Download - Datamining Pres

Transcript
  • 7/29/2019 Datamining Pres

    1/40

    1

    Modeling Condition And Performance

    Of Mining Equipment

    Tad S. Golosinski and Hui Hu

    Mining Engineering

    University of

    Missouri-Rolla

  • 7/29/2019 Datamining Pres

    2/40

    2

    Condition and Performance Monitoring

    Systems

    Machine health monitoring

    Allows for quick diagnostics of problems Payload and productivity

    Provides management with machine and fleetperformance data

    Warning systemAlerts operator of problems, reducing the risk

    of catastrophic failure

  • 7/29/2019 Datamining Pres

    3/40

    3

    CATs VIMS(Vital Information Management System)

    Collects / processesinformation on majormachine components

    Engine control Transmission/chassis

    control

    Braking control

    Payload measurementsystem

    Installed on Off-highway trucks

    785, 789, 793, 797

    Hydraulic shovels 5130, 5230 Wheel loaders

    994, 992G (optional)

  • 7/29/2019 Datamining Pres

    4/40

    4

    Other, Similar Systems

    Cummins CENSE (Engine Module)

    Euclid-Hitachi

    Contronics & Haultronics Komatsu

    VHMS (Vehicle Health Monitoring System) LeTourneau

    LINCS (LeTourneau Integrated Network ControlSystem)

  • 7/29/2019 Datamining Pres

    5/40

    5

    Round Mountain Gold Mine

    Truck Fleet17 CAT 785 (150t)

    11 CAT 789B (190t)PSA

    (Product Support

    Agreement)CATdealer guarantees88% availability

  • 7/29/2019 Datamining Pres

    6/40

    6

    VIMS in RMG Mine

    Average availability is 93%

    over 70,000 operating hours

    VIMS used to help withpreventive maintenance

    Diagnostics after engine failure

    Haul road condition assessment Other

    Holmes Safety Association Bulletin 1998

  • 7/29/2019 Datamining Pres

    7/40

    7

    CAT MineStar

    CAT MineStar - Integrates

    Machine Tracking System(GPS)

    Computer Aided Earthmoving System(CAES)

    Fleet scheduling System(FleetCommander)

    VIMS

  • 7/29/2019 Datamining Pres

    8/40

    8

    Cummins Mining Gateway

    CumminsEngine

    Base

    Station

    RF Receiver Modem

    Modem

    CENSEDatabaseMiningGateway.com

  • 7/29/2019 Datamining Pres

    9/40

    9

    VIMS Data & Information Flow

    VIMS Data

    Warehouse

    DataExtract

    DataCleanupDataLoad

    Data Mining

    Tools

    Information

    Extraction

    InformationApply

    MineSite 1

    Mine

    Site 2

    MineSite 3

    VIMSLegacyDatabase

  • 7/29/2019 Datamining Pres

    10/40

    10

    Earlier Research:Data Mining of VIMS

    Kaan Atamantried modeling using: Major Factor Analysis

    Linear Regression AnalysisAll this on datalogger data Edwin Madibatried modeling using:

    Data formatting and transferring

    VIMS events associationAll this on datalogger and event data

  • 7/29/2019 Datamining Pres

    11/40

    11

    Research Objectives

    Build the VIMS data warehouse to

    facilitate the data mining

    Develop the data mining application forknowledge discovery

    Build the predictive models for prediction

    of equipment condition and performance

  • 7/29/2019 Datamining Pres

    12/40

    12

    Data Mining

    Interactions

    ResultInterpretation

    Data

    Preparation

    Data

    Acquisition

  • 7/29/2019 Datamining Pres

    13/40

    13

    VIMS Features

    Sensors&ControlsMonitor&Store

    Event list Event recorder Data logger Trends Cumulative data Histograms Payloads

    Wireless Link

    Maintenance

    Management

    Download

    Operator

    VIMS wireless

  • 7/29/2019 Datamining Pres

    14/40

    14

    Data Source

  • 7/29/2019 Datamining Pres

    15/40

    15

    VIMS Statistical Data Warehouse

    Minimum Maximum Average Data Range Variance

    Regression Intercept Regression Slope Regression SYY Standard Deviation

    EVENT ID TC_OUT_TEMP_AVG TC_OUT_TEMP_MAX TC_OUT_TEMP_MIN TC_OUT_TEMP_RANGE

    0_6 70.35 73 65 8

    0_7 64.95 66 64 2

    0_8 65.67 66 65 1

    0_9 66.30 67 66 1

    767_1 80.00 80 80 0

    767_2 80.37 81 80 1

    767_3 80.95 81 80 1

    767_4 81.32 82 81 1

    767_5 81.83 82 81 1

    767_6 83.43 87 82 5

    1-3 minute interval statistical data

  • 7/29/2019 Datamining Pres

    16/40

    16

    VIMS Data Description

    Six CAT 789B trucks

    300 MB of VIMS data

    79 High Engine Speed events

    One-minute data statistics

    Dataset Count of Record

    Training Set 1870 86.4%Test set 1 (#1) 98

    Test set 2 (#2) 19613.6%

    Total 2164

  • 7/29/2019 Datamining Pres

    17/40

    17

    SPRINT -A Decision Tree Algorithm

    IBM Almaden Research Center

    GINI index for the split point

    Strictly binary tree

    Built-in v-fold cross validation

    21)( jpsgini

    )()()( 22

    11 sgini

    n

    nsgini

    n

    nsginisplit

  • 7/29/2019 Datamining Pres

    18/40

    18

  • 7/29/2019 Datamining Pres

    19/40

    19

    00000654321000000

    High Engine Speed

    Snapshot

    Normal Engine Speed Normal Engine Speed

    High Eng

    767_1 767_2

    Eng_1 Eng_2Other Other OtherOther

    VIMS

    Data

    Predicted

    Label

    Event_ID

    VIMS EVENT PREDICTION

  • 7/29/2019 Datamining Pres

    20/40

    20

    One-Minute

    decision tree

  • 7/29/2019 Datamining Pres

    21/40

    21

    Total Errors = 120 (6.734%)

    Predicted Class --> | Other | Eng1 | Eng3 | Eng2 | Eng4 | Eng6 | Eng5 |

    ----------------------------------------------------------------------------------------------------------------Other | 1331 | 18 | 9 | 5 | 16 | 6 | 1 | total = 1386

    Eng1 | 0 | 62 | 1 | 3 | 0 | 0 | 0 | total = 66

    Eng3 | 0 | 11 | 51 | 2 | 2 | 1 | 0 | total = 67

    Eng2 | 0 | 12 | 8 | 38 | 7 | 0 | 0 | total = 65

    Eng4 | 0 | 3 | 7 | 2 | 55 | 0 | 1 | total = 68

    Eng6 | 0 | 0 | 0 | 1 | 0 | 61 | 4 | total = 66

    Eng5 | 0 | 0 | 0 | 0 | 0 | 0 | 64 | total = 64

    --------------------------------------------------------------------------------------------------------------

    1331 | 106 | 76 | 51 | 80 | 68 | 70 | total = 1782

    Decision Tree: Training on One-Minute Data

  • 7/29/2019 Datamining Pres

    22/40

    22

    Total Errors = 24 (24%)

    Predicted Class --> | Other | Eng1 | Eng3 | Eng2 | Eng4 | Eng6 | Eng5 |

    -----------------------------------------------------------------------------------------------------------

    Other | 59 | 3 | 0 | 2 | 3 | 0 | 1 | total = 68

    Eng1 | 4 | 1 | 0 | 1 | 0 | 0 | 0 | total = 6

    Eng3 | 0 | 3 | 1 | 0 | 1 | 0 | 0 | total = 5

    Eng2 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | total = 4

    Eng4 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | total = 4

    Eng6 | 0 | 0 | 0 | 0 | 0 | 7 | 0 | total = 7

    Eng5 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | total = 6

    -----------------------------------------------------------------------------------------------------------

    65 | 9 | 2 | 5 | 5 | 7 | 7 | total = 100

    Decision Tree: Test#1 on One-Minute Data

  • 7/29/2019 Datamining Pres

    23/40

    23

    Decision Tree: Test#2 on One-Minute Data

    TotalErrors = 35 (17.86%)

    Predicted Class --> | Other | Eng1 | Eng3 | Eng2 | Eng4 | Eng6 | Eng5 |

    --------------------------------------------------------------------------------------------------------

    Other | 141 | 9 | 2 | 4 | 4 | 0 | 0 | total = 160

    Eng1 | 2 | 2 | 1 | 1 | 0 | 0 | 0 | total = 6

    Eng3 | 2 | 1 | 2 | 0 | 1 | 0 | 0 | total = 6

    Eng2 | 2 | 1 | 2 | 1 | 0 | 0 | 0 | total = 6

    Eng4 | 1 | 0 | 1 | 1 | 3 | 0 | 0 | total = 6

    Eng6 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | total = 6

    Eng5 | 0 | 0 | 0 | 0 | 0 | 0 | 6 | total = 6

    ---------------------------------------------------------------------------------------------------------

    148 | 13 | 8 | 7 | 8 | 6 | 6 | total = 196

  • 7/29/2019 Datamining Pres

    24/40

    24

    Two-Minute

    decision tree

  • 7/29/2019 Datamining Pres

    25/40

    25

    Total Errors = 51 (5.743%)

    Predicted Class --> | OTHER | ENG1 | ENG2 | ENG3 |

    ---------------------------------------------------------------------

    OTHER | 657 | 6 | 19 | 3 | total = 685

    ENG1 | 0 | 62 | 10 | 0 | total = 72

    ENG2 | 0 | 13 | 54 | 0 | total = 67

    ENG3 | 0 | 0 | 0 | 64 | total = 64

    ---------------------------------------------------------------------

    657 | 81 | 83 | 67 | total = 888

    Decision TreeTraining on Two-Minute Data Sets

  • 7/29/2019 Datamining Pres

    26/40

    26

    Total Errors = 14 (29.79%)

    Predicted Class --> | OTHER | ENG1 | ENG2 | ENG3 |

    ---------------------------------------------------------------------

    OTHER | 28 | 5 | 4 | 1 | total = 38

    ENG1 | 1 | 0 | 0 | 0 | total = 1

    ENG2 | 2 | 1 | 1 | 0 | total = 4

    ENG3 | 0 | 0 | 0 | 4 | total = 4

    ---------------------------------------------------------------------

    31 | 6 | 5 | 5 | total = 47

    Decision TreeTest #1 on Two-Minute Data

  • 7/29/2019 Datamining Pres

    27/40

    27

    Total Errors = 15 (15.31%)

    Predicted Class --> | OTHER | ENG1 | ENG2 | ENG3 |

    ---------------------------------------------------------------------

    OTHER | 71 | 8 | 1 | 0 | total = 80

    ENG1 | 3 | 3 | 0 | 0 | total = 6

    ENG2 | 0 | 3 | 3 | 0 | total = 6

    ENG3 | 0 | 0 | 0 | 6 | total = 6

    ---------------------------------------------------------------------

    74 | 14 | 4 | 6 | total = 98

    Decision TreeTest #2 on Two-Minute Data

  • 7/29/2019 Datamining Pres

    28/40

    28

    Three-Minute

    decision tree

  • 7/29/2019 Datamining Pres

    29/40

    29

    Total Errors = 28 (4.878%)

    Predicted Class --> | OTHER | ENG1 | ENG2 |

    ----------------------------------------------------

    OTHER | 411 | 23 | 4 | total = 438

    ENG1 | 1 | 65 | 0 | total = 66

    ENG2 | 0 | 0 | 70 | total = 70

    ----------------------------------------------------

    412 | 88 | 74 | total = 574

    Decision TreeTraining on Three-Minute Data

  • 7/29/2019 Datamining Pres

    30/40

    30

    Total Errors = 12 (19.05%)

