Prikl. Mat. Trudy 10 (1981), 99–190.

Page 191: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÖßÚÅÄÔ ÂÀÒÄÌÏÈÀ ÌÄØÀÍÉÊÀ 191

Analysis of Winkler’s Model of Elastic FoundationUsing Differential Transform Method

Sema Bodur, H. Alpaslan Peker, Galip OturançSelcuk University, Department of Mathematics, 42075, Campus, Konya, Turkey

email: [email protected]

In this study, differential equation of beams on elastic foundation, which has a greatimportance for engineering problems, has been analyzed [1, 2]. The beams on elasticfoundation has widely been used in plenty of engineering areas. For instance, railwayengineering, pipes used in liquid and gas conduction lines, off-shore and port foundations,some applications in airports, plane-space and petrochemical industries, biomechanicaland dentistry. Winkler, Pasternak, Vlasov, Kerr and some other models have been de-veloped for the foundations with different types of elements such as beams, discs andshells [5,6]. In literature, the beams on Winkler foundation problem has been solved forstatic, buckling and vibration analyses by finite differences, finite elements, boundary el-ements, Ritz, Galerkin, differential quadrature, Monte Carlo methods [7]. In this study,apart form the literature, the problems related to Winkler’s model of elastic foundationwith different conditions has been analyzed by the differential transform method, whichis based on Taylor series expansion and is easily applied to linear or nonlinear problemsand reduces the size of computational work [3, 4]. In addition, the obtained solutionshave been compared to analytical solutions. Besides, all calculations have been made byMaple13 and codes were also given.

Acknowledgement. This study is supported by the Selcuk University ScientificResearch Project Coordinatorship (BAP).

Keywords. Differential Transform Method, Winkler’s Model, Beams on Elastic Foun-dation

References[1] M. İnan, Cisimlerin Mukavemeti, 1967, İTÜ (In Turkish).

[2] İ. Kayan, Cisimlerin Mukavemeti, 1992, İTÜ (In Turkish).

[3] J. K. Zhou, Differential Transformation and Its Applications for Electical Circuit,1986 (In Chinese).

[4] G. Oturanç and Y. Keskin, Diferensiyel Dönüşüm Yöntemiyle Diferensiyel Den-klemlerin Çözülmesi, Aybil Yayınevi, 2011 (In Turkısh).

[5] V. Z. Vlasov and N. N. Leont’ev, Beams, Plates and Shells on Elastic Foundations,Israel Program for Scientific Translations, 1966 (Translated from Russian).

Page 192: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

192 Continuum Mechanics September 2–9, Batumi, Georgia

[6] A. Daloğlu, A. Doğangün, and Y. Ayvaz, Dynamic Analysis of Foundation PlatesUsing a Consistent Vlasov Model, Journal of Sound and Vibration, 224(5) (1999),941-951.

[7] Ö. Civalek and Ç. Demir, Elastik Zemine Oturan Kirişlerin Ayrık Tekil Konvolüsyonve Harmonik Diferensiyel Quadrature Yöntemleriyle Analizi, BAÜ FBE Dergisi,11(1) (2009), 56–71 (In Turkish).

Asymptotic Analysis of Interface Crack Problemsfor Metallic-Piezoelectric Composite Structures

Otar ChkaduaA. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University

Sokhumi State UniversityTbilisi, Georgia

email: [email protected]

We investigate three–dimensional interface crack problems for metallic-piezoelectriccomposite bodies with regard to thermal effects. We give a mathematical formulationof the physical problems when the metallic and piezoelectric bodies are bonded alongsome proper parts of their boundaries where interface cracks occur. By the potentialmethod the interface crack problems are reduced to equivalent strongly elliptic systems ofpseudodifferential equations on manifolds with boundary. We study the solvability of thesesystems in appropriate function spaces and prove uniqueness and existence theorems forthe original interface crack problems. We analyse the regularity and asymptotic propertiesof the corresponding thermo-mechanical and electric fields near the crack edges and nearthe curves where the different boundary conditions collide. In particular, we characterizethe stress singularity exponents and show that they can be explicitly calculated with thehelp of the principal homogeneous symbol matrices of the corresponding pseudodifferentialoperators. For some important classes of anisotropic media we derive explicit expressionsfor the corresponding stress singularity exponents and show that they essentially dependon the material parameters. The questions related to the so called oscillating singularitiesare treated in detail as well.

This is a joint work with T. Buchukuri, R. Duduchava and D. Natroshvili.

Page 193: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÖßÚÅÄÔ ÂÀÒÄÌÏÈÀ ÌÄØÀÍÉÊÀ 193

Partially Unknown Boundaries Problemsof Elasticity and Plate Bending (Equi-Strong

Contours Finding Problem)Francisco Criado-Aldeanueva1, Francisco Criado2, Nana Odishelidze3

1 Department of Applied Physics II, Polytechnic School, Malaga Universityemail: [email protected]

2 Department of Statistics and Operational Research,Faculty of Sciences Malaga University

email: [email protected] Department of Computer Sciences, Faculty of Exact and Natural Sciences

I. Javakhishvili Tbilisi State University, Tbilisi, Georgiaemail: [email protected]

The partially unknown boundary problems of elasticity theory and plate bending tasks(equi-strong contours finding problem) are considered to be most important problems,their solvability provides controlling stress optimal distribution selecting the appropriatehole boundary. In general, tangential normal stresses and tangential normal momentswhose values depend on external loads and hole shapes play an important role in theplasticity zone foration in the plates with the holes and also in the neighborhood to theplate’s hole boundary. Proceeding from the above –mentioned, the following tasks wereassigned: in conditions of provided external loads the shapes of the holes in plates shouldbe chosen so that on the boundaries tangential normal stresses (tangential normal mo-ments) module’s maximal value will be the same and minimal in the same body in all otherpossible holes tangential normal stresses (tangential normal moments) maximal value ofmodule. It’ s proven that for infinite domains tangential normal stresses (tangential nor-mal moments) the minimum of maximal value will be obtained on such contours, wherethis value maintains the constant value; this contours are named equi-strong contours.

Page 194: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

194 Continuum Mechanics September 2–9, Batumi, Georgia

The Boundary Value Problems for a Solid Bodywith Double Porosity and Two Nonintersecting

Spherical CavitiesL. Giorgashvili, G. Karseladze

Georgian Technical University, Department of MathematicsTbilisi, Georgia

email: [email protected]

The paper studies the basic boundary value problems for a three-dimensional spacewhich is filled with a solid body having double porosity and two nonintersecting sphericalcavities. A problem solution is sought using the representation of a general solution ofa system of homogeneous differential equations of statics, which is expressed in termsof four harmonic and one metaharmonic functions. The problem solution is reduced tothe investigation of an infinite system of linear algebraic equations. It is shown that theobtained system is of normal type. Solutions of the considered problems are obtained inthe form of absolutely and uniformly convergent series.

Uniqueness Theorems for the Basic InterfaceProblems of Thermoelastostatics for Hemitropic

Composite BodiesDiana Ivanidze

Georgian Technical University, Department of MathematicsTbilisi, Georgia

email: [email protected]

We consider the three-dimensional interface boundary-value problems of the theoryof thermoelastostatics for piecewise homogeneous hemitropic (Cosserat type) compositestructures. In particular, we treat the model problem, when the whole space is dividedinto two disjoint regions, a bounded domain Ω+ and its unbounded complement Ω−, witha common interface boundary S. It is assumed that these domains are occupied by elastichemitropic solids characterized by different material parameters. On the interface surfacewe impose the so called rigid contact (transmission) conditions. In addition, we requirethat in the unbounded domain the sought for displacement vector is bounded and satisfiessome structural restrictions at infinity, called Z(Ω−) conditions. Under these conditions

Page 195: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÖßÚÅÄÔ ÂÀÒÄÌÏÈÀ ÌÄØÀÍÉÊÀ 195

we prove that the basic transmission problem possesses at most one solution in the classof regular vector-functions.

Similar uniqueness results hold true in general case when the interior domain containsmaterial inclusions or voids (empty inclusions). In the later case on the boundaries ofthe voids there are prescribed Dirichlet, or Neumann, or Robin or mixed type boundaryconditions.

Uniqueness Theorems for the Basic InterfaceProblems of Thermoelastostatics for Anisotropic

Composite BodiesMarekh Ivanidze

Georgian Technical University, Department of MathematicsTbilisi, Georgia

email: [email protected]

We consider the three-dimensional interface boundary-value problems of the theoryof thermoelastostatics for piecewise homogeneous anisotropic composite structures. Inparticular, we treat the model problem, when the whole space is divided into two disjointregions, a bounded domain Ω+ and its unbounded complement Ω−, with a common in-terface boundary S. It is assumed that these domains are occupied by anisotropic elasticsolids characterized by different material parameters. On the interface surface we im-pose the so called rigid contact (transmission) conditions. In addition, we require that inthe unbounded domain the sought for displacement vector is bounded and satisfies somestructural restrictions at infinity, called Z(Ω−) conditions. Under these conditions weprove that the basic transmission problem possesses at most one solution in the class ofregular vector-functions.

Similar uniqueness results hold true in general case when the interior domain containsmaterial inclusions or voids (empty inclusions). In the later case on the boundaries ofthe voids there are prescribed Dirichlet, or Neumann, or Robin or mixed type boundaryconditions.

