Silica Fu Me

download Silica Fu Me

of 75

Transcript of Silica Fu Me

  • 7/30/2019 Silica Fu Me

    1/75

    Behaviour of lightweight expanded polystyrene concretecontaining silica fumeK. Ganesh Babu*, D. Saradhi BabuStructures and Materials Laboratory, Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai 600 036, IndiaReceived 17 January 2002; accepted 4 November 2002AbstractLightweight concrete can be produced by replacing the normal aggregate with lightweight aggregate, either partially or fully, dependingupon the requirements of density and strength. The present study covers the useof expanded polystyrene (EPS) beads as lightweightaggregate both in concretes and mortars containing silica fume as a supplementary cementitious material. The main aim of this project is tostudy the strength and the durability performance of EPS concretes. These mixeswere designed by using the efficiency of silica fume at thedifferent percentages. The resulting concretes were seen to have densities varying from 1500 to 2000 kg/m3, with the corresponding strengthsvarying from 10 to 21 MPa. The rate of strength gain for these concretes shows that an increase in the percentage of silica fume increases the7-day strength. This was observed to be about 75%, 85%, and 95% of the corresponding 28-day strength at the silica fume replacement levelsof 3%, 5%, and 9%, respectively. The results of absorption, at 30 min and the final absorption, show that the EPS mixes made with sand havelower levels of absorption compared to the mixes containing normal aggregates. F

    urther, the absorption values were seen to be decreasingwith increasing cementitious content. The performance of these concretes, in terms of their chloride permeability and corrosion resistance,even at the minimal silica fume content level was observed to be very good.D 2002 Published by Elsevier Science Ltd.Keywords: Expanded polystyrene; Silica fume; Strength; Water absorption; Chloride permeability; Corrosion1. IntroductionThe demand for lightweight concrete in many applicationsof modern constriction is increasing, owing to theadvantage that lower density results in a significant benefitin terms of load-bearing elements of smaller cross sectionsand a corresponding reduction in the size of the foundation

    [1]. Lightweight aggregates are broadly classified in to twotypesnatural (pumice, diatomite, volcanic cinders, etc.)and artificial (perlite, expanded shale, clay, slate, sinteredPFA, etc.). Expanded polystyrene (EPS) beads are a type ofartificial ultra-lightweight (density of less than 300 kg/m3),nonabsorbent aggregate [2,3]. It can be used to produce lowdensityconcretes required for building applications likecladding panels, curtain walls, composite flooring systems,and load-bearing concrete blocks [4,5]. Also, it was reportedthat it can be used for other specialized applications like thesub-base material for pavement and railway track bed; asconstruction material for floating marine structures, seabeds, and sea fences; as an energy-absorbing material for

    the protection of buried military structures; and as fenders inoffshore oil platforms [610]. By incorporating the EPSbeads at different volume percentages in the concrete,mortar, or cement paste, a wide range of concrete densitiescan be achieved. The EPS aggregate replaces wholly orpartly the normal aggregate in the case of concrete, or sandin the case of mortars.Earlier researchers studied EPS mostly in mortar withOrdinary Portland Cement (OPC) as the binder. Also, toovercome its hydrophobic nature, bonding additives like

  • 7/30/2019 Silica Fu Me

    2/75

    water-emulsified epoxies and aqueous dispersions of polyvinylpropionate were added [11], or chemically treated EPSbeads which are capable of preventing the segregation in theconcrete mixes (commercially available as BST aggregate inAustralia) were used [12]. Other investigators also reportedthat EPS tends to float and can result in a poor mixdistribution and segregation, necessitating the use of admixtures[7,8]. Apart from this, most of the studies reported to0008-8846/02/$ see front matter D 2002 Published by Elsevier Science Ltd.doi:10.1016/S0008-8846(02)01055-4* Corresponding author. Tel.: +91-44-257-8623, +91-44-445-8623;fax: +91-44-235-0509.E-mail address: [email protected] (K.G. Babu).Cement and Concrete Research 33 (2003) 755762This document has beenedited with Infix PDF Editor- free for non-commercial use.To remove this notice, visit:www.iceni.com/unlock.htm

  • 7/30/2019 Silica Fu Me

    3/75

    K.G.Babu,D.S.Babu/CementandConcreteResearch33(2003)755762Table1Chemicalcompositionofcementandsilicafume

    ChemicalcompositionCementSilicafumeSilica(SiO2)21.7874.07Alumina(Al2O3)6.562.22

    Ferricoxide(Fe2O3)4.131.57Calciumoxide(CaO)60.122.95Magnesiumoxide(MgO)

    2.081.27Sodiumoxide(Na2O)0.362.89Potassiumoxide(K2O)

  • 7/30/2019 Silica Fu Me

    4/75

    0.426.51Sulphuricanhydride(SO3)2.160.95Lossonignition(LOI)2.397.67

    datewereessentiallyonconcretesoflowerdensities(below

    1300kg/m3)resultinginstrengthsbelow12MPa.

    Thepresentstudy

    isanefforttodevelopstructurallightweightconcretesof14401850kg/m3withthe

    correspondingstrengthsofabout17MPaminimum[1].Concretescontaining

  • 7/30/2019 Silica Fu Me

    5/75

    silicafumeasthesupplementarycementitiousmaterialwithnormalcoarseaggregateandEPS,withoutaddinganybondingadditiveswereinvestigated.Also,itiswellunderstoodthat

    forconcretestoqualifyasstructuralmaterials,itisimportantthatapartfrom

    thestrength,durabilityandcorrosionresistanceparametersneedaspecificassessment.Inview

    ofthis,theinvestigationsincludedbothparametersrelatedtostrength

  • 7/30/2019 Silica Fu Me

    6/75

    likecompressiveandsplittensilestrengths,andthedurabilityparameterslikewaterabsorption,chloridepermeability,corrosionrate,andacceleratedcorrosioncracking.

    2.

    Mixproportions2.1.MaterialsCementconformingtoIS:12269(C53grade),whichwillalso

    confirmtoASTMTypeI,andsilicafumewereusedas

    Table2DetailsofEPSconcretemixescontainingsilicafume

  • 7/30/2019 Silica Fu Me

    7/75

    cementitiousmaterialsintheconcretemixes.ThechemicalcharacteristicsofthecementandsilicafumearegiveninTable1.SeriesI

    andIIIcontainsandfinerthan2.36mm,whileSeriesIIcontainssand

    finerthan1.18mm.Themaximumsizeofthenormalcoarseaggregate(crushed

    bluegranite)inSeriesIandIIwas10mm,

  • 7/30/2019 Silica Fu Me

    8/75

    whileitwas16mmforMixes8and10and20mmforMixes9and11.Inthepresentstudy,Mixes10

    and11weredesignedwiththesametotalcementitiousmaterialandw/(c+

    s)ratio,aswasreportedearlierbyZhangandGjorv[13]forlightweight

    concretescontainingexpandedclay-typeaggregates.Twotypesofcommerciallyavailable

  • 7/30/2019 Silica Fu Me

    9/75

    sphericalEPSbeadsthatareessentiallysinglesized(TypesAandB)wereused.ThegradingshowsthatTypeAhasmostly6.3-mm-sizebeads

    andTypeBhasmostly4.75-mm-sizebeads.Thebulkdensityandthespecific

    gravityofthesebeadswere9.5kg/m3and0.014forTypeAand

    20kg/m3and0.029forTypeB,respectively.Anaphthalene-based

  • 7/30/2019 Silica Fu Me

    10/75

    superplasticizerwasusedtoproducethemixesofflowableorhighlyflexiblenaturetosuitthehandcompactionadopted.

    Thedesignof

    EPSmixeswithsilicafumewasbasedontheefficiencyconceptsuggestedearlier

    [14].Threepercentagesofsilicafume3%,5%,and9%(byweightofthe

    totalcementitiousmaterials),withthecorrespondingefficiencyvaluesof7.5,

  • 7/30/2019 Silica Fu Me

    11/75

    5.0,and3.5wereused.Themixeswerealldesignedasconcretesconsideringtheefficiencyofsilicafume.Thereductioninthecementpastephase

    resultingfromthehighefficiencyofsilicafumewascompensatedtoacertain

    degreebyadditionalfines.Thecompletedetailsoftheconcretemixesarepresented

    inTable2.

    2.2.ProductionofEPSconcrete

  • 7/30/2019 Silica Fu Me

    12/75

    Concretewasmixedinaplanetarymixerof100-lcapacity.EPSbeadswerewettedinitiallywithapartof

    SlMixCement

    SF(s)Waterw/(c+s)TotalSandaNormalCAasEPSc%

    VolumeSP%Flownumbernumber(kg/m3)(%)(kg/m3)ratioaggregates(kg/m3)(kg/m3)

    aggregatesb(kg/m3)TypeA(kg/m3)TypeB(kg/m3)ofEPS

  • 7/30/2019 Silica Fu Me

    13/75

    ofTCM(mm)SeriesI135031580.440175248132572522136.40.2547236231640.4401724

    48848157917629.00.2548337531700.4401691

    49764842012621.00.2547433531520.4401786

    77989411334.40.5048SeriesII5

  • 7/30/2019 Silica Fu Me

    14/75

    39951850.440160649853057822.20.552639951850.4401606102857822.20.5

    55739951850.440160674386333.20.5

    49SeriesIII839951850.4401606337515321433

    28.70.2551939951850.4401606337

  • 7/30/2019 Silica Fu Me

    15/75

    51532143328.70.5531060591850.278145430546629139226.30.5581160591850.278

    145430546629139226.00.7555

    CAnormalcoarseaggregate;

    SFsilicafume.

    aThesizeofsandusedinSeriesII

    was1mm,downgraded;andinSeriesIandIII,

  • 7/30/2019 Silica Fu Me

    16/75

    thesizeswere2.36mm,downgraded.

    bA10-mmdowngradedaggregatewasusedinSeriesIandII,16mmdowngradedin

    Mixes8and10,and20mmdowngradedinMixes9and11.

    TheweightofCAisconvertedtoanequivalentvolumeof

    EPS(thebulkdensityofCA,EPSTypeA,and

  • 7/30/2019 Silica Fu Me

    17/75

    TypeBwere1600,9.5,and20kg/m3respectively).

  • 7/30/2019 Silica Fu Me

    18/75

    K.G.Babu,D.S.Babu/CementandConcreteResearch33(2003)755762themixingwaterandsuperplasticizerbeforeaddingtheremainingmaterials.Mixing

    wascontinueduntilauniformandflowingmixturewasobtained.Thefreshconcrete

    densitiesandflowvaluesweremeasuredimmediatelyafterthemixing.Theflowvalues

    variedbetween47and58cmandfacilitatedhandcompaction.

  • 7/30/2019 Silica Fu Me

    19/75

    Thespecimenswerecuredunderwetgunnybagsinitiallyand,afterdemolding,werestoredinwater.

    3.Experimentalinvestigations3.1.Specimensand

    curingconditionsStandardtestspecimensofdifferentsizeswerechosenforinvestigatingthe

    variousparameters.Cubesof100mmsizewereusedforstudyingthecompressive

    strengthsat1,3,7,28,and90daysand

  • 7/30/2019 Silica Fu Me

    20/75

    alsofortheabsorptiontestsat90days.Splittensilestrengthtestwasconductedon100mmdiameter.200mmcylindersat28

    days.Cylindersof50mmthicknessand100mmdiameterwereusedfor

    thechloridepermeabilitystudiesat90days.Cylindersof100mmdiameter.

    200mmwithan8-mm-diameter,hot-rolled,deformedsteelbarof

  • 7/30/2019 Silica Fu Me

    21/75

    100mmofexposedlengthembeddedinthemiddlewereusedtostudythecorrosionrateandacceleratedcorrosioncracking.Thesespecimensalonewerecured

    inseawateruntiltesting(90days)after3daysofnormalwatercuring.

    3.2.TestprogramTheflowvaluesofthefreshconcretemixes

    weremeasuredaccordingtoASTMC124-1973.Compressivestrengthtest

  • 7/30/2019 Silica Fu Me

    22/75

    wascarriedoutinatestingmachineof2000kNcapacityataloadingrateof2.5kN/s.Thesplittensilestrengthtestwas

    conductedoncylindersat28daysasperASTMC496-89.Theabsorption

    testwascarriedoutasperASTMC642-82.Saturatedsurfacedrycubes

    werekeptinahotairovenat60C

  • 7/30/2019 Silica Fu Me

    23/75

    (althoughASTMsuggestsatemperaturerangeof100110C)untilaconstantweightwasattained.Thisisbecauseatthistemperaturerangeof100

    110C,theEPSbeadsinitiallyshrinkandfinallyevaporate.Thesearethen

    immersedinwaterandtheweightgainismeasuredatregularintervalsuntil

    aconstantweightisreached.Theabsorptionat30min

  • 7/30/2019 Silica Fu Me

    24/75

    andthefinalabsorption(atapointwhenthedifferencebetweentwoconsecutiveweightsat12-hintervalwasalmostnegligible)werereportedtoassess

    theconcretequality.

    Thestudiesforthedurabilityrequirementswereundertaken

    onlyontheconcretesofSeriesI,asthesecontainedtheleastamount

    ofsilicafumethatimprovedtheperformancesignificantly(highestefficiency

  • 7/30/2019 Silica Fu Me

    25/75

    andacorrespondinglylowercementitiousmaterialscontent)andpresentedthelowestdurabilitythatcanbeexpected.Thesewerelimitedtochloridepermeability,potential,corrosion

    rate,andacceleratedcorrosionstudies.

    Thechloridepermeabilitytestwasconducted

    toassesstheconcretequalityasperASTMC1202-94.Apotentialdifference

    of60VDCwasmaintainedacrossthespecimen.One

  • 7/30/2019 Silica Fu Me

    26/75

    ofthesurfaceswasimmersedinasodiumchloride(NaCl)solutionandtheotherinasodiumhydroxide(NaOH)solution.Thetotalchargepassing

    in6hwasmeasured,indicatingtheresistanceofthespecimentochloride

    ionpenetration.

    Potentiodynamicpolarizationtechniquewasadoptedtomeasurethecorrosion

    rateofthe8-mm-diameterbarsinthecylinderspecimens,by

  • 7/30/2019 Silica Fu Me

    27/75

    usingascanningpotentiostat(EGandGPAR-Model362)andanXlogX,Yrecorder.Apotentialof250mVwasappliedoneither

    sideoftheopencircuitpotential(OCP),andthecorrosioncurrent(Icorr)was

    takenat100mVfromthepotentiodynamicplot.Thecorrosionratewascalculated

    fromIcorrbyusingFaradaysequation.

    Acceleratedcorrosion

  • 7/30/2019 Silica Fu Me

    28/75

  • 7/30/2019 Silica Fu Me

    29/75

    dailyresistancewascalculated.Later,toacceleratethecorrosionprocess,acurrentof60Vwasappliedforaperiodof10daysor

    untilacrackoccurred.Thecurrentpassingwasmeasuredatregularintervalsto

    evaluatethechargetocracking.

    4.ResultsanddiscussionsAcomprehensive

    summaryofthedifferentstrengthsandabsorptioncharacteristicsofall

  • 7/30/2019 Silica Fu Me

    30/75

    theconcretesispresentedinTable3.Theresultsofthecorrosion-relatedparametersinvestigatedforSeriesI,asalreadyproposed,aregiveninTable

    4.

    4.1.FreshconcreteTheworkabilityoftheconcreteinterms

    oftheflowmeasurementswasreportedinTable2.Flowvaluesofthe

    allthemixeswereintherangeof4758cm.

  • 7/30/2019 Silica Fu Me

    31/75

    Theseflowvaluescorrespondtoaslumpofabout5070mminmostcases.Themixeshavingthehigherpercentagesilicafumeshowhigher

    flowvalues.Alltheconcreteswereflexibleandeasytoworkwith,and

    couldbeeasilycompactedusingjusthandcompactionandcouldalsobeeasily

    finished.Theproblemsassociatedwiththesegregationandfinishabilityof

  • 7/30/2019 Silica Fu Me

    32/75

    themixescontainingcoarsebeadsasreportedearlier[7]weretotallysolvedbyensuringthataminimumamountofcementitiousmaterialwasalwayspresent.

    Thesilicafumeandthesuperplasticizerwereessentiallyaddedtohelpsolvethe

    problemsassociatedwiththehydrophobicnatureoftheEPSbeadsandtoimprove

    thecohesivenessofthemix.

  • 7/30/2019 Silica Fu Me

    33/75

    K.G.Babu,D.S.Babu/CementandConcreteResearch33(2003)755762Table3StrengthandabsorptionofEPSconcretemixes

    SlMixFreshconcreteