mass.phys.sci.osaka-u.ac.jpmass.phys.sci.osaka-u.ac.jp/_userdata/Miyamura_M.pdf · TOF/5-38 ` O K "...

Post on 23-May-2020

9 views 0 download

Transcript of mass.phys.sci.osaka-u.ac.jpmass.phys.sci.osaka-u.ac.jp/_userdata/Miyamura_M.pdf · TOF/5-38 ` O K "...

2006

1

1.

2.

3. TOF-MS

4.

5. MULTUM Linear plus

6.

7.

8.

9.

2

3

7

14

23

24

48

49

50

2

1.

TOF-MS

TOF-MS

TOF-MS 1)2)

TOF-MS

MULTUM Linear Plus

350,000 3)

TOF-MS

TOF-MS 1

1

3

2.

2-1 (Mass Spectrometer)

EI CI FAB

ESI

MALDI PD FD

ICP APCI

MCP

4

2-2 (Time of Flight-MS)

(TOF-MS) 1946 Stephens 4)

1970

(MALDI) 5)

TOF

2-2-1 TOF-MS

TOF-MS

ms

6)7) 8)

2-2-2 TOF-MS

TOF-MS

e

m z V v

2

2

1mvzeV =

L t t

(2-2-1)

5

==z

m

eVL

v

Lt

2

1

Fig. 2-2-1 TOF-MS

2-2-3 TOF-MS

R t t

t

t

m

mR ==

2

(2-2-2)

(2-2-3)

6

Fig. 2-2-2

7

3. TOF-MS

3-1 TOF-MS

TOF-MS (2-2-3) t

t

t

MULTUM MULTUM

TOF-MS t

t

MULTUM 2000

MULTUM Linear plus MULTUM

Linear plus 4 28

Q MULTUN Linear plus

2000 2.5km

350000

MULTUM Linear plus

4 MULTUM 9)

MULTUM S MULTUN

8

3-2

TOF-MS

Transfer matrix

3-2-1 Transfer matrix

Fig.3-2-2 m0 U0

v0=(2U0/ m0)1/2

m=m0(1+ ) U=U (1+ )

(x, ,y, , , ,l)

x y

(x, ,y, , , ,l)

(x0, 0,y0, 0, 0, 0,l0) Transfer matrix

Transfer matrix

=

0

0

0

0

0

1)|()|(00)|()|(

0100000

0010000

000)|()|(00

000)|()|(00

0)|()|(00)|()|(

0)|()|(00)|()|(

l

y

x

lllxl

y

yyy

x

xxxxx

l

y

x

1 1

Transfer matrix

Transfer matrix Transfer matrix

(3-2-1)

9

Fig. 3-2-2

3-2-2 MULTUM

Transfer matrix

±

±

±

±

=

0

0

0

0

0

10)|(0000

0100000

0010000

0001000

0000100

0000010

0000001

l

y

x

lRl

y

x

0 1± 0 1±

Transfer matrix10)

MULTUM MULTUM 4

Q 8

(3-2-3)

(3-2-2)

10

0 1 0 1

=

0

0

0

0

0

100005.065388.00000321.000000.0

0100000

0010000

00000000.100445.000

00000076.000000.100

000033.000099996.000805.0

000160.000000001.099996.0

l

y

x

l

y

x

TOF-MS

Q

MULTUM

Fig.

3-2-3 MULTUM

(3-2-3)

11

Fig. 3-2-3 MULTUM

12

3-3-2 TOF-MS

TOF-MS MULTUM

TOF-MS MULTUM Linear Plus

MULTUM Linear Plus Fig.

3-3-1 1

4

4 1 2

3 4

4

8

3

2

Q

Q Q

Fig. 3-3-3

Fig. 3-3-1 MULTUM Linear Plus

13

Fig. 3-3-2

TOF-MS

14

4.

4-1 TOF-MS

TOF-MS

TOF-MS

TOF-MS

Fig. 4-1-1

Fig. 4-1-1

90 95 100 105 110

Inte

nsity (

arb

.unit)

Time of flight ( µs)

Fig. 4-1-1

15

4-2

TOF

TOF-MS

4-2-1 TOF-MS

TOF-MS 1 L

L

n L

10LnLL +=

n

t

( )m

z

eVLnL

v

LnL

v

Lt

2

1

10

10 +=+

==

Ti

t 0

i0T+= ntt

(4-2-3)

1 t

2 t

(4-2-1)

(4-2-2)

(4-2-3)

16

t t

( ) TT1212

=== nnnttt

n1 n2 n (4-2-4)

T

1

T

T

4-2-2 (Correlation function)

TOF-MS

n T

T f (t)

x t

+=+=2/T

2/TT)()(

T

1lim)()()( dttxtxtxtxC

TOF f (t)

TOF f1 (t) f2 (t) fn (t)

TOF

(4-2-4)

(4-2-5)