Page 196: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

196 Continuum Mechanics September 2–9, Batumi, Georgia

The Boundary Value Problems of Statics ofthe Two-temperature Theory Elastic Mixtures

for a Domain Bounded by Spherical SurfaceA. Jaghmaidze, R. Meladze

Georgian Technical University, Department of MathematicsTbilisi, Georgia

email: [email protected]

We consider the statics case of the theory of two-temperature elastic mixtures whenpartial displacements of the elastic components of which the mixture consists are equal toeach other. The representation formula of a general solution of the homogeneous systemof differential equations obtained in the paper is expressed by means of four harmonicfunctions and four metaharmonic functions. The obtained general solution representationmakes it possible to represent the displacement vector and the stress vector by Fourier-Laplace series with respect to a complete system of well-defined orthonormal vectors.Thus the solution of the considered boundary value problems reduces to the investigationof a system of linear algebraic equations. Solutions are obtained in the form of absolutelyand uniformly convergent series.

ÌÀÒÈÊÖÈáÀ ÐÀÒÀËÄËÄÐÉÐÄÃÉÓÀÈÅÉÓ ÈÄÒÌÏÃÒÄÊÀÃÏÁÉÓÆÏÂÉÄÒÈÉ ÀÒÀÊËÀÓÉÊÖÒÉ ÀÌÏÝÀÍÉÓ ÃÀÓÌÀ ÃÀ ÀÌÏáÓÍÀ

ÒÏÌÀÍ ãÀÍãÙÀÅÀ, ÍÖÒÉ áÏÌÀÓÖÒÉÞÄ

ÉÅ. ãÀÅÀáÉÛÅÉËÉÓ ÓÀá. ÈÁÉËÉÓÉÓ ÓÀáÄËÌßÉ×Ï ÖÍÉÅÄÒÓÉÔÄÔÉÓ É. ÅÄÊÖÀÓ ÓÀáÄËÏÁÉÓÂÀÌÏÚÄÍÄÁÉÈÉ ÌÀÈÄÌÀÔÉÊÉÓ ÉÍÓÔÉÔÖÔÉ, ÈÁÉËÉÓÉ, ÓÀØÀÒÈÅÄËÏ

ÄË. ×ÏÓÔÉÓ ÌÉÓÀÌÀÒÈÉ: [email protected]; [email protected]

ßÀÒÌÏÃÂÄÍÉË ÌÏáÓÄÍÄÁÀÛÉ ÃÀÓÌÖËÉÀ ÃÀ ÀÍÀËÉÆÖÒÀà ÀÌÏáÓÍÉËÉÀ ÈÄÒÌÏÃÒÄÊÀÃÏ-ÁÉÓ ÛÄÌÃÄÂÉ ÀÒÀÊËÀÓÉÊÖÒÉ ÀÌÏÝÀÍÄÁÉ.

ÃÄÊÀÒÔÉÓ ÓÀÊÏÏÒÃÉÍÀÔÏ ÓÉÓÔÄÌÀÛÉ ÂÀÍÉáÉËÄÁÀ ÉÆÏÔÒÏÐÖËÉ ÄÒÈÂÅÀÒÏÅÀÍÉ ÌÀÒÈ-ÊÖÈáÀ ÐÀÒÀËÄËÄÐÉÐÄÃÉÓ ÈÄÒÌÏÃÒÄÊÀÃÉ ßÏÍÀÓßÏÒÏÁÀ. ÐÀÒÀËÄËÄÐÉÐÄÃÉÓ ÂÅÄÒÃÉÈßÀáÍÀÂÄÁÆÄ, ÀÓÄÅÄ ÌÉÓ ØÅÄÃÀ ßÀáÍÀÂÆÄ ÌÏÝÄÌÖËÉÀ ÓÉÌÄÔÒÉÉÓ ÀÍ ÀÍÔÉÓÉÌÄÔÒÉÉÓ ÐÉÒÏ-ÁÄÁÉ.

ÀÌÏÝÀÍÀ ÌÃÂÏÌÀÒÄÏÁÓ ÉÌÀÛÉ, ÒÏÌ ÐÀÒÀËÄËÄÐÉÐÄÃÉÓ ÆÄÃÀ ßÀáÍÀÂÆÄ ÛÄÅÀÒÜÉÏÈÛÄÛ×ÏÈÄÁÄÁÉ ÉÓÄÈÍÀÉÒÀÃ, ÒÏÌ ÓáÄÖËÉÓ ÛÉÂÍÉÈ, ÆÄÃÀ ÃÀ ØÅÄÃÀ ßÀáÍÀÂÄÁÉÓ ÐÀÒÀËÄËÖÒÒÀÉÌÄ ÓÉÁÒÔÚÄÄÁÆÄ, ÞÀÁÅÄÁÌÀ ÃÀ ÍÏÒÌÀËÖÒÌÀ ÂÀÃÀÀÃÂÉËÄÁÀÌ, ÀÍÃÀ ÂÀÃÀÀÃÂÉËÄÁÄÁÌÀ

Page 197: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÖßÚÅÄÔ ÂÀÒÄÌÏÈÀ ÌÄØÀÍÉÊÀ 197

ÃÀ ÍÏÒÌÀËÖÒÌÀ ÞÀÁÅÀÌ ÌÉÉÙÏÍ ßÉÍÀÓßÀÒ ÌÏÝÄÌÖËÉ ÌÍÉÛÅÍÄËÏÁÄÁÉ. ÆÄÃÀ ßÀáÍÀÂÉÓÛÄÛ×ÏÈÄÁÉÓ ØÅÄÛ ÉÂÖËÉÓáÌÄÁÀ ÌÀÓÆÄ ÞÀÁÅÄÁÉÓ ÃÀ ÔÄÌÐÄÒÀÔÖÒÉÓ, ÀÍ ÂÀÃÀÀÃÂÉËÄÁÄÁÉÓ ÃÀÔÄÌÐÄÒÀÔÖÒÉÓ, ÀÍ ÊÉÃÄÅ ÞÀÁÅÄÁÉÓÀ ÃÀ ÂÀÃÀÀÃÂÉËÄÁÉÓ ÊÏÌÁÉÍÀÝÉÉÓÀ ÃÀ ÔÄÌÐÄÒÀÔÖÒÉÓÌÏÝÄÌÀ. ÛÄÅÍÉÛÍÏÈ, ÒÏÌ ÔÄÌÐÄÒÀÔÖÒÉÓ ÍÀÝÅËÀà ÛÄÉÞËÄÁÀ ÌÏÝÄÌÖËÉ ÉÚÏÓ ÌÉÓÉÍÏÒÌÀËÖÒÉ ßÀÒÌÏÄÁÖËÉ. ÃÀÓÌÖËÉ ÀÌÏÝÀÍÉÓ ÀÌÏáÓÍÀÓÈÀÍ ÄÒÈÀà áÏÒÝÉÄËÃÄÁÀÂÀÍÓÀáÉËÅÄËÉ ÓáÄÖËÉÓ ÃÀÞÀÁÖË-ÃÄ×ÏÒÌÉÒÄÁÖËÉ ÌÃÂÏÌÀÒÄÏÁÉÓ ÂÀÍÓÀÆÙÅÒÀÝ.

ÉÌÉÓ ÂÀÈÅÀËÉÓßÉÍÄÁÀ, ÒÏÌ ÐÀÒÀËÄËÄÐÉÐÄÃÉÓ ØÅÄÃÀ ßÀáÍÀÂÆÄ ÛÄÉÞËÄÁÀ ÌÏÝÄÌÖËÉÉÚÏÓ ÒÏÂÏÒÝ ÓÉÌÄÔÒÉÉÓ, ÉÓÄ ÀÍÔÉÓÉÌÄÔÒÉÉÓ ÐÉÒÏÁÄÁÉ, ÓÀÛÖÀËÄÁÀÓ ÉÞËÄÅÀ ÀÌÏÉáÓÍÀÓÖ×ÒÏ ÆÏÂÀÃÉ ÀÒÀÊËÀÓÉÊÖÒÉ ÀÌÏÝÀÍÄÁÉÝ, ÒÏÝÀ ÓáÄÖËÉÓ ÛÉÂÍÉÈ ÂÀÒÊÅÄÖËÉ ÐÉÒÏÁÄÁÉÓÃÀÊÌÀÚÏ×ÉËÄÁÀ áÃÄÁÀ ÛÄÛ×ÏÈÄÁÀÈÀ ÓÀÈÀÍÀÃÏ ÛÄÒÜÄÅÉÈ ÒÏÂÏÒÝ ÆÄÃÀ, ÉÓÄ ØÅÄÃÀßÀáÍÀÂÆÄ.

ÌÏáÓÄÍÄÁÀÛÉ ÂÀÍáÉËÖËÉ ÀÌÏÝÀÍÄÁÉ ÀÒ ÄÌÈáÅÄÅÉÀÍ ÃÒÄÊÀÃÏÁÉÓ ÈÄÏÒÉÀÛÉ ÝÍÏÁÉËÓáÅÀ ÀÒÀÊËÀÓÉÊÖÒ ÀÌÏÝÀÍÄÁÓ ÃÀ, ÈÄÏÒÉÖËÈÀÍ ÄÒÈÀÃ, ÂÀÌÏÚÄÍÄÁÉÈÉ ÌÍÉÛÅÍÄËÏÁÀÝÀØÅÈ.

ÍÀÛÒÏÌÉ ÛÄÓÒÖËÄÁÖËÉÀ ÓÀØÀÒÈÅÄËÏÓ ÓÀÌÄÝÍÉÄÒÏ ×ÏÍÃÉÓ ÂÒÀÍÔÉÓ (AR/91/5-109/11)×ÀÒÂËÄÁÛÉ.

