Elektromagnetische Methoden bei der Energie …...Background >> Challenges>> Future...

Post on 30-May-2020

5 views 0 download

Transcript of Elektromagnetische Methoden bei der Energie …...Background >> Challenges>> Future...

Elektromagnetische Methoden

bei der Energie

Exploration & ProduktionDGG 2011

K. M Strack

www.KMSTechnologies.com

© 2011 KMS Technologies 1

Aufgabeg

Overview of electromagnetic (EM) methods in applied geophysicsapplied geophysicsViewpoint from the oil industryp y– Depth range1-6 km

Same methods for geothermal– Same methods for geothermalExamples from success storiesp

© 2011 KMS Technologies 2

Background >> Challenges>> Future

Electromagnetics in applied geophysicsg pp g p y– Rocks

Methods and their use in the industry– Methods and their use in the industryBiggest challenges/opportunities

D il k fi di il– Daily tasks: finding oil– Exploration– Production

FutureFuture

© 2011 KMS Technologies 3

Background >> Challenges>> Future

Electromagnetics in applied geophysicsg pp g p y– Rocks

Methods and their use in the industry– Methods and their use in the industryBiggest challenges/opportunitiesFFuture

© 2011 KMS Technologies 4

Electrical properties of rocks

Bulk volumeScanning electron Bulk volume model

Scanning electronMicroscope image

sandstone

ilwateroil

© 2011 KMS Technologies 5www.KMSTechnologies.comAfter Van Ditzhuijzen, 1994

Specific electrical resistivityp y

simplified:

Spec electrical resistivity is the resistance ofSpec. electrical resistivity is the resistance of the rock to electron movement through it.

Rock minerals: high resistivityRock minerals: high resistivityPore fluids: low resistivity

© 2011 KMS Technologies 6

Hydrocarbon targets

+++++++ ++++++++-- -- -- -- -- --

resistive+ +++++++++ ---

-- -- -- -- -- -- -- -- -- -- --

+-

conductive

© 2011 KMS Technologies 7

Borehole measurementsResistivity [Ωm]

Borehole measurements

Resistivity log 104

10 100

102

103

101

OIL1010 10 10 1010

Resistivity [Ωm]-1

Seawater: 0.3 Ωm

Water-bearingsediments: WATER 1 - 2 ΩmWATER

Hydrocarbonreservoirs: 10 - 100 ΩmOIL

© 2011 KMS Technologies 8

Courtesy EMGS

Background >> Challenges >> Future Industry methods marketsIndustry methods - markets

Borehole - logging 1,500 MUSD100 SAirborne 100 MUSD

Land 25 MUSDLand 25 MUSDMarine 120 MUSDMonitoring trial only,

most fieldsmost fields

excl. China & FSU

© 2011 KMS Technologies 9

Background >> Challenges >> Future Industry methods historyIndustry methods, history

Borehole - logging 1920s19 0Airborne 1950s

Land 1950sLand 1950sMarine 2000sMonitoring today

excl. China & FSU

© 2011 KMS Technologies 10

Background >> Challenges >> Future Industry NEW methodsIndustry NEW methods

Borehole - logging 3D anisotropy inductionAirborne Airborne TEMLand MagnetotelluricsLand MagnetotelluricsMarine Controlled source EMMonitoring Borehole-to-surface

excl. China & FSU

© 2011 KMS Technologies 11

Background >> Challenges >> Future

Electromagnetics in applied geophysicsg pp g p yBiggest challenges/opportunities

Daily tasks: finding oil– Daily tasks: finding oil– Exploration

P d i– ProductionExamplesFuture

© 2011 KMS Technologies 12

Background >> Challenges >> Future

Daily tasks: Borehole - loggingDaily tasks: Borehole logging– 3D induction

I i & lib ti– Inversion & calibration– Borehole-to-surface– Deep reading (>3 m from well bore)– Cross well– Geosteering