17

Fig. 4-2-1 TOF

Fig. 4-2-1

TOF-MS

T Fig.4-2-1 ni

i t 0

T

TOF

T

TOF f1 f2 fn

T

( ) ( ) dtnttfnttfnttfC nnn ++++++= )T(TT)T( 0202101 L

ni fi

fi fi T

T T

1 TOF

A f1 f2 fn

T A f1 f2 fn

T 0

T Ti i

T

t0 1

T =2T

(4-2-5)

18

TOF

T T

Fig. 4-2-2 T

T T

T T

m/z

Fig. 4-2-2

19

4-3

TOF-MS

TOF-MS

4-3-1 MULTUM linear plus

TOF-MS

’ MULTUM linear plus Fig. 4-3-1

0

TOF-MS

MULTUM linear plus

20

Fig. 4-3-1 MULTUM Linear Plus

4-3-2

MULTUM linear plus

946.4mm 1085.9mm

MULTUM linear plus

n

( ) ( )11

0859.129464.0 Lnz

meVLn ++

m/z

(4-3-1)

(4-3-1)

21

4-3-3

(4-3-1)

TOF-MS

(4-3-1) T n

( ) ( )T84572.0T73707.0 nn ++

(4-3-2)

(4-3-2)

( ) ( ) +++ T84572.0T73707.0 nn

(4-3-2)

(4-3-3)

22

4-4 New calibration method

TOF-MS

(f1 f2 fn)

T

(4-3-3)

T T

6

( ) ( ) dtnttfnttfnttfCt

t

nnn ++++++= )T(TT)T( 0202101 L

T

t FORTRAN

(4-4-1)

23

5. MULTUM linear plus

TOF-MS MULTUM

linear plus

Fig.2-3-1 Wiley-McLaren

EI EI

d1=6mm D=8mm

Fig. 5-1 EI

MULTUM 5cm

156.87 7.5mm 8

10mm 10mm Q

4

8 Q

1.284m 0.429m

6mm

24

40cm 40cm

60cm 70cm 20cm

Fig. 5-2 Fig. 5-3

Fig. 5-2 MULTUM Linear Plus

25

Fig. 5-3 MULTUM Linear Plus

TOF-MS

(F4655-10 )

10 m

106

LC564A

26

6.

TOF-MS MULTUM linear plus

MCP

MCP

6-1

26 40 51 66 s TOF

MCP 2.3 V 2GS/s

1000 Fig.

6-1-1-(a) (d)

30 35 40 45

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity (

arb

.unit)

Time of flight ( µs)

(a) 26 s

27

40 45 50 55 60

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity (

arb

.unit)

Time of flight ( µs)

(b) 40 s

55 60 65 70

0.0

0.1

0.2

0.3

0.4

0.5

Inte

nsity (

arb

.unit)

Time of flight ( µs)

(c) 51 s

28

70 75 80 85

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Inte

nsity (

arb

.unit)

Time of flight ( µs)

(d) 66 s

Fig. 6-1-1 TOF

4 T

( ) ( ) ( ) ( )++++++++=t

tdtTnttfTnttfTnttfTnttfTC 4

40303202101)(

nstnsdTsTs 5005.0155.7 ==µµ

Fig. 6-1-2

Table. 6-1

TOF-MS

Bz

mAtof +=

A B systematic constant

A B

A B

29

TOF-MS

z

mAT =

N11)

8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity (

arb

.unit)

T (µs/cycle)

Fig. 6-1-2

Table. 6-1

30

TOF Fig. 6-1-2

T TOF-MS

Table. 6-1 ppm

6-2 Xe

Xe Xe

15 34 55 73 s TOF

MCP 2.3 V

2GS/s 1000

Fig. 6-2-1 (a) (d)

31

15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity (

urb

.unit)

Time of flight ( µs)

(a) 15 s

35 40 45 50

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity (

arb

.unit)

Time of flight ( µs)

(b) 34 s

32

55 60 65 70 75

0.0

0.2

0.4

0.6

Inte

nsity (

arb

.unit)

Time of flight ( µs)

(c) 55 s

75 80 85 90

0.0

0.2

0.4

0.6

Inte

nsity (

arb

.unit)

Time of flight ( µs)

(d) 73 s

Fig. 6-2-1 Xe TOF

4 T

33

( ) ( ) ( ) ( )++++++++=t

tdtTnttfTnttfTnttfTnttfTC 4

40303202101)(

nstnsdTsTs 505.0255 ==µµ

Fig. 6-2-2

Table. 6-2-1

z

mAT =

130Xe+

5 10 15 20 25-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Inte

nsity (

arb

.unit)

T (µs/cycle)

34

21.0 21.5

0.0

0.2In

tensity (

arb

.unit)

T (µs/cycle)

Fig. 6-2-2 Xe

Table.6-2-1

Xe

Table. 6-2-1

0.01

Xe

35

TOF

Xe

Xe130Xe+ 136Xe+

129Xe+ Table. 6-2-2

Table. 6-2-2 Xe+

36

6-3

31 47 72 93 s TOF MCP

2.3 V 2GS/s 1000

Fig. 6-3-1 (a)

