TyD'ÖZ^fedisclaimer notice this document is the best quality available. copy furnished contained a...

90
'S* m . -.v : .::, i I ' -, ' '-x \ K/7>ir4 f.n.imn ffis/ix sasH/c PAT* UMMTMY t ocma MI TyD'ÖZ^fe nua Timm Amiowons erneu wt$u*it$». o.e. htiMt V£IA umfomtt hf irnmo miAocH mojeers Ateocr Unk* MMMMTAf Ommtk O/fki Am Orttr lk.HI4 ^TELECYNE QEOTGCH R«produc*d by NATIONAL TECHNICAL INFORMATION SERVICE lpir,uf,.ld V. 71ISt cMifM uoomomi MtPM¥iD fO* PltiUC miASi: OlSrHIBUT/O* UMUHim.

Transcript of TyD'ÖZ^fedisclaimer notice this document is the best quality available. copy furnished contained a...

: ■/ .-.^Vä..

*v^ 'S*

■. ■ m

■ .■ ■ -.v :■■.::, i I ' -, ■■'

• '-x \

K/7>ir4

f.n.imn ffis/ix

sasH/c PAT* UMMTMY

t ocma MI

TyD'ÖZ^fe nua Timm Amiowons erneu wt$u*it$». o.e.

htiMt V£IA umfomtt

hf irnmo miAocH mojeers Ateocr Unk* MMMMTAf Ommtk O/fki

Am Orttr lk.HI4

^TELECYNE QEOTGCH R«produc*d by

NATIONAL TECHNICAL INFORMATION SERVICE

lpir,uf,.ld V. 71ISt

cMifM uoomomi

MtPM¥iD fO* PltiUC miASi: OlSrHIBUT/O* UMUHim.

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST

QUALITY AVAILABLE.

COPY FURNISHED CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

Hiitkit I*» MtiKtii Rnnttli Pnjttti Mgntf Mr tkt Ait Fere» TnlMiul Aßßlitttim Ctnttr mill, In nißMtitli lor M§rmui$» eoiiumiä Inni» wkiik AM kim tufflM if tlktr er§§m»ti»iis »r tntrwUn. ma MM teumtiu htntjM ft Itlu nvitin tt mif to iMtutUf. tlu ¥i»w$ uä tMehaüM ßnuiHtä §n ttttt »I tkt lulktrs and $knU mr kt mtirpnirt «t nktturilf rtpnttmini tkt tllititl ßtlititi, titktr ttßrttttä tr implM. tl ikt Hvtnctä Rttttrek Prtjtclt A§tttr, tkt Mir ftret Ttcktietl Mßßlitttittt Cttttr, or tkt U S OMtrtmtnt.

GENERALIZED LINEAR FILTERING OF

SEISMIC ARRAY DATA

SEISMIC DATA LABORATORY REPORT NO. 269

AFTAC Project No.:

Project Title:

ARPA Order No.:

ARPA Program Code No.:

VELA T/2706

Seismic Data Laboratory

1714

2F-10

Ivame of Contractor: TELEDYNE GEOTECII

Contract No.:

Date of Contract:

Amount of Contract:

Contract Expiration Date;

Project Manager:

FJ3657-72-C-0009

01 July 1971

$ 1,290,000

30 June 1972

Royal A. llartenberger (703) 836-7647

P. 0. Box 334, Alexandria, Virginia

APPMVID FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

UNCLASSIFIED

TliU-DYNi: GüOTüCII ALÜXANDRIA, VIRGINIA

GENIiRALIZliD LINHAR l-ILTHRINC OF SEISMIC ARRAY DATA

111111 " H'llll III I || i i jL.j

T AuTMAIffJ AMI BU ISI jgsr

Lintz, P.R.; sax, R.L.; and Blandford, R.R.

NVPORTMTg

8 October 1971 ■ • COM _v

F33657-70-C-0941 * »aejacT MO.

VliLA T/0706 «. ARPA Order No. 6 24 < ARPA Program Code No. 01-10

IB « V» IL*»ILITV/LtMIT*TtOll WOTICH

MPPtona FOU PUBLIC RIUASI; oismium* umimtuo )• IU*

■ 1 «■STItACT

ADVANCIil) Ri;Si;AIU:iI PROJI:(TS ACINCY NUCLEAR MONITORING RESEARCH OFFIC*! IVASMINGTON^ I). C.

'« KEY mono*

Array I' r o c e s s 1 n g ogarithmic Dcconvolution (icneralined Linear l-'iltcrlng

llomomorphic IM I tering

UNCLASSII-IEn Security CUtiificaliofi

4»nmcf

nt »htory •t itwrallMi lUw nitcriM COfptwhti«* 1^*6, Stftfl it wliti to U« pwfclt«! «f «vtrailM t«»« cra»»r«r fuactioai fett»««» • ttitwie »cure» »U »•itmc rtcoHiM ilatl»»« •• • eoMlMHtl*»»««^ »rny.

To provlrf« i{f«ili«iie 4*1« f«r • t«»t of tkf froctttor, • «Koplt sooreo tlgaal la J»afiti Urooffc aiaa «lifrtrtat raailoo F«rt«*rliatioa» of a *olocltr.<itM* airoctora yitUiai Mine dirraraot ayaUaUe »aitoogMO«. I»« aoeltar t»pto»io»t fl.016 fMOtr M4 nnumy *«J ao Aailrtaaoff lalaa^a tvtot Cll iovtobar lf**l ^ft alao |.ro€c»»ti »»tot »latloa» froo lib» ioa|-iaafo-iai»ou-iloa»or»»#Rt oot. Woat of tlit fttar- komlOM art ra«N»*#<l fr«» ma »yotiaiic witmgnm fcy gaoaralttttf lio.ar filtmof THa oa^lotioa Mi ilia t*ria- qaaU »«laoograo* art e^llflN >»f t»»l» praett«.

fft«t tartMaah« ^ftara to liatt looftr not ttn»» rtojia- lug aft^ir gaooralUttf llMOff filltflog ao4 ifct «««Itar ttt^i* tWf mmf *i»ilar Hitfoft tut *rri*al of th« tt^lh M«»*>*

wm

TABLE OF CONTENTS

Page No,

ABSTRACT

INTRODUCTION 1

Sei/iBic signal aodels 1

Hue probability density of the random transfer functions under the hypothesis of :cro additive noise 2

The opimua processor 5

RESULTS 7

Siaulated receiver site effects 7

Observed data 9

REFEREKCHS 12

— ^—^«^^ .

LIST OF FIGURES

l-igurc Title

Transformation of a normal probability density into an almost uniform probability density.

The best fit to a normal probability density of Klappenbcrger's (1907J data. (After Klappenberger, 1967).

Klappenbcrger's best fit of USA peak-to-pcak amplitude data to a cumulative normal distribution function.

A sdiemutic representation of the normal incident P-wave layering

problem.

Analog computer simulation of the transmission problem. Note the similarity of this problem to the parametric amplifier problem. Also note that S-waves could be handled by designing another ladder network with different delays and reflection coefficients, and interconnecting the nodes of both networks with the proper conversion factors.