Thermodynamics of Barochronic Potential Flowof Ideal Liquid (Gas)

Ilia Lomidze, Jimsher JavakhishviliUniversity of Georgia, Physics Department

Tbilisi, Georgiaemail: [email protected]; [email protected]

Using the results of previous works of the authors [1] we consider time and spacedependence of an enthropy, temperature and some other thermodynamical quantities ofbarochronic potential flow of ideal liquid (gas). Solving of common thermodynamicalequations and taking into account space-time dependence of a hydrodynamical velocity

u = r(t+ t0),

and of a dencityρ = ρ0|1 + t/t0|−3,

obtained in [1-3] we conclude that the temperature is also time dependence only:

T = T0|1 + t/t0|α,

where α, ρ0, t0, T0 are some constants.

Page 198: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

198 Continuum Mechanics September 2–9, Batumi, Georgia

References[1] И.Р. Ломидзе, Дж.И. Джавахишвили, Применение ортогональных инвариантов трех-

мерных операторов для решения некоторых физических задач. Сообщения ОИЯИP5-2007-31 (2007), Дубна, 1-36.

[2] I. Lomidze, J. Javakhishvili, Application of Orthogonal Invariants of Operators in SolvingSome Hydrodynamic Problems. Reports of Enlarged Sessions of the Seminars of I.VekuaInstitute of Applied Mathematics, 22 (2008), Tbilisi, 67--73.

[3] I.R. Lomidze, J.I. Javakhishvili, Application of Orthogonal Invariants of Operators inSolving Some Hydro¬dynamic Problem. Bulletin of St-Andrew the-Firstcalled GeorgianUniversity of the Patriarchy of Georgia, 2 (2009), Tbilisi, 27--37.

A Two-Component Elastic Mixture with DifferentTemperature Values in a Scalar Field

R. Meladze, M. Kharashvili, K. SkhvitaridzeDepartment of Mathematics, Georgian Technical University

Tbilisi, Georgiaemail: [email protected]

In the paper we consider the case of the two-temperature theory of statics of an elasticmixture when partial displacements of the elastic components of the considered mixtureare equal to each other. A contact problem with contact spherical surface is considered.The ball bounded by the contact surface is filled with a composite material, while theexternal scalar field of the ball is defined by a harmonic function. The representationformula obtained for a general solution of a system of homogeneous differential equationsof statics of the two-temperature theory of an elastic mixture is expressed in terms offour harmonic and one metaharmonic functions. For the considered contact problem, thesolution uniqueness theorem is proved. The problem solution is obtained in the form ofabsolutely and uniformly convergent series.

Page 199: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÖßÚÅÄÔ ÂÀÒÄÌÏÈÀ ÌÄØÀÍÉÊÀ 199

Mathematical Model of Dynamics of MicropolarElastic Orthotropic Multilayered Thin Plates

S. H. Sargsyan, A. J. FarmanyanGyumri M. Nalbandyan State Pedagogical Institute, Armenia

email: [email protected]

In the present paper general theory with free fields of displacements and rotations ofdynamics of micropolar orthotropic elastic multilayered thin plates is constructed.

Thin plate is considered composed of micropolar orthotropic elastic N layers. Middleplane of layer K or the plane of layers’ contact is assumed as a ground plane and Cartesiansystem of coordinates x1, x2 is placed there. Transverse coordinate x3 is measured indirection of the outward normal of the ground plane.

For the construction of the dynamic theory of micropolar orthotropic multilayeredthin plates following hypotheses are formulated:

1. Kynematic hypothesis for the whole package of the plate: during the deformationinitially linear and normal to the ground plane fibers of the plate rotate at an angle as awhole rigid body, without changing their length and without remaining perpendicular tothe deformed ground plane;

2. Static hypotheses: normal force stress and tangential moment stresses, acting inareas, parallel to the ground plane, are negligible in relation to other components oftensors of force and moment stresses. Special algorithm of determination of tangentialforce stresses and normal moment stress, acting in the same areas, is drawn up.

The constructed general applied theory of dynamics of micropolar orthotropic elasticmultilayered thin plates is assumed as a basis during the studying of concrete problemsof free and force vibrations, dynamic stability of rectangular and circular plates in caseof different boundary conditions. Specific properties of the micropolar material will berevealed on the basis of numerical analysis.

References[1] S.H. Sargsyan, The general dynamic theory of micropolar elastic thin shells, Dokl.

Phys. 56 (2011), No. 1, 39–42.

Page 200: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

200 Continuum Mechanics September 2–9, Batumi, Georgia

Boundary Value Problems of Statics inthe Two-Temperature Elastic Mixture Theory

for a Half-SpaceK. Skhvitaridze, M. Kharashvili

Georgian Technical University, Department of MathematicsTbilisi, Georgia

email: [email protected]

The case of statics of the two-temperature elastic mixture theory is considered whenpartial displacements of the elastic components of the mixture are equal to each other.The obtained formula of representation of a general solution of a homogeneous system ofdifferential equations is expressed in terms of four harmonic and one metaharmonic func-tions. The solution uniqueness theorem is proved. Solutions are obtained in quadraturesby means of boundary functions.

On One Problem of the Plane Theory of ElasticMixture For a Half-Plane Weakened by Periodically

Arranged Equally Strong HolesKosta Svanadze

Department of Mathematics, Akaki Tsereteli State UniversityKutaisi, Georgia

email: [email protected]

In the case of equation of statics of the linear theory of elastic mixture is consideredthe problem of elastic equilibrium of a lower half-plane weakened by periodically arrangedequally strong holes.

The hole boundaries are assumed to be free from external forces and absolutely smoothrigid punch with rectilinear base is applied at the boundary; the punch is under the actionof external normal contractive forces.

The problem consists in finding both the stressed state of a half-plane and analyticalforms of boundaries of equally strong holes under the condition that tangential normalstresses on these boundaries take constant value.

Using of analogous Kolosov–Muskelishvili’s formulas, the problem under considerationis reduced to a mixed problem of the theory of analytic functions, and the solution of

Page 201: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÖßÚÅÄÔ ÂÀÒÄÌÏÈÀ ÌÄØÀÍÉÊÀ 201

the latter allows us to construct complex potentials and equations of unknown contourseffectively (analytically).

Numerical Solution of Boundary Value Problemsof Thermoelasticity with Microtemperatures

for Circular HoleIvane Tsagareli1, Maia Svanadze2

1 I. Vekua Institute of Applied Mathematics, I.Javakhiahvili Tbilisi State UniversityTbilisi, Georgia

2 Institute of Mathematics, University of Göttingen, Bunsenstrasse 3-5, D-37073Göttingen, Germany

email: [email protected]; [email protected]

Consider a boundary value problems (BVP) of statics of the theory of thermoelasticitywith microtemperatures for the plane with a circular hole. The basic equations of staticsof the theory of thermoelasticity with microtemperatures can be written in the form [1,2]:

µ∆(u(x)) + (λ+ µ) grad div(u(x)) = β gradu3, k∆u3(x) + k1 divw(x) = 0,k6∆w(x) + (k4 + k5) grad divw(x)− k3 gradu3(x)− k2w(x) = 0,

(1)

where u(x) is the displacement vector of the point x, u = (u1, u2); w = (w1, w2) isthe microtemperatures vector; u3 is temperature measured from the constant absolutetemperature T0; λ, µ, β, k, k1, k2, k3, k4, k5, k6 are constitutive coefficients [1,2].

We consider the following BVP: find a regular solution U = (u1, u2, u3, w1, w2) of thesystem (1), satisfying the boundary conditions:

I. u(z) = f(z), u3(z) = f3(z), w(z) = p(z);

II. T ′(∂z, n)u(z)−βu3(z)n(z)=f(z), k∂u3(z)

∂n(z)+k1w(z)n(z)=f3(z), T ′′(∂z, n)w(z)=p(z),

where T ′u is the stress vector in the classical theory of elasticity; T ′′w is stress vectorfor microtemperatures [1,2]; f = (f1, f2), p = (p1, p2), f1, f2, f3-are the given functions onboundary.

The representation of solutions of the equation system (1) is constructed with the helpof the harmonic and metaharmonic functions [3].

Using this representation the solution of the problems is given in the explicit form byusing the Fourier series [3]. There are the obtained the numerical solutions.

Page 202: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

202 Continuum Mechanics September 2–9, Batumi, Georgia

References[1] D. Iesan and R. Quintanilla, On the Theory of Thermoelasticity with Microtemper-

atures. J. Thermal Stresses 23 (2000), 199–215.[2] A. Scalia, M. Svanadze, and R. Tracina, Basic theorems in the Equilibrium theory of

Thermoelasticity with Microtemperatures. J. Thermal Stresses 33 (2010), 721–753.[3] I. Tsagareli and M. M. Svanadze, Explicit solution of the boundary value problem

of the theory of thermoelasticity with microtemperatures for elastic circle. PAMM:Proc. Appl. Math. Mech. 11 (2011), 697–698.