    Predicted Class --> | OTHER | ENG1 | ENG2 |

    ----------------------------------------------------

    OTHER | 42 | 9 | 0 | total = 51

    ENG1 | 3 | 5 | 0 | total = 8

    ENG2 | 0 | 0 | 4 | total = 4

    ----------------------------------------------------

    45 | 14 | 4 | total = 63

    Decision TreeTest #1 on Three-Minute Data

  • 7/29/2019 Datamining Pres

    31/40

    31

    Decision TreeTest #2 on Three-Minute Data

    Total Errors = 9 (14.06%)

    Predicted Class --> | OTHER | ENG1 | ENG2 |----------------------------------------------------

    OTHER | 47 | 5 | 0 | total = 52

    ENG1 | 4 | 2 | 0 | total = 6

    ENG2 | 0 | 0 | 6 | total = 6----------------------------------------------------

    51 | 7 | 6 | total = 64

  • 7/29/2019 Datamining Pres

    32/40

    32

    Decision Tree Summary

    One-Minute model needs more complex treestructure

    One-Minute model gives low accuracy of

    predictions Three-Minute decision tree model gives

    reasonable accuracy of predictions Based on test #1

    Other - 13% error rate Eng1 - 50% error rate Eng2 0 error rate

    Other approach?

  • 7/29/2019 Datamining Pres

    33/40

    33

    Backpropagation

    A Neural Network Classification Algorithm

    Input Hidden

    Layer

    Out

    Some choices for F(z):

    f(z) = 1 / [1+e-z] (sigmoid)

    f(z) = (1-e-2z) / (1+e-2z) (tanh)

    Characteristic: Each output

    corresponds to a possible classification.

    f(z)

    x1

    x2

    x3w3

    w2

    w1

    Node Detail

    z = Siwixi

    Node

  • 7/29/2019 Datamining Pres

    34/40

    34

    mk kk

    ytE1

    2)(

    2

    1min

    mk

    kk ytE1

    2)(

    2

    1

    yk (output) is a function ofthe weights wj,k.tk is the true value.

    SSQ Error Function

    Freeman & Skapura, Neural Networks,Addison Wesley, 1992

    Minimize the Sum of Squares

    kj ,,

    ,

    ,for W0solveand

    kjW

    kj

    kjWE

    W

    EE

    In the graph:

    Ep is the sum ofsquares error

    Ep is the gradient,(direction of maximumfunction increase)

    More

  • 7/29/2019 Datamining Pres

    35/40

    35

    Neural Network Modeling Results

    Three-Minute training set

  • 7/29/2019 Datamining Pres

    36/40

    36

    Neural Network Modeling Result

    Three-Minute set: test #1 and #2

    Test #1

    Test #2

  • 7/29/2019 Datamining Pres

    37/40

    37

    NN Summary

    Insufficient data for one-minute and two-

    minute prediction models

    Three-minute network shows betterperformance than the decision tree

    model: Other - 17% error rate Eng1 - 28% error rate Eng2 - 20% error rate

  • 7/29/2019 Datamining Pres

    38/40

    38

    Conclusions

    Predictive model can be built

    Neural Network model is more accurate

    than the Decision Tree one Based on all data Overall accuracy is not sufficient for

    practical applications

    More data is needed to train and test themodels

  • 7/29/2019 Datamining Pres

    39/40

    39

    References

    Failure Pattern Recognition of a MiningTruck with a Decision Tree Algorithm Tad Golosinski & Hui Hu, Mineral Resources

    Engineering, 2002 (?)

    Intelligent Miner-Data Mining Applicationfor Modeling VIMS Condition MonitoringData Tad Golosinski and Hui Hu, ANNIE, 2001, St. Louis

    Data Mining VIMS Data for Information onTruck Condition Tad Golosinski and Hui Hu, APCOM 2001, Beijing,

    P.R. China

  • 7/29/2019 Datamining Pres

    40/40

    40