A two-stage generalized-linear filter for the estimation of a signal convolved with equal variance, log-normally distributed, uncorrelated transfer functions.

A modification of St#ge 2 of the GLF in Figure 6 to delineate long or short time components. Tapering the complex cepstrum is quite often done in speach processing (Noll, 1964; Oppenheim, 1968).

Synthetic seismogram 1 (a) Reflection coefficients vs. depth (b) Seismogram vs. depth (c) Velocity vs. depth.

Synthetic seismogram 2 (a) Reflection coefficients vs. depth (b) Seismogram vs. depth (c) Velocity vs. depth.

Synthetic seismogram 3 (a) Reflection coefficients vs. depth (b) Seismogram vs. depth (c) Velocity vs. depth.

Synthetic seismogram 4 (a) Reflection coefficients vs. depth (b) Seismogram vs. depth (c) Velocity vs. depth.

Synthetic seismogram 5 (a) Reflection coefficients vs. depth (b) Seismogram vs. depth (c) Velocity vs. depth.

Synthetic seismogram 6 (a) Reflection coefficients vs. depth (bj Seismogram vs. depth (c) Velocity vs. depth.

Synthetic seismogram 7 (a) Reflection coefficients vs. depth (bj Seismogram vs. deptli (c) Velocity vs. depth.

Figure No,

1

10

11

12

13

14

■""""■^----■•■^ ..,—J.L'.»»- ■ - -'-

^.■..^..■.■■.....■...^^.^^^.^.^^.^^.^.^...^

15

16

17

18

19

LIST OF FIGURES (Cont'd.)

_. _., Fleurc No. Figurt T.tle *

Synthetic scismogram 8 (a) Reflection coefficients vs. depth (b) Seisroogram vs. depth (c) Velocity vs. depth.

Synthetic seismogram 9 (a) Reflection coefficients vs. depth (b) Seisjnogram vs. depth (c) Velocity vs. depth.

The nine synthetic scisraograms and the source signal vs. time.

Synthetic seismogram 1 (a) Seismogram vs. time (b) Log-amplitude vs. frequency (c) Unwound phase vs. frequency

Synthetic seismogram 2 (a) Seismogram vs. time (b) Log-amplitude vs. frequency (c) Unwound phase vs. frequency.

Synthetic seismogram 3 (a) Seismogram vs. time (b) Log-amplitude vs. frequency (c) Unwound phase vs. frequency.

Synthetic seismogram 4 (a) Seismogram vs. time (b) Log-amplitude vs. frequency (c) Unwound phase vs. fi<?quency.

Synthetic s-eismogram 5 (a) Seismogram vs. time (b) Log-amplitude vs. frequency (c) Unwound phase vs. frequency.

Synthetic sciamogram 6 (a) Soismügram vs. time (b) Log-amplitude vs. frequency (c) Unwound phase vs. frequency.

Synthetic seismogram 7 (a) Seismogram vs, time (b) Log-amplitude vs. frequency (c) Unwound phase vs. frequency.

Synthetic seismogram 8 (a) Seismogram vs. time (b) Log-amplitude vs. frequency (c) Unwound phase vs. frequency.

Synthetic seismogram 9 (a) Seismogram vs. time (b) Log-amplitude vs. frequency (c) Unwound phase vs. frequency.

Results of processing the nine synthetic seismograms (a) Weighted beamforming

1. Seismogram vs. time 2. Log-amplitude vs. frequency 3. Unwound phase vs. frequency

(b) Generalized linear filter 1 1. Seismogram vs. time 2. Log-amplitude vs. frequency 3. Unwound phase vs. frequency 4. Complex cepstrum vs. time

(c) Generalized linear filter 2 1. ' eismogram vs. time 2. Log-amplitude vs. frequency 3. Unwound phase vs. frequency 4. Tapered complex cepstrum

21

22

23

24

25

26

27

-...-■

.^.^^...^..^. ^--■■^^■■-"■••■-^^ ■ ■■■■■ ..^^-^.•■■■^.^^^^..^..i.^l-ti^l^toU^.»^ .r ■ ..,J,...„^,..v.....,.1..J.....;...!..^..^:...,_....^..^1^-.^..^^^. ;...,-- ■ ■

"50

LIST OF FIGURES (Cont'd.)

"«"• Tit,e Figur« SO,

Location of events and stations. 28

LONGSIÜT. Station KN-UT (a) Seisaograa vs. tlw. (b) Lof-aflpUtude vs. frequency, tc) Unwound phase vs. frequency. 29

LÜNGSÜJT, Station LC-NM (aj Seisoogra« vs. tine, (b) Los-oMlitudc vs. frequency, (c) Unwound phase vs. frequency.

LONGSHOT, Station SV3QB (a) SeiSDOgran vs. tioe. (b) Log-amplitude vs. frequency, (c) Unwound phase vs. frequency. 31

LONGSHOT, Station HL2IÜ (a) Seisroograra vs. time, (b) Log-amplitude vs. Pirequency, (c) Unwound phase vs. frequency. 32

LONGSUOT, Station UG-SÜ (a) Seismogram vs. time, (b) Log-amplitude vs. frequency, (c) Unwound phase vs. frequency. 33

LONGSHOT, Station RK-ON (a) Seismogram vs. time, (b) Log-amplitude vs. frequency, (c) Unwound phase vs. frequency. 34

LONGSUOT, Station SJ-TX fa) Seismogram vs. time, (b) Log-amplitude vs. frequency, (c) Unwound phase vs. frequency. 35

LONGSUOT. Station TF-CL (a) Seismogram vs. time, (b) Log-amplitude vs. frequency, (c) Unwound phase vs. frequency. 36

LONGSUOT, Station KC-MO (a) Seismogram vs. time, (b) Log-amplitude vs. frequency, (c) Unwound phase vs. frequency. 37

LONGSUOT, Station YR-CL (a) Seismogram vs. time, fb) Log-amplitude vs. frequency, (c) Unwound phase vs. frequency. 38

LONGSUOT processing results (a) Beamforming

1. Seismogram vs. time 2. Log-amplitude vs. frequency 3. Unwound phase vs. frequency

(b) Generalized linear filter 1 1. Seismogram vs. time 2. Log-amplitude vs. frequency 3. Unwound phase vs. frequency

(c) Generalized linear filter 2 1. Seismogram vs. time 2. Log-amplitude vs. frequency 3. Unwound phase vs. frequency.

MILROW, Station WQ-1L (a) Seismogram vs. time, (b) Log-amplitude vs. frequency, (c) Unwound phase vs. frequency.

39

40

^^^^..^ ■■ -.^ ^^*^^^-~— .^^,^...^^.^^.^,...„.^.^..-..;....... ^..■^......

Utr OF riOBES UmV4 t

Hfiir« litlt ftiBft ^

MILMKt SuilM «f-l® (tl Siis^vfr«» trt. Hi». (i| t«« ««»III*!» vs. fwqMwcy« (c} Itawoml ^a*» «■» frtifmufccy. H

«•■ rr«<pMficy( (c) ümwa^ij j*.»»* T*. tft^Mmt ».

