IWT-TETRA Project Biosorb · Van organisch afval naar biochar via pyrolyse 2. Adsorptiecapaciteit...

Post on 09-Aug-2020

2 views 0 download

Transcript of IWT-TETRA Project Biosorb · Van organisch afval naar biochar via pyrolyse 2. Adsorptiecapaciteit...

IWT-TETRA Project Biosorb

Vrijdag 26/02/2016

biokool Restconcentratie

metalen

Organische

afvalstroom

(bv. mest,…)

Pyrolyse +

activatie

ad

so

rptie

Klassieke metaal-

verwijdering

Gezuiverde stroom

Metaalverontreingde

waterstroom

Metaal+

biokool

Mili

eu

vrie

nd

elij

ke

reg

en

era

tie

Input?

Efficientie?

Effect op

kwaliteit?

Ec

on

om

isc

he

eva

lua

tie

?

Doel

2

1. Van organisch afval naar biochar via pyrolyse

2. Adsorptiecapaciteit van biochar

metalen

vergelijking met alternatieve adsorbenten

Inhoud

3

BIOSORB project

Pyrolysis of biomass waste into value

added products: lab scale approach with

pilot scale ambitious?

Use of activated carbon.

J. Yperman

Research group of Applied and Analytical ChemistryUniversity HasseltBelgium

Pyrolysis?

Heating biomass waste in an oxygen

“free” atmosphere up to a moderate

temperature (450-550°C):

bio-gas, bio-oil and char

Yield, composition and quality of

pyrolysis products function of:

Kind of biomass waste

Applied temperature

Reactor concept

Heating rate (slow – fast)

Residence time of gases

Reaction time (short – long)

Used heat transfer medium

(direct or sand)

Heat transfer concept:

conventional or micro wave

Use of catalyst?

…..

What are the target products?

Activation of char into

activated carbon (AC).

Heating char at high temperature

(800-950°C) in steam or CO2

atmosphere:

Quality and characteristics of AC is

function of:

Final temperature

Chemical pre-treatment of char

Application use

Use or not use of catalyst

Heating concept: conventional or

micro wave

Char characteristics

Used atmosphere: H2O or CO2

Heating time

Heating rate

….

Microwave: rotating tube

reactor oven (2 L)

Pyrolysis of biomass waste

under controlled atmosphere,

time and temperature.

Production of char

Production of AC

Regeneration of AC

MW approach: faster heating

and cooling, direct and uniform

heating, transfer of energy not

heat, inside heating, easy

cleaning and simplicity in

operating, ….

Semi lab scale equipment: rotating tube reactor oven

Weight: > ½ ton

Pyrolysis of biomass waste

under controlled atmosphere,

time and temperature.

Production of char

Production of AC

Regeneration of AC

Between in set-up:

- lab installation pilot installation

Voorstelling Partnerprogramma

Flash co-pyrolysis of biomass:

The influence of biopolymers

Different combination of willow biomass and biopolymers: polylactic acid (PLA), polyhydrxybutyrate (PHB), corn starch, Biopearls (unknown biopolymer), Easter (syntetic biopolymer, modified PET), Solanyl (starch based) and potato starch

Biopolymers can not be mixed with common plastics:

Not possible recycling route => co-pyrolysis

Not always biodegradable: not really a “green” waste => composting???

Conclusions: Co-pyrolysis results in improved pyrolysis characteristics + synergetic effect: lower water content and enhanced energy recuperation,

In the case of willow/PHB: additional production of pure crystals: crotonicacid (valuable chemical) 29.7g/100g input beside 19.03g of water free bio-oil (5,52g water)

* T. Cornelissen et al. Fuel 87 (2008) 1031-1041 and 2523-2532 and JAAP 85 (2009) 87-97

Activated carbon from co-pyrolysis of particle

board (PB) and melamine (urea)

formaldehyde (MF) resin: A techno-economic

evaluationDifferent ratios of PB-MF have been pyrolysed and obtained AC are evaluated in view of economic aspects (based on own experimental results and literature data).

