Magnetische kernspinresonantie...

12
Overdruk uit "TNO-Nieuws" 19 (1 96 4) 62 1-632 H:Jofdlt ntcof T 1 •• 1 i. / 's- Grav enhi.ge /11- ' 6 '5 Magnetische kernspinresonantie spectroscopi e Dr. E. T ALMAN CENTRAAL LAB O RATORIUM TNO, DELFT Samenvatting Na een behandeling van de theoretische grondslagen van de magnetische kernspinresonantie spectroscopie wordt speciaal ingegaan op de toepassingsmogelijkheden van de " high reso- lution" NMR techniek op organisch chemisch gebied. Aan de hand van een aantal voorbeelden worden de mogelijkheden van ee n moderne apparatuur bes proken, zowel bij het struc- tuuronderzoek, als bij de kwantitatieve analyse van organische stoffen, waaronder ook het onderzoek van polymeren. Prak- tische aanwijzingen worden gegeven met betrekking t ot de benodigde hoeveelheid stof, de oplosbaarheid, bruikbare op- losmiddelen, enz. I. Inleiding Tot de ni e uwere fysische hulpmiddelen, di e de laat- ste twintig jaar de methode voor het onderzoek van chemische probl emen grondig hebb en gewijzigd, b ehoort ook de magnetische ke rnspinresonanti e spectros copie, die we naar de Engelse "Nuclear Magnetic Resonance'', afkort en met de let- ters NMR. Als zovele fysische methodieken, waarbij we bij- voorb eeld denken aan infrarood spectrofot ometri e en massaspectrometrie, is de NMR-spectroscopie zijn ontwikkeling b egonn en in de l aboratoria d er natuurkund e, maar al spoedig geworden tot een onmisbaar instrument voor de chemicus bij de niet- destructieve analyse van zijn materiaal. Al me er dan tien jaar h eeft NMR zijn waarde bewezen in vele laboratoria over de gehele wereld pij de oplos- sing van talloze chemische prob lemen . Summary After reviewi ng the theoretica/ bas es of nuclear magnetic resonance spectroscopy, the possibiliti es of applying high resolution NM R techniques to organic chemistry are consi- dered in greater detail. With reference to some examp les, the features of modern NMR equipment are discussed with regard to structural ana- lysis as wel/ as quantitative analysis of organic compounds, including polymers. Practical indications are given for the quantity of mat erial re quired, solubility, useful solvents, etc. Ook het Centraal L aboratorium TNO beschikt thans over een analytische NMR-spectrometer (Varian, model A-60) (fig. 1 en 2 ), een apparaat met hoog oplossend vermogen, speciaal ontwikk e ld voor de organisch chemicus. II. Theoretische grondslagen Teneinde een inzicht te krijgen in de NMR-spectro- scopie is het noodzakelijk om de th eorie van de fysische verschijnselen, waarop deze methodiek be- rust, in het kort te behandelen. Enkel e bo eken di e naast de toepassingen ook de th eorie b espreken word en in de literatuurlijst genoemd [l , 2, 3]. Een aantal monografieën en een keuze uit de zeer uit- geb re id e reeks publikaties worden om de twee jaar in Analytica! Chemistry besproken [8]. De NMR-spectroscopie is een "echte" spectrosco- pische method e, dat wi l zeggen, dat men energie- Fig. 1. Varian A-60 magnetische kernspinresonantiespectrometer.

Transcript of Magnetische kernspinresonantie...

Page 1: Magnetische kernspinresonantie spectroscopiepublications.tno.nl/publication/34619554/bUb7io/talman... · voorbeeld denken aan infrarood spectrofotometrie en massaspectrometrie, is

Overdruk uit "TNO-Nieuws" 19 (1964) 62 1-632 :;b!ioi~1e2~ H:Jofdlt ntcof T 1 •• ~

1i./ 's-Gravenhi.ge /11- '6'5

Magnetische kernspinresonantie spectroscopie

Dr. E. T ALMAN CENTRAAL LAB O RATORIUM TNO, DELFT

Samenvatting

Na een behandeling van de theoretische grondslagen van de magnetische kernspinresonantie spectroscopie wordt speciaal ingegaan op de toepassingsmogelijkheden van de " high reso­lution" NMR techniek op organisch chemisch gebied. Aan de hand van een aantal voorbeelden worden de mogelijkheden van een moderne apparatuur besproken, zowel bij het struc­tuuronderzoek, als bij de kwantitatieve analyse van organische stoffen, waaronder ook het onderzoek van polymeren. Prak­tische aanwijzingen worden gegeven met betrekking tot de benodigde hoeveelheid stof, de oplosbaarheid, bruikbare op­losmiddelen, enz.

I. Inleiding Tot de nieuwere fysische hulpmiddelen, die de laat­ste twintig jaar de methode voor het onderzoek van chemische problemen grondig hebben gewijzigd, behoort ook de magnetische kernspinresonantie spectroscopie, die we naar de Engelse benamin~ "Nuclear Magnetic Resonance'', afkorten met de let­ters NMR. Als zovele fysische methodieken, waarbij we bij­voorbeeld denken aan infrarood spectrofotometrie en massaspectrometrie, is de NMR-spectroscopie zijn ontwikkeling begonnen in de laboratoria der natuurkunde, maar al spoedig geworden tot een onmisbaar instrument voor de chemicus bij de niet­destructieve analyse van zijn materiaal. Al meer dan tien jaar h eeft NMR zijn waarde b ewezen in vele laboratoria over de gehele wereld pij de oplos­sing van talloze chemische problemen.

Summary

After reviewing the theoretica/ bases of nuclear magnetic resonance spectroscopy, the possibilities of applying high resolution NM R techniques to organic chemistry are consi­dered in greater detail. With reference to some examples, the features of modern NMR equipment are discussed with regard to structural ana­lysis as wel/ as quantitative analysis of organic compounds, including polymers. Practical indications are given for the quantity of material required, solubility, useful solvents, etc.

Ook het Centraal Laboratorium TNO beschikt thans over een analytische NMR-spectrometer (Varian, model A-60) (fig. 1 en 2), een apparaat met hoog oplossend vermogen, speciaal ontwikkeld voor de organisch chemicus.

II. Theoretische grondslagen Teneinde een inzicht te krijgen in de NMR-spectro­scopie is het noodzakelijk om de theorie van de fysische verschijnselen, waarop deze methodiek be­rust, in het kort te behandelen . Enkele boeken die naast de toepassingen ook de theorie bespreken worden in de literatuurlijst genoemd [l , 2, 3]. Een aantal monografieën en een keuze uit de zeer uit­gebreide reeks publikaties worden om de twee jaar in Analytica! Chemistry besproken [8]. De NMR-spectroscopie is een "echte" spectrosco­pische methode, dat wil zeggen, dat men energie-

Fig. 1. Varian A-60 magnetische kernspinresonantiespectrometer.