ExplorationExplorationProduction

© 2011 KMS Technologies 13

Background >> Challenges>> Future

Daily tasks: Borehole - loggingDaily tasks: Borehole logging– 3D induction– Inversion & calibration– Borehole-to-surface– Deep reading (>3 m from well bore)

Cross well– Cross well– Geosteering

ExplorationProductionProduction

© 2011 KMS Technologies 14

Background >> Challenges>> Future Crossbeds & sand/shale & siltstonesCrossbeds & sand/shale & siltstones

© 2011 KMS Technologies 15

Background >> Challenges>> Future Micro to macro anisotropy

2.5 m

Vertical Scale

23 mMicro to macro anisotropy

25 cm2.5 mm

© 2011 KMS Technologies 16

Courtesy Baker Atlas

Background >> Challenges>> Future Example anisotropy log dataExample anisotropy log dataExample anisotropy log dataExample anisotropy log data

Oil from ‘NEW’ log

Oil from ‘OLD’ log

© 2011 KMS Technologies 17After Yu et al., 2001

Background>>> Challenges>>>Examples>>> FutureHighest value: steering the drill bitHighest value: steering the drill bit

real

m)

real3D Earth 3D Earth

Dep

th(

Displacement(m)

1D Earth

Boorehole

2D Earth

© 2011 KMS Technologies 18

Courtesy Hagiwara, Strack, Zhou 2004

Background >> Challenges >> FutureExtended dynamic range required

10 OWC distance 1 m

OWC distance 1 m

y g q

10.001

1 m5 m

25 m

1 m5 m

25 m W t i iW t i i13 d d d i

olts

)

25 m50 m25 m50 m

Water coning in a horizontal well

Water coning in a horizontal well

13 decades dynamic range

age

(Vo

ed v

olta

zin

duce TxTx RxRx

TARGET

E-18

Hz

Time (s)

© 2011 KMS Technologies 1910.0011 E-8

DGG contributors:

3D induction: A. Hoerdt, F.M. Neubauer, B. KriegshaeuserGeosteering: T. Hanstein, H. RuetergInversion: M. Echard, R. BuschThrough casing resistivity: H.-M. Maurer

© 2011 KMS Technologies 20

Background >> Challenges >> FutureBorehole Logging EM highlightsBorehole – Logging - EM highlights

Much improve New logging tools3 f3D inductions logs tie to surface EMCross well EMCross well EMLog inversion better reserve estimatesReservoir evaluaton: Through casing resistivityDeep reading LWD & geosteeringDeep reading LWD & geosteering

© 2011 KMS Technologies 21

Background >> Challenges>> Future

Daily tasks: Borehole - loggingDaily tasks: Borehole loggingExploration– Airborne Airborne TEM– Land Magnetotelluricsg– Marine Controlled source EM

ProductionProduction– Monitoring

© 2011 KMS Technologies 22

Background >> Challenges >> Future Airborne EM

Depth of penetrations got increased from a few tens to a 200 500mfew tens to a 200-500mMany EM systemsy yCommodity 100 MUSD p.a. market

Allows NEW path of integration & ground follow upo s pat o teg at o & g ou d o o up

© 2011 KMS Technologies 23

After Smith et al., 2008

Background >> Challenges >> Future Exploration: land methodsExploration: land methods

Common: magnetotelluricsRarely used: – Controlled Source EMCo t o ed Sou ce– Induced polarization

NOT dNOT used:– DC resistivityy

© 2011 KMS Technologies 24

Background >> Challenges >> Future Magnetototelluric field sourcesMagnetototelluric field sources

Earth’s Magnetic Field Massive solar outburst travels on the solar wind

The solar wind distorting earth’s magnetic field

Two magnetic fieldIt induces electric field in This fired particles

© 2011 KMS Technologies 25

Two magnetic fieldlines are reconnectingIonosphere and in extreme

cases produces Auroras.

ptowards the earth

after http://svs.gsfc.nasa.gov/

Background >> Challenges >> Future Integrated subsalt exampleIntegrated subsalt example

© 2011 KMS Technologies 26Zerilli, et al 2002UNPUBLISHED, courtesy RWE-Dea

Background >> Challenges >> Future Geothermal energy !Geothermal energy !

© 2011 KMS Technologies 27

Background >> Challenges >> Future Integrated interpretationIntegrated interpretation

Seismic and geologic g ginformation for structures

and lithologyMagnetotelluric (low resistivity) & gravity (low density) to target geothermal anomaly gydensity) to target geothermal anomaly

© 2011 KMS Technologies 28

Background >> Challenges >> Future DrillingDrilling

EM & gravity dataEM & gravity data over seismic

sectionsection

T t l !© 2011 KMS Technologies 29

Total success!

Background >> Challenges >> Future Exploration: marine methodsExploration: marine methods

Common: C t ll d EM– Controlled source EM

– magnetotelluricsRarely used:

I d d l i ti– Induced polarization– DC resistivity

© 2011 KMS Technologies 30

Background >> Challenges >> Future Marine CSEM acquisitionMarine CSEM acquisition

air wave

ocean wave

sediment wave

t ttarget wave

© 2011 KMS Technologies 31Base figure From http://marineemlab.ucsd.edu/index.html

Background >> Challenges >> Future

U i th Ski d thThe skin depth δ describes how much the energy is attenuated:

Using the Skin depthThe skin depth δ describes how much the energy is attenuated:

m500s

m500ff0

≅≅=Ω

ρπμρδ (ρ = 1 Ωm, f = 1 Hz)

ff0μ

ff = 0.25 Hz

Water (0 3 Ωm): δ = 548 mWater (0.3 Ωm): δ = 548 mOverburden (1.0 Ωm): δ = 1000 mOverburden (2.0 Ωm): δ = 1414 m

© 2011 KMS Technologies 32

Background >> Challenges >> Future

E l ti i th dExploration: marine methods

ReceiverHED source

0 25 Hz0.25 Hz

0 75 Hz

0.25 Hz

0.75 Hz 0.25 Hz0.75 Hz1.25 Hz

© 2011 KMS Technologies 33

Background >> Challenges >> Future

Electric

CSEM over a DRY reservoirElectric

MVO

1E-10

1E-09

1E-08

de [

V/A

m 2

]

ude

[V/A

m2 ]

1E-13

1E-12

1E-11

lect

ric M

agni

tud

lect

ric M

agni

tu

1E-15

1E-14

0 2000 4000 6000 8000 10000

Source Receiver Offset [m]

Scal

ed E

Source Receiver Offset [m]

Sca

led

El

270

360

deg]

Dominating energies

Short Offsets

PVO

[deg

]

[ ] [ ]

90

180

Elec

tric

Pha

se [d

• Direct and lateral subsurface energyIntermediate offsets

• Subsurface energy Ele

ctric

Pha

se

00 2000 4000 6000 8000 10000

Source Receiver Offset [m]

Subsurface energyLarge offsets

• Energy related to a finite water layer

E

Source Receiver Offset [m]

© 2011 KMS Technologies 34

Source Receiver Offset [m]

Background >> Challenges >> Future

Electric

g g

CSEM over an OIL reservoir

1E-10

1E-09

1E-08

de [

V/A

m 2

]

ElectricMVO

ude

[V/A

m2 ]

1E-13

1E-12

1E-11

Elec

tric

Mag

nitu

lect

ric M

agni

tu

1E-15

1E-14

0 2000 4000 6000 8000 10000

Source Receiver Offset [m]

Scal

ed E

Source Receiver Offset [m]

Sca

led

El

270

360

deg]

Dominating energies

Short Offsets

PVO

[deg

]

[ ]

90

180

Elec

tric

Pha

se [d

• Direct and lateral subsurface energyIntermediate offsets

• Subsurface energy Ele

ctric

Pha

se

00 2000 4000 6000 8000 10000

Subsurface energyLarge offsets

• Energy related to a finite water layer

E

Source Receiver Offset [m]Source Receiver Offset [m]

© 2011 KMS Technologies 35

Source Receiver Offset [m]Source Receiver Offset [m]

Background >> Challenges >> Future tCSEM™ over a reservoirtCSEM™ over a reservoir

10 km0 Impulse 10 km0 Impulse response

Subsurface Response

Reservoir present

Reservoir absent present

© 2011 KMS Technologies 36

After Thomsen etal., SEG 2007

Background >> Challenges>> Future

Daily tasks: Borehole - loggingDaily tasks: Borehole loggingExplorationProduction– MonitoringMonitoring

© 2011 KMS Technologies 37

Background >> Challenges >> FutureMonitoring choice of methodsMonitoring – choice of methods

SENSOR CAPABILITY

RESOLVING POWER

Distance Fluid Surface to Borehole to BoreholeDistance Fluid Surface-to-surface

Borehole-to-surface

Borehole

Seismic Excellent Poor Excellent Excellent Ok (more noise)

EM Ok (5% of depth) Excellent (water to HC)

Ok Excellent Excellent (less noise & distance)

Gravity Poor Ok (oil to gas) Poor Poor (no source) Poor (no source)

Strongest S

Seismic EM/seismic Seismic/EM/ it

Seismic/EM Seismic/EM/ itSynergy gravity gravity

© 2011 KMS Technologies 38

Courtesy Welldynamics

Background >> Challenges >> Future EM it i ti l i l tiEM monitoring: time lapse simulation

3000 mTransmitter 3000 m offset, receiver 2000 m depth

5 Ω-m change / BRINE saturated

Sediment 1500 m @ 1 Ω-m 5%Reservoir 100 m @ 40-80 Ω-m

2000 m

Sediment ∞ m @ 1 Ω-m40 Ω-m change/OIL saturated 45%

Source

R i

Background model subtracted, all layers @ 1 Ω-m 40 Ω-m change in resistivity produces 45% change

© 2011 KMS Technologies 40

Receiver in borehole EM response

Background >> Challenges >> Future

EM i i l iEM monitoring: a real reservoir

After Dasgupta et al., 2009

© 2011 KMS Technologies 41

g

Background >> Challenges >> Future EM monitoring: 3D model differencesEM monitoring: 3D model differences

Thickness (m)

Removed oil

Receivers @ test well

Potential Source

locations

After Dasgupta et al 2009

© 2011 KMS Technologies 42

After Dasgupta et al., 2009

Background >> Challenges >> Future EM monitoring: Surface to surfaceEM monitoring: Surface-to-surface

0 8

1

1500 m offset2000 m offset2500 ff t

0 4

0.6

0.8 2500 m offset3000 m offset3500 m offset

0

0.2

0.4

r effe

ct (%

)

-0.4

-0.2

0

Res

ervo

ir

NO TIME LAPSE VARIATION

-0.8

-0.6

10-3 10-2 10-1 100-1

Time (s)

© 2011 KMS Technologies 43

Background >> Challenges >> Future EM monitoring: Borehole to surfaceEM monitoring: Borehole-to-surface

0.1

1500 m offset2500 m offset3500 m offset

-0.1

0

onse

(nV

)

4500 m offset5500 m offset

OFFSET VARIATIONS

-0.2

1D m

odel

resp

o

-0.3

diffe

renc

e fro

m 1

-0.5

-0.4

Vol

tage

d

10-3 10-2 10-1 100-0.6

Time (s)

© 2011 KMS Technologies 44

Time (s)

Background >> Challenges >> Future EM for Monitoring summaryEM for Monitoring summary

Surface-to-surface CSEM– Commercial land/marine– Needs improvement, low coverage– LOWEST value due to selective applications