Motion of a Viscous Hydromagnetic Fluid Containedbetween Rotating Coaxial Cylinders

Varden Tsutskiridze, Levan JikidzeGeorgian Technical University, Department of Mathematics

Tbilisi, Georgiaemail: [email protected]; [email protected]

The problem of unsteady rotational motion of electrically conducting viscous incom-pressible fluid, contained within two axially concentric cylinders of finite length in thepresence of an axial symmetric magnetic field of constant strength, has been solved ex-actly using finite Hankel transform in combination with a technique presented in thispaper. This paper presents a complete of the problem under consideration, which hasbeen of interest for many years; moreover the Pneuman–Lykoudis solution in magneto-hydrodynamics and Childyal solution in hydrodynamics appears as a special case of thisstudy. The analysis shows that the disturbance in the fluid disappears by increasing themagnetic field.

Impact of a Deformable Indenter and the Plate inthe Presence of Discharge Current

A. A. Vantsyan

With the development of methods for throwing the flying bodies (bullets, projectiles)the impact velocity of the indenter and the target becomes (increases) more and more.

Page 203: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÖßÚÅÄÔ ÂÀÒÄÌÏÈÀ ÌÄØÀÍÉÊÀ 203

With increasing of the impact velocity the problem of the indenter penetration passes intothe perforation problem, which introduces additional difficulties associated with physicalphenomena occurring on the back side of the target. Among these phenomena is the re-maining velocity with which the indenter comes from the back of the target, the shape ofthe free surface at z = h, where h is thickness of the plate, the occurrence (appearance) ofthe fragments. All these phenomena are significantly affected by discharge current; there-fore investigation of the discharge current influence is of great interest both in physicaland practical relation. Both theoretically and experimentally by ourselves it was shownthat the discharge current leads to a significant decrease in the depth of penetration. Ap-plying this effect to the perforation problem of the targets, one can achieve a substantialincrease of the protective properties of targets.

For simplicity, here the problem is also solved for the same values of the constants forthe indenter and the target, although the program of numerical solution of the problemcan solve it more precisely for any values of these (indicated) constants.

From the obtaining figures it is clearly seen that the target and the indenter receivevibrations in r and z directions. There is a spatial (space) stress-strain state in the targetand the indenter. It is noticeable that in the absence of the discharge current the indenterperforates the plate and comes with a remaining velocity Vrem = 360m/sec, and in thepresence of discharge current the indenter gets stuck in the target. Meanwhile the indentergets more intense plastic deformations. The region of plasticity in the target and indenteris increased. This is due to plasticity increasing of materials and additional stresses atthe cost of the Ampere force j ×H.

On the corresponding figures are also given equip-potential surfaces of the stresses atthe moment for the specified times. It is noticeable that the presence of discharge currentleads to a redistribution of stresses. In particular, there is an increase of the stress nearthe indenter and on the indenter and a decrease of stress with distance from the cavity,which can be attributed to the pinch-effect.

Page 204: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

204 Continuum Mechanics September 2–9, Batumi, Georgia

The Boundary Value Problems of StationaryOscillations in the Theory of Two-Temperature

Elastic MixturesSh. Zazashvili, G. Sadunishvili

Georgian Technical University, Department of MathematicsTbilisi, Georgia

email: [email protected]

Work provides Green’s formulas for the system of differential equations of stationaryoscillations in the theory of elastic mixtures, provides prove of the theorems of uniquenessof the boundary value problems’ solutions by means of these formulas. The formulas ofsimple and double-layer potential discontinuity formulas are derived. By means of thetheories of potentials and integral equations the existence of problem solutions is proved.

Study of Stress-Strain State of the PiecewiseHomogeneous Infinity Elastic Body with an Elliptic

Hole and the CracksNatela Zirakashvili, Miranda Narmania

I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University,University of Georgia

Tbilisi, Georgiaemail: [email protected]; [email protected]

There is being study Stress-strain state of the piecewise homogeneous infinity elas-tic body, with an elliptic hole, when on internally surface body are four cracks. Thetop of each crack is strengthened in a certain area of the top with use a harder materi-als. The body is in plane-deformation state and therefore corresponding two-dimensionalboundary-contact problem is considered. There is investigated dependences of deforma-tion in a body on materials of the body (nearby tops of a cracks in a circle with radius ris other material), on size of radius r, on quantity of cracks and length. For some value ofradius r and length of cracks by means of a method of boundary elements are received thenumerical decisions, constructed corresponding schedules and physical and mechanicalinterpretations for the received results are made.AMS subject classification: 65N38, 74B05, 74S15.

Page 205: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ ÖßÚÅÄÔ ÂÀÒÄÌÏÈÀ ÌÄØÀÍÉÊÀ 205

References[1] N. Khomasuridze, Thermoelastic equilibrium of bodies in generalized cylindrical

coordinates. Georgian Math. J. 5 (1998), No. 6, 521–544.[2] S. L. Crouch and A. M. Starfield, Boundary element methods in solid mechanics.

George Allen & Unwin, London-Boston-Sydney, 1983.[3] S. L. Crouch, Solution of plane elasticity problems by the displacement discontinuity

method. International Journal for Numerical Methods in Engineering 10 (1976),301–343.

[4] N. Zirakashvili, Application of the boundary element method to the solution of theproblem of distribution of stresses in an elastic body with a circular hole whoseinterior surface contains radial cracks. Proc. A. Razmadze Math. Inst. 141 (2006),139–147.

[5] N. Zirakashvili, The numerical solution of boundary-value problems for an elasticbody with an elliptic hole and linear cracks. Springer Netherlands, Journal ofEngineering Mathematics 65 (2009), Number 2 / October, 2009, 111–123, DOI10.1007/s10665-009-9269-z

Page 206: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

206 Continuum Mechanics September 2–9, Batumi, Georgia

Page 207: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 207

List of ParticipantsAbzianidze Lasha, The Tilburg Center for Logic and Philosophy of Science, Department

of Philosophy, Tilburg University, Tilburg, [email protected] Vladimer, Akaki Tsereteli State University, Kutaisi, GeorgiaAkhalaia George, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia,

[email protected] Peker H., Selcuk University, Department of Mathematics, 42075, Campus,

Konya, TurkeyAltun Yilmaz, Artvin Coruh University, Faculty of Arts and Science, Department of

Mathematics, Artvin / Turkey, [email protected] Natela, Associate Professor, I. Javakhishvili Tbilisi State University, Fac-

ulty of Exact an Natural Sciences, Tbilisi, Georgia, [email protected], [email protected]

Ashordia Malkhaz, A. Razmadze Mathematical Institute; Sukhumi State University,Faculty of Mathematics and Computer Sciences, Tbilisi, Georgia, [email protected]

Babalian Konstantine, I. Javakhishvili Tbilisi State University, Georgian TechnicalUniversity

Babilua Petre, I. Javakhishvili Tbilisi State University, Faculty of Exact and NaturalSciences, Department of Mathematics, Tbilisi, Georgia, [email protected]

Baeriswyl D., Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzer-land

Bagdoev Aleksander G., Doctor Phys.-Math. Sci, Prof., Corr-Member NAS Armenia,Chief Sci. Res., Institute of Mechanics NAS RA, Armenia, [email protected]

Bakuradze Malkhaz, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia, [email protected]

Baladze Vladimer, Shota Rustaveli Batumi State University, Department of Mathe-matics, Batumi, Georgia, [email protected]

Bantsuri Leri, Akaki Tsereteli State University, Department of Mathematics, 59,TamarMepe St., Kutaisi 4600, Georgia, [email protected]

Barsegian Grigori, Institute of mathematics of the National Academy of Sciences ofArmenia, [email protected]

Bayramov Sadi, Department of Mathematics, Kafkas University, Kars, 36100-Turkey,[email protected]

Beriashvili Mariam, I. Javakhishvili Tbilisi State University, Ph.D. Student of Math-ematics, Tbilisi, Georgia, mariam−[email protected]

Beridze Anzor, Shota Rustaveli Batumi State University, Department of Mathematics,Batumi, Georgia, [email protected]

Page 208: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

208 September 2–9, Batumi, Georgia

Beridze Vakhtang, Shota Rustaveli Batumi State University, Department of ComputerTechnology, Batumi, Georgia, [email protected]

Berk Fatih, Audience Member, Mathematics Teacher at Trabzon/TURKEYBerikelashvili Givi, A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State

University; Department of Mathematics, Georgian Technical University, Tbilisi, Geor-gia, [email protected]

Bibileishvili Gulnara, Ilia State University, Tbilisi, Georgia, [email protected] Lamara, I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi

State University, 2 University Str., Tbilisi 0186,Georgia, [email protected] Rusudan, Georgian Technical University, Faculty of Informatics and Systems

Management, Tbilisi, Georgia, [email protected] Sema, Selcuk University, Department of Mathematics, 42075, Campus, Konya,

Turkey,Bokelavadze Tengiz, Akaki Tsereteli state University, Department of Mathematics,

Kutaisi, Georgia, [email protected]

Çelik Ercan, Assoc. Prof. Dr., Atatürk University Faculty of Science, Department ofMathematics, 25400 Erzurum, Turkey, [email protected]

Cengiz Nejmi, Atatürk University, Faculty of Science, Dep. of Mathematics, 25240Erzurum, Turkey, [email protected] or [email protected]

Chabashvili Maia, I. Javakhishvili Tbilisi State university,Tbilisi GeorgiaChachava Natela, University of Georgia, Physics Department, 77a, Kostava, Tbilisi,

Georgia, [email protected] Medea, Sukhumi State University, Faculty of Mathematics and Computer Sci-

ences, Tbilisi, GeorgiaChankvetadze Gela, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia,

