Cesar Gomez

download Cesar Gomez

of 22

Transcript of Cesar Gomez

  • 7/27/2019 Cesar Gomez

    1/22

    AN APPROACH TO CHARACTERISE FROTHER

    ROLES IN FLOTATION

    Cesar O. Gomez and James A. FinchMcGill UniversityDepartment of Mining and Materials Engineering

    Daniela Muoz-Cartes

    Minera Escondida

  • 7/27/2019 Cesar Gomez

    2/22

    INTRODUCTION

    Frother roles in flotation

    It is generally agreed that frothers play two major roles inflotation:

    Reduction of bubble size by preserving bubble formation size; and

    Froth stabilization by influencing water carrying and drainage in the froth.

    Frother characterization efforts have been focussed: Measuring bubble formation and velocity (mostly for single bubbles); or

    Bubble coalescence or water drainage during formation or collapsing of afroth layer.

    It has been demonstrated that a significant interaction betweenzones exists; therefore, frother effects should be characterizedallowing this interaction to occur.

  • 7/27/2019 Cesar Gomez

    3/22

    INTRODUCTION

    Previous workReduction of bubble size by preventing coalescence

    3

    4

    5

    ETER,mm

    0

    1

    2

    0 10 20 30 40 50 60

    BUBBLEDIAM

    FROTHER CONCENTRATION, ppm

  • 7/27/2019 Cesar Gomez

    4/22

    3

    4

    5

    TER,mm

    INTRODUCTION

    Previous workCritical Coalescence Concentration (CCC)

    0

    1

    2

    0 10 20 30 40 50 60

    BUBBLEDIAM

    FROTHER CONCENTRATION, ppm

    CCC (Critical Coalescence Concentration)

  • 7/27/2019 Cesar Gomez

    5/22

    INTRODUCTION

    Previous workFrothers affect gas holdup (same gas flow rate)

    15

    20

    P,%

    F150

    1-Octanol

    MIBC

    1-Pentanol

    0

    5

    10

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

    GASHOLD

    FROTHER CONCENTRATION, mmol/L

  • 7/27/2019 Cesar Gomez

    6/22

    INTRODUCTION

    Previous workWater carrying rate (same froth depth)

    0.4

    0.5

    RATE,cm/s

    F-150

    1-Octanol

    MIBC

    1-Pentanol

    0.0

    0.1

    0.2

    .

    0 10 20 30 40

    WAT

    EROVERFLO

    GAS HOLDUP, %

  • 7/27/2019 Cesar Gomez

    7/22

    OBJECTIVES

    Develop a laboratory technique to simultaneously characterizefrother roles in flotation.

    The following features were considered necessary:

    Simultaneous measurement of three arameters: critical

    coalescence concentration (CCC), water carrying rate, and gasholdup in the collection zone;

    Continuous interaction between the collection and froth zonesduring measurements;

    Automated operation, particularly on-line automatic control of frothdepth and volumetric gas flow rate in the test section; and

    Automated monitoring and registering of process variables.

  • 7/27/2019 Cesar Gomez

    8/22

    EXPERIMENTAL SETUP

    Laboratory column flotation

    PVC column; Assembled with

    flanged sections;

    Db

    DP

    Overflow

    water

    F

    Testsection

    .

    Diameter: 0.1 m.

    Peristalticpump

    P2Feed tank

    Underflowcontrol valve

    T

    Air

    SS porous

    sparger

    P1

    F

  • 7/27/2019 Cesar Gomez

    9/22

    Db

    DP

    F

    EXPERIMENTAL SETUP

    Measurement of bubble sizeMcGill bubble size analyzer (MBSA)

    P2

    T

    Air

    P1

    F

  • 7/27/2019 Cesar Gomez

    10/22

    Sliding sparger to facilitateinstallation;

    Dispersing component is anexchangeable SS porous cylinder;

    Cylinders with different porosities

    Db

    DP

    F

    EXPERIMENTAL SETUP

    Sparger details

    are available.

    P2

    T

    Air

    P1

    F

  • 7/27/2019 Cesar Gomez

    11/22

    Db

    DP

    F

    EXPERIMENTAL SETUP

    Sparger details

    P2

    T

    Aire

    P1

    F

  • 7/27/2019 Cesar Gomez

    12/22

    RESULTS

    Effect of air flow rate on bubble size(10 ppm of DF250)

    30

    40

    UENCY,%

    Jg = 0.5 cm/s

    Jg = 1.0 cm/s

    Jg = 1.5 cm/s

    0

    10

    20

    0 1 2 3 4 5

    NUMBERFRE

    Q

    BUBBLE DIAMETER, mm

  • 7/27/2019 Cesar Gomez

    13/22

    RESULTS

    Effect of sparger porosity on bubble size(DF250, Jg = 1 cm/s)