Single-well CSEMSingle well CSEM – Feasibility shown– In research phase

MEDIUM HIGH l ff i b d– MEDIUM to HIGH value: cost effectiveness, best dataThe future

– Permanent sensors: HIGHEST valuePermanent sensors: HIGHEST value– Borehole-to-surface 4D: INTERIM HIGHEST– Under field trial

© 2011 KMS Technologies 45

Background >> Challenges >> FutureFuture is defined by:Future is defined by:

More surface data (10 maybe 1000 times)( 0% O )Lower cost per site (50% NOW) new hardware

Operational integrationOperational integration – With seismic Shared cost base

Integration: – Exploration strategy: airborne & land/marineExploration strategy: airborne & land/marine– GP methods: gravity/EM; seismic/EM

C– Calibration to boreholes– Land – transition zone - marine

© 2011 KMS Technologies 46

Background>>> Challenges>>>Examples>>> FutureMore surface dataMore surface data

OBC

Umbilical

OBC

NodesNodes

• Multi-components anisotropy• Link to seismic acquisition processing etc• Link to seismic acquisition, processing, etc.• Land & marine!!!

© 2011 KMS Technologies 47

Background >> Challenges >> FutureFutureFuture

More surface data (10 maybe 1000 times)( 0% O )Lower cost per site (50% NOW) new hardware

Operational integrationOperational integration – With seismic Shared cost base

Integration: – Exploration strategy: airborne & land/marineExploration strategy: airborne & land/marine– GP methods: gravity/EM; seismic/EM

C– Calibration to boreholes– Land – transition zone - marine

© 2011 KMS Technologies 48

Background >> Challenges >> Future

S ll l t h dSmaller, lower cost hardware

Fluxgates 3 components Induction coils T & F domainFluxgates – 3 components Induction coils – T & F domain

© 2011 KMS Technologies 49

Background >> Challenges >> FutureFuture is defined by:Future is defined by:

More surface data (10 maybe 1000 times)Lower cost per site (50% NOW) new hardware

Operational integrationOperational integration – With seismic Shared cost base

Integration: – Exploration strategy: airborne & land/marineExploration strategy: airborne & land/marine– GP methods: gravity/EM; seismic/EM– Calibration to boreholes– Land – transition zone - marine

© 2011 KMS Technologies 50

Background >> Challenges >> FutureIntegrated seismic/EM operation:Integrated seismic/EM operation:

© 2011 KMS Technologies 51

Background >> Challenges >> FutureFuture is defined by:Future is defined by:

More surface data (10 maybe 1000 times)( 0% O )Lower cost per site (50% NOW) new hardware

Operational integrationOperational integration – With seismic Shared cost base

Integration: – Exploration strategy: airborne & land/marine Exploration strategy: airborne & land/marine – GP methods: gravity/EM ; seismic/EM ()– Calibration to boreholes ()– Land – transition zone – marine ()

© 2011 KMS Technologies 52

( )

Background >> Challenges >> FutureDGG b th t t ib t dDGG members that contributed

R. Busch, M. Eckard, O. Engels, T, Hanstein, A Hoerdt H Joedike B Kriegshaeuser J &A. Hoerdt, H. Joedike, B. Kriegshaeuser, J. & I. Loehken, H.-M. Maurer, F.M. Neubauer, J. Schoen, P. Weidelt, P. Wolfgram

© 2011 KMS Technologies 53

Background >> Challenges >> FutureAcknowledgementsAcknowledgements

Individuals: N. Allegar, L. Bell, D. Colombo, S. Dasgupta E Dory T Hanstein Y MartinezDasgupta, E. Dory, T. Hanstein, Y. Martinez, P. Pandey, C. Stoyer, L. Thomson, P. Wolfgram, G. Yu, A.Zerilli, Q. Zhou

Organizations: Aramco BP GOK RWE DeaOrganizations: Aramco, BP, GOK, RWE-Dea, Shell, WellDynamics, Wintershall

© 2011 KMS Technologies 54