Proceedings of the 5 International Conference “PROBLEMS OF...

14
St. Petersburg State University Proceedings of the 5 th International Conference “PROBLEMS OF GEOCOSMOS” St. Petersburg, Petrodvorets May 24–28, 2004 Editors: A. A. Kovtun, M. V. Kubyshkina, V. S. Semenov, V. A. Sergeev, V. A. Shashkanov, T. B. Yanovskaya Saint-Petersburg 2004

Transcript of Proceedings of the 5 International Conference “PROBLEMS OF...

Page 1: Proceedings of the 5 International Conference “PROBLEMS OF ...geo.phys.spbu.ru/~mironova/Geocosmos2004.pdf · Earth’s outer magnetosphere, 2, Consequences of drift shell branching

St. Petersburg State University

Proceedings of the5th International Conference

“PROBLEMS OF GEOCOSMOS”

St. Petersburg, PetrodvoretsMay 24–28, 2004

Editors: A. A. Kovtun, M. V. Kubyshkina, V. S. Semenov,V. A. Sergeev, V. A. Shashkanov, T. B. Yanovskaya

Saint-Petersburg

!"#$%&'#( )$*+#&+,$-&+ "-.'#,+/"'--01 &$1-'2'3"4

«56",(& 7-$#)8" 9$#:";$6»

%+-). ."6.-,+&. -+(% <.<. ='-;&+-&"-':(

>2(?'%'(:+8+$,04 <@A$;2+: <"2'#B$:"A!

9 4 *' 7 "C-@ 2002 3')+ : 9.-D$&$#?(#3$ ;';&'"&;@ IV E$8)(-+#')-+@

3$'."6"A$;%+@ %'-.$#$-/"@ «D#'?2$,0 >$'%';,';+».

D#"32+F+$, <+; %+% :$)(G$3' ;*$/"+2";&+ =+6+1;&+-+ : '?2+;&" /".#':'4

'?#+?'&%" ;$4;,"A$;%"1 )+--01 *#"-@&B (A+;&"$ : #+?'&$ ;$%/"" «H?#+?'&%+

3$'."6"A$;%"1 -+?2C)$-"4».

9 (:+8$-"$,

*#$);$)+&$2B *#'3#+,,-'3' %',"&$&+,

*#'#$%&'# 9.-D$&$#?(#3;%'3' (-":$#;"&$&+

*#'.$;;'#, )'%&'# ."6.-,+&. -+(% <.I.J#'@-

2004

Page 2: Proceedings of the 5 International Conference “PROBLEMS OF ...geo.phys.spbu.ru/~mironova/Geocosmos2004.pdf · Earth’s outer magnetosphere, 2, Consequences of drift shell branching

Editors: A.A. Kovtun, M.V. Kubyshkina, V.S. Semenov, V.A. Sergeev, V.A.Shashkanov, T.B. Yanovskaya. Proceedings of the 5th International Conference

“Problems of Geocosmos”. — Spb., 2004 - 405 p.

Copyright c©2004 All rights reserved

by V. A. Fock Institute of Physics,

Saint-Petersburg State University

Page 3: Proceedings of the 5 International Conference “PROBLEMS OF ...geo.phys.spbu.ru/~mironova/Geocosmos2004.pdf · Earth’s outer magnetosphere, 2, Consequences of drift shell branching

CONTENTS

Mikhail Ivanovich Pudovkin (1933–2004) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Section M. Physics of the Sun–Earth relationships

M1. Magnetosphere and Substorms

Antonova A.E., H.V. Malova, Numerical simulations of charged particle motion in theEarth’s outer magnetosphere, 2, Consequences of drift shell branching . . . . . . . . . . . . . . . . . . . . . . 5

Antonova E.E., Storm-substorm relationship and the distribution of plasma pressurein the magnetosphere of the Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Antonova E.E., N.O. Ermakova, M.V. Stepanova, J.-M. Bosqued,R.A. Kovrazhkin, Formation of multiple quiet auroral arcs and energetic tails of ion distributionfunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Arshukova I.L., N.V. Erkaev, H.K. Biernat, Kelvin-Helmholtz instability of the Venusianmagnetic barrier in the Hall magnetohydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Besser B.P., Collaboration between Russia (Soviet Union) and Austria in geophysics andspace research: historical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Bobrovnikov S.Yu., I.I. Alexeev, Selfconsistent calculation of the magnetospheric currentsystems key parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Denisenko V.V., N.V. Erkaev, V.S. Semenov, A.V. Mezentsev,S.S. Zamay, H.K. Biernat, Calculation of the erosion of the magnetopause caused bycusp currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Divin A.V., S.A. Shibkov, Simulation of Post Plasmoid Plasma Sheet (PPPS) thinning in2D MHD approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Dubyagin S.V., V.A. Sergeev, M.V. Kubyshkina, Plasma sheet during the period ofextremely tenuous solar wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Erkaev N.V., V.S. Semenov, Collisionless reconnection rate based on electroninertia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

Erkaev N.V., V.A. Shaidurov, V.S. Semenov, H.K. Biernat, Compressible perturbationsinduced by the Alfven wave pulses in a curved magnetic flux tube . . . . . . . . . . . . . . . . . . . . . . . . . 52

Erkaev N.V., V.A. Shaidurov, V.S. Semenov, H.K. Biernat, D. Heidorn, Influence of themagnetic field converging on the Alfven pulses reflecting from the ionosphere . . . . . . . . . . . . . . 56

Ganushkina N.Yu., T.I. Pulkkinen, M.V. Kubyshkina, V.A. Sergeev,T.A. Yahnina, A.G. Yahnin, T. Fritz, Proton isotropy boundaries at low- and mid-altitudesatellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Ivanov I.B., V.S. Semenov, M.F. Heyn, T. Penz, Patterns of MHD perturbations driven bythree dimensional time dependent magnetic reconnectionin a compressible plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Kiselev B.V., R/S-analysis of Dst-index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70Kiselev B.V., D.M. Volobuev, Dynamics of chaos and the order in geomagnetic and

meteoindexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75Lvova E.A., V.A. Sergeev, Criterion for isotropy boundary

in the Tsyganenko-2001 model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80Mager O.V., P.A. Sedykh, E.A. Ponomarev, A.V. Tashchilin, Concerning the compatibility

of field-aligned currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84Manankova A.V. , Stationary configurations of the two-dimensional current-carrying plasma

sheet and their using for the description of the disturbance in the magnetotail . . . . . . . . . . . . . 88

Page 4: Proceedings of the 5 International Conference “PROBLEMS OF ...geo.phys.spbu.ru/~mironova/Geocosmos2004.pdf · Earth’s outer magnetosphere, 2, Consequences of drift shell branching

Marjin B.V., M.V. Teltsov, M.O. Riazantseva, E.E. Antonova, V.V. Khoteenkov,M.A. Saveliev, V.M. Feigin, “Meteor-3M” No 1 particle observations: Initial results . . . . . . . . 92

Mazur V.A., A.S. Leonovich, Superlow-frequency geomagnetic oscillations with a discretespectrum as eigen modes of MHD resonator in the near plasma sheet . . . . . . . . . . . . . . . . . . . . . . 96

Mingalev O.V., I.V. Mingalev, V.S. Mingalev, Numerical simulation of the time evolutionof fine scale irregularities in the collisionless near-Earth plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Pchelkin V.V., Y.P. Maltsev, A.A. Ostapenko, E.V. Pchelkina, Distribution of electriccurrents in various magnetospheric models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

Penz T., V.S. Semenov, V.V. Ivanova, I.B. Ivanov, V.A. Sergeev, R. Nakamura,M.F. Heyn, I.V. Kubyshkin, H.K. Biernat, Application of a reconstruction method for thereconnection rate to Cluster data from the Earth magnetotail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Pogrebnoy V.N., E.L. Mozoleva, S. Moldobekova, Latitude featuresof the annual variation according to the magnetic observatories data of Northern and Southernhemisphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Sergeev V.A., S. Apatenkov, A. Runov, W. Baumjohann, R. Nakamura, T. Zhang,B. Klecker, J.-A. Sauvaud, P. Louarn, Probing the large-amplitude flapping oscillations of currentsheet with Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117

Shibkov S.A., A.L. Kotikov, Small-scale field-aligned current and movement of plasma inthe ionosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Yagodkina O.I., V.G. Vorobjev, Dayside auroral precipitation power during a magneto-spheric substorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

M2. Solar Wind and Magnetosheath

Alexandrova O., A. Mangeney, Stationary field-aligned filament: simple model based onCluster observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132

Asadchy A., A. Skalsky, G.N. Zastenker, V. Smirnov, S. Savin,Low frequency fluctuations of plasma and magnetic field in magnetosheath: Interball-1 obser-vations at high latitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136

Pudovkin M.I. , B.P. Besser, V.V. Lebedeva, Mapping of the electric field of the magneto-spheric plasma convection along the geomagnetic field lines into the ionosphere . . . . . . . . . . . 140

Riazantseva M.O., G.N. Zastenker, J. Richardson, The sharp boundaries of the solar windplasma and magnetic field structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Samsonov A.A., M.I. Pudovkin , Numerical modelling of stationary magnetosheath flow fordifferent IMF orientations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Samsonov S.N., D.G. Baishev, N.G. Skryabin, Influence of the Jupiter on the interplanetaryand geomagnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Shevyrev N.N., G.N. Zastenker, P.E. Eiges, Magnetosheath Low-Frequency Waves observedby INTERBALL-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