Page 2: Magnetische kernspinresonantie spectroscopiepublications.tno.nl/publication/34619554/bUb7io/talman... · voorbeeld denken aan infrarood spectrofotometrie en massaspectrometrie, is

beschouwen als een magnetische dipool. De over­eenkomst tussen kringstroom en magnetische dipool wordt door fig. 3 verduidelijkt. Bij kleiner worden van de diameter van de kringstroom (fig. 3a) respec­tievelijk van de afstand tussen noord- en zuidpool (fig. 3b) gaan beide figuren steeds meer op elkaar lijken (fig. 3c). Het (mechanische) impulsmoment p van een kern gaat dus gepaard met een magnetisch moment µ.. De verhouding die bestaat tussen µ. en p wordt de magnetogyrische verhouding (y) genoemd:

y = (1) p

y is specifiek voor een bepaalde kern. De magnetische dipooltjes zullen in een magne&t­veld H gericht worden; door de warmtebeweging der deeltjes zal dit richteffect echter beperkt blij­ven. De guantummechanica leert, dat het impuls­moment p in een magneetveld niet iedere wille­keurige stand kan innemen, doch slechts 21 + 1 oriëntaties, waarbij Pm (de component van pin de

richting van H) de waarden -1, -1 + 1, .... + I - 1, + 1 bezit uitgedrukt in eenheden h/2 7T:

Pm = m. h/2 7T (2)

(m = -I, -I + 1, .. " + 1 - 1, + 1) m wordt het magnetisch quantumgetal genoemd, h

Fig. 2. H et hart van het instrument: het monsterbuisje tus- is de constante van Planck. s-en de poolschoenen.

absorpties beschouwt, die optreden bij overgangen tussen verschillende energieniveaus. In dit geval zijn het energieniveaus, die behoren bij verschillende oriëntaties van het magnetisch dipoolmoment van een atoomkern in een magneetveld. Hierin schuilt echter ook direct een verschil met de ultraviolet­of infraroodspectrofotometrie: de bij de NMR op­tredende energieniveaus zijn geen intrinsieke eigen­schappen van de stof als zodanig, maar ze treden pas op in een sterk uitwendig magneetveld (verge­lijk het Zeemaneffect in de optische spectroscopie, waar de spectraallijnen van een lichtbron door een magneetveld in een aantal componenten gesplitst worden). De energieverschillen tussen de niveaus zijn evenredig met de sterkte van het toegepaste magneetveld, maar bij de praktisch te verwezen­lijken veldsterkten toch nog zeer klein, namelijk in de grootte-orde van 6 X 10-s kcal/mol (bij een veldsterkte van 14.000 gauss), wat overeenkomt met een golflengte van de geabsorbeerde stralinl?; van 5 meter. Ter vergelijking: de bij u.v. optredende energiever· schillen bedragen ongeveer 140 kcal/mol, overeen­komende met een golflengte van 0,2 µ.;bij infrarood zijn deze waarden ongeveer 5 kcal/mol, respectieve­lijk 6 µ.. We zullen nu nagaan hoe de energieniveaus in het magneetveld ontstaan. De om zijn as wentelende elektrisch geladen kern kan beschouwd worden als een kringstroompje en veroorzaakt dus een magneet­veld: we mogen daarom een geladen atoomkern ook

2

De bijbehorende componenten van µ. zijn:

µ.m = y.m. h/2 7T (3)

1 is het spinquantumgetal van de betrokken kern. Dit wordt bepaald door de ·samenstelling van de kem: (tabel I).

Tabel I Spinquantumgetal als functie van de samenstelling

van de kern

aantal protonen aantal neutronen

1

spinquantum-in de kern in de kern getal 1

even even 0 even oneven ± Il x 1/2

oneven even ± n X 1/ 2

oneven oneven ±n

n is een geheel getal, ongelijk nul.

De potentiële energie van een magnetische dipool u.

in een magneetveld H bedraagt - µ..H ( = - µ. .H.cos ®, waarin ® de hoek tussen de beide vectoren is. (zie fig. 4). Door het magneetveld worden dus 21 + 1 energie­niveaus geschapen met bijbehorende energieën:

h - µ.m.H = -y.m. - .H

27T

(4)

Page 3: Magnetische kernspinresonantie spectroscopiepublications.tno.nl/publication/34619554/bUb7io/talman... · voorbeeld denken aan infrarood spectrofotometrie en massaspectrometrie, is

• ~/I\~ a b c

Fig. 3. De overeenkomst tussen kringstroompje en magneti­sche dipool .

Het energieverschil tussen twee niveaus bedraagt: '

h E = y. .H. t::.m (5)

27T

Overgangen tussen dergelijke niveaus gaan gepaard met absorptie of emissie van energiequanta in de vorm van straling, waarvan de frequentie gegeven wordt door de bekende relatie van Bohr:

E = hv (6)

Alleen overgangen tussen naburige niveaus zijn toe­gestaan, dus !::. m = ± 1. De frequentie van de op­tredende straling vinden we dus uit:

yH v (7)

27T

Als we nu energie instralen met deze frequentie, dan zullen kernen uit het ene niveau onder absorptie van energie kunnen overgaan naar een naastbij ge­legen hoger niveau en omgekeerd van hoog naar laag onder energie-emissie. Deze overgangen zijn even waarschijnlijk en we zullen pas energie-absorptie waarnemen als het laagste niveau sterker bezet is dan het hoogste (als we ons beperken tot twee niveaus): er zullen dan meer kernen zijn die van laag naar hoog, dan om­gekeerd gaan. Inderdaad is er een verschil in bezettingsgraad, hoewel dit zeer klein is. Vom protonen geldt bij­voorbeeld bij kamertemperatuur en een veldsterkte van 10.000 gauss de verhouding in bezettingsgraad:

Nm + t / 2 = 1,000 007

Dit wil zeggen dat er op de twee miljoen protonen slechts zeven meer in het lagere niveau zijn. De wa1mtebeweging der moleculen werkt de neiging van de kemmagneten om zich volgens het magneet­veld te richten, tegen. Er stelt zich een evenwichts­toestand in, waarbij zich slechts zeer weinig deeltjes meer in de laagste dan in de hoogste energietoe­stand bevinden. Tijdens een NMR-experiment brengt men dit overschot naar een hoger energie­niveau.