HtUOW« Station CR2?it Ca| **i»fl»|»i« ,-♦„ «IM« |%| V*$ UQU***** v». frequcncr, C«J W»»«»«»«! pk*** w rf«4N««<T II

»tiLMM. Station LC-NM (a) Solfnogran r» tin«. 1%; Ut Mtfltinit vs. fratutncx, (c)/ itantouad |Aaso vs. Irtquencr* n

MlUttW. Station KX-UI (a} Ukungrm vs. tiM. <b) l«f.aap}iii»t« vt. fr^imcy, (c| ttaMoand pHmut w. frn|0an«^. li

MILMJW. Station AS-PA (a) Svumgrm vv. tin», (fc) Ug.aiiyliiait vs. frequency« (c) Unwound phase v». frequency. r-

•m.ituji. Station I.U.UL (a) Sei»nogran w. tin«, lb» C^*aflplttttJ« vs. frequency, (c) Unwound phase vs. frvqueney. r

MILKOH, Station I'J-PA (a) Setsaosraa vs. tise. (b} Ug-anplitial« vs. frequency, (c) Unwound phase »». frequency. I*

Processing results for MiUtOK (a) Bconformng

1. Seisnograa vs. tine 2. Log-aaplitude vs. frequency 3. Unwound phase vs. frequency

(b) Generaiized linear filter ! 1. Scismogran vs. tine 2. Log-amplitude vs. frequency 3. Unwound phase vs. frequency 4. Complex ccpstnun vs, tise

(c) Generalized linear filter 2 1. Scismogram vs. time 2. Log-amplitude vs. frequency 3. Unwound phsne vs. frequency 4. Tapered complex cepstrum. 49

22 Nov. 1965 Andreanoff Islands event. Station LN-MO (a) Scismogram vs. time, (b) Log-amplitude vs. frequency, (c) Unwound phase vs. frequency. SO

22 Nov. 1965 Andreanoff Islands event, Station IIV-M\ (a) Scismogram vs. time, (b) Log-amplitude vs. frequency, (c) Unwound phase vs. frequency. SI

■ —•'- ■

ii'ni.i "iinn i

uit m tftm» tcnt*<i.i

»i#*f«f i»llt

21 ÜMT. ffli4» iWhMHfi ItlMli 9 la) Stitft»«»«* •'» IIW. lb) IH'iiiifii «§.- #«-*<«^'^'

U 9m» mi mtnmmU Uimi* «-««*%. M«IIM «%•«» 1*1 i«l«Mr*(i *'» II«». «%| |««>Mlf||«««r «t »titwiwy. (ft lllMNIhl I|ä.*%* *•»

21 »üfc- nv* %***«>***»*t t*tm»* mm*, Umum m**& 1«« l*i*.w»^t.n M It««. (Hi) Ifli'Mpillwi? Wt fcupwyi

22 .%*•. Iffci HJnaoifl UlitiKt» ««Mt, ÜMIM i,»» 4* ♦».«..«* it» %■». Hit», Ül !«§ Mflliitfl» «'* M^f*»««».

«UJhaf* %•

i;

il

M

;.; i.*-4 sufefc *ni.m>m*tt I«iMi» •««*!. »IAIIM »H^«^

22 Stov« mi liiwiMff l*laMi«» «*«**, %I««I«^ «% *:» lai StiimnHtf. inn»« n» iiit'Mfi»i««lt »*>•. ftvovüftt«^.

rif**»-»»!^ finwlift fitr 22 %m*c im* mtimmll l«r«fNN ttm* till MNHMOTWIHS

I. StlMMNM «** !•«»

n» 2. HfMfilliiilf) v** tf*■*'!****

«cMff»ii£«i ikMaf ruifi i

HI

1. SftlMwt'«* «'« li« 2« l<iii*«ifliit*«t »*,. ^rvpMwr

4. CHf It* etpiifia ««. IHM»

2. Ug *i^»lil«»«f m» Itvym***

4. fippf«! «Npl** MpilfW«

«Uli« till«

5

^M

INTRODUCTION

Sctawic signal «odels

One difficulty encountered in beaming a short-period

worldwide or ccntinental-sized seismic array is that the

signal coherency falls off markedly with distance*

(liartenberger, 1967; Klappenberger, 1967; Capon et al,

1967).

A possible model of the seismogram recorded at the

Jth instrument an array under excitation of a signal plus

uncorrelated additive noise is

Yj(t) - S(t)*hj(t) * njTt) (1)

where the • indicates convolution.

The Fourier transform at (1) yields

YjCf) » SCOiyf) * Njd") (2)

The H,(f) may be thought of as a source-receiver travel-path

transfer function for *he jth receiver.

'Amplitude anomalies may run as high as eight-to-one for

LASA (Klappenborger, 1967; Mack, 1969), whereas time

anomalies may run as high as 1.5 sec at LASA (Chiburis,

1966).

1-

The probability density of the random transfer functions

under the hypothesis of zero additive noise

If we make the assumption of large signai-lo-addilive

noise ratio, equation (2) becomes

YjCf) = lijCf) S(f) (3)

If we further assume that H (f) may be written as a

product of a large number of small disturbances, then

M Y-jCf) = ^H I Amj(f) | exp [i*mj(f)J S(f) (4)

where m is the index of each small disturbance and M is the

total number of disturbances. Taking the logarithm of both

sides of equation (4), gives

log YjCf) = log|S(f)| + £ loglVitnl m=l J

h^i Kj(f)±27r%^]j (5)

+ i

where Mm.(f) is an integer which reflects the uncertainty in

the correct Riemann sheet at each frequency. We see that the

logarithm of the complex Fourier spectrum has converted our

multiplicative variables into a new set of additive variables.

If Am. (f) and the *m;j (f) can be described by a probability

density function, then we may invoke the weak law of large

numbers and state that our new random variable log Y.(f)

■ ...■ii.tr.-^Us.-.iiiiL.-i'i

is asymptotically normally distributed over the ensemble

with the expected value of the real part equal t«

log|SCf)| * log|u(f)|

where M(f) is the geometric mean of the random transfer

functions. The expected value of the imaginary part of log

Y.(f) is equal to

*s (f) ♦ MO

where ^(f) is the phase of the irean of the random transfer

functions. The maximum likelihood estimate of log|y(f)| is

given by

iSg|7(f)T«jT t L loßiAmi(f) j=l m=l ^

(6a)

The maximum likelihood estimate of $ (f) is given by

N M

^^j?! m?i [^^+%^] (6b)

The probability density function which describes the

complex random variable y. is a log-normal density function

(AJtci;inson and Brown, 1963). Note that if the signal

3-

■ ■ ■■ ■■'..■■■

spectrum is white, then the estimates at different values

of frequency are normally distributed and we have a

stationary bivariate log-normal variable. If the signal

spectrum is non-white we have a non-frequency-stationary

bivariate log-normal variable.

The theory of logarithmic deconvolution has been

developed by Oppenheim (1966) and Schäfer (1967, 1969) as

a specific case of Oppenheim's generalized linear filtering

theory. For random transfer functions, the real difficulty

with this method is the choice of the proper Riemann number

N^f) where N. (f) = £ M (f) for each recording site. If the ni= 1

phase changes rapidly with frequency, i.e., $({) has a large

variance, we may find ourselves faced with an almost uniform

distribution (over the ensemble of stations) for our estimate

of the ensemble average of 4,(f) due to the discontinuous

Riemann transformation. This problem is illustrated in Figure

1 for a zero mean distribution. Our solution is to set the

phase equal to zero zero at zero frequency for each recording

site and then unwind the phase. Schäfer (1969) has discussed

techniques for unwinding the phase.

There is experimental evidence that the A.(f) are log-

normally distributed. Klappenberger (1967) has shown that

earthquakes have log-normally distributed peak-to-peak ampli-

tudes at LASA and Freedman (1967) has shown the same distri-

bution for earthquakes at worldwide recording sites. Figure 2

is the histogram of Klappenberger's data. Figure 3 is

Klappenberger's best straight line fit to his data plotted

on log-normal probability paper. If the data are log-normal,

the cumulative frequency distribution should approximate a

straight line. The hypothesis that the data are log-normal

cannot be rejected at the 95% confidence level.

Further indication of the log-normality of the station

spectra may be obtained by passing a synthetic signal

through ensembles of plane parallel-layered media with

random reflection coefficients.

Figure 4 illustrates the problem of a seismic wave

impinging upon a set of plain, parallel layered media. A

subroutine given by Claerbout. (1968) was programmed to

yield the transmission seismogram of an arbitrary wavelet

impinging upon the bottom layer. Figure 5 is the analog

computer simulation of the transmission and reflection

problem. Electrical engineers might recognize the circuit

as a "ladder network" or as a parametric amplifier.

The optimum processor

Under the assumption of white, uncorrelated, zero-mean,

equal variance, log-transfer functions and zero additive noise

it can be demonstrated from maximization of the log-1 ike 1ihood

function that the likelihood estimator for the logarithm of

the signal in the frequency domain is just the arithmetic

average of the individual station log-spectra.

log S(f) = i £ log Y.(f) (7) j = l

or S(f) = exp [log S(f)l (8)

•5-

. .■■, ■

so that sen = N

II YjCf)

l/r (9)

Equation (9) is just the geometric mean of our individual

station amplitude spectn. Figure 6 is a block diagram of

the processor for this case. Figure 7 is a modification of

the processor to filter out undesirable time components.

Mum

fyatliciic ttfiiKMifr«»» »tr« gtii«ratt4 if ftttfiutt • ftit««l of U» fmftm f |l| • t •»f («fttl •!■ w^l !»'<« • •i«cl of Uf*r» •im r«*4«« r«fl«€iiM c#«rri«it«i«. IM

«tlociiy «• a rwMcii«» «f 4«fii <«rr«*|W(t4i t« « mM»m of Ut Micl» lit«« m fifwr« 74 «f %»i ttp«ri %9. !*% fßUwtr a«! *i«««ttitr4 |(f?#i wiiii #«§11 |»»ri«ffli«i!•«* l« i%9 Tvlocur ♦♦ « f«t«£iii«ft «t «l»fi». i« »rji»r I« f«! rtaioaakly t«4i|»iit«i«4 «««««<»«»*•« H ««• «t<t«*«rf i» i»c«rf«rait 1*1« iar«r* n*m4m^ #«4 ci«ct»««t, iffttj AII#

19»*} IMI« ik» 4M><I»I# ligar»» • ikrawga la are plai* af Cal, tkt rartaciia« «»«Ifui<r«ii«, |k)t ikt ttifiiatraiw aaJ, u», ika talacliy a« a f«ia«ii«a «I Jafifc, far alaa raaliaa* llaat «f aar raa4e* pracata, Umt* ««laal iraval-tma layar* aara ial»at ihw «f««iat »t «aafla fNiiaia mm iht Haaar at«"»*» aeala i» aal liaa«r a«i la a faa^naa af laa talaaltf« fie (»llawiaa ftiwr«* «eta «ll aarai«li«#«i la bat» ifca tana |MF«I

valaa» ^tlata aaly lb» *b«p» af lb» «»itaagf««» »«4 »ptcira adt af caacara. fb» firai aia» iraia* af figara 17 ar» * f»lai af lb» aia» «yaibaiit »»Ma^graa* a» a faacilaa af im», Ih« i»«ia ;r««» i« ta» «igaal a»l#ft ira««ai«»iaa ibraagb «af «t ta» *i*r fi»*4#* l«f»r**ia€lft*

tlg«»<r»« i» «M»'«i* ;* **« ia« f>(p{t «f t«l, lb» t»i«iia« gran »»rta* lia«, r*i. lb» laganib» «f lb» »afitiwj» »»raw» fr»4|a»a€r aag, lt|, li» fbaa« «at»at frft^aaacf«

ligwr» i? i» ib» r»««ti af ib» tat«« fira€e»»art»

lb» ibf»» tnt«! »*i#f * ara la» r»$«ii *r «»fgbtaJ

»* *

boa* summing. Trace

/ N /N v al is the weighted beam sum ( Z- Wj X^ (t)/2Z w^ ) J where

\i=l /i=i 1/ M. ■ I/o. and where a. is the sample standard deviation.

Trace a2 is the log amplitude of the weighted beam sum

versus frequency. Trace a3 is the phase of the weighted

beam sum versus frequency. Trace bl is the geometric mean;

trace b2 is the averaged log-amplitudes versus frequency;

and trace b3 is the average phases. Trace b4 is the complex

ccpstrum (Schafer, 13&9). Trace b4 appears to be anti-

symmetric about the midpoint because the phase (trace b3)

is much larger than the log amplitude (trace b4). The unwound

phase is the imaginary part of the log-spectra and is anti-

symmetric about its midpoint (10 Hz), and the log amplitude

is the real part of the log spectra and is symmetric about

its aitttpoint (10 Hz). Since the numbers for the unwound

phase are much larger than the numbers for the log-amplitude,

the complex cepstrum appears to be antisymmetric.

The traces under c have been processed by tapering in

the pseudo-time domain. Trace c2 is the smoothed averaged

log-amplitudes, and trace c3 is the average unwound phase.

Trace c4 ks the first half of the tapered complex cepstrum.

It would appear that the generalized filters have done a

hotter job of estimating the signal than has the weighted

beamed sum. The log amplitudes of the geometric beams and

the phases of the geometric beams also show less variance

than do the iog-amplitude and phase of the weighted beam

sum. Notice, howevefy the small precursor introduced by the

generalised fillters.

-8-

Observed data

Three events were processed on a continental sized array

of LRSM (Long-Range-Seismic-Measurement) stations distributed

throughout the continental United States and Canada. Two

events (LONG SHOT and MILROW) were underground nuclear explo-

sions which were detonated on Amchitka Island in the Aleutian

Island Arc, The other event was an Andreanoff earthquake

(22 November 1965) in the same island arc. Figure 28 is a

map of the three events and the recording stations. Table I

gives the seismic parameters of interest for the three events.