M3. Magnetic Storms

Bagautdinova G.R., E.A. Lvova, V.A. Sergeev, D.S. Evans,Diagnostics of magnetospheric configuration based on energetic particles characteristics duringOctober 2003 storms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Kozyreva O.V., N.G. Kleimenova, Long period polar cap geomagnetic pulsations of initialphase of strong magnetic storms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166

Kuznetsov S.N. , I.N. Myagkova, B.Yu. Yushkov, E.A. Muravieva, K. Kudela, Dynamics ofthe Earth’s radiation belts during October 27 – November 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Page 5: Proceedings of the 5 International Conference “PROBLEMS OF ...geo.phys.spbu.ru/~mironova/Geocosmos2004.pdf · Earth’s outer magnetosphere, 2, Consequences of drift shell branching

Kuznetsov S.N. , I.N. Myagkova, B.Yu. Yushkov, E.A. Muravieva, K. Kudela,Solar energetic particles measured on board Coronas-F satellite after solar flares with hard X-rayand gamma-emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

M4. Inner Magnetosphere, Waves

Matveyeva E.T., R.V. Shchepetnov, Relation of the cyclic variation of Pc1 geomagneticpulsations activity with solar activity and parameters of a solar wind . . . . . . . . . . . . . . . . . . . . . 178

Smirnova N.A., M. Hayakawa, Dynamics of fractal characteristics of the ground-observedULF emissions depending on geomagnetic activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Uritsky V.M., A.J. Klimas, Critical exponents and the universality class of multiscalegeomagnetic perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

M5. Ionosphere

Avakyan S.V., New processes in aeronomy: Auger effect - 30 years later, multiplephotoionization - 25 years later, Rydberg excitation - 10 years later . . . . . . . . . . . . . . . . . . . . . . .190

Avakyan S.V., I.M. Afanas’ev, A.V. Savushkin, A.E. Serova, N.A. Voronin, Development ofthe creating of an equipment for permanent space patrol of solar ionizing radiation – X/EUV-Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196

Gabis I.P., O.A. Troshichev, Seasonal Regularities of Zonal Wind Evolution in the EquatorialStratosphere during the QBO-cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Maulini A.L., A.L. Kotikov, J.M. Bosqued, Spatial estimation of disturbed region in themagnetosphere related with ionosphere HF heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Mingalev V.S., G.I. Mingaleva, Modelling of the response of the nocturnal high-latitude Flayer to powerful HF waves with different modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Samsonov S.N., V.D. Sokolov, N.G. Skryabin, The effect of the Moon in riometerabsorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Section S. Seismology

Blagoveshchenskaja E.E., Earthquake events’ distribution within annual (year), and daily(sidereal day) astronomic time cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

Il’chenko V.L., On presence of wave component in variations of anisotropy of elasticproperties of core samples from the Kola Superdeep borehole (SD-3) . . . . . . . . . . . . . . . . . . . . . . 221

Kuzhevskij B.M., O.Yu. Nechaev, M.I. Panasyuk, E.A. Sigaeva, N.N. Volodichev,The analysis of the neutron splashes near the Earth crust in order to predict the strongearthquakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Lyskova E.L., K.Yu. Sannikov, Focal mechanisms and spectral parameters of deepearthquakes in different subduction zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Sannikov K.Yu., V.V. Karpinsky, E.L. Lyskova, Long-period seismic noise at seismic stationPUL (GEOFON network) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Zhirova A.Sh., Using a priori data in the problems of seismic tomography . . . . . . . . . . . . 240

Section GDP. Methods for geophysical data processing

Bykov K.V., SVD analysis for combination of reflected and diving waves in 1D transverselyisotropic medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Golikova G.V., M.V. Chizhova, The peculiarities of reflected wave fieldsin the reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Page 6: Proceedings of the 5 International Conference “PROBLEMS OF ...geo.phys.spbu.ru/~mironova/Geocosmos2004.pdf · Earth’s outer magnetosphere, 2, Consequences of drift shell branching

Kiselev Yu.V., V.N. Troyan, S.A. Shapiro, Numerical study of restoration of elasticinhomogeneities by iterative approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Kiyashchenko D.A., B.M. Kashtan, V.N. Troyan,Multi-one-way modeling method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Ponyavin D.I., N.V. Zolotova, Nonlinear analysis of climatic time series with cross recurrenceplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Uritsky V.M., N.A. Smirnova, V.N. Troyan, A. Tzanis, F. Vallianatos, Modelling pre-seismicelectromagnetic emissions using self-organized criticality approach . . . . . . . . . . . . . . . . . . . . . . . . 263