[email protected] Giorgi, Georgian Technical University, Scientific-Educational Center for Geor-

gian Language Technology, Tbilisi, Georgia, [email protected] Merab, Georgian Technical University, Scientific-Educational Center for

Georgian Language Technology, Tbilisi, Georgia, [email protected] Temur, Sokhumi State University, Department of Mathematics and Com-

puter Science, the direction of mathematical models and computational methods, Tbil-isi, Georgia, temo−[email protected]

Chkadua Otar, A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi StateUniversity; Sokhumi State University, Tbilisi, Georgia, [email protected]

Chobanyan Sergei, Niko Muskhelishvili Institute of Computational Mathematics of theGeorgian Technical University, Tbilisi, Georgia, [email protected]

Criado Francisco, Department of Statistics and Operational Research, Faculty of Sci-ences, Malaga University, Campus Teatinos, s/n, (29071), Spain, [email protected]

Page 209: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 209

Criado-Aldeanueva Francisco, Department of Applied Physics II, Polytechnic School,Malaga University, Campus El Ejido, s/n, (29013), Spain, [email protected]

Cucia Malkhaz, Sukhumi State University, Faculty of Mathematics and Computer Sci-ences, Tbilisi, Georgia, [email protected]

Davitashvili Teimuraz, Faculty of Exact and Natural Sciences of I. Javakhishvili TbilisiState University, I. Vekua Institute of Applied Mathematics of I. Javakhishvili TbilisiState University, Tbilisi, Georgia, [email protected]

Davitashvili Tinatin, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia,[email protected]

Deisadze Manana, Akaki Tsereteli State University, Kutaisi, GeorgiaDevadze David, Batumi Shota Rustaveli State University, Department of Computer

Technology, Batumi, Georgia, [email protected] Yasha, Shota Rustaveli Batumi State University, Department of Mathe-

mathics, Batumi, Georgia, [email protected] Roland, Andrea Razmadze Mathematical Institute, I. Javakhishvili Tbilisi

State University, Tbilisi, Georgia, [email protected] Besik, I. VekuaInstitute of Applied Mathematics, I. Javakhishvili Tbilisi State

University, Georgia, [email protected] Düşünceli, Atatürk University Faculty of Science, Department of Mathematics,

Erzurum-Turkey, [email protected] Tamaz, I. Javakhishvili Tbilisi State University, Georgian Technical Univer-

sityDzagnidze Omar, Andrea Razmadze Mathematical Institute of Ivane Javakhishvili

State University, Tbilisi, Georgia, [email protected]

Elerdashvili Eka, Associate Professor, Georgian Technical University, Department ofMathematics, Tbilisi, Georgia, [email protected]

Emelichev Vladimir, Belarusian State University, Minsk, [email protected]

Farmanyan A. J., Gyumri M. Nalbandyan State Pedagogical Institute, Armenia, [email protected]

Fedulov Genadi, I. Javakhishvili Tbilisi State University, Georgian Technical University

Geladze George, Faculty of Exact and Natural Sciences of I. Javakhishvili Tbilisi StateUniversity, I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi StateUniversity, Tbilisi, Georgia, [email protected]

Ghvedashvili G., Tbilisi State University (TSU), Department of Electric and ElectricalEngineering, Chavchavadze ave.3, 0179 Tbilisi, Georgia, [email protected]

Giorgadze Givi, Georgian Technical University, Department of Mathematics, 77 KostavaStr., Tbilisi 0175, Georgia, g−[email protected]

Page 210: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

210 September 2–9, Batumi, Georgia

Giorgobiani G., Niko Muskhelishvili Institute of Computational Mathematics of theGeorgian Technical University, Tbilisi, Georgia, [email protected]

Givradze Omar, Shota Rustaveli Batumi State University, Department of Mathematics,Batumi, Georgia, [email protected]

Gogishvili Guram, St. Andrew the First called Georgian University of the Patriarchyof Georgia, Faculty of Physics, Mathematics and Computer Sciences, Tbilisi, Georgia,[email protected]

Gordeziani David, Faculty of Exact and Natural Sciences of I. Javakhishvili TbilisiState University, I. Vekua Institute of Applied Mathematics of I. Javakhishvili TbilisiState University, Tbilisi, Georgia, [email protected]

Grusha Inna, Ilia State University, Tbilisi, GeorgiaGubelidze Givi, Faculty of Exact and Natural Sciences of I. Javakhishvili Tbilisi State

University, I. Vekua Institute of Applied mathematics of I. Javakhishvili Tbilisi StateUniversity, Tbilisi, Georgia

Güler Bahadir Ö., Recep Tayyip Erdoǧan Üniversitesi Fen-Edebiyat Fakültesi Matem-atik Bölümü, 53050 Rize, Turkey, [email protected]

Gunduz (Aras) Ciğdem, Department of Mathematics, Kocaeli University, Kocaeli,41380-Turkey, [email protected]

Halilov Huseyin, Recep Tayyip Erdoǧan Üniversitesi Fen-Edebiyat Fakültesi MatematikBölümü, 53050 Rize, Turkey, [email protected]

Henselmans Daan, European Masters Program in Language and Communication Tech-nologies, Department of Intelligent Computer Systems, University of Malta, Depart-ment of Computational Linguistics and Phonetics, Saarland University, Germany,[email protected]

Iashvili George, I. Javakhishvili Tbilisi State University, Tbilisi, GeorgiaIashvili Nugzar, I. Javakhishvili Tbilisi State University, Georgian Technical University,

[email protected] Diana, Georgian Technical University, Department of Mathematics, Tbilisi,

Georgia, [email protected] Marekh, Georgian Technical University, Department of Mathematics, Tbilisi,

Georgia, [email protected]

Jangveladze Temur, I. Vekua Institute of Applied Mathematics, I. Javakhishvili TbilisiState University, Caucasus University, Tbilisi, Georgia, [email protected]

Janjgava Roman, I. Vekua Institute of Applied Mathematics of I. Javakhishvili TbilisiState University, Tbilisi, Georgia, [email protected]

Japaridze G. I., Ilia State University, Cholokashvili Ave. 3-5, Tbilisi, 0162, GeorgiaJapharidze Erekle, Akaki Tsereteli State University, Kutaisi, GeorgiaJavakhishvili Jimsher, University of Georgia, Physics Department, 77a, Kostava, Tbil-

isi, Georgia, [email protected]

Page 211: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 211

Jibladze Mamuka, A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi Stateuniversity, Tbilisi, Georgia, [email protected]

Jikidze Levan, Georgian Technical University, Department of Mathematics, Tbilisi,Georgia, [email protected]

Kachakhidze Nikoloz, Georgian Technical University, Department of Mathematics,Tbilisi, Georgia, [email protected]

Kapanadze David, Andrea Razmadze Mathematical Institute, I. Javakhishvili TbilisiState University, Tbilisi, Georgia, [email protected]

Karabacak Mesut, Res. Asst., Atatürk University Faculty of Science, Department ofMathematics, Erzurum-Turkey, [email protected]

Kasrashvili Tamar, Georgian Technical University, I. Vekua Institute of Applied Math-ematics, Tbilisi, Georgia, [email protected]

Kekelia Nestan, Sukhumi State University, Faculty of Mathematics and Computer Sci-ences, Tbilisi, Georgia, [email protected]

Kemoklidze Tariel, Akaki Tsereteli state University, Department of Mathematics, Ku-taisi, Georgia, [email protected]

Kereselidze Nugzar, The Georgian University of St. Andrew at Patriarchate of Georgia,School (Faculty) Mathematical modeling and computer technologies, Tbilisi, Georgia,[email protected]

Khaburdzania Razhden, Akaki Tsereteli State University, Kutaisi, Georgia,Kharashvili Maia, Department of Mathematics, Georgian Technical University, 77

Kostava St., Tbilisi 0175, GeorgiaKharibegashvili Sergo, Georgian Technical University, Department of Mathematics,

Tbilisi, Georgia, [email protected] Nino, I. Vekua Institute of Applied Mathematics, I. Javakhishvili Tbilisi

State University, Tbilisi, Georgia, [email protected] Zaza, I. Javakhishvili Tbilisi State University, Department of Proba-

bility and Statistics, Tbilisi, Georgia, [email protected] Shadiman, Institute of New Technologies, Tbilisi, Georgia,

[email protected] Giorgi, Ilia State University, Tbilisi, Georgia,

[email protected] Ekhtiar, Islamic Azad University, Malekan Branch, Malekan, Iran, kho-

[email protected] Nuri, I. Vekua Institute of Applied Mathematics of I. Javakhishvili

Tbilisi State University, Tbilisi, Georgia, [email protected] Nodar, Georgian Technical University, Department of Mathematics, Tbilisi,

Georgia, [email protected] Zurab, I. Vekua Institute of Applied Mathematics, I. Javkhishvili Tbilisi

State University, Faculty of Exact and Natural Sciences, Tbilisi, Georgia,

Page 212: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

212 September 2–9, Batumi, Georgia

[email protected] Teimuraz, St. Andrew the First called Georgian University of the Patriarchy

of Georgia, Faculty of Physics, Mathematics and Computer Sciences, TbilisiKokobinadze Temur, Shota Rustaveli Batumi State University, Department of Math-

ematics, Batumi, Georgia, [email protected] Vladimir, Belarusian State University, Minsk, [email protected]çuk Ahmet, Department of Mathematics, Ataturk University, Erzurum, 25000-

