Logismoc II, Dunamoseirècyanath/teaching/calculus2/powerseries_slides.pdf0 +R den gnwrÐzw. P¸c ja...

25

Transcript of Logismoc II, Dunamoseirècyanath/teaching/calculus2/powerseries_slides.pdf0 +R den gnwrÐzw. P¸c ja...

  • Logismoc II, Dunamoseirèc

    A. N. Giannakìpouloc

    Tm ma Statistik c

    O.P.A

    Earinì Exmhno 2017

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 1 / 25

  • Dunamoseir

    Orismìc

    'Estw {an} mÐa pragmatik  akoloujÐa kai x0 ∈ R dedomèno.MÐa dunamoseir eÐnai mia sullog  apo seirèc thc morf c

    a0 + a1(x − x0) + · · ·+ an(x − x0)n + · · · =∞∑n=0

    an(x − x0)n,

    ìpou to x jewroÔme oti metablletai sto R.

    Gia kje x ∈ R paÐrnoume kai mia diaforetik  arijmhtik  seir!

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 2 / 25

  • Pardeigma

    H seir

    ∞∑n=0

    1

    n!xn = 1 + x +

    1

    2x2 + · · ·+ 1

    n!xn + · · · ,

    eÐnai mÐa dunamoseir me kèntro to x0 = 0.

    An p.q. x = 1 paÐrnoume thn seir

    ∞∑n=0

    1

    n!= 1 + 1 +

    1

    2+ · · ·+ 1

    n!+ · · · = e.

    An p.q. x = 2 paÐrnoume thn seir

    ∞∑n=0

    1

    n!2n = 1 + 2 +

    1

    222 + · · ·+ 1

    n!2n + · · · = e2.

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 3 / 25

  • Pardeigma

    H seir

    ∞∑n=0

    xn = 1 + x + x2 + · · ·+ xn + · · · ,

    eÐnai mÐa dunamoseir me kèntro to x0 = 0.

    An p.q. x = 1/2 paÐrnoume thn seir

    ∞∑n=0

    1

    2

    n

    = 1 +1

    2+

    (1

    2

    )2+ · · ·+

    (1

    2

    )n+ · · · = 1

    1− 12= 2.

    An p.q. x = 1/3 paÐrnoume thn seir

    ∞∑n=0

    1

    3

    n

    = 1 +1

    3+

    (1

    3

    )2+ · · ·+

    (1

    3

    )n+ · · · = 1

    1− 13=

    3

    2.

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 4 / 25

  • Er¸thma

    MÐa dunamoseir einai mia peirh sullog  apo arijmhtikec seirèc -

    gia kje pijan  tim  tou x ∈ R kai apo mÐa diaforetikh!

    EÐnai dunatìn gia orismenec epilogèc tou x ∈ R h antÐstoiqh seir nasugklÐnei kai gia llec epilogèc tou x ∈ R h antÐstoiqh seir na mhnsugklÐnei?

    An to parapnw ìntwc sumbaÐnei ja mporoÔsa na brw to sÔnolo twn

    tim¸n tou x gia tic opoÐec h dunamoseir sugklÐnei?

    Ja  jela loipìn na qarakthrÐsw to sunolo

    C := {x ∈ R : h dunamoseir∞∑n=0

    an(x − x0)n, sugklÐnei}

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 5 / 25

  • To sÔnolo C eÐnai èna uposÔnolo tou R.

    Ti morf  ja èqei?

    EÐnai èna sÔnolo apo diakrit shmeÐa?

    EÐnai èna eujÔgrammo tm ma sthn eujeÐa twn pragmatikwn?

    EÐnai mia ènwsh apo eujÔgramma tm mata?

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 6 / 25

  • Je¸rhma

    Uprqei kpoioc pragmatikìc arijmìc R > 0 (h aktÐna sugklishc thcseirc) tètoioc ¸ste

    gia kje x ∈ (x0 − R, x0 + R) h dunamoseir sugklÐneigia kje x ∈ (−∞, x0 − R) ∪ (x0 + R,∞) h dunamoseir apoklÐneigia x = x0 − R kai x = x0 + R den gnwrÐzw.

    P¸c ja mporoÔsa na kajorÐsw to R ?

    To R mporeÐ na eÐnai

    Peperasmèno −M < R < M gia kpoio M,Mhdenikì R = 0,

    'Apeiro R =∞

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 7 / 25

  • Upologismìc tou R

    Ac prw èna opoiod pote x ∈ R, opìte h dunamoseir antistoiqeÐ sthnarijmhtik  seir ∑

    n=0

    bn, bn = an(x − x0)n.

    Ac efarmìsw èna apo ta krit ria sugklÐshc pou xèrw gia thn

    arijmhtik  aut  seir, p.q. to krit rio tou lìgou.

    ∣∣∣∣|bn+1bn∣∣∣∣ = ∣∣∣∣an+1an

    ∣∣∣∣ |x − x0|,ra

    limn→∞

    ∣∣∣∣bn+1bn∣∣∣∣ = |x − x0| limn→∞

    ∣∣∣∣an+1an∣∣∣∣ =: r |x − x0|

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 8 / 25

  • SÔmfwna me to krit rio tou lìgou h seir∑∞

    n=0 bn ja sugklÐnei an

    limn→∞

    ∣∣∣bn+1bn ∣∣∣ < 1.Apo ton parapnw upologismì autì ja sumbaÐnei an

    r |x − x0| < 1 =⇒ |x − x0| <1

    r=

    1

    limn→∞

    ∣∣∣an+1an ∣∣∣ .SÔmfwna me to krit rio tou lìgou h seir

    ∑∞n=0 bn ja apoklÐnei an

    limn→∞

    ∣∣∣bn+1bn ∣∣∣ > 1.Apo ton parapnw upologismì autì ja sumbaÐnei an

    r |x − x0| > 1 =⇒ |x − x0| >1

    r=

    1

    limn→∞

    ∣∣∣an+1an ∣∣∣ .

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 9 / 25

  • Er¸thma

    Ti ja gÐnontan an eÐqa qrhsimopoi sei èna dioforetikì krit rio gia

    thn sÔgklish thc antÐstoiqhc arijmhtik c seirc?

    Ja ebriska thn Ðdia   diaforetikh tim  gia thn aktÐna sugklishc R ?

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 10 / 25

  • Pardeigma

    H dunamoseir∞∑n=0

    1

    n!xn

    èqei aktÐna sÔgklishc R =∞, dhladh sugklÐnei gia kaje x ∈ R.

    Autì shmaÐnei oti gia opoiod pote x ∈ R mpor¸ na upologÐsw thnarijmhtik  seir

    ∑∞n=0

    1n!x

    n kai met na knw thn antistoiqÐa

    x 7→∞∑n=0

    1

    n!xn

    kai bsei autoÔ na orÐsw mia sunrthsh f : R→ R me eikìna

    f (x) =∞∑n=0

    1

    n!xn.

    H sunrthsh aut  eÐnai h ekjetikh sunarthsh f (x) = ex .A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 11 / 25

  • Pardeigma

    H dunamoseir∞∑n=0

    xn

    èqei aktÐna sÔgklishc R = 1, dhladh sugklÐnei gia kaje x ∈ (−1, 1).

    Autì shmaÐnei oti gia opoiod pote x ∈ (−1, 1) mpor¸ na upologÐswthn arijmhtik  seir

    ∑∞n=0 x

    n kai met na knw thn antistoiqÐa

    x 7→∞∑n=0

    xn

    kai bsei autoÔ na orÐsw mia sunrthsh f : R→ R me eikìna

    f (x) =∞∑n=0

    xn.

    H sunrthsh aut  eÐnai h sunarthsh f (x) = 11−x .A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 12 / 25

  • Pardeigma

    H dunamoseir

    ∞∑n=0

    n!xn

    èqei aktÐna sÔgklishc R = 0, dhladh sugklÐnei mìno gia x = 0.

    Sthn perÐptwsh aut  den mpor¸ na orÐsw mia sunrthsh me ton

    parapnw trìpo (para mìno sto shmeÐo x = 0)!

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 13 / 25

  • GiatÐ na endiafèromai gia tic dunamoseirèc?