Vallianatos F., J. Makris, V.N. Troyan, N.A. Smirnova, V.M. Uritsky, D.A. Kiyashchenko,A. Tzanis, N. Makarenko, V. Lapenna, L. Telesca, A. De Santis, V. Korepanov, Yu. Yampolski,Study of Seismic Hazard Anomalies Recognition Possibilities: strategy of the SHARPproject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267

Vsemirnova E.A., Yu.V. Roslov, Raytracing on irregular mesh . . . . . . . . . . . . . . . . . . . . . . . . 272

Section C. Electroconductivity of the Earth

Bataleva E.A., A.K. Rybin, V.Yu. Batalev, I.V. Safronov, G.G. Tshelochkov,Geoelectric model of zone of the Talas-Fergana fault (the Kyrgyz Tien Shan) . . . . . . . . . . . . . 277

Cherevatova M.V., S.A. Vagin, Defining the normal section in presence of conductiveembeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Kovtun A.A., I.L. Vardaniants, Estimating the possibility of using the 1D interpretationof deep MT sounding data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Kovtun A.A., I.L. Vardaniants, M.Yu. Smirnov, Estimation of the resistivity distributionin upper mantle of the Fennoscandian Shield by deep MT sounding data . . . . . . . . . . . . . . . . . .289

Kovtun A.A., I.L. Vardaniants, N.P. Legen’kova, Resistivity distribution in Baltic Shieldupper mantle by the results of combined interpretation of MTS and GMVS data . . . . . . . . . .293

Plotkin V.V., P.A. Gavrysh, A new approach for the lateral inhomogeneity studyby electromagnetic sounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298

Section P. Paleomagnetism, Rock Magnetism.Hydromagnetic Dynamo Theories

Kotelnikova M.S., I.V. Maslov, S.V. Starchenko, Asymptotic solutions for the variabledensity flow between two concentric differentially rotating spheres . . . . . . . . . . . . . . . . . . . . . . . . 303

Mezentsev A.Yu., V.A. Shashkanov, A.V. Osikin, N.F. Pukhov, Studying of magneticanisotropy of sedimentary rocks with the help of a torque magnetometer . . . . . . . . . . . . . . . . . . 307

Reshetnyak M., The shell model approach to the rapidly rotating liquid bodies . . . . . . . 311Shashkanov V.A., N.V. Isupova, E.V. Danilkin, D.S. Kalashnikov, Dependence of the mag-

netic state of artificial sediments on quantity of pourings of the depositing material . . . . . . . 315Simonyan A.Ho., S.R. Shahparonyan, Earth’s liquid core motions under the constraint of

geomagnetic secular variations of short periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319Starchenko S.V., Gravitational differentiation of the Earth type planets and moons . . . 324

Section IR. Interdisciplinary research: Solid Earth, Atmosphere, Space Weather

Artamonova I.V., M.I. Pudovkin , B.P. Besser, R.P. Rijnbeek, Solar activity effects in thecyclic variations of the zonal circulation indices NAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

Avakyan S.V., Microwave emission of Rydberg states as a new factor of solar-biosphererelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Page 7: Proceedings of the 5 International Conference “PROBLEMS OF ...geo.phys.spbu.ru/~mironova/Geocosmos2004.pdf · Earth’s outer magnetosphere, 2, Consequences of drift shell branching

Bochkarev V.V., I.R. Petrova, V.Yu. Teplov, Research of wave processes in lowerthermosphere with use of measurements on middle-latitude radio linesof various orientations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Bochkarev V.V., I.R. Petrova, V.Yu. Teplov, DSP system in the Doppler’s phase goniometriccomplex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Demina I., L. Nikitina, Yu. Farafonova, Generation of magnetic fields by large-scale con-vective cells inside the liquid core of the Earth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Demina I., L. Nikitina, Yu. Farafonova, Global and local anomalies of the main magneticfield of the Earth and their possible sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

Maltzeva O.A., O.S. Poltansky, A.S. Shljupkin, Space Weather for HF-communicationlinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

Mingalev I.V., V.S. Mingalev, Model simulation of global distributions of the horizontal andvertical wind in the middle atmosphere for July conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Mironova I.A., M.I. Pudovkin , C. Bockmann, Changes of aerosol backscatter and cyclicvariations of solar activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Solovieva L.V., S.A. Anokihn, I.V. Artamonova, C. Lathuillere, J. Lilensten, The dynamicsof meridional thermospheric neutral wind measured by the EISCAT radar . . . . . . . . . . . . . . . . 367

Starchenko S.V., M.S. Kotelnikova, Typical values, simplified equations and onsetof an almost adiabatic geo-convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Stepanov A.A., S.V. Starchenko, The numerical modeling of Proudman-Stewartson’sflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Val’chuck T.E., N.K. Kononova, Solar cycles in atmospheric circulation . . . . . . . . . . . . . . .379Veretenenko S.V., P. Thejll, Effects of energetic solar proton events on the cyclone

regeneration in the North Atlantic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Page 8: Proceedings of the 5 International Conference “PROBLEMS OF ...geo.phys.spbu.ru/~mironova/Geocosmos2004.pdf · Earth’s outer magnetosphere, 2, Consequences of drift shell branching

FOREWORD

The 2004 International Conference on Geocosmos is the fifth in this series of conferencesheld in St. Petersburg University biannually to discuss the wide range of problems in Geo-physics and Solar-Terrestrial Physics which are under active study in the Institute of Physics ofSt. Petersburg University and many collaborating Institutes, both in the Russia and abroad.

The Meeting was held on May 24–28, 2004 in Petrodvoretz; it provided opportunities topresent and discuss the latest results of different research projects and issues of common inter-ests (including interdisciplinary problems), to provide a forum for the exchange of ideas andinformations, to meet partners for new collaboration, and, at last, to have an opportunity tovisit St. Petersburg. On the first day of the Meeting the participants met on a memorial sessionto pay tribute to recently passed Prof. Michail Pudovkin, one of pioneers of the Space Physicsand the head of the internationally recognized St. Petersburrg school of space physicists.

The Problems of Geocosmos-5 conference included many topics in Solid Earth Physics andSpace Physics which were grouped in the following sections:

section M Physics of the Sun–Earth Relationships

section S Seismology

section GDP Methods for geophysical data processing

section C Electroconductivity of the Earth

section P Paleomagnetism, Rock Magnetism. Hydromagnetic Dynamo Theories

section IR Interdisciplinary Research: Solid Earth, Atmosphere, Space Weather

The collection of papers published in this issue provides a useful concentrated informationon the state of current research, and as such, will be useful for specialists and students workingin the Solar, Space and Earth’s Physics.

The Conference was supported by grant RFBR 04-05-74013, President’s Grant for LeadingScientific School N 760.2003.5, and by grant of Ministry of Education 1648 “Intergeophysics”.We also thank Austrian Academy of Sciences for financial support of the Conference.

Page 9: Proceedings of the 5 International Conference “PROBLEMS OF ...geo.phys.spbu.ru/~mironova/Geocosmos2004.pdf · Earth’s outer magnetosphere, 2, Consequences of drift shell branching

Mikhail Ivanovich Pudovkin (1933–2004)

The 5th International Conference “Problems of Geocosmos” held on May 24–28, 2004 inSt.-Petersburg was dedicated to the memory of Professor Mikhail Pudovkin.

Mikhail Ivanovich Pudovkin passed away on February 18 from a heart attack that occurredin the middle of a discussion of the magnetospheric ring current at a laboratory seminar, wherehe was one of two key speakers.

M.I. Pudovkin was born on 22 May 1933. After a wartime childhood, he studied at LeningradUniversity and graduated in 1954, with a major in magnetology. His extraordinary career in-cluded a post- graduate research at the Chair of Earth’s Physics of the Physics Department ofthe Leningrad University, wintering as a staff member of the 2nd Soviet Antarctic Expedition,organization of the geomagnetic laboratory in the then newly-created (now well-known) PolarGeophysical Institute near Murmansk. In 1966 he returned back to Leningrad University where,after having received his doctorate (habilitation) degree in 1968 with a thesis entitled “Morphol-ogy and Nature of Polar Magnetic Storms”, became a full professor and, for the rest of his life,the head of the new Laboratory of Aeronomy (now Magnetospheric Physics). That was at thedawn of the satellite era, when space physics emerged as an experimental science, and Pudovkinmade a very substantial contribution to its growth to maturity. He was a scientist with ency-clopedic knowledge and insatiable quest for unveiling the secrets of Nature, a true pioneer in hiswork and research. Areas that benefited from his seminal contributions are extremely diverse:he left his hallmark in many problems of the magnetospheric physics, from the ionospheric winddynamo versus the interplanetary electric field as the basic drivers of geomagnetic disturbances(1968), to the triggering of substorms by the northward IMF onsets, that he was first to pointout in 1970. Among the topics of his continuing interest were the ring current and ionosphericcurrent systems, the magnetospheric driving of the polar aurora dynamics, magnetic reconnec-tion theory and its implications for the dynamics of the solar wind streams and their interactionwith the magnetosphere. His results (together with A. Chertkov, as early as in 1971) on therelationship of the IMF orientation in the post-flare solar wind streams at the Earth’s orbitwith the photospheric magnetic field polarity at the site of the flare, should be recognized asone of earliest fundamental contributions to the space weather studies. During the last decade