(d)

35 40 45 50

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity (

arb

.unit)

Time of flight ( µs)

(a) 31 s

37

50 55 60 65

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity (

arb

.unit)

Time of flight ( µs)

(b) 47 s

75 80 85 90

0.0

0.1

0.2

0.3

0.4

0.5

Inte

nsity (

arb

.unit)

Time of flight ( µs)

(c) 72 s

38

95 100 105 110

0.00

0.05

0.10

0.15

0.20

0.25

Inte

nsity (

arb

.unit)

Time of flight ( µs)

(d) 93 s

Fig. 6-3-1 TOF

4 T

( ) ( ) ( ) ( )++++++++=t

tdtTnttfTnttfTnttfTnttfTC 4

40303202101)(

nstnsdTsTs 5005.0155.7 ==µµ

Fig. 6-3-2 (a)

4 Fig. 6-3-2 (a)

N N Fig.

6-3-1 (b)

(4-3-3)

T

( ) ( ) ++++ T84572.0T73707.0 nn

( ) ( ) dtnttfnttfnttfCt

t

nnn ++++++= )T(TT)T( 0202101 L

nsnstnsdTsTs 3005005.0155.7 ===µµ

39

Fig.4-3-2 (b)

N

Table. 6-3

Bz

mAT +=

A B

m/z

6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity (

arb

.unit)

T (µs/cycle)

(a)

40

6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity (

arb

.unit)

T (µs/cycle)

(b)

Fig. 6-3-2

Table. 6-3

TOF-MS

TOF-MS

41

6-3

MULTUM linear plus

TOF-MS

22ns

2500V MULTUM linear plus

70 175 300 420 s

Fig. 6-4-1 (a) (d)

70 75 80 85 90

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity (

arb

.unit)

Time of flight ( µs)

(a) 70 s

42

175 180 185 190 195

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity (

arb

.unit)

Time of flight ( µs)

(b) 175 s

300 305 310 315 320

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity (

arb

.unit)

Time of flight ( µs)

(c) 300 s

43

420 425 430 435 440

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity (

arb

.unit)

Time of flight ( µs)

(d) 420 s

Fig. 6-4-1 TOF

4 T

( ) ( ) ( ) ( )++++++++=t

tdtTnttfTnttfTnttfTnttfTC 4

40303202101)(

nstnsdTsTs 505.0355 ==µµ

Fig.4-4-5

Table.4-4

44

5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

Inte

nsity (

arb

.un

it)

T (µs/cycle)

Fig. 6-4-2

Table. 6-4

Fig. 6-4-1 (a) (d)

TOF-MS T

TOF

45

6-5

T=10 s FWHM=20ns

( ) ( )++=t

tdtTntfTntfTC 2211)(

n1=1 n2

Fig. 6-5-1 n=n2 n1

Fig. 6-5-1

Fig. 6-5-1 n

T t

n

tA

nn

tAT ==

12

(6-5-1)

46

A

t

N2+

2GS/s 1000

N2+ n1=1 n2=2 4 7 9 12

( ) ( )++=t

tdtTntfTntfTC 2211)(

Fig. 6-5-2

50ns

Fig. 6-5-2 N2+

47

Fig. 6-5-1 Fig. 6-5-2

22ns N2+ 50ns

48

7.

6 TOF-MS

1 TOF

TOF-MS

TOF-MS

TOF-MS

1 TOF

TOF-MS

MULTUM Linear plus

MULTUM

TOF-MS

49

8.

50

9.

1) T. Matsuo, M. Ishihara, M. Toyoda, H. Ito S. Yamaguchi R. Roll and H.

Rosenbauer, Advances in Space Research, 223 (1999), 341

2) M. Toyoda, M. Ishihara, S. Yamaguchi, H. Ito, T. Matsuo, R. Roll and H.

Rosenbauer, J. Mass Spectrom., 35 (2000), 163

3) M. Toyoda, M. Ishihara, D. Okumura, S. Yamaguchi and I. Katakuse Adv.

Mass Spectrom. 115 (2001), 437

4) W. E. Stephens, Phys. Rev., 669 (1946), 691

5) M. Karas, D. Backmann, U. Bahr, and F. Hillenkamp, Int. J. Mass

Spectrom. Ion Processes, 78 (1987), 53

6) W. C. Wiley and I. H. McLaren, Rev. Sci. Instr, 226 (1955), 1150

7) C. Weichharedt et al, Mass Spectrometry Rev, 115 (1996), 139

8) V. I. Karataev, B. A. Mamyrim, and D. V. Shmikk, Sov. Phys. Tech. Phys.

16 (1972), 1177

9) D. Okumura, M. Toyoda, M. Ishihara, and I. Katakuse J. Mass Spectrom.

Soc. Jpn. 551 (2003), 349

10) M. Ishikhara, M. Toyoda, T. Matsuo, Int. J. Mass Spectrom. 1197 (2000),

179

11) ,