Turkey, [email protected] Ketevan, School of Mathematics and Information Technologies of Uni-

versity of Georgia, Tbilisi, Kostava str. 77a, Georgia, [email protected] Kadir, Recep Tayyip Erdoǧan Üniversitesi Fen-Edebiyat Fakültesi Matematik

Bölümü, 53050 Rize, Turkey, [email protected] Temur, RISC, Johannes Kepler University, Linz, Austria, [email protected] Vakhtang, Niko Muskhelishvili Institute of Computational Mathematics

of the Georgian Technical University, Tbilisi, Georgia, [email protected]

Levental Shlomo, Michigan State University, Department of Statistics and Probability,East Lansing, USA, [email protected]

Lomidze Ilia, University of Georgia, Physics Department, 77a, Kostava, Tbilisi, Geor-gia,: [email protected]

Lomtadze Maka, Akaki Tsereteli State University, Faculty of Exact and Natural Sci-ences, Department of Mathematics, Kutaisi, Georgia, [email protected]

Makatsaria George, Saint Andrew the First Called Georgian University of Patriarchateof Georgia, Tbilisi, Georgia, [email protected]

Mamporia Badri, Niko Muskhelishvili Institute of Computational Mathematics of theGeorgian Technical University, Tbilisi, Georgia, [email protected]

Manjavidze Nino, Department of Mathematics, Georgian Technical University, Tbilisi,Georgia, email: [email protected]

Maskharashvili Aleksandre, European MSc in Human Language Science and Technol-ogy, Department of Intelligent Computer Systems, Institute of Linguistics, Universityof Malta, Msida, [email protected]

Meladze Revaz, Department of Mathematics, Georgian Technical University, 77 KostavaSt., Tbilisi 0175, Georgia, [email protected]

Menteshashvili Marine, Niko Muskhelishvili Institute of Computational Mathematicsof the Georgian Technical University, Tbilisi, Georgia, [email protected]

Midodashvili Bidzina, Department of Computer Science, I. Javakhishvili Tbilisi StateUniversity, Tbilisi, Georgia, [email protected]

Mikiashvili Givi, Niko Muskhelishvili Institute of Computational Mathematics of theGeorgian Technical University, Tbilisi, Georgia, [email protected]

Page 213: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 213

Nadaraya Elizbar, I. Javakhishvili Tbilisi State University, Faculty of Exact an NaturalSciences, Department of Mathematics, Tbilisi, Georgia, [email protected]

Narmania Miranda, University of Georgia, Tbilisi, Georgia, [email protected]

Natroshvili David, Georgian Technical University, Department of Mathematics, Tbilisi,Georgia, [email protected]

Odisharia Vladimer, Department of Mathematics, I. Javakhishvili Tbilisi State Uni-versity, Tbilisi, Georgia, [email protected]

Odishelidze Nana, Department of Computer Sciences, Faculty of Exact and NaturalSciences, I. Javakhishvili Tbilisi State University, 2, University st., Tbilisi 0143, Geor-gia, [email protected]

Okumuş Israfil, Erzincan University Faculty of Art and Science, Department of Math-ematics, Erzincan-Turkey, [email protected]

Oniani George, Akaki Tsereteli State University, Department of Mathematics, 59,TamarMepe St., Kutaisi 4600, Georgia, [email protected]

Oniani Gigla, Akaki Tsereteli State University, Faculty of Exact and Natural Sciences,Department of Mathematics, Kutaisi, Georgia

Oturanç Galip, Selcuk University, Department of Mathematics, 42075, Campus, Konya,Turkey, [email protected]

Ozturk Taha Yasin, Department of Mathematics, Ataturk University, Erzurum, 25000-Turkey, [email protected]

Pacacia Mzevinar, Sokhumi State University, Tbilisi, Georgia, [email protected] Nikoloz, St. Andrew the First called Georgian University of the Patri-

archy of Georgia, Faculty of Physics, Mathematics and Computer Sciences, Tbilisi,Georgia, [email protected]

Pantsulaia Gogi, Institute of Applied Mathematics, I. Javakhishvili Tbilisi State Uni-versity, Discrete Mathematics and Theory of Algorithms, 2 University Str., Tbilisi0186, Georgia, [email protected]

Papukashvili Archil, Faculty of Exact and Natural Sciences of I. Javakhishvili TbilisiState University, I. Vekua Institute of Applied Mathematics of I. Javakhishvili TbilisiState University, Tbilisi, Georgia, [email protected]

Peradze Jemal, I. Javakhishvili Tbilisi State University, Georgian Technical University,Tbilisi, Georgia, [email protected]

Pirumova Kristina, I. Vekua Institute of Applied Mathematics, I. Javakhishvili TbilisiState University, Tbilisi, Georgia

Pkhakadze Konstantine, Georgian Technical University, Scientific-Educational Centerfor Georgian Language Technology, Tbilisi, Georgia, [email protected]

Pkhakadze Nikoloz, Technical University of Vienna, I. Javakhishvili Tbilisi State Uni-versity, Tbilisi, Georgia, [email protected]

Page 214: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

214 September 2–9, Batumi, Georgia

Pkhakadze Sopho, St. Andrew the First called Georgian University of the Patriarchyof Georgia, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia,[email protected]

Purtukhia Omar, I. Javakhishvili Tbilisi State University, Department of Probabilityand Statistics, Tbilisi, Georgia, [email protected]

Poghosyan Arnak, Institute of Mathematics of National Academy of Sciences of Arme-nia, Yerevan, [email protected]

Poghosyan Lusine, Institute of Mathematics, National Academy of Sciences, 24b Mar-shal Baghramian ave., Yerevan, 0019, Republic of Armenia,[email protected]

Rabinovich Vladimir S., National Polytechnic Institute of Mexico,[email protected]

Rakviashvili Giorgi, Ilia State University, Tbilisi, Georgia,[email protected]

Rukhaia Khimuri, I. Vekua Institute of Applied Mathematics of I. Javakhishvili TbilisiState University, Tbilisi, Georgia, [email protected]

Salimov Arif A., Prof. Dr., Ataturk University, Faculty of Science, Dep. of Mathemat-ics, 25240 Erzurum, Turkey, [email protected] or [email protected], Tel:+905363255484, Web-page: http://www.atauni.edu.tr/#personel=arif-salimov-

Sarajishvili Tsitsino, Shota Rustaveli Batumi State University, Department of Com-puter Technology, Batumi, Georgia, [email protected]

Shangua A., Niko Muskhelishvili Institute of Computational Mathematics of the Geor-gian Technical University,Tbilisi, Georgia, [email protected]

Sargsyan S. H., Gyumri M. Nalbandyan State Pedagogical Institute, National Academyof Sciences of the Republic of Armenia, Armenia, [email protected]

Sharikadze Meri, Faculty of Exact and Natural Sciences of I. Javakhishvili Tbilisi StateUniversity, I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi StateUniversity, Tbilisi, Georgia, [email protected]

Skhvitaridze Ketevan, Department of Mathematics, Georgian Technical University, 77Kostava St., Tbilisi 0175, Georgia, [email protected]

Sokhadze Grigol, I. Javakhishvili Tbilisi State University, Department of Probabilityand Statistics, Tbilisi, Georgia, [email protected]

Sokhadze Zaza, Akaki Tsereteli State University, Department of Mathematics, Kutaisi,Georgia, [email protected]

Surguladze Teimuraz, Akaki Tsereteli State University, Department of Mathematics,Kutaisi, Georgia, [email protected]

Surmanidze Onise, Shota Rustaveli Batumi State University, Department of Mathe-matics, Batumi, Georgia, [email protected]

Svanadze Kosta, Department of Mathematics, Akaki Tsereteli State University, Kutaisi,Georgia, [email protected]

Page 215: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 215

Svanadze Maia, Institute of Mathematics, University of Göttingen, Bunsenstrasse 3-5,D-37073, Göttingen, Germany, [email protected]

Tarieladze Vaja, Niko Muskhelishvili Institute of Computational Mathematics of theGeorgian Technical University, Tbilisi, Georgia, [email protected]

Tavzarashvili Kakhaber, University of Georgia (UG), Department of Engineering,Kostava str. 77a, 0171 Tbilisi, Georgia, [email protected]

Tetunashvili Shaqro, I. Javakhishvili State University, A. Razmadze Mathematical In-stitute; Georgian Technical University, Department of Mathematics, Tbilisi, Georgia,[email protected]

Tepnadze George, I. Javakhishvili Tbilisi State University, Tbilisi, GeorgiaTetvadze Gogi, Akaki Tsereteli State University, Faculty of Exact and Natural Sciences,

Department of Mathematics, Kutaisi, GeorgiaTevdoradze Manana, Faculty of Exact and Natural Sciences of I. Javakhishvili Tbilisi

State University,I. Vekua Institute of Applied Mathematics of I. Javakhishvili TbilisiState University, Tbilisi, Georgia, [email protected]

Tibua Lali, I. Javakhishvili Tbilisi State University, Georgian Technical University,[email protected]

Tsaava M., I. Javakhishvili Tbilisi State University, Tbilisi, GeorgiaTsagareli Ivane, I. Vekua Institute of Applied Mathematics, 2 University st., Tbilisi

0186, Georgia, [email protected] Ivane, St. Andrew Georgian University, Department of Physical-Mathematical

and Computer Sciences, Tbilisi, Georgia, [email protected] Lamara, Akaki Tsereteli State University, Faculty of Exact and Natural Sci-

ences, Department of Mathematics, Kutaisi, Georgia, [email protected] Zviad, Georgian Technical University, Department of Mathematics, Tbilisi,