Page 10: Proceedings of the 5 International Conference “PROBLEMS OF ...geo.phys.spbu.ru/~mironova/Geocosmos2004.pdf · Earth’s outer magnetosphere, 2, Consequences of drift shell branching

he got deeply interested in the mechanisms of the solar and cosmic ray impact on the Earth’slow atmosphere, including effects in the climate, permafrost, seismicity, and others. His and hiscolleagues cutting edge research in that field led to interesting and significant results. Pudovkinsstyle was to work simultaneously on many problems in various fields, and he always generouslyshared his time, infectious enthusiasm, and innumerable ideas with his colleagues and students.Equally remarkable was his role as an excellent teacher and the founder of what is now infor-mally and internationally recognized as the St. Petersburg school of space physicists. He wasdeeply devoted to his teaching activities and put all his efforts into the education of his studentsuntil his last day, being always surrounded by young people. Under his guidance, more than100 students got their master degrees, and 43 got their PhDs. His inspiring lectures, partlyincluded in his 7 published monographs, are difficult to forget for anyone who attended them.His contribution as the editorial board member of Geomagnetism and Aeronomy, Physics of theEarth, Planetary and Space Science journals, and as the member of international activities andprojects (including the IAGA-related Russian ‘Sun–Earth’ Council) will also be remembered.

For so many of those who knew Professor Pudovkin, St. Petersburg and the University willnever be the same without him. We all remember Mikhail Ivanovich with great warmth andaffection, and will sorely miss him.

V. Semenov, V. Sergeev, N. Tsyganenko, A. Usmanov

Page 11: Proceedings of the 5 International Conference “PROBLEMS OF ...geo.phys.spbu.ru/~mironova/Geocosmos2004.pdf · Earth’s outer magnetosphere, 2, Consequences of drift shell branching

Changes of Aerosol Backscatter and Cyclic

Variations of Solar Activity

I. A. Mironova∗, M. I. Pudovkin∗and C. Bockmann†

Abstract

Changes of solar activity and variations of the optical properties of aerosol, suchas aerosol backscatter are studied. The connections between the long-time variationsof the aerosol backscatter, volcanoes, cycles of the solar activity and galactic cosmicrays are investigated. We find that optical properties of aerosol have 11 year cycles.These cycles are not simultaneous with the cycles of solar activity. The variationsof the optical properties of aerosol have the time-lag comparatively of variations ofsolar cosmic rays.

1 Introduction

Aerosol particles play important role in atmospherical processes. Aerosols are small (sub-micronto several microns) particles in suspension in the atmosphere. They can be in the solid phaseor in the liquid phase. They can be directly emitted as particles (primary aerosols) into theatmosphere by volcanoes, through the effect of wind lifting dust particles in arid regions, fromcombustion during biomass burning, from sea spray, from vegetation etc. They can also bethe result of chemical reactions (gas-to-particle conversion) (secondary aerosols). Aerosols inthe atmosphere have direct and indirect effects on the Earth’s climate. The direct effect isrelated to their optical properties. Indeed, aerosols act to scatter and/or absorb solar andterrestrial radiation. The level of scattering and absorption depends on their physical andchemical characteristics. Consequently, aerosols act to modify the Earth’s radiation budget andthus influence the warming/cooling of the planet. Such role of atmospheric aerosol leads tonecessity of continuously monitoring and investigation of variations of aerosol.As Sun is the main generator of the most life-processes at the Earth, therefore atmosphericaerosol can be one of the important parameters of the atmosphere in a mechanism of solar-terrestrial relationship. According to present-day ideas, the solar activity affects the state ofthe low atmosphere by means of modulation of the cosmic ray flux intensity, which can changeinput solar radiation (cloudiness) and thereby aerosol.

∗University of Saint-Petersburg, Institute of Physics, Petrodvoretz, 198504, Russia, e-mails:[email protected]

†Institute of Mathematics, Potsdam University, Am Neuen Palais 10, D-14469 Potsdam, Germany,e-mail: [email protected]

363

Page 12: Proceedings of the 5 International Conference “PROBLEMS OF ...geo.phys.spbu.ru/~mironova/Geocosmos2004.pdf · Earth’s outer magnetosphere, 2, Consequences of drift shell branching

364 Changes of aerosol backscatterand cyclic variations of solar activity

2 Analysis of experimental data and discussion

The variations of aerosol backscatter are considered for the long-time period. The measurementsof aerosol backscatter are obtained by a lidar installed in Fraunhofer Institut fur Meteorologieund Klimaforschung Atmospharische Umweltforschung at the Garmish-Partenkirchen, Germany(48.3 degrees N, 11.0 degrees E) at 730m above mean see. The daily variations (between 1976 and1999 year) of integrated aerosol backscatter at wavelength 694.3 nm are presented in Fig. 1(a).

1975 1980 1985 1990 1995 2000

0,0

1,0x10 -3

2,0x10 -3

3,0x10 -3

4,0x10 -3

5,0x10 -3

1975 1980 1985 1990 1995 2000

5,0x10 -5

1,0x10 -4

1,5x10 -4

2,0x10 -4

2,5x10 -4

3,0x10 -4

years

ae

ros

ol

ba

ck

sc

att

er

(sr -1

) @

69

4n

m

0

50

100

150 c )

su

ns

po

ts

1976 1980 1984 1988 1992 1996 2000

6,0x10 -5

1,2x10 -4

1,8x10 -4

2,4x10 -4

3,0x10 -4

d )

year

year

3400

3600

3800

4000

4200

4400

ga

lac

tic c

os

mic

ray

s

1976 1980 1984 1988 1992 1996 2000

0

50

100

150 b )

su

ns

po

ts

0,0

5,0x10 -4

1,0x10 -3

1,5x10 -3

2,0x10 -3

2,5x10 -3

a )

ae

ros

ol

ba

ck

sc

att

er

(sr -1

) @

69

4n

m

ae

ros

ol

ba

ck

sc

att

er

(sr -1

) @

69

4n

m

year

Figure 1: The long-time variations of aerosol backscatter at wavelength 694.3 nm and cycles ofsunspots and galactic cosmic rays.a) Season variations of integrated aerosol backscatter. Integration of backscatter from 1 kmabove the tropopause (to eliminate spurouis cirrus) to the top of the layer. In case of cirrusabove the tropopause the integral starts above the cirrus.b) Yearly variations of aerosol backscatter and cycles of sunspots. The solid circles correspondto the number of sunspots, the squares show variations of aerosol backscatter.c) Variations of aerosol backscatter and cycles of sunspots. The solid circles show the numberof sunspots, the squares - variations of aerosol backscatter.d) Variations of aerosol backscatter and intensity of galactic cosmic rays (neutron monitor atClimax). The solid circles correspond to the intensity of galactic cosmic rays, the squares tovariations of aerosol backscatter.

The analysis of these data shows us not only season fluctuations of aerosol backscatter, but alsocycles equal to 11-years in this period of time. On the one hand it is well known that the flux ofgalactic cosmic rays and the variation of solar activity have stable 11-years cycles. The galacticcosmic rays have enough energy to penetrate even into the lower atmosphere and can influence

Page 13: Proceedings of the 5 International Conference “PROBLEMS OF ...geo.phys.spbu.ru/~mironova/Geocosmos2004.pdf · Earth’s outer magnetosphere, 2, Consequences of drift shell branching

I. A. Mironova, M. I. Pudovkin and C. Bockmann 365

on physical and chemical processes of the atmosphere. On the other hand in this time intervalthere are two big volcanic eruptions with volcanic explosively indices more than 5 occur. Thevolcanic explosively index determines the power of the eruption of a volcano. The index variesfrom 0 until 8. In our period of time one of the volcanic eruptions is the eruption of volcanoEl. Chichon in Mexico. It has tracked 32 days in March and April of 1982. The second eruptionis the eruption of volcano Mt. Penatubo in Philippines. The Pinatubo eruption is the largestone which has been observed by the TOMS satellite and has been traced 60 days in summerof 1991. As one can see at Fig. 1(a) the eruptions of these volcanoes are one year before thebig maximums in the optical depth for this period of time occur. From physics of atmosphereit is well known that some of the main sources of aerosols are volcanic eruptions, forest fires,biological processes etc. The main gases, from which aerosols are produced, are SO2, H2S andNH3. The number of aerosol particles increases after volcanic eruptions. This leads to changesof optical characteristics of the atmosphere. In the stratosphere these changes are stable duringone or two years after an eruption.At the Fig. 1(b) where the cycles of solar activity and yearly variations of aerosol backscatterare presented, one can find that the cycles of aerosol backscatter are not simultaneous with thecycles of solar activity changes. The maximums of variations of aerosol are one year after thevolcanic eruptions. For our period of time the maximums of solar activity are in the years 1979and 1989, i.e., four and three years before the maximums of optical properties of aerosol occur.The coefficient of correlation between the cycles of sunspots 〈W 〉 and the integrated aerosolbackscatter 〈A〉 is 0.07.At the next step of our investigation we have excluded the period of time from 1982 till 1984and from 1991 till 1993 in the variation of backscatter, where was volcanic influence on aerosol,see the Fig. 1 (c) and (d). The examination of these pictures shows that in spite of excludedmaximums of variations of aerosol, the cycles of sunspots (galactic cosmic rays 〈GCR〉) are inphase (anti-phase) with integrated backscatter. The correlation analysis between the cycles ofsunspots (GCR) and the integrated aerosol backscatter at Fig. 1 (c) and (d) give us the coefficientcorrelation r{A,W} = −0.17 (and r{A,GCR} = −0.11 accordingly). However, the coefficientsof partial correlation [a determination of the influence of one parameter on other with exceptionof another] are increased: r{A,WwithoutGCR} = −0.49 and r{A,GCRwithoutA} = −0.47.Therefore, based on above-stated we have tried to perform time-shift between solar activity(GCR) and aerosol backscatter equal one, two, three and four years. The results of correlationanalysis show the biggest coefficients correlation (r{A,W} = 0.69 and r{A,GCR} = −0.75) withthe time-shift equal 2 years. This means that solar activity influence on the aerosol throughsome parameters or a parameter which give time-lag of variations of aerosol about 2 yearscomparatively of variations of solar cosmic rays.This effect we can try to explain through the mechanisms influence of the solar activity on inputsolar radiation and then reaction of vegetation on solar radiation. The authors of Ref.[2, 6]found that increase of solar activity leads to increase of input solar radiation at latitudes higherthan ϕ = 450. In its turn the solar radiation can influence on the vegetation. In Ref.[3, 5, 1]authors investigated reaction of plants on ultraviolet radiation. They found that in period ofincreasing of solar activity input ultraviolet radiation affect plants oppressed. Then, vegetationadapts to ultraviolet and begin to give out an additional amount of organic compounds. A highconcentration of hydrocarbons with high level of input of solar radiation frames maximum ofaerosol. This maximum of variations of aerosol have time-shift comparatively variations of solaractivity.

Page 14: Proceedings of the 5 International Conference “PROBLEMS OF ...geo.phys.spbu.ru/~mironova/Geocosmos2004.pdf · Earth’s outer magnetosphere, 2, Consequences of drift shell branching

366 Changes of aerosol backscatterand cyclic variations of solar activity

3 Conclusion

In the course of the investigations we show that aerosol components of air that have photo-chemical nature are changed with cycles of solar activity. These changes are not simultaneously.We suppose that one of the possible mechanisms connecting of the long-time variations of solaractivity with optical properties of aerosol is mechanism determined by coupling of ultravioletradiation and vegetation. In the beginning of the increasing of solar radiation plants are op-pressed, then after 1-2 year of the adaptation plants increase productivity that leads to emissionof additional amount of aerosolfacient components.

Acknowledgement.This work was supported by the European Commission under grant EVR1-CT1999-40003.The data of integrated aerosol backscatter are from group of the EARLINET project.The authors are very thankful to Dr. Jager Horst from the Fraunhofer Institut fur At-mospharische Umweltforschung, Garmisch-Partenkirchen, for the long-term data of aerosolbackscatter.

References

[1] Arshinov M.Y., Belan B.D., Kovalevskij V.K., Rasskazchikova T.M., Skljadneva T.K., Tol-machev G.N., The role of solar acctivity in the long-time variations of photochemical com-ponents of air in the low troposphere, J. Optics of Atm. and Ocean, 15, 12, 1056–1072,2002

[2] Mironova I.A. and Pudovkin M.I., Solar activity as a controlling factor of the sunshineintensity at low latitudes, Int. J. Geomagn. Aeron., 3, 1, 87–90, 2002

[3] Sullivan J.H., Teramura A.H., Field study of the interaction between solar ultraviolet-Bradiation and drought on photosynthesis and grouth in soyben, Plant Physiologie, 92, 2,141–146, 1990

[4] Sullivan J.H., Teramura A.H., The effects of ultraviolet-B radiation on loblolly pine. 2.Growth of field-grown seedlingh, Trees, 6, 1, 115–120,1992

[5] Teramura A.H., Sullivan J.H.,Effects of UV-B radiation on photosynthesis and growth ofterrestrial plants, Photosynthesis Res., 39, 3, 463–473, 1994

[6] Veretenenko S.V., Pudovkin M.I., Variations of solar radiation input as a possible en-ergy source of the solar activity effects in the lower atmosphere circulation, Problems ofGeospace 2, Proc. 2nd Intern. Workshop, St. Petersburg, Russia, June 29 – July 3, 1998,ed. by V.S. Semenov, H.K. Biernat, M.V. Kubyshkina, C.J. Farrugia, and S. Muhlbachler,Verlag der Osterreichischen Akademie der Wissenschaften, Wien–Graz, 379–384, 1999