    GiatÐ me thn bo jeia touc mpor¸ na orÐsw sunart seic pou eÐnai pio

    perÐplokec apo ta polu¸numa!

    EpÐshc ja doÔme ìti ìqi mìno mpor¸ na tic orÐsw all kai na knw

    logismì me autèc, dhlad  na tic paragwgÐsw kai na tic oloklhr¸sw!

    Pra pollèc apo tic gnwstèc mac sunart seic den eÐnai par

    suntomografÐec gia sugklÐnousec dunamoseirèc.

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 14 / 25

  • 1

    1− x=

    ∞∑n=0

    xn, x ∈ (−1, 1),

    ex =∞∑n=0

    1

    n!xn, x ∈ R,

    ln(1 + x) =∞∑n=0

    (−1)n+1

    nxn, x ∈ (−1, 1),

    sin(x) =∞∑n=0

    (−1)n

    (2n + 1)!x2n+1, x ∈ R,

    cos(x) =∞∑n=0

    (−1)n

    (2n)!x2n, x ∈ R

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 15 / 25

  • Prxeic metaxÔ dunamoseir¸n

    Sto disthma sÔgklishc touc mpor¸ na knw prxeic me tic

    dunamoseirec san na einai peperasmèna ajroÐsmata!

    Oi prxeic autèc mporeÐ na eÐnai prxeic algebrikèc   akìma kai

    prxeic logismoÔ!

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 16 / 25

  • 'Ajroisma dunamoseir¸n

    An

    f (x) =∞∑n=0

    an(x − x0)n,

    g(x) =∞∑n=0

    bn(x − x0)n,

    tìte

    (f + g)(x) = f (x) + g(x) =∞∑n=0

    (an + bn)(x − x0)n.

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 17 / 25

  • Grammikìc sundiasmoc dunamoseir¸n

    An

    f (x) =∞∑n=0

    an(x − x0)n,

    g(x) =∞∑n=0

    bn(x − x0)n,

    tìte

    (λ1f + λ2g)(x) = λ1f (x) + λ2g(x) =∞∑n=0

    (λ1an + λ2bn)(x − x0)n.

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 18 / 25

  • Ginìmeno dunamoseir¸n

    An

    f (x) =∞∑n=0

    an(x − x0)n,

    g(x) =∞∑n=0

    bn(x − x0)n,

    tìte

    (f g)(x) = f (x)g(x) =∞∑n=0

    cn(x − x0)n,

    cn =n∑

    i=0

    aibn−i

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 19 / 25

  • Pardeigma

    ex+y = exey .

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 20 / 25

  • Parag¸gish dunamoseir¸n

    An

    f (x) =∞∑n=0

    an(x − x0)n,

    tìte

    df

    dx(x) =

    ∞∑n=0

    cn(x − x0)n,

    cn = (n + 1)an+1,

    dhlad  mporoÔme na paragwgÐsoume mia dunamoseir

    paragwgÐzontac ìro proc ìro.

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 21 / 25

  • Pardeigma

    d

    dxex = ex .

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 22 / 25

  • Olokl rwsh dunamoseir¸n

    An

    f (x) =∞∑n=0

    an(x − x0)n,

    tìte ∫f (x)dx = C +

    ∞∑n=0

    cn(x − x0)n,

    cn =an

    n + 1,

    dhlad  mporoÔme na oloklhr¸soume mia dunamoseir paragwgÐzontac

    ìro proc ìro.

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 23 / 25

  • Pardeigma

    ∫exdx = ex + C .

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 24 / 25

  • Efarmogèc stic pijanìthtec: Ropogenn tria

    An X mia diakrit  tuqaia metablht  pou paÐrnei timèc sto N mepn = P(X = n), mporoÔme na orisoume thn dunamoseir,

    ∞∑n=0

    pnsn.

    H dunamoseir aut  orÐzei mia sunrthsh h opoÐa onomazetai

    ropogenn tria thc X ,

    φX (s) =∞∑n=0

    pnsn = E[sX ], |s| ≤ 1.

    A. N. Giannakìpouloc (O.P.A) Logismoc II Earinì Exmhno 2017 25 / 25