Georgia, [email protected] Ruslan, Shota Rustaveli Batumi State University, Department of Mathe-

matics, Batumi, Georgia, [email protected] Irma, Akaki Tsereteli State University, Kutaisi, Georgia,

[email protected] Varden, Georgian Technical University, Department of Mathematics,

Tbilisi, Georgia, [email protected] Lela, Shota Rustavely Batumi State University, Department of Mathemat-

ics, Batumi, Georgia, [email protected]

Luiza Umarkhadzhieva, Grozny State Oil Technical University, Grozny, Russia, [email protected]

Vakhania Nikolas, Niko Muskhelishvili Institute of Computational Mathematics of theGeorgian Technical University, Tbilisi, Georgia, [email protected]

Vantsyan A. A.,

Page 216: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

216 September 2–9, Batumi, Georgia

Vashalomidze Aleksander, Georgian Technical University, Center for Georgian Lan-guage Teqnology, Tbilisi, [email protected]

Vepkhvadze Teimuraz, I. Javakhishvili Tbilisi state University, Faculty of Exact andNatural Sciences, Tbilisi, Georgia, [email protected]

Wegert Elias, TU Bergakademie Freiberg, Germany, [email protected]

Yazar Murat Ibrahim, Department of Mathematics, Kafkas University, Kars, 36100-Turkey, [email protected]

Yigider Muhammed, Asst. Prof. Dr., Erzincan University Faculty of Art and Science,Department of Mathematics, Erzincan-Turkey, [email protected]

Yilmaz Rusen, Recep Tayyip Erdogan University, Faculty of Arts and Science, Depart-ment of Mathematics, Rize / Turkey, [email protected]

Zirakashvili Natela, I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbil-isi State University, Tbilisi, Georgia, [email protected]

Zivzivadze Lela, Akaki Tsereteli State University, Kutaisi, Georgia

Page 217: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

Index

ÀÁÆÉÀÍÉÞÄ Ë., 147ÀÃÄÉÛÅÉËÉ Å., 179ÀËÈÖÍÉ É., 107ÀË×ÀÓËÀÍ ÐÄÊÄÒÉ ä., 191ÀÒÜÅÀÞÄ Í., 135ÀÛÏÒÃÉÀ Ì., 111, 112ÀáÀËÀÉÀ Â., 65ÁÀÁÀËÉÀÍÉ Ê., 139ÁÀÁÉËÖÀ Ð., 128, 179, 183ÁÀÂÃÏÄÅÉ À., 189ÁÀÉÒÀÌÏÅÉ Ó., 84, 106ÁÀÉÒÉÓÅÉËÉ Ã., 55ÁÀÊÖÒÀÞÄ Ì., 81ÁÀËÀÞÄ Å., 55, 82, 83ÁÀÍÝÖÒÉ Ë., 65ÁÀÒÓÄÂÉÀÍÉ Â., 66ÁÄÒÉÀÛÅÉËÉ Ì., 136ÁÄÒÉÊÄËÀÛÅÉËÉ Â., 157ÁÄÒÉÞÄ À., 85ÁÄÒÉÞÄ Å., 86, 161ÁÉÁÉËÄÉÛÅÉËÉ Â., 87ÁÉßÀÞÄ Ë., 190ÁÉßÀÞÄ Ò., 113ÁÏÃÖÒÉ Ó., 191ÁÏÊÄËÀÅÀÞÄ È., 88, 89ÂÄËÀÞÄ Â., 162, 163ÂÉÅÒÀÞÄ Ï., 69ÂÉÏÒÂÀÛÅÉËÉ Ë., 194ÂÉÏÒÂÀÞÄ Â., 75ÂÉÏÒÂÏÁÉÀÍÉ Â., 125ÂÏÂÉÛÅÉËÉ Â., 180ÂÏÒÃÄÆÉÀÍÉ Ã., 56, 160, 171ÂÒÖÛÀ É., 58ÂÖÁÄËÉÞÄ Â., 160ÂÖËÄÒÉ Á.Ï., 115ÂÖÍÃÖÆÉ (ÀÒÀÓÉ) Ü., 84, 106ÃÀÅÉÈÀÛÅÉËÉ È., 159, 160, 171ÃÄÅÀÞÄ Ã., 161ÃÄÉÓÀÞÄ Ì., 179

ÃÉÀÓÀÌÉÞÄ É., 91ÃÖÁÃÖÀ Á., 138ÃÖÃÖÜÀÅÀ Ò., 114ÃÖÓÖÍãÄËÉ ×., 168ÄËÄÒÃÀÛÅÉËÉ Ä., 92ÄÌÄËÉÜÄÅÉ Å., 124ÅÀÍÔÓÉÀÍÉ À.À., 202ÅÀÛÀËÏÌÉÞÄ À., 152ÅÀáÀÍÉÀ Í., 127ÅÄÂÄÒÔÉ Ä., 62ÅÄ×áÅÀÞÄ È., 105ÆÀÆÀÛÅÉËÉ Û., 204ÆÉÅÆÉÅÀÞÄ Ë., 107ÆÉÒÀØÀÛÅÉËÉ Í., 204ÈÀÅÆÀÒÀÛÅÉËÉ Ê., 175ÈÄÅÃÏÒÀÞÄ Ì., 163, 167ÈÄÈÅÀÞÄ Â., 72ÈÖÒÌÀÍÉÞÄ Ë., 104ÉÀÆÀÒ Ì.É., 106ÉÀÛÅÉËÉ Â., 140ÉÀÛÅÉËÉ Í., 139ÉÂÉÃÀÒÉ Ì., 165ÉÅÀÍÉÞÄ Ã., 194ÉÅÀÍÉÞÄ Ì., 195ÉËÌÀÆÉ Ò., 107ÊÀËÀÍÃÀÒÉÛÅÉËÉ Ã., 93ÊÀÐÀÍÀÞÄ Ã., 114ÊÀÒÀÁÀãÀÊÉ Ì., 165ÊÀÓÒÀÛÅÉËÉ È., 94ÊÀàÀáÉÞÄ Í., 165ÊÄÊÄËÉÀ Í., 112ÊÄÒÄÓÄËÉÞÄ Í., 166ÊÅÀÒÀÝáÄËÉÀ Å., 127ÊÉÅÉËÀÞÄ È., 142ÊÉÙÖÒÀÞÄ Æ., 168ÊÏÊÏÁÉÍÀÞÄ È., 126ÊÏÒÏÔÊÏÅÉ Å., 124ÊÒÉÀÃÏ ×., 159, 193ÊÒÉÀÃÏ-ÀËÃÄÀÍÖÄÅÀ ×., 193

217

Page 218: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

218 September 2–9, Batumi, Georgia

ÊÖÈáÀÛÅÉËÉ Ë., 93ÊÖÈáÀÛÅÉËÉ Ø., 141ÊÖÔËÖ Ê., 115ÊÖÝÉÀ È., 138ÊÖÝÉÀ Ì., 123ËÄÅÄÍÔÀËÉ Û., 56ËÏÌÈÀÞÄ Ì., 181, 183ËÏÌÉÞÄ É., 67, 70, 197ÌÀÌ×ÏÒÉÀ Á., 128ÌÀÍãÀÅÉÞÄ Í., 65ÌÀÓáÀÒÀÛÅÉËÉ À., 149ÌÀØÀÝÀÒÉÀ Â., 72ÌÄËÀÞÄ Ò., 196, 198ÌÄËÀÞÄ ä., 159ÌÄÍÈÄÛÀÛÅÉËÉ Ì., 117ÌÉÃÏÃÀÛÅÉËÉ Á., 116ÌÉØÉÀÛÅÉËÉ Â., 98ÌÞÉÍÀÒÉÛÅÉËÉ Ë., 59, 97ÍÀÃÀÒÀÉÀ Ä., 128ÍÀÒÌÀÍÉÀ Ì., 204ÍÀÔÒÏÛÅÉËÉ Ã., 118ÏÃÉÛÀÒÉÀ Å., 169ÏÃÉÛÄËÉÞÄ Í., 193ÏÆÈÖÒØÉ Ô. É., 100ÏÈÖÒÀÍÂÉ Â., 191ÏÊÖÌÖÛÉ É., 171ÏÍÉÀÍÉ ÂÉÂËÀ, 72, 73ÏÍÉÀÍÉ ÂÉÏÒÂÉ, 74ÐÀÐÖÊÀÛÅÉËÉ À., 160, 171ÐÏÙÏÓÉÀÍÉ À., 173ÐÏÙÏÓÉÀÍÉ Ë., 174ÒÀÁÉÍÏÅÉÜÉ Å.Ó., 60ÒÀØÅÉÀÛÅÉËÉ Â., 101ÒÖáÀÉÀ á., 61ÓÀÃÖÍÉÛÅÉËÉ Â., 204ÓÀËÉÌÏÅÉ À.À., 101ÓÀÒÀãÉÛÅÉËÉ Ý., 182ÓÀÒÂÓÉÀÍÉ Ó.ä., 199ÓÅÀÍÀÞÄ Ê., 200ÓÅÀÍÀÞÄ Ì., 201ÓÏáÀÞÄ Â., 128, 130, 183ÓÏáÀÞÄ Æ., 119ÓÖÒÂÖËÀÞÄ È., 120ÓÖÒÌÀÍÉÞÄ Ï., 102ÓáÅÉÔÀÒÉÞÄ Ø., 198, 200ÔÀÒÉÄËÀÞÄ Å., 125, 127, 129, 131ÔÄÔÖÍÀÛÅÉËÉ Û., 76ÔÄ×ÍÀÞÄ Â., 114ÔÉÁÖÀ Ë., 61, 139