Om dit enigszins aanschouwelijk voor te stellen, beschouwen we nogmaals de atoomkern als een bolletje, dat om zijn as

H

î ... -- -- ........ ,

kern

Fig. 4. Voorstelling van een atoomkern m een magneetveld.

wentelt (fig. 4 ). Als we een magneetveld H aanbrengen is het effect niet dat de draaiingsas parallel aan de richting van het magneetveld gaat staan maar hij gaat een precessie uitoefenen om de richting van het magneetveld, terwijl de hoek tussen de as van het bolletje en het magneetveld gehandhaafd blijft. Een mechanisch analogon hiervan is de precessie, die een tol uitvoert om de richting van de zwaartekrachtvector van de aarde of de precessie van de aardas in het zwaartekrachtveld van de zon. De hoeksnelheid waarmede de precessie uitge­voerd wordt heet de Larmorfrequentie:

w =y H = 2r.v (8)

Om de kern een andere stand in het magneetveld te laten innemen, moet de hoek tussen de rotatie-as en het magneet­veld veranderen. Dit kan slechts geschieden door een ander magneetveld H1, dat loodrecht staat op het reeds aanwezige veld H . Wil het veld H1 continu werkzaam zij n, dan moet de vector H1 met dezelfde snelheid en fase ronddraaien als de precederende vector. Het magneetveld H 1 wordt verkregen door de stof met elektromagnetische straling met frequentie

v = y H/2 r. (9)

te bestralen. Dit is uiteraard dezelf.de frequentie als we zojuist vonden voor de geëmitteerde of geabsorbeerde straling bij een overgang van het ene naar het andere energieniveau (verg. ( 7 ) ) . Als aan de genoemde voorwaarde is voldaan zijn de precederende kern en het roterende magneetveld in resonantie (vandaar de naam voor deze techniek: magnetische kernspinresonantie spectroscopie ) . Slechts onder deze omstandigheden kan ener­gie-absorptie plaats hebben.

Verschillende energieniveaus komen dus overeen met verschillende oriëntaties van de magnetische dipooltjes in het magneetveld. Beperken we ons voor het gemak tot waterstof, dan zijn slechts twee oriëntaties mogelijk, namelijk met de veldrichting mee (laagste niveau) en tegen de veldrichting in (hoogste niveau). Wanneer er evenveel energie­overgangen van laag naar hoog als van hoog naar laag plaats vinden, met andere woorden, wanneer beide niveaus even sterk bezet zijn, zou de optre­dende absorptie spoedig uitsterven indien er geen relaxatieverschijnsel was, dat h et verschil in bezet­tingsgraad tussen beide niveaus tracht te herstellen. Een van de optredende relaxatiemechanismen, de "spin-rooster relaxatie" volgens welke het " teveel" aan energie van de magnetische dipolen als warmte aan de omgeving wordt afgestaan, is er ook ver­antwoordelijk voor dat er bij het brengen van het monster in het magneetveld althans enige magneti­satie optreedt. De spin-rooster relaxatie is namelijk het gevolg van wisselwerkingen tussen de absorbe­rende kernen en de magnetische dipooltjes van de

3

Page 4: Magnetische kernspinresonantie spectroscopiepublications.tno.nl/publication/34619554/bUb7io/talman... · voorbeeld denken aan infrarood spectrofotometrie en massaspectrometrie, is

J10Gaussl

so•c

N. a : Bij hogarcz tamprzraturczn w12rdan klczinarcz vczrstczrkingsfactorczn gebruikt .

Fig. 5. "Wide line" spectra van Nylon bij verschillende temperaturen.

omgeving (het "rooster"; in dit verband wordt het woord rooster niet alleen gebruikt in de betekeni5 van kristalrooster, maar wordt de term ook gebezigd om de gezamenlijke, niet regelmatig gerangschikte moleculen van een vloeistof aan te duiden). Bij tril­lingen ten gevolge van de warmtebeweging zullen er ook voorkomen die toevallig de juiste frequentie hebben, waardoor energie-overgangen mogelijk zijn. Zijn de relaxatietijden erg lang, bijvoorbeeld ten ge­volge van beperkte moleculaire bewegingsvrijheid (de relaxatietijden kunnen variëren van ongeveer 1 seconde in vloeistoffen tot enige uren in zeer zui­vere vaste stoffen), of is de intensiteit van de inge­straalde energie te groot, dan kan een verzadigings­verschijnsel optreden: het verschil in bezettings­graad tussen de niveaus kan niet gehandhaafd blij­ven en er word geen absorptie meer waargenomen.

lil. "Wide line" en "high resolution" NMR A. Wide line NMR De frequentie v van de in een NMR-experiment toe te passen straling bij een vaste waarde van de magneetveldsterkte H moet zodanig zijn, dat aan

CH3

19mG " " Fig. 6. H et eerste "high resolution" NMR-spectrum van

alcohol.

4

vergelijking (7) wordt voldaan. Het hangt van de magnetogyrische verhouding y, die voor iedere kernsoort specifiek is, af welke frequentie bij een bepaalde veldsterkte "past". Alle isotopen met een impulsmoment -::f. 0 zijn dus voor NMR toeganke­lijk. Voor een veldsterkte van 10 kilogauss kan y variëren van ongeveer 1 tot 40 megahertz. Ook kan de frequentie constant gehouden en de magneet­vel<lsterkte gevarieerd worden. Men verkrijgt van een isotoop één absorptiesignaal, dat zich over de breedte van enkele gauss uitstrekt. Uit de vorm en breedte van het signaal kunnen soms bepaalde conclusies betreffende de toestand van de stof getrokken worden. Als voorbeeld wordt een protonenspectrum van nylon gegeven (fig. 5, hier is niet het absorptiesignaal zelf geregistreerd, maar de eerste afgeleide van de absorptiekromme). De resonantie bestaat uit een brede component, die in verband wordt gebracht met starre gebiedjes in het polymeer en uit een smalle component, die wij~t op het bestaan van beweeglijke molecuulsegmenten. Bij verhoging van de temperatuur verdwijnen lang­zamerhand de kristallijne gedeelten van het poly­meer en neemt de beweeglijkheid van de molecuul­segmenten toe, hetgeen tot uiting komt in een ver­d,'llijnen van de brede component in het spectrum en een scherper worden van de smalle component. Met dit ene voorbeeld moge volstaan worden om er op te wijzen, dat deze soort toepassing van MR, die bekend staat onder de naam "wide line NMR", wordt gebruikt bij het onderzoek van vaste stoffen, o.a. polymeren. Wij zullen ons in dit artikel echter beperken tot de "high resolution" NMR-spectro­scopie, een techniek, die bij toeval ontdekt werd, maar die er tevens de oorzaak van is dat NMR­spectroscopie van zo eminent belang is geworden voor de organische chemie.

B. High resolution NMR

Om het magnetisch moment van het stikstofisotoop 14N te meten, gebruikten de onderzoekers Proctor en Yu [ 4] ammoniumnitraat (NH4 N03), een verbin­ding die rijk is aan stikstof. Tot hun niet geringe verbazing bemerkten ze dat het spectrum twee ver­schillende pieken vertoonde, ongeveer 1 gauss van elkaar verwijderd bij een veldsterkte van vele dui­zenden gauss. Bij nader onderzoek bleek, dat de twee signalen te danken waren aan de chemisch verschillende omgeving van de stikstofkernen in het ammoniumnitraat. Het werd weldra duidelijk, dat de magneetveldsterkten ter plaatse van de ver­schillende stikstofkernen in het molecuul niet pre­cies gelijk waren, maar ie ts van elkaar verschilden ten gevolge van de magneetvelden der atomen in de onmiddellijke omgeving. Men realiseerde zich, dat in de vergelijking voor de Larmorfrequentie, w = y H (zie verg. (8)), niet de uitwendig toege­paste veldsterkte moest worden ingevuld, maar de door de betrokken kern ervaren veldsterkte. Men noemde dit verschijnsel van de verschuiving van een piek ten gevolge van zijn chemische omgeving de chemische verschuiving ("chemica! shift"). D e vol­gende stap was de magneten zodanig te verbeteren, dat ze een veel geringere chemica! shift dan in am­moniumnitraat zichtbaar zouden kunnen maken.

Page 5: Magnetische kernspinresonantie spectroscopiepublications.tno.nl/publication/34619554/bUb7io/talman... · voorbeeld denken aan infrarood spectrofotometrie en massaspectrometrie, is

Het resultaat was, dat men van de waterstofatomen in ethanol (CH3 - CH2 - OH) drie pieken ver­kreeg, slechts enkele milligauss van elkaar geschei­den (fig. 6). Hiermede was de "high resulution" NMR geboren. Dit was in 1951 [5] . Sindsdien heeft men er steeds naar gestreefd de magneten te verbeteren. De belangrijkste criteria voor een hoog oplossend vermogen zijn de homo~ geniteit en de stabiliteit van het veld. Wat thans bereikt kan worden, is wel eens vergeleken met een telescoop die twee katten, die een paar decimeter van elkaar op de maan zitten, gescheiden kan waar­nemen (als er katten op de maan zouden voorko­men .. .. ). Vergelijken we het "historische" NMR-spectrum van alcohol met dat wat met een moderne 60 mega­hertz spectrometer verkregen wordt (fig. 7), dan vallen voornamelijk twee dingen op:

1. De afstand tussen de pieken is groter geworden: de "chernical shift" is evenredig met de veld­sterkte .

2. De methyl- en de methyleenpiek vertonen fijn­structuur.

IV. Spin-spin splitsing

D e fi jnstructuur zoals in de alcoholpieken te zien is. treedt in het algemeen in een NMR-spectrum op, wanneer er een wisselwerking bestaat tussen ver­schillend gebonden kernen via de valentie-elektro­nen. Als een naburige groep een totaal spin-quan­tumgetal I heeft, wordt de lijn in 21 + 1 delen ge­splitst . Men noemt dit wel de spin-spin splitsing (wanneer men naar de splitsing van de lijnen kijkt) of indirecte spin-spin koppeling (wanneer men de kernen beschouwt). Zo zijn in ethanol de protonen van de methyl- en die van de methyleengroep via hun valentie-elektronen gekoppeld. H et proton heeft een I = 112, het totale spinimpulsmoment van de methylgroep is dus 3 X 1/ 2 = 11/ 2 en het aantal

•componenten, waarin de methylgroep de absorptie­lijn van de methyleengroep splitst, is dus 2 X 11/ 2

+ 1 = 4. Evenzo splitst de methyleengroep (2 H­atomen) de absorptielijn van een naburige groep in 3 delen. In het algemeen splitst een groep , die n gelijkwaardige protonen b evat de absorptielijn van een vicinale groep in n + 1 componenten. Men kan dit enigszins begrijpen als we de mogelijke spinoriëntaties van bijvoorbeeld een methylgroep beschouwen . De 3 protonen van deze groep kunnen de volgende spinoriëntaties bezitten:

1) 11 t

2) 1 ' 1 3) 111 4) 111

waarvan de toestanden 2) en 3) ied er op drie manie­ren gerealiseerd kunnen worden:

2) 11 1 11 1 1 l t 3) 1 1 1 11 1 11 1

OH

35mG

Fig. 7. Een modern " high reso lution" NMR-spectrum van alcohol.

Via koppeling door de valentie-elektronen ondervin­den de protonen van een naburige groep een enigs­zins van het uitwendige magneetveld afwijkende veldsterkte. Er treedt een splitsing op in 4 pieken, die symmetrisch liggen gerangschikt om de plaats waar de piek zou zijn bij afwezigheid van de spin­spin koppeling. D e oppervlakten van de multiplet­pieken verhouden zich op grond van statistische overwegingen als de aantallen realiseringsmogelijk­heden der verschillende spin-toestanden, dus hier als 1 : 3 : 3 : 1. Op analoge gronden wordt een piek door een na­burige CH2-groep in drieën gesplitst met een opper­vlakte verhouding van 1 : 2 : 1.

t t

1 t t 1

11

De OH-groep in h et ethanol-voorbeeld zou volgens deze redenering een piek met tripletstructuur moe­ten vertonen en de CH2-groep zou niet een qua­druplet maar een octet moeten bezitten, doordat ieder piekje van de fijnstructuur door het proton van de hydroxylgroep in tweeën gesplitst wordt. Maar door de snelle uitwisseling van de hydroxyl­waterstof van de alcohol met water is er van een koppeling via de valentie-elektronen geen sprake en treedt deze splitsing niet op: de OH-piek is een scherp singulet . Echter in zeer zuivere, watervrije alcohol werden de genoemde multipliciteiten wel waargenomen! In tegenstelling tot de chemical shift is de koppe­lingsconstante (de afstand tussen de multipletpieken van de hyperfijnstructuur) onafhankelijk van de magneetveldsterkte. Multipletten die elkaar overlappen, kunnen gesch ei­den worden door h et spectrum bij grotere veldsterk­te op te nemen. E en sterker magneetveld helpt dus ook in vele gevallen om een spechum gemakkelijker interpreteerbaar te maken. Als voorbeeld geeft fig . 8 het NMR-spectrum van 1,2-dibroombutaan, res­pectievelijk opgenomen met een 60 MHz en een 100 MHz apparatuur, dus bij veldsterkten van respec­tievelijk 14.092 gauss en 23 .490 gauss .

5

Page 6: Magnetische kernspinresonantie spectroscopiepublications.tno.nl/publication/34619554/bUb7io/talman... · voorbeeld denken aan infrarood spectrofotometrie en massaspectrometrie, is

1.05 PPM

60MC CH 3 1 1 1 1 1

5 .00 4 .00 3 .00 2.00 1.00 PPM

V2 CH2Br 1/2CH2Br ~

;..->-,

1hCH2CH3 V2CH2CH3 CHBr

,.--"---.

100MC 1 1 1 1

383 362 220 200 180 105 CPS

Fig. 8. NMR-spectra van 1,2-dibroombutaan, opgenomen met een 60 MHz resp. een 100 MHz apparatuur.