Table II gives the locations of the recording stations used

in this study. The processing results for LONG SHOT are

given in Figure 29 through Figure 37. The formats are the

same as for Figures 18 through 27. Figures 29 through 37 are

for stations KN-UT, LC-NM, SV3QB, HL2ID, RK-ON, SJ-TX, TF-CL,

KC-MO, and YR-CL, respectively. Notice the large variations

in signal waveform from station-to-station in all traces.

In Figure 39, note the small precursor introduced by the

processor since we did not demand minimum phase as one of

the attributes of our processor. The main signal of our

processor (trace 39bl) seems to "ring" more than the signal

form the weighted beam (trace 39al), yet the coda dies out

more rapidly for the first generalized linear filter compared

to the weighted beam. The variance of trace b2 and trace b3

is seen to much less than the variance of trace a2 and a3.

The spectral null at 1.8 Hz in the LONG SHOT log- i ^e

amplitude spectra (traces a2, b2, and c2) has been inter-

preted (Cohen, 1969) as interference between the direct P

wave and pP, the reflection from the free surface.

The processing results for the MILROW event are given

in Figures 40 through 49. In Figure 40 through Figure 48,

we have the results (in the same format as for the LONG

SHOT event) for stations WQ-IL, BY-IO, SJ-TX, CR2NB, LC-NM,

KN-UT, AS-PA, EU2AL, and PJ-PA. Figure 49 contains the

results of our three processors in the same format as

before. Notice that the first spectral null is shifted to

a lower frequency from the LONG SHOT null (trace 37c2). This

is consistent with the longer time delay for the reflected

phase due to the deeper depth of MILROW compared to LONG

SHOT. Notice the striking similarity between the processed

LONG SHOT event (trace 37cl) and the processed MILROW

event (trace 49cl) despite the great variablity of the

individual stations. The decay times appear to be identical.

The difference in the two waveforms appears to arise from .

the pP phase, since the first half cycle of motion (neglecting

the precursor) is similar in shape and frequency. The results

for the 22 November 1965 Andreanoff earthquake are contained

in Figure 50 through Figure 58. Figures 48 through 55 are

for stations EN-MO, HV-MA, KC-MO, KN-UT, MN-NV, RG-SD. RK-ON,

and WN-SD.

Comparing the result for the Andreanoff Islands event

(trace 58cl) with the MILROW event (trace 49cl) and the LONG

SHOT event (trace 37cl), we see that the earthquake signal

is more complex and exhibits a longer decay time than either

MILROW or LONG SHOT. However, this fact is also apparent at

the individual stations and on the weighted beams.

In conclusion we state that

The generalized linear filters did at least as well as

10-

the weighted beam sum in the time domain in estimating our

synthetic signal. No significant signal distortion in the

first motion was present in our estinute.

The generalized linear filter traces for the explo-

sions were similar despite substantial variations in the

records for the same event at different stations. The

explosion tracus were simpler than the earthquake trace,

but this was also true at the individual stations.

The codas are smaller for the output from the

generalized filters than at the individual stations or on

the weighted beam sums. The log-amplitude and phase spectra

of the generalized linear filter output exhibited less

variance from their mean compared to either individual

station spectra or the weighted beam spectra. This might

be expected since the geometric beam is the minimum vari-

ance estimator for uncorrelated equal variance random trans- fer functions.

The results suggest that continental beamforming or

indeed even world-wide beamforming is possible for the

initial P-wavc using the theory of generalized linear

filtering, and that complexity measurements and analysis

of source dynamics might better be performed on the

generalized beam.

-11

III. RÜFliRt-NCÜS

Aitduson. J.. and Brown. J.A.C., The Log-normal Distribution; Cambridge University Press, 2nd Printing, 1963.

Aki, K., 1968, Seismological evidences for the existence of soft thin layers in the upper mantle under Japan. Jour. Geo. Res, vol. 73. pp. 585-994.

Capon J.C.. Greenfield, R.J., Kolker, R.J.. and Lacoss, R.T., 1968, bliort-Penod signal processing results for the large aperture seismic

array," Geophysics, vol. 33, no. 3, pp. 452-472.

Chiburis. li.F., 1966, "LASA Travel-time anomalies for various epicentral regions," Seismic Data Laboratory Report No. 159.

Claerbout, Jon F.. 1968, "Synthesis of a layered medium from its acoustic transmission response," Geophysics, Vol. 33, No. 2 pp. 264-269.

Cohen, T.J,, 1969, Determination of source depth by spectral, pseudo- autocovariance, and cepstral analysis: Seismic Data Laboratory Report No. 229, Teledyne Geotech, Alexandria, Virginia.

Freedman, Helen, W., 1967, "Estimating Earthquake Magnitude." Bull. Seis Soc Am. 57. No. 4, pp. 747-760.

Glover. P., and Alexander, S.S., 1970. "A comparison of the Lake Superior and Nevada Test Site Source Regions," Seismic Data Laboratory Report No. 243. r

llartenberger, R.A.. 1967, "The effect of the number and spacing of elements on the efficiency of LASA beams," Seismic Data Laboratory Report No. 205.

Haskell, N.A., 1953, "The Dispersion of Surface Waves on Multilayered Media " Bull. Seis. Soc. Am., Vol. 43, p. 17-34

Klappenberger, F.A.. 1967. "Distribution of Short-Period P-Phase Amplitudes over LASA. Seismic Data Laboratory Report No. 195.

Landers, T.. and Claerbout, Jon F., 1969. "Effects of thin soft layers on Body Waves." Bull. Seis. Soc. Amer.. Vol 59. No. 5. pp. 2071-2078 October, 1969"~

Mack, Harry, 1969, "Nature of Short-period l'-wave variations at LASA; Jour Geo. Res., 74, No. 12, pp. 3161-3170.

Noll, A.M., 1904, "Short-time spectrum and "ccpstrum" techniques for vocaJ- pitch detection," Journal Acc-ist. Soc. Am., Vol. 36. No. 2. pp. 296-502.

12-

Oppcnh«!«, A.V., 1966, "Xoallimr filuria« of OmvH*i rii**l*r QmnttU ProgrMs Report W». io. «««««rcli i^-stnorr »f Il*cir«»ic4. *.t„i

, • i969» "Gsotraa:«^ Uatar Filunngr fJMAtvr i »f btciut ProceMing of ütgn^u. Cold «ml lu^r. H&r-mit.ito*

Schafer, R.W.. 19Ö7. Echo ramvel by t«A«ralueil Imeer ft Hen«.«, i** MW* Kcconi Boston, 1967.

-—, • 19(,9• Ed»0 rcaovel by discrete general i ted It near filler IM TCCJI. Report No. 466, Research Lab. of Uemom«, M.I.T.

13-

• • • S 3 3 > JS 5f

t i - • • •

• « •

9 •»

a

I 3 '■.' •4 «

1 2

-. •• -: a ■» • • ■

a 5 i ■ i M «• 3 i : «• «ft •I *l

a ■«

•3 ^ 'a • • •

^ ^ 5 ^ '^ ::

:l it ::

■'■

1

TAÜLL 11

Stations Used in this Study

st .»t ion Location liven ts

svsqs Sehofforvltlo Quebec LS

RK-ON Kcdlokc Ontario LS A

IIV-Jl\ Havre Montana A

¥K-CL Vreka California LS

KUIU tlailey Idaho LS

HÜ-SU Kedig South Dakota A KN-SÜ Winner South Dakota A

mr- iu liiounrield Iowa M

Itt^-lL Katseka Illinois M

A.S-I»A Aspen Pennsylvania M

IM-PA PottStCWI Pennsylvania M

CR^ill Crete Nebraska M

KC-NO Kansas City Missouri LS A » • i', Koiuib Utalt LS M.A

Jt-.W Mi n.i Nevada A

TF-a raft California LS

LC-.\M Las Cneces Nevada LS M

L\->IO ill»inure Missouri A

UI-AL iaitaw AKiboflw M

SJ-TX San Jose Texas IS ■!

key: LS - LuNCSItiH M - mmm A - Andreanoff 22 Nov uU

^^^^^--^^m^m—mtmmetmm—^—m

<Mf)

'3 -TT—'

i(!L^(f)

<f> if) IS WHAT WE MEASURE OUR PROBLEM IS TO RECOVER ^ (f)

Figure 1. Tran»foraatton of .1 numil proJi,»!»! lily «l^nsily into 1«» aloo^t Mi forts proÜMbii lily i.-..,'.

mm —mm

Ä

ft

is-

i ADNIAOJlii

-

ö ö

V o

\

^ O

• \ .

•> * *

o \

IS

a

o

*

K 5 tu "z UJO IS a-o liiUJ KM

*

o

< 1 ifl-

1- 2

8

« < —

ii.2S_

OlkO

i n

1 1

is s 3 o

*

n \ i*

8 o

s

n

1 m

\ •

V s

• V

h 1 • H

% • s «1

2

t ?L

"" ö

o s

s * 3 i 0 t 3 ( 9 « 3 < 3 ( ? o

>-

!J S '4 CD O (T Q.

3

^ • rt c o o C1.-H

0 u 4-1 C 1 ,= r) 4) C O. O

öl 3

O i/l ■ H

• H IM --1

rt ^ g 1/1 H i) O

^3 C

M.5 (U 4-> M rt

4) 3

C 3 4) U B, CU rt rt rt o

4)

s,

NOIiVIASa aUVQNVIS

, m Ji itÄiWif *>5AiJJiiii t-i/it™ ii tJ*.iL;.vh..:,/'Jiü-il

.

T^,

tu;

T

1

TU

t.

N-l

tu N

T N-l

l^NH ^H

iD N

Figure 4. A schematic representation of the normal incident P-wave layering problem.

.■.■. .■.,*..:>. ■.::■..■■;.^!:-.-:.i-:^, -.y / ..^.~.: ::^,-y..^:t:.\.v..~-^-!-^''.L!;^,\.-:-. *...^.-. ■■:....■ ■ .■.■.■- .-■._., i.i.',. ■■,..:.■;■„..■■,.; ...■.■■;,..,... -...:.. .■■.,,. ■...,-. i^^^A^.j^^.li^^^U.^iii.iur^r.ui

Figure 5, Analog computer simulation of the transmission problem. Note the similarity of this problem to the parametric amplifier problem. Also note that S-waves could be handled by designing another ladder network with different delays and reflection coefficients, and interconnecting the nodes of botli networks with the proper conversion factors

i ^mmmm^m>

i

E „s

V

1

T

s

Ik

§

S Of «

1 V T

ft s

• • •

I IA.

II II 11

1 9 m

: JE

11 A4

a» C

1 *.

! •* «

t--f •Jl

d

«^ 1 'K ♦-

Li. <w > o zz UJ-

4 • 3< 'I2! 2 yo FQ it ^- _ -^

CL X

>- u z LÜ ÜJ

2z P o- . UJ<

?2 h- LL. o LL.

_i

4 1—

UJ

"VI "71 2 Q: ^ 7 i=2

1 ^—

UJ ot 0. ^ V Q2 < yL \ ^2 K • o03 UlO

< 1

~\- >- o

Li_ z 111

Li_

REQ

UI

VIA

IN

A* 1

r 1 ^-o LU | o O — -1 < ♦ !

h- 1 c/) 1

i > ^*mm. _ . I. .^ ^_ _ __..J

O C o

C ^ o o

0)

« 3 aj er c

<u -3

I/) •

oo

3 CTl ^1 -I

1/1 " o cu e (DUO U Xi 3 X fi tO O <D

• H rH &, U. O, &,

E O c o

• H U ■• t

•J X en

<u to «

♦J .H —I

, ^ 0

O PUW rt

CO .

(/I

o

M C

• H to ui «J u o ^1 a

o n o a, (A

"+-1 4-1 C •H TH

"3 4-1 O ^ Ü S O C

X O

3 OO

(VJ • • •

X

OO'l M'O

8z

OL

8

OOT) OO'I- •J303 'day

^

ai'Ui og* •(.•it.- 001 —r-

i OS"»!

D3S/KW M X

8

8 JC

•Ö 4-> P. ti

■a

8 .

-1 (A >

8 c •

-g •H *J U (X

■H (1) «^ -3 UJ

8 0) . O «1

i u > C X O 4-1

•H .H Q *-> o A u o m» 0) -1 «

c 4) 8ie 0£ r-N

1 JZ JC 4-1

g S -3

o > 8 B ^

trt E

in bo O

u E 8 •H Ifl

d 4-J -H 41 <u

J= w ♦J

5.2 8 in w -d

00

8

■H

U.

Ä. 8 ■ 1

i^?013A 00 0

^

a:

oo't oo'o otn- •J303 'm

4

LfK 00' Ltlt- tor» gnnindwd

DO'S

1

«1

8 t Xi

+J a. a)

8 -a

i 1« > ifl

8 t c

•H x: U +J

•H a, tW 4)

8 n-i «a

i a» o • O (fl

> c 8 o >,

•H +J d <-• 'H r« u u

Ü o in r-( r-< (T <+-l 0)

8^ OS

r^ U _J rt '—' X <—/

8z 4->

^ n tx

IU H- § -a 0-

8B

(4 •

o > ri E „

(U M Ifl M

8 O o E

^ •H Ifl 4J ■* (U 4) Ä t/) *J

8 c --> XXI to -—'

ai 8 s4 u

M

ä • H H.

8 tS

33S/WX N: Xi:3013A

,3 .Q

. ■ .

i%

8z

a. UJ a

8

-d

00'1 i

00'0 •J303

BO'I- •J3y

1.9'Sh 00* 1.9'Ih iOi« 3anindWH

8 i

8 X

4 4-1

0) ^3

8 -1 >

<n <-> C . s i) Ä

J •H *J u a,

rv .H 4) M-l TJ (4-1 U .

8 O VI

-? u >

c >, O .M

•H -H

8 4-> U u o

d 4) r-( ' n rt 4)

<+H > £

8^ U

^ v ' _J £ •c ♦J

fo a 8z 4>

^x B T3 rt

a. fe vi S o >

8 6 in E

D u in M

O o B

8 •H U1 4-> 'H

^ i) 0) jr co ♦J

8 to C-

il o ■-I

8 <u ^ N

g. •H u.

8 se«! oo'o

33s/ww Ni ui:on3A

o

8

in x

1 *- Q. UJ a

OD' 00*0 OD1!- •MD2 'Jiy

at- ■^

£

8z _J

a.

8° =51-

hs5

8 hi*

in

8^ i% «

00'«

a, o

>

c • •H +J u a. '♦-i -a

c >. O +J

•H -H ♦J o u o 0) rH

«« > 0)

U

Rr ^t P,

€. fl) E -3

*- a. W M i/i

8U O >

d t/l E •rt W i) U IA M

0 U E

8 ■H U1

ä <-> -H (U (U Ä w 4-1 c ^

8 XJ3 (/) -—'

1 f—♦ i—t

8 i«

s,

:3g/wy N; I;:30"13A

>S ^i

-i

s

r-

OO'I

£

1 Sz

8- Ui Q

S

8

■I

I ■i

■ i 8

00*0 OOM- •d3D3 'jg«

(its

n D. 0) -a

8 , ■«

in > 71 «->

8 C • ft) ,£

•K •rf »J U (X

•H O «4-1 -3 iu

8 8) •

i O irt U >

C >, O «J

• H -H 8 4J O d o o et (U -H

^ o Iti «« > K 0)

at; Di i~> u

1—\ *—'

^ jj •^J

JC 4-1 8z in B.

o rt

0-

o > 8 B ^

O V. t« M

O u e 8 •H 1/1

i ♦J 'H <U V

SX Ti 4J

8 g.S" to ^

d ri '-*

8 rf

s,

tOl« ^i

T

D3S/H« NI uT^ll 13A

,3 ^

i

ee'i

I

i

■ i

J

tt'i» njiidNi

« J „e

►' r.. i>

8 1 • > n

J c <

i M e. — o «*. «g

1 v.

w< O (ft •J> >

c >. 1 Q **

•*• •*« i M U •■R u o o ~

If C5 . «r «4

« u «J n s -«■^

Hz •-* L^ o a.

a -a a. n

t8 u -Ä

^ ^8 ^ &

s - M

o b 1 Ä M W

8 P ~ ] Ä-e

•r. B *-« 4 •w c

3

-r- +4 W* U"« N*» Vt SB*)

*S 3

■ i

i

i

i

ffi

as*!

3

J

I

•«fco« "•».ot. %■.:«

3 s

J I

I

I «I SS

I

v

lü -

-1

5

3

3

t

I

,1

I

5

m

i

i

?

J

I

II 12

II *

I •

MM

i

3

.1 I I

I

I

I l A Mi

«I i it - I l I

ir ■ _ * •»,.

if JI

.j 0

rr.*** ..'^•i' *'

—i^ww ■■■■ mßm

l • w^r^^M--» '^ ■>■■ ■ ».%• ■ ■■ ■■■■..»—..«..^.w— -. . . JL,

2 <|*<A.ft.%^ ...^ ■■«■.■■ » ^M^..,.. . ^.... _

3 ^MfvV^W»1^ '■ ■-" ■,-i« r , ,,, A ^

H 4/W .»' *.M^ ^ . - -

5 " ir*^ ^^^^ " " ' m" ■**■** ■ V • i -r --ur,

7 ^lU»^.^^-- A. *■> ■ . >,.

9 •-°4jw\)\A#'WV>tf^>^%^^^ e^ .. ^

10 -A- . .

6 '"1W *"* ' - v- - ii i J **0*)0ti*m *m *mm

■■■ ■ ii^^«^

iO S£C

figure |7, flfic nine synthetic scismogrnnis ami the source signal vs. time.

T o UJ

o

11

X O

in.

<

o o

UJ

UJ o

<

c V 3 a- o

>

3

&

60 o

0) E

IM >

o B !/) •

•H >, 0) u w c ^ 3

!TJ cr «-^ 0)

u

3 > M

O t/i E rt

•H O, (U in "3

C U 3

•H o ♦-> 2 UJ c

W

3

V

•3

I «

T' (/>

i

«n

ui o

o-,

I s^

M

MM "B,

I

T i

i

i 9

o

m

!

M

"

»

Li C «J 3 tr

>

•a

&

BO o

o

T </)

I

m-.

O 3

Ol O

e irt

<-J

Ul >

% b 0 E 10 •

■ fH X o u

t/) c aj ,—, 3

a ty *~^ <u ^ It-!

*T

B U1 n) > h DC o O to E rt to Ä

rH tx Ü Id "3

C u 3

• f-t O *■> J 11 c jr 3 ♦J

F /—« .-'. ■J w

r i

<u u 3 to

CO

r Lü

1

in-'

UJ

Lü O

OH

-IQ.

<

O-L

o a 3 er

>

3 +J

M 0

E •H *J

Ifl >

fo o e m •

.M ^. (U u

u^ c ü *—> 3 rt er ^—' UJ h

tw 10

E i/i rt > M M o o 1/1 (3 rt i/l lf*

• ^ (X UJ ifl "3

C U 3

• H O <-> -i o C X D

LO

r i r 1

o ■-

u u-,

z

>■ u c o 3 cr (U

«4-1

5

i M O _)

o E

in >

T u

IM/

11

in--

UJ O

<

oi

o e i/i •

•H >. O U [^ c

ft) —, 3 rt cr ^-^ o

(- u-.

G iyi r3 >

CO ft) O '/) E rt

•rt a. ft) •/) -3

u 3 •rt o ♦J i o c ^: r: »J c — >. 'J ui •--

11

3

u c o 3 cr o

> o

-3 3

e « to o

Tl u Ui IA

o

II

I. O

in

O*

E

tj o B tn •

••» >. •n c ^^

c A u M (I

SI. U S

A : I*

'I

2 < DC

UI

§ g o o*~ J o on 2 !5

ji <

i.

T ü

S

1

9

*>

■a

I

o

x u c 4) 3 tr 4) •H

> 4)

■§ u

• H —1

n 1 M 0

o G

>

I o s — >, y c

ci <-% a o tr w o

la

is M

.^; n u: •-* c a « n o§ — o

£^ r

•-.

2

rf)

c

1

s -.

i ■-2

L

la

i ■

10 m h—io scc-H

i iSMOGRAM ■ IV«*-^^

LOG AMPLITUDE

o

SEISMOGRAM-

••/

LOG AMPLITUDE

Mift » «jn«»^

>0 Hl

PHASE- PHASE

COMPLEX CEPSTRUM l

K—o scc-H • •

. h—öSK-H - i . ii

L06 . AMPUTUOc

PHASE

,,■ ....