ÖÌÀÒáÀãÉÄÅÀ Ë., 184ÖÌÀÒáÀãÉÄÅÉ Ó., 77×ÀÍÝÖËÀÉÀ Â., 75×ÀÒÌÀÍÉÀÍÉ À.ã., 199×ÀÜÖÀÛÅÉËÉ Í., 142×ÀÝÀÝÉÀ Í., 129×ÄÃÖËÏÅÉ Â., 139×ÄÒÀÞÄÄ ã., 172×ÉÒÖÌÏÅÀ Ê., 167×ÖÒÈÖáÉÀ Ï., 130×áÀÊÀÞÄ Ê., 59, 150, 151×áÀÊÀÞÄ Í., 142×áÀÊÀÞÄ Ó., 143ØÀÃÄÉÛÅÉËÉ È., 58ØÀÒÓÄËÀÞÄ Â., 194ØÄÌÏÊËÉÞÄ Ô., 95ØÖÜÖÊÉ À., 100ÙÅÄÃÀÛÅÉËÉ Â., 175ÚÀÒÀËÀÛÅÉËÉ Ë., 93ÛÀÍÂÖÀ À., 131ÛÀÒÉØÀÞÄ Ì., 160, 163, 171ÜÀÜÀÅÀ Í., 67ÜÄËÉÊÉ Ä., 165, 168, 171ÜÄÍÂÉÆ Í., 90ÜÉËÀÜÀÅÀ È., 158ÜÉØÅÉÍÉÞÄ Ì., 151ÜÉÜÖÀ Â., 150ÜÏÁÀÍÉÀÍÉ Ó., 56ÝÀÀÅÀ Ì., 114ÝÀÂÀÒÄËÉ É., 201ÝÉÁÀÞÄ Ë., 181, 183ÝÉÍÀÒÉÞÄ Ò., 83ÝÖÝØÉÒÉÞÄ Å., 202ÞÀÂÀÍÉÀ È., 139ÞÀÂÍÉÞÄ Ï., 68ßÄÒÄÈÄËÉ É., 103ßÉÅßÉÅÀÞÄ É., 68, 73ßÉÊËÀÖÒÉ Æ., 165àÀÁÀÛÅÉËÉ Ì., 89àÀÍÉÀ Ì., 123àÀÍÊÅÄÔÀÞÄ Â., 61, 137àÊÀÃÖÀ Ï., 192áÀÁÖÒÞÀÍÉÀ Ò., 95áÀÒÀÛÅÉËÉ Ì., 198, 200áÀÒÉÁÄÂÀÛÅÉËÉ Ó., 116áÀÔÉÀÛÅÉËÉ Í., 167áÄËÀÞÄ Û., 70áÄÜÉÍÀÛÅÉËÉ Æ., 130áÉÌÛÉÀÛÅÉËÉ Â., 92, 96

Page 219: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 219

áÏÃÀÃÀÃÉ Ä., 168áÏÌÀÓÖÒÉÞÄ Í., 196áÏÌÄÒÉÊÉ Í., 157, 165ãÀÅÀáÉÛÅÉËÉ ã., 70, 197ãÀÍÂÅÄËÀÞÄ È., 164ãÀÍãÙÀÅÀ Ò., 196ãÀ×ÀÒÉÞÄ Â.É., 58ãÀ×ÀÒÉÞÄ Ä., 70ãÀÙÌÀÉÞÄ À., 196ãÉÁËÀÞÄ Ì., 92ãÉØÉÞÄ Ë., 202äÀËÉËÏÅÉ ä., 115äÄËÓÄËÌÀÍÓÉ Ã., 148

Abzianidze L., 147Adeishvili V., 179Akhalaia G., 65Alpaslan Peker H., 191Altun Y., 107Archvadze N., 135Ashordia M., 111, 112

Babalian K., 139Babilua P., 128, 179, 183Baeriswyl D., 55Bagdoev A. G., 189Bakuradze M., 81Baladze V., 55, 82, 83Bantsuri L., 65Barsegian G., 66Bayramov S., 84, 106Beriashvili M., 136Beridze A., 85Beridze V., 86, 161Berikelashvili G., 157Bibileishvili G., 87Bitsadze L., 190Bitsadze R., 113Bodur S., 191Bokelavadze T., 88, 89

Çelik E., 165, 168, 171Cengiz N., 90Chabashvili M., 89Chachava N., 67Chania M., 123Chankvetadze G., 61, 137Chichua G., 150Chikvinidze M., 151Chilachava T., 158

Chkadua O., 192Chobanyan S., 56Criado F., 159, 193Criado-Aldeanueva F., 193Cucia M., 123

Düşünceli F., 168Davitashvili T., 159, 160, 171Deisadze M., 179Devadze D., 161Diasamidze Ya., 91Duduchava R., 114Dundua B., 56, 138Dzagania T., 139Dzagnidze O., 68

Elerdashvili E., 92Emelichev V., 124

Farmanyan A. J., 199Fedulov G., 139

Güler B., 115Geladze G., 162, 163Ghvedashvili G., 175Giorgadze G.P., 75Giorgashvili L., 194Giorgobiani G., 125Givradze O., 69Gogishvili G., 180Gordeziani D., 160, 171Grusha I., 58Gubelidze G., 160Gunduz (Aras) C., 84, 106

Halilov H., 115Henselmans D., 148

Iashvili G., 140Iashvili N., 139Ivanidze D., 194Ivanidze M., 195

Jaghmaidze A., 196Jangveladze T., 164Janjgava R., 196Japaridze G., 58Japharidze E., 70Javakhishvili J., 70, 197Jibladze M., 92Jikidze L., 202

Page 220: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

220 September 2–9, Batumi, Georgia

Kachakhidze N., 165Kadeishvli T., 58Kalandarishvili D., 93Kapanadze D., 114Karabacak M., 165Karalashvili L., 93Karseladze G., 194Kasrashvili T., 94Kekelia N., 112Kemoklidze T., 95Kereselidze N., 166Khaburdzania R., 95Kharashvili M., 198, 200Kharibegashvili S., 116Khatiashvili N., 167Khechinashvili Z., 130Kheladze Sh., 70Khimshiashvili G., 92, 96Khodadadi E., 168Khomasuridze N., 196Khomeriki N., 157, 165Kiguradze Z., 168Kiviladze T., 142Kokobinadze T., 126Korotkov V., 124Kuçuk A., 100Kutkhashvili K., 93, 141Kutlu K., 115Kutsia T., 56, 138Kvaratskhelia V., 127Levental L., 56Lomidze I., 67, 70, 197Lomtadze M., 181, 183Makatsaria G., 72Mamporia B., 128Manjavidze N., 65Maskharashvili A., 149Mdzinarishvili L., 59, 97Meladze H., 159Meladze R., 196, 198Menteshashvili M., 117Midodashvili B., 116Mikiashvili G., 98Nadaraya E., 128Narmania M., 204Natroshvili D., 118Odisharia V., 169

Odishelidze N., 193Okumuş I., 171Oniani Gigla, 72, 73Oniani Giorgi, 74Oturanç G., 191Ozturk T. Y., 100

Pacacia M., 129Pachuashvili N., 142Pantsulaia G.R., 75Papukashvili A., 160, 171Peradze J., 172Pirumova K., 167Pkhakadze K., 59, 150, 151Pkhakadze N., 142Pkhakadze S., 143Poghosyan A., 173Poghosyan L., 174Purtukhia O., 130

Rabinovich V. S., 60Rakviashvili G., 101Rukhaia Kh., 61

Sadunishvili G., 204Salimov A. A., 101Sarajishvili Ts., 182Sargsyan S. H., 199Shangua A., 131Sharikadze M., 160, 163, 171Skhvitaridze K., 198, 200Sokhadze G., 128, 130, 183Sokhadze Z., 119Surguladze T., 120Surmanidze O., 102Svanadze K., 200Svanadze Maia, 201

Tarieladze V., 125, 127, 129, 131Tavzarashvili K., 175Tepnadze G., 114Tetunashvili Sh., 76Tetvadze G., 72Tevdoradze M., 163, 167Tibua L., 61, 139Tsaava M., 114Tsagareli I., 201Tsereteli I., 103Tsibadze L., 181, 183Tsiklauri Z., 165

Page 221: ÈÄÆÉÓÄÁÉÓÊÒÄÁÖËÉ BOOKOFABSTRACTSrmi.ge/~gmu/III_Annual_Conference/confprogram/Conference2012.pdf · Differential Equations and Mathematical Physics 109 ÃÉ×ÄÒÄÍÝÉÀËÖÒÉ

2–9 ÓÄØÔÄÌÁÄÒÉ, ÁÀÈÖÌÉ, ÓÀØÀÒÈÅÄËÏ 221

Tsinaridze R., 83Tsivtsivadze I., 68, 73Tsutskiridze V., 202Turmanidze L., 104

Umarkhadzhiev L., 184Umarkhadzhiev S., 77

Vakhania N., 127Vantsyan A. A., 202Vashalomidze A., 152Vepkhvadze T., 105

Wegert E., 62

Yazar M. I., 106Yigider M., 165Yilmaz R., 107

Zazashvili Sh., 204Zirakashvili N., 204Zivzivzdze L., 107