V. De schaal voor de chemica! shift

Om de plaats van een piek in het spectrum weer te geven zou nauwkeurig de veldsterkte bekend moe­ten zijn waarbij resonantie optreedt. Dit betekent dat een veldsterkte van 14.000 gauss met een nauw­keurigheid van 0,1 milligauss gemeten zou moeten worden. Omdat dit niet mogelijk is meet men rela­tief ten opzichte van een standaard. Hiervoor wordt in het algemeen tetramethylsilaan (CH3)4Si, afge­kort TMS, genomen. Deze stof heeft het voordeel veel protonen te bevatten, die alle één scherpe piek geven. Deze piek komt bij zo hoge veldsterkte, dat bijna alle organische verbindingen bij lagere veld­sterkte absorberen. Het is een gelukkige omstandig­heid dat de piek van de standaard in verreweg de meeste gevallen buiten het op te nemen spectrum valt. De verklaring hiervan moet gezocht worden in de betrekkelijk geringe elektronegativiteit van het siliciumatoom. De chemical shift van een proton wordt namelijk beïnvloed door de afschermend~ werking der omringende elektronen. Deze elektro­nen zullen voor zover mogelijk gaan roteren om de veldrichting, waardoor een magneetveld, tegenge­steld aan het uitwendige veld, wordt ge1nduceeerd. Om een resonantiesignaal te verkrijgen zal het uit­wendige veld iets sterker moeten zijn, dan wanneer er geen afschermende elektronen waren. De proto~ nen van een methylgroep zullen daardoor bij lagere veldsterkte absorberen, naarmate de methylgroep

6

aan een elektronegatiever-e.Jement gebonden is. In tabel II is een en ander aan enkele elementen ge­demonstreerd.

Tabel II Elektronegativiteit en Chemical Shift

R ela tieve chem. shift (de Elektronega-Element tiviteit pijl geeft de richting van

grotere veldsterkte aan )

K 0,8 Si 1,8 Si - CH3 t c 2,5 c - CH3 H N 3,0 N - CH3 0 3,5 0 - CH3

Men drukt de chemica! shift niet uit in eenheden van magneetveldsterkte (gauss), maar in frequentie­eenheden (hertz of c/s) of in delen per miljoen (ppm) om de getalwaarde onafhankelijk te maken van de toegepaste frequentie. Zo is een chemica! shift van 80 Hz bij een 40 MHz apparatuur 2 ppm. Met een 60 MHz spectrometer zal dezelfde stof een grotere chemica! shift hebben, nl. van 120 Hz, maar de getalwaarde blijft 2 ppm. De schaal voor ·de chemica! shift wordt gefixeerd door de zeer scherpe piek van tetramethylsilaan arbitrair de waarde van 10 ppm te geven. Het nul-

Page 7: Magnetische kernspinresonantie spectroscopiepublications.tno.nl/publication/34619554/bUb7io/talman... · voorbeeld denken aan infrarood spectrofotometrie en massaspectrometrie, is

punt van deze schaal ligt 10 ppm naar lagere veld­sterkte. Dit is de zogenaamde T-schaal. Zo kan men bijvoorbeeld zeggen, dat de methylgroep van etha­nol T = 8,8 heeft en van de CH2-groep is T = 6,3. In plaats van de T-schaal kent men ook de 8-schaal, die zo gedefinieerd is , dat TMS de waarde 0 heeft, terwijl de schaal naar lagere veldsterkten oplopend is. Het verband tussen T en 8 wordt gegeven door:

8 = 10 - T (10)

De afstanden tussen de hyperfijnstructuur-pieken van multipletten (dus de koppelingsconstanten) worden in hertz opgegeven, omdat ze onafhanke­lijk zijn van de veldsterkte.

VI. Apparatuur

De apparatuur die het verschijnsel van de magne­tische kernspinresonantie waarneembaar moet ma­ken, dient aan zeer hoge eisen te voldoen, omdat de optredende energieabsorptie zo gering is: immers, er doen maar uiterst weinig kernen effectief mee (7 op de twee miljoen). Bovendien moet het magneetveld zo homogeen mogelijk zijn, zodat deze fractie van het totaal aantal kernen in zijn geheel in resonantie komt. Tenslotte is een sterk magneetveld nodig om de energieniveaus goed te scheiden. Bij een veld­sterkte van .10.000 gauss moet volgens vergelijking (7) een straling toegepast worden van 42 megahertz. Men streeft naar steeds sterkere velden, zodat men thans reeds werkt met 100 MHz apparatuur (veld­sterkte 23.490 gauss). In fig. 9 wordt een principeschema voor een NMR­experiment gegeven. Het te onderzoeken monster b evindt zich in een buisje tussen de polen van een magneet en is omgeven door twee spoeltjes, die beide loodrecht op elkaar en loodrecht op de veld­richting staan (zie ook fig. 2). D e ene spoel is de zendspoel die het vereiste rote­rende magneetveld levert (elektromagnetische stra­ling met radio-frequentie, bv. 40 of 60 MHz), de andere spoel is de ontvanger, waarin door de ge­absorbeerde energie een signaal geïnduceerd wordt. (Er is ook nog een andere uitvoering mogelijk, waar­bij van één spoel gebruik gemaakt wordt, die met het monster in een brugschakeling is opgenomen). Wanneer er nu bijvoorbeeld water in het buisje is en we stemmen de r.f. zender af op 42,577 MHz, dan vinden we bij een continue verandering van het magneetveld een uitslag van de recorderpen als we de resonantiewaarde voor waterstofatomen van 10.000 gauss passeren. Stemmen we de zender af op 5,772 MHz of op 6,536 MHz, dan vinden we bij 10.000 gauss de (veel zwakkere) signalen van 170 respectievelijk 2H. Immers, in water, dat uit water­stof en zuurstof bestaat, komen behalve de "nor­male" isotopen 1H en 160 ook de isotopen 2H (deu­terium) 170 en 180 voor: 0,0150/o van de waterstof is deuterium, 0,040/o van de zuurstof is 110 en 0,20/o 180. Slechts die isotopen die een I 'f 0 hebben, dus 1H , 2H en 170 zijn voor NMR toegankelijk. De aanwezigheid van 160 en 180 kan dus met NMR niet aangetoond worden, daar deze isotopen, even­als trouwens het voor de organisch chemicus zo be­langrijke 12C-isotoop, een spinimpulsmoment nul hebben.

ONTVANGST SPOEL

BUISJE

MET MONSTER

H

ZEND SPOEL

Fig. 9. Principe-schema voor een NMR-experiment.

Het hier beschreven principe van een NMR-spectro­meter geldt zowel voor een "wide line" als voor een "high resolution" apparaat. De laatste techniek moet als een verfijning beschouwd worden: er wor­den hogere eisen aan het magneetveld gesteld .. Toch . zou het magneetveld H niet extreem constant ge­houden behoeven te worden, als maar de verhou­ding tussen de radiofrequentie Y en H constant is (zie · verg. (7)). Bij het Varian A-60 Spectrometer systeem heeft men dit toegepast door het zoge­naamde " loek-in" systeem, waarbij men door ge­bruikmaking van een tweede, permanent ingebouwd watermonster en een modulatie-frequentie van 5 kilohertz, het magneetveld en de radiofrequentie met elkaar gekoppeld heeft, zodat met een 6-inch magneet eenzelfde oplossend vermogen werd ver­kregen als normaal slechts met een 12-inch magneet mogelijk is. D e variatie van de magneetveldsterkte, die nodig is om een spectrum te kunnen verkrijgen met behulp van een paar "sweep coils" heeft uiter­aard geen invloed op het " loek-in" systeem. Een beperking van deze methode is echter wel, dat slechts één soort kernen (in dit geval protonen) aan­getoond kan worden. Een recente ontwikkeling is echter dat ook fluor, dat een magnetogyrische ver­houding heeft, die slechts weinig van die van water­stof verschilt, voor onderzoek op een dergelijk appa­raat in aanmerking komt (Varian A-56/60).