    3

    4

    5

    TER,mm

    Sparger 1 (coarser)

    Sparger 2 (finer)

    0

    1

    2

    0 20 40 60 80 100

    BUBBLEDIAM

    FROTHER CONCENTRATION, ppm

  • 7/27/2019 Cesar Gomez

    14/22

    RESULTS

    Effect of air flow rate on CCC(DF250, Sparger 1)

    3

    4

    5

    TER,mm

    Jg = 0.5 cm/s

    Jg = 1.0 cm/s

    Jg = 1.5 cm/s

    0

    1

    2

    0 20 40 60 80 100

    BUBBLEDIAM

    FROTHER CONCENTRATION, ppm

  • 7/27/2019 Cesar Gomez

    15/22

    RESULTS

    Typical characterization measurements(DF250, sparger 1, Jg = 1 cm/s )

    15

    20

    25

    3

    4

    5

    P,%

    TER,mm

    Bubble size

    Gas holdup

    0.15

    0.20

    0.25

    RATE,cm/s

    0

    5

    10

    0

    1

    2

    0 20 40 60 80 100

    GASHOLD

    BUBBLEDIAM

    FROTHER CONCENTRATION, ppm

    0.00

    0.05

    0.10

    0 5 10 15 20 25

    WA

    TEROVERFLO

    GAS HOLDUP, %

  • 7/27/2019 Cesar Gomez

    16/22

    RESULTS

    Comparison of frother roles(MIBC vs. DF260)

    3

    4

    5

    TER,mm

    MIBC

    DF250

    0.15

    0.20

    RATE,cm/s

    MIBC

    DF250

    0

    1

    2

    0 20 40 60 80 100

    BUBBLEDIAM

    FROTHER CONCENTRATION, ppm

    0.00

    0.05

    0.10

    0 5 10 15 20

    WATEROVERFLO

    GAS HOLDUP, %

  • 7/27/2019 Cesar Gomez

    17/22

    RESULTS

    Measurement reproducibility(DF 250, bubble size)

    3

    4

    TER,mm

    Repeat 1

    Repeat 2Repeat 3

    Repeat 4

    Repeat 5

    0

    1

    2

    0 25 50 75 100 125

    BUBBLEDIAM

    FROTHER CONCENTRATION, ppm

  • 7/27/2019 Cesar Gomez

    18/22

    RESULTS

    Measurement reproducibility(DF250, collection zone gas holdup)

    15

    20

    25

    UP,%

    0

    5

    10

    0 25 50 75 100 125

    GASHO

    L

    FROTHER CONCENTRATION, ppm

    Repeat 1

    Repeat 2

    Repeat 3

    Repeat 4Repeat 5

  • 7/27/2019 Cesar Gomez

    19/22

    EXPERIMENTAL SETUP

    Laboratory column flotationDb

    DP

    Overflow

    water

    F

    Testsection

    Peristaltic

    pump

    P2Feed tank

    Underflowcontrol valve

    T

    Air

    SS porous

    sparger

    P1

    F

  • 7/27/2019 Cesar Gomez

    20/22

    RESULTS

    Measurement reproducibility(DF250, water overflow rate)

    0.04

    0.05

    0.06

    WR

    ATE,cm

    /s Repeat 1

    Repeat 2

    Repeat 3

    Repeat 4

    Repeat 5

    0.00

    0.01

    0.02

    0.03

    0 5 10 15 20 25

    WATEROVERFL

    GAS HOLDUP, %

  • 7/27/2019 Cesar Gomez

    21/22

    RESULTS

    Plant frother replacement(DF250)

    0.15

    0.20

    WR

    ATE,cm

    /sDF250

    Frother 1Frother 2

    Frother 33

    4

    TER,mm

    DF250

    Frother 1Frother 2

    Frother 3

    0.00

    0.05

    0.10

    0 10 20 30

    WATEROVERFL

    GAS HOLDUP, %

    0

    1

    2

    0 25 50 75 100 125

    BUBBLEDIA

    M

    FROTHER CONCENTRATION, ppm

  • 7/27/2019 Cesar Gomez

    22/22

    CONCLUSIONS

    The results obtained in this work demonstrated:

    Frother effects on gas dispersion can be effectively used tocharacterize frother roles by determination of:

    The CCC to characterize bubble size reduction; and

    depth. The gas holdup in the collection zone correlates with water

    overflowing the froth, which have the potential to describeinteractions between zones;

    Frother strength in one role does not necessarily reproduce in adifferent role; and

    Measurements in a laboratory column with no solids were useful todecide replacement of a frother in an industrial operation.