J COMPLEX L "i CEPSTRUMf

"O s«—4

Figure 27. Result» of processing the nine synthetic seisnogrom (a) Keighted beaaforming

1. Seisnogran vs. tine 2. Log-nmpiitudc V».

frequency 3. Unwound phase vs.

frequency (b) Gonoralized linear filter 1

1. Scisnogran vs. tine 2. Log-anplitudc vs.

frequency 3. Unwound phase vs.

frequency 4. Conplcx cepstrun vs.

tine (c) Generalized linear filter 2

1. Seisnogran vs. time 2. Log-anplitudc vs.

/? frequency P 3. Unwound phase VS.

frequency 4. Tapered conplex cepstrun

vet.* - im*om S*tmt M—*******

ION* SHOT

*tv

Figure 28. Uwatitm of «v««il» J«»I »trtlt«M.

T 9

i

►•jr

i 9

A

oi

I

Ml

i !

I

!

i

ei • n

o je ß c

T

1

5, o

tf>

s • 3

lA O > »

C

u o o a »-• w .«< • c* >.

—« 3 n tr ^» o u

IM

S • • /. •J > •3

g C "3 3 3

••• w .. -. < (1 — X

'»Ig 3

« V o t. S3

A *

o 3

>

3

i

O .-J

T <n

1

x o'

m

o-i 2 Id < o c 3 o OH

35 2 </) S Ul < tf)

o E

>

u 0(1 0 e •H • w >,

c Ü

<-> 3 rt cr M

U-i

cy • ii in > >

U C in O rt

■H X ♦J CU rt tyi c

3 • O

H S o c S 3 V5

M 3

•H U.

T

I

S

o

2 Ul < o

3

i 32 Ü m CO

o*

3

•a I

':,'

;

T

ii

i ■»-

im

I T m a

i a

^

i ü *

am «#

^

1

T «i

i

z o

KV

o*

o c 3 tr a

U-t

ISI

> u 3

i BO O

e

>

u o

•/I

o »-> 3

w o It

1/3 -3 C 3 O

O '->

OH 2 3 M

o c 3

to >

"3 3 ♦J •H —4

I CO o

T ü UJ (n O

II to LJ

o B

• H ♦J

N

» I * . (/i

» g r / > / 1 i1 ^

CO o

fc E i/l

■V / ■-• • / o >■ { m o / c / <y

I / ^3 / rt cr / ^ <J 1 M / <*- ) x / f- • \ 1 Ifl

o >

on

SJ

ase

v / -H J= < ^ a

/ « / »J "3 / '71 C

3 - O

/ ^ » 1 o e / = = / "9 / 'J

^: —N

1 3-

1 o UJ UJ

o

ASI

ure

OH I « 3, 3

a. a U.

\

5 l

T Ü ui

s

ii

9

on

B

1 O

:

j

mm

1

I

a IH

t *

T ^ 9

1 ^

r 9

i ■

- i

•■

".•

- *

»• I

s

«A»« A^^*'>^^ .j^, IUOC

COMPtCX u ► ««f •

p

...... ■.•■.■■ :... ...:..;,-- . ,. ,.■ ... ;■ :: . ■■.,:. .....

mil ii i wmammto |*~(€ ^"-H

ll^i#m * i i lip !■■ -aWM»» ■ •■ ■ SC«$MDCftAM !!, •

. T

10 Hf

KMiVvl-

COMPLEX CCPStRUM I-

I*—w«t—4

Figure S9. ra'.i.Miiii processing rcstslts (it) Hvoaforaing

I. Sclsnogran vs. lim- 2* l.(ii£>aA|«UtuJlc vs.

frequently i, IMMOUIIII piia^e vs.

trvquvnty 0») (ovncrallUeU linear filter 1

I. äei^gaugftwi vs. tine 2« S^g^aa^ilitude vs.

fre«{uei)!cy $, inwmtud phase vs.

frequency (C) ('»eneral 1 zed linear filter 2

1. Scisnugrasa vs. tine J. l.og'itßplitu«le vs.

frequency ">. Urntoun«! phase vs.

frequency. ß

T u ui «A

O

II

z o

<n

v

f

1

-.4

3

'A >i

.-t -t, r. JC

-a«

4 e

s O 3 < >

o OH X •

§ S2 fl. -

M i 8} *

1

T Ui (A

1.

in

o'

""* >

> •» 1 • •

f >

-

I st;

ll

*-

©A

^

]!

»

i

«• ^ r

:;

w ». 9

I

!

-.

:

«

*

i:

M

T

s Ul < o at 3 o O»- 5 Oj 1 a m 9 v)

9

€%

1

I

:

i^1

V2

* .» *

•; ^

;

,•

t

T O i »i

1.

9

M

T

i.

1

t

i

I 1

I

T fil

i:

i

S

A-

8

•A

t

Si

•»

s J 5 Bi

.1

*

iti

g

T i

i

X 9

*

Ol

S

I

M

Ü ...

21 i ft

i J

M ||

I

ta—««c—^ «&*^**mMtmmmammBtmmmmm

HWWlfciAi /^^

A.wir'.:-JOü

■MM« * n!lMn«r«a|!

V-y ! _

PHAK - PMASC

«SMAJM« L

^

a

I

in ■ « s

! T »

' " ' . .

MtflilUBi1

PWMt«.

J I ■ ■

V ^i

filial i I» '»«i^i«ä*|,r(iiiii m, k\

ttat

fill«» i

1^ I. IHIwiHyMiiJ |4»*«4F w».

'•-

T

11

i i

a

n is

*

!

i

* 0

I ä g

1

n ■* -•

i

I

T1

1

9

rf»

o*

z Ik

—>-■

i|

!§ Ml

I

11 I r -• .a

-.

B

I ■ -

•4

T 9

i

9

o*

»

il II •• B

5 2 6

1

-

I

I

i

Tl Ü

i

s

:

Mf

-»»

i

H *

1

ii r -. •

!

I

T i:

ll

9

<*"

o*

«I 3i «9 • - -

!

-

i S

r -

I

I

r u

B

L <

T r ,

U Q

i c

-

* *

av I

•«

jl

t*-***-^

SC&MOC**» Ji iO«C-4

^^4 urn! prrp

•«AS?««,? ^"iNSfHn^,

wVfVS^^/vtWMlr ^ ^

LOG

? ■u

PMASC PNASC-

:c5!?A!il

Nw——^i^ «n*»* •— * JIV»*«

■ ,»n

• «■

• K :«

/f

■VXV^r^ SCKSMOONAM r 1 I!

AMJUTUCC

Pw^SC

j^td

•i aSHMuMr

•MiHBaatfhMaB>M*HaBMMHäaaMMMHMaMn>A Sizl

lifurv Sit. rrmc««!^ rrMilt» for .*.* tar. I9uj

I. s*l*«wKtfaw «it. tin« I« liug'MiftlllHile v«.

ttvtfmmtf

nrtfMMy

niur I

frtnfwvncy

tofMMy

Hi»

P rtltvr ; 1. S«l««oftjMi v«. litte !• l«K;^4ilt|*llli«k> .».

J. lilWMWM»!! fit*»« VS.

1. iij^-twa <L«i^plc» cvfittna».