VII. Het milieu waarin gemeten wordt Bij "high resolution" NMR moet steeds in de vloei­bare fase gemeten worden: alleen dan is de gemid­delde veldsterkte van de omringende dipolen te·r plaatse van de resonerende kern nul en is slechts de

7

Page 8: Magnetische kernspinresonantie spectroscopiepublications.tno.nl/publication/34619554/bUb7io/talman... · voorbeeld denken aan infrarood spectrofotometrie en massaspectrometrie, is

INTEGRAAL

c = 4923.

bz3]~3 a =663,6

=CH

CH 30

TMS

...._ ___ ,._ __ ABSORPTIE

4,9 6,1 6,9 8, 8,4 10

Fig. 10. NlvfR-spectrum van het chinon I.

invloed van de magnetische velden van de andere atomen in het molecuul zelf van belang ( chemical shift). In de vaste fase is die invloed van de om­ringende dipolen er wel, hetgeen leidt tot lijnver­breding (wide line NMR). De keuze van het oplosmiddel brengt dezelfde pro­blemen met zich als bijvoorbeeld bij de infrarood­of ultravioletspectroscopie: het moet namelijk op­tisch " leeg" zijn, dat wil zeggen geen absorpties vertonen in het meetgebied. Voor de protonmagne­tische resonantie spectroscopie (een woord dat wel gebruikt wordt als men uitsluitend over NMR van het 1 H isotoop spreekt) betekent dit, dat het geen protonen mag bevatten. Eventueel kan men een op­losmiddel, dat één scherpe piek heeft in een ge ­deelte van het spectrum , dat niet interessant is voor het onderhavige experiment , wel gebruiken. Zo kunnen benzeen of chloroform nog wel eens in aan­merking komen, maar bij voorkeur zal men toen gedeutereerde oplosmiddelen gebruiken, wanneer CCl4 of CS2 niet toepasbaar zijn. Veel gebruikte oplosmiddelen zijn CDC13 en D 20 , maar vele an­dere gedeutereerde oplosmiddelen zijn tegenwoor­dig in de handel verkrijgbaar en behoren niet meer tot de laboratoriumcuriosa. We noemen een paar willekeurige : hexadeuterobenzeen, hexadeuternace­ton, pentadeuteropyridine, hexadeuterodimethylsulf­oxide, octadeuterotetrahydrofuraan, heptadeutern­dimethylformamide, enz. De benodigde hoeveelheid stof voor het opnemen van een spectrum hangt enigszins af van het percen­tage waterstof dat de verbinding bevat, maar ligt tussen de 5 en 50 mg. Door toepassing van een zgn. "microcel" kan de ondergrens tot ongeveer 1 mg teruggebracht worden , terwijl 50 mg niet als een bovengrens beschouwd behoeft te worden. Deze hoeveelheid stof moet oplosbaar zijn in ongeveer 0,5 ml van het oplosmiddel (behalve bij gebruik van de microcel, '"raar minder oplosmiddel wordt gebruikt). Doordat bij temperaturen tussen --60 °C en + 200 °C gemeten kan worden, kunnen vele problemen met grote kans op succes aangepakt worden, bij­voorbeeld doordat vele stolfen, die bij kamertempe­ratuur slecht oplosbaar zijn, bij hogere temperatuur wel toegankelijk worden.

8

VIII. Toepassingen van "high resolution" NMR [9]

1. Protonentelling Omdat de piekoppervlakte recht evenredig is met het betrokken aantal protonen, geeft het geïntegreerde NMR-spectrum soms de oplossing voor bepaalde typische problemen. Zo kon met b ehulp van NMR bepaald worden hoe groot n was in een gesubstitueerd chinon van structuur I.

I Het NMR-spectrum van deze verbinding is ge­reproduceerd in fig. 10. Ook is het geîntegreer­de spectrum weergegeven. D e piekoppervlakten van de = CH groep, van de OCH3 groepen en van de a-CH2, de CH2 en de CH3 groepen samen verhouden zich als a : b : c (zie fig. 10). Aan a dragen n = CH groepen, dus n waterstofatomen bij; aan b dra­gen twee OCH3 groepen, dus 6 waterstofato~ men bij . Dus is a : b = n : 6. Voor a : b werd gevonden 663,6 : 397,3, waaruit voorn de waar­de 10 volgt . D e oplossing kan ook gevonden worden uit de verhouding van de oppervlakten b en c. De bijdragen aan c worden geleverd door (n + 2) CH3 groepen of (3n + 6) H-atomen en door (2 n - 1) CH2 groepen of (4 n - 2) H-atomen; in totaal dus door (7 n + 4) H-atomen. Voor b : c werd gevonden 397,3 : 4923. Uit 6 : (7 n + 4) = 397,3 : 4923 volgt n = 10.

2. Structuuronderzoek van organische verbindingen Hoewel het in vele gevallen mogelijk zal zijn om uit het spectrum van een onbekende verbinding de structuur af te leiden, zal het toch vaak gaan

Page 9: Magnetische kernspinresonantie spectroscopiepublications.tno.nl/publication/34619554/bUb7io/talman... · voorbeeld denken aan infrarood spectrofotometrie en massaspectrometrie, is

om een keuze uit twee of meer mogelijke struc­turen, of om de structuur van een gedeelte van het molecuul, de plaats van een dubbele band en dergelijke.

Voor beelden A. Onderscheid tussen methyl- en ethylgroep

Het NMR-spectrum besliste tussen de structu­ren II en III ten gunste van II. Er waren in het spectrum drie pieken in het gebied waar methyl-

@

Bc~O" H3C-T-O-CH3

@ CH3 @

© Il

® CH3

Bc\f" H3C-C-O-CH2-CH3

@ ~ @ © @

m

groepen absorberen, met een oppervlaktever­houding van 3 : 3 : 6 (a, b, c, zie structuur II), terwijl een verbinding die voorgesteld wordt door III een spectrum met vijf pieken zou moe­ten vertonen met een oppervlakteverhouding van 1 : 2 : 3 : 3 : 3 (a, b, c, d en e).

B. Localisering van een dubbele band in stero[den De dubbele band in een sterol kon zowel op de ó.12 als op de 6.13 plaats zitten (IV en V), maar het NMR-spectrum onthulde dat er slechts één olefinisch proton aanwezig was, hetgeen dus structuur V uitsloot.

H Ill

CH3 CH 3 1 1

H

~,ili-HO~ '-/

H

CH 3 1

o" /o

'd n

. ie

C. De ligging van de C-18- en C-19-methylpieken in het spectrum als functie van de substituenten in een steroïd. Op nog andere wijze kan het NMR-spectrum bepaalde structuurdetails in steroïden bevesti­gen. D e chemical shifts van de angulaire methyl­groepen (dit zijn de methylgroepen, waarvan de koolstofatomen de nummers 18 en 19 dragen in de rrebmikelijke nummering van het steroid­skel~t, zie formules IV en VI) worden namelijk bepaald door de substituenten in het molecuul, door de configuraties van deze substituenten (a of f3 ten opzichte van het skelet, d.w.z. onder respectievelijk boven het vlak van tekening) en door de dubbele banden in het molecuul. Uit een onderzoek door Zürcher [6) ·aan enkele hon­derden steroïden verricht, is gebleken dat deze invloeden in het algemeen additief zijn. Hij heeft de resultaten in een uitgebreide tabel gepubli­ceerd. Men vindt hierin bijvoorbeeld, dat een ó.9(11 )-dubbele band een verandering van de chemical shift van de C-19-methylgroep geeft van 0,14 ppm naar lagere veldsterkte en een 6-11-dubbele band een verandering van 0,03 ppm naar hogere veldsterkte. Bij het steroïd VI was de chemical shift van de C-19-methylgroep 8 = 1,33 tegen 8 = 1,19 in een dergelijke verbin­ding met verzadigde structuur aan C-9 en C-11 , dus een verandering van 0,14 ppm naar lager veld. Hier werd dus nogmaals een bevestiging gevonden voor formule VI. Voor VII had men voor de C-19-methylgroep moeten verwachten 8 = 1,19 - 0,03 = 1,16 ppm.

3. Toepassing bij het onderzoek van polymeren

Door de mogelijkheid om bij verhoogde tempera­tuur te werken (tot + 200 °C) is ook het structuur­onderzoek van polymeren voor high resolution NMR toegankelijk geworden. Voorwaarde hierbij is dat het polymeer redelijk goed oplosbaar is in een geschikt oplosmiddeL Dit moet niet te vluchtig zijn, omdat een hoge temperatuur niet alleen nodig is om de oplosbaarheid te bevor­deren, maar ook om de molecuulsegmenten beweeg-

CH 3 1

0 0 '/ o"c/o o" /o H H C H 1 1 1 1 1

H C H CH 3 H 1 1 1 1 1

H CH 3 H CH 3 H 1 1 1 1 1

c 1

c ." ."c - c - c - c - c ". 1 1 1 1 1 H CH 3 H CH 3 H

."c-C-C-C-C·-· 1 1 1 1 1 H CH 3 H C H

/ '\. 0 0

IX

1 CH3

".c-C-C-C-C-1 1 1 1 1

H c H Ac / " , " 0 0 0 0

1 1

H

CH3 CH 3

x

1

CH 3

9

Page 10: Magnetische kernspinresonantie spectroscopiepublications.tno.nl/publication/34619554/bUb7io/talman... · voorbeeld denken aan infrarood spectrofotometrie en massaspectrometrie, is

TMS

1 1 1

1,65 1,22 0

Syn.CH3 TMS

3,~ 1,~5 J l ~ 1,05 0,91

Fig. 11. NMR-spectra van verschillende soorten polymethyl­methacrylaat.

li_ïker te maken, zodat aan de eis voor high resolu­tion NMR, de invloed van het "rooster" als oorzaak van lijnverbreding uit te schakelen, is voldaan. Als voorb eeld geven we twee spectra van polyme­tl_iylmethacrylaat [7] , oggenomen met 100/o oplos­smgen in CDC]s bij 80 C (fig. 11). Bij een isotactisch polymeer zijn alle monomeer­eenheden stereochemisch op dezelfde wijze aan el­kaar gekoppeld. Bij isotactisch polymethylmetha­crylaat (PMM) betekent dit, dat alle methylgroepen aan d ezelfd e kant van d e keten gelegen zijn (VIII). Bij syndiotactisch PMM zitten de methylgroepen afwisselend aan de ene en aan de andere kant van de keten (IX) . Als een monomeereenheid één iso­tactisch en één syndiotactisch gebonden buur heelt, spreekt men van heterotacticiteit (X). D e hoeveelheid heterotacticiteit is een maat voor de gemiddelde lengte van de isotactische stukken in de polymeerketens. Schematisch kunnen we dit als volgt voorstellen:

1 1 1 1 1 111 1 1 1 1 1 1 1

isotactisch -.-~ synd i otact~~

heterotactisch ~

Hierin stelt een horizontale lijn een ketenmolecuul voor, de verticale streepjes zijn methylgroepen. D e heterotactische gebiedjes zijn door drie dikkere streepjes aangeduid. D e middelste van deze drie is dus een heterotactische methylgroep.

10

De chemica! shift van de metylgroep in PMM is verschillend voor een isotactische, syndiotactische of heterotactische structuur en bedraagt respectieve­lijk 1,20, 0,92 en 1,05 ppm (op de 8-schaal). Ook d e CH2-absorptie verschilt naargelang de struc­tuur van het polymeer isotactisch of syndiotactisch is. In syndiotactisoh PMM zijn de beide H-atomen equivalent: ze bevinden zich in een identieke che­mische omgeving, wat aanleiding geeft tot een sin­guletpiek in het NMR-spectrum. In isotactisch PMM daarentegen is d e omgeving van de twee methyleen­protonen verschillend en dit komt ook tot uiting in het spectrum, dat de vorm heeft van een AB-struc­tuur. Wanneer in het algemeen twee protonen niet equi­valent zijn, zullen ze een verschillende chemica! ~hift hebb en en dus aanleiding geven tot twee lijnen m het spectrum. Als de spins van de kernen via de valentie-elektronen gekoppeld zijn, zullen door we­derzijdse béinvloeding deze twee lijnen in doublet­ten gesplitst zijn. Bij een sterke koppeling, van de­zelfde orde van grootte als het verschil in chemical shift tussen de b eide kernen, verandert het beeld enigszins: d e binnenste lijnen naderen elkaar en de buitenste lijnen gaan verder uit elkaar en worden kleiner, om tenslotte geheel te verdwijnen wanneer de binnenste lijnen samenvallen: we h ebben dan het geval van twee equivalente protonen gekregen . H et spectrum van twee niet-equivalente kernen noemt men een AX-spectrum, dat van twee weinig van elkaar verschillende kernen een AB-spectrum, tenvijl men bij twee equivalen te kernen over een A2-spectrum spreekt. Schematisch kunnen we die spectra door fig. 12 weergeven. Bij isotactisch PMM hebben we met een duidelijk AB-geval te maken. D e plaats van de methylpiek en de vorm van de methyleenpiek in het spectrum van PMM geven in­formatie over de tacticiteit van het p olymeer . De piek bij 8 = 1.05 is een maat voor d e heterotactici­teit van de ketens , dat wil zeggen , bepalend voor d e lengte van de syndiotactische stukken. Op het Centraal Laboratorium TNO wordt deze methode toegepast bij het structuuronderzoek van ethyleenpropeen polymeren en van onverzadigde, vulcaniseerbare, zogenaamde terpolymeren. Hierbij wordt gewerkt met oplossingen in ortho-dichloor­benzeen bij 100 °C. Beschouwen we een monomeer van structuur XI, dan zal het verschil maken of de polymerisatie plaats heeft aan dubbele band 1 of 2. Er kunnen dan molecuulketens ontstaan, waarin de brokstukken XII respectievelijk XIII voorkomen.

R, R,

- C-CH:r

"' 1 Il C= C=CH2 -c-c-

R/ 1 Il / c"'-R2 CH2 Ri R2

XI XIII :xn D e chemical shift van met name een = CH2 groep is verschillend van die van een -CH2- groep.

4. Deuteriumsubstitutie In een gedeutereerde verbinding kan met behulp van het NMR-spectrum bepaald worden welk wate;-

Page 11: Magnetische kernspinresonantie spectroscopiepublications.tno.nl/publication/34619554/bUb7io/talman... · voorbeeld denken aan infrarood spectrofotometrie en massaspectrometrie, is

AX geval :

AB gevallen :

A 2 geval=

1

11

11

1

11 6,0

Normaal

Fig. 12. Schematische weergave van AX, AB en A2-spectra. Fig. 13. NMR -spectra van normaal en partieel gedeutereerd

stofatoom is vervangen door deuterium en in welk percentage. Als voorbeeld geven we het spectrum van normaal en gedeutereerd cumeen (XIV) (fig. 13).

H 1 H,CÓCH,

XN

Bij deuterering van de CH van de isopropylgroep wordt het multiplet in het midden van het spectrum kleiner (de integraal geeft het percentage deute­rium: de methylgroepen integraal = 6 protonen, de CH-integraal gaf 0,39 protonen: daaruit volgt een. deuterering van 61°/o) en het doublet van de methylgroepen (gesplitst door de H van de CH groep) wordt een triplet doordat het spinquantum­getal van D = 1 (multipliciteit is 3).

5. De bepaling van het percentage waterstof in een verbinding

D oor vergelijkingsmetingen met bekende stoffen kan in een onbekend monster het totale gewichts-

cum een.

percentage waterstof bepaald worden uit de ge1n­tegreerde piekintensiteiten van het NMR-spectrum. De gevonden percentages wijken bij een totaal wa­terstofpercentage van 10°/o niet meer dan 0,5°/o af van de berekende. Zo werd in 17,4 mg 17 a-hydroxyprogesteron dat 9,16 gew. 0/oH bevat een percentage van 9,18 ± 0,04 gevonden.

6. Analyse van een mengsel De kwantitatieve samenstelling van een mengsel van bekende componenten kan met behulp van het geïntegreerde NMR-spectrum bepaald worden. In het algemeen zullen de pieken in het spectrum in aparte groepen integreerbaar zijn. D e bijdrage van iedere component aan een groep is evenredig met de hoeveelheid van die component in het mengsel. Uit deze gegevens kan een stel vergelijking.en op­gesteld worden, waaruit de mol. fracties van de verschillende componenten in het mengsel berekend kunnen worden.

Voorbeeld Een mengsel van tetraline (XVI), nafthaleen (XVII) en n-hexaan (XV). In fig. 14 is het spectrum van een dergelijk mengsel afgebeeld.

x

y 4x+14z

z

Mol Fracties

Theoretisch Gevondan

0 .393 0. 394t.007

0. 252 0. 252 ! ,005

0.355 0.354! .00B

x = tetraline(C10 H12>

y = naphthaleen (C10H9)

z = n-haxaan(C6 H14>

Fig. 14. NMR-spectrum van een mengsel van tetraline, nafthaleen en n-hexaan.

11

Page 12: Magnetische kernspinresonantie spectroscopiepublications.tno.nl/publication/34619554/bUb7io/talman... · voorbeeld denken aan infrarood spectrofotometrie en massaspectrometrie, is

co

c b a

Er worden drie groepen van pieken onderscheiden: a. van de aromatische waterstofatomen van naftha­

leen en tetraline, b. van de vier a-waterstofatomen van tetraline en c. van de vier ,B-waterstofatomen van tetraline en

de veertien alifatische waterstofatomen van n­hexaan.

Als x, y en z de mol. fracties van tetraline, naftha­leen en n-hexaan voorstellen, dan verhouden de oppervlakten van de pieken van de groepen a, b en c zich als ( 4x + 8y) : 4x : ( 4x + 14z). Het geïntegreerde spectrum geeft getalwaarden voor deze verhoudingen, waardoor x, y en z bernkend kunnen worden. Het tabelletje geeft de in een be­paald g~val berekende en gevonden waarden.

7. Bepaling van het molecuulgewicht Door vergelijking van de geïntegreerde spectra van een toegevoegde standaard en van een herkenbare piek of groep pieken van een onbeke:i-de stof, kan het molecuulgewicht van de onbekende stof be­paald worde11 met behulp van de formule :

waarin: Men Ms

Literatuur

Is. n.W.Ms M = (11)

de molecuulgewichten van de onbeken­de stof respectievelijk van de standaard zijn,

[1] L . M. J ackman: Applications of Nuclear Magnetic R esonance Spectroscopy in Organic Chemistry, Perga­mon Press, 2nd edition, London 1962.

[2] H. Strehlow: M agnetische K ernresonanz und chemische Struktur, Steinkopf Verlag, D armstadt 1962.

[3] J. A. Pople, W.G. Schneider and H. J. Bernstein: High resolution Nuclear Magnetic R esonance, McGraw Hili Book Camp. Ine" New York 1959.

[4] W.G. Proctor and F. C . Yu: Phys. Rev. 77, 717 ( 1950 ).

12

n en ns

de intensiteiten van de herkenbare piek of groep pieken van de onbekende stof, respectievelijk de standaard.

het aantal protonen van de herkenbare piek of groep pieken van de onbekende stof, respectievelijk de standaard en

W en W s het gewicht van de onbekende stof res­pectievelijk de standaard.

Als standaard wordt aanbevolen hexamethylcyclo­trisiloxaan (XVIII).

Dit geeft één scherpe piek, buiten het gebied van de meeste andere absorpties en neemt ook de taak van TMS over om het nulpunt van de 8-schaal vast te leggen . Er worden redelijk nauwkeurige waarden gevon­den, wat door het volgende overzicht gernustreerd wordt:

1

Molecuulgewicht

berekend 1

gevonden

Acenaftheen 154,2 148,3 tot 155,3 (uit 6 bepalingen)

Cholesterol 386,6 374,8 Difenylazijnzuur 212,2 211,7

[5] J. F . Arnold, S. S. Dharmatti and M. E. Packard : J. Chem. Phys. 19, 507 (195 1).

[6] R . F. Zürcher: H elv. Chim. Acta 46, 2054 ( 1963 ) .

[7] F . A. Bovey and G. V . D . Tiers: J . Polymer Sci. 44, 17 3 ( 1960 ).

[8] H . Foster: Anal. Chem. 34, 255 R ( 1962 ) . ibid. 36, 266 R ( 1964 ).

[9] D e behandelde voorbeelden zijn gedeeltelijk ontleend aan publikaties van Varian Associates, Palo Alto, California.