MF/PB=0/5 breakeven at 1.7 k€/t

MF/PB=2/3 breakeven at 2.5k€/t

MF/PB=4/1 breakeven at 4.2k€/t

Conclusions: profitable production of AC for a 1t/h process design with assumptions: 1) zero gate fee of MF waste; 2) high content of N in AC; 3) sensitive towards investment cost; production yield and AC selling price.

K. Vanreppelen et al. CEJ 172 (2011) 835-846

Characterisation of adsorbents prepared by

pyrolysis of sludge and sludge/disposal filter

cake mixIndustrial sludge waste (S) and S mixed with a disposal filter cake (FC) were fast (F) and slow( S) pyrolysed. Zn and Cu were the target pollutants. Made AC were compared with commercial F400 AC.

S and FC were pre-treated (washing) with 0.01 and 1 N HCl to remove high ash content.

Different kind of pyrolysis were performed: fast, slow, different T° and different input transfer rate.

Conclusions: focus on adsorption of Cu(II) and Zn(II) from aqueous solution at pH=5 on these adsorbents: post treated with 0.01 and 1 N HCl.

=> A pseudo second order kinetic is followed.

=> Steady state is reached within 48 h.

I. Velghe et al. WR 46 (2012) 2783-2794

Characterisation of adsorbents prepared by

pyrolysis of sludge and sludge/disposal filter

cake mixConclusions:

=> Langmuir-Freundlich isotherms model fits the best the

adsorption data.

Cation exchange dominate the heavy metal removal

mechanism.

No release of other hazardous heavy metals is observed

For Cu(II) adsorption FC addition increased adsorption

capacity of slow S adsorbents but NOT fast S adsorbents

Obtained adsorbents performed better than the commercial

one.

I. Velghe et al. WR 46 (2012) 2783-2794

Characterisation of adsorbents prepared by

pyrolysis of sludge and sludge/disposal filter

cake mixConclusions:

Zn(II) adsorption improved for both slow and fast S with FC

prediction of adsorption performance of AC is very difficult: NO theoretical base available, experiments still needed.

=> 1 N HCl treatment no improvement of Zn(II° adsorption

=> Zn(II) is an endothermic, but spontaneous process

=> Adsorption capacity increased with enhanced temperature and with lowest initial concentration.

=> Reuse of adsorbents (1 N washing) is only possible for FS_0.01 and not FSFC_0.01 as they became FS_1 and FSFC_1 (see table 5).

I. Velghe et al. WR 46 (2012) 2783-2794

Activated carbon from pyrolysis of brewer’s

spent grain (BSG): Production and adsorption

propertiesBSG has high N content => higher added value as AC.

AC are produced by own developed reactor oven concept. After

pyrolysis, formed char is left in the reactor, One step procedure

Phenol was tested as target pollutant at different pH.

=> AC were again compared with commercial ones: Filltrasorb

and Norit.

The longer the steam activation, the higher the burn off value

or thus the lower the AC yield.

K. Vanreppelen et al. Waste M & R 32(7) (2014) 634-645

Activated carbon from pyrolysis of brewer’s

spent grain (BSG): Production and adsorption

propertiesConclusions:

AC yields between 16-24%.

N-content of AC between 2,1-3,8%.

BSG-AC higher adsorption rate than commercial ones (benefit in continuous adsorption set-up), but somewhat lower adsorption capacity.

Best operating pH is around 8 (at higher pH phenolate-ion is formed).

Techno-economic model calculation (even in a pessimistic scenario) demonstrates encouraging results for profitable AC production.

K. Vanreppelen et al. Waste M & R 32(7) (2014) 634-645

1. Van organisch afval naar biochar via pyrolyse

2. Adsorptiecapaciteit van biochar

metalen

vergelijking met alternatieve adsorbenten

Inhoud

16

Schudproeven/batchSynthetisch afvalwater

Adsorptie

Metex DLS (Desotec)

Biochar

Restfractie algen (Eco Treasures)

IonenuitwisselingTP207

(Lanxess)

Precipitatie

Metalclean (Brenntag)

Brenntafloc(Brenntag)

17

Schudproeven OF continue proeven

Synthetisch afvalwater

Adsorptie

Metex DLS (Desotec)

Biochar

Restfractie algen (Eco Treasures)

IonenuitwisselingTP207

(Lanxess)

Schudproeven

BATCH: Schudproeven

18

• Testcondities

o 2u schudden bij 120 rpm

o concentratie: 200 mg metaal/l

o 1 – 10 g adsorbent

Verwijderingsefficiëntie

19

Verwijderingscapaciteit uitgezet in (mg/g) berekend met de testresultaten van 1g

adsorbens, ionenwisselaar of 1 ml precipitant

0

10

20

30

40

50

60

70

80

Metex DLS Biochar TP207 Algen

40,21 37,65

71,9

22,84

met

aalv

erw

ijder

ings

effi

ciën

tie

(mg

/g)

Verwijderingsefficiëntie

Verwijderingsefficiëntie

20

Verwijderingscapaciteit uitgezet in (mg/g) en (mmol/g) berekend met de testresultaten

van 1g adsorbens, ionenwisselaar of 1 ml precipitant

Techno-economische analyse

21

Kostprijs €/kg

Metex DLS 3,4

Biochar* 1,23

TP207 7,27

*300% Geschatte productiekost

Economische analyse voor Metex DLS, biochar en TP 207

Techno-economische analyse

22

0

5

10

15

20

25

30

35

Metex DLS Biochar TP207

11,83

30,61

9,89

met

aalv

erw

ijder

ing

per

eu

ro (g/€)

Economische analyse

23

Schudproeven OF continue proeven

Synthetisch afvalwater

Adsorptie

Metex DLS (Desotec)

Biochar

Restfractie algen (Eco Treasures)

IonenuitwisselingTP207

(Lanxess)

Continue proeven

CONTINU: Kolomexperimenten

24

• Hoogte kolom: ± 20 cm

• Binnendiameter: 1 cm

• Inhoud: ± 15 ml

• Debiet: 1ml/min

• Metalen: Zn2+ , Cu2+ , Cr3+ , Cd2+, Ni2+, Pb2+ (200 mg/L)

CONTINU

25

Schudproeven OF continue proeven

Synthetisch afvalwater

Adsorptie

Metex DLS (Desotec)

Biochar

Restfractie algen (Eco Treasures)

IonenuitwisselingTP207

(Lanxess)

26

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200

loo

dve

rwijd

erin

g (

%)

behandelde hoeveelheid afvalwater (mL)

METEX TP207 Bio

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200

ko

pe

rve

rwijd

erin

g (

%)

behandelde hoeveelheid afvalwater (mL)

METEX TP207 BIO

CONTINUPb Cu

Analoog voor Zn Analoog voor Cd en Ni

CONTINU

27

6,7%

10,1%

4,3%

6,4%4,4%5,5%

62,6%

METEX

11,0%

16,0%

7,9%

14,4%9,7%

12,3%

28,8%

TP207

13,0%

12,0%

8,0%

10,0%5,2%

16,3%

35,5%

biochar

Zn2+ Cu2+ Cr3+ Cd2+ Ni2+ Pb2+ Niet verwijderd

Verwijdering uit 150 mL water

28

0

5

10

15

20

25

30

35

16,56

25,34

31,56

21,9

28,31

verw

ijderingseffic

iëntie (

mg/g

)

Enkelvoudige kolomtesten Geschakelde kolomtesten

METEX

biochar

TP207

MTP

BTP

CONTINU

CONTINU

29

0

10

20

30

40

50

60

70

4,87

61,8

4,344,1 11,08

meta

alv

erw

ijderi

ng p

er

euro

(g/€

)

Enkelvoudige kolomtesten geschakelde kolomtesten

Economische analyse

METEX

biochar

TP207

MTP

BTP

Vragen?

Lab4U: Afvalwaterzuivering

kristel.sniegowski@kuleuven.be

TANC: Pyrolyse

jan.yperman@uhasselt.be

ME: Techno - Economische analyse

miet.vandael@uhasselt.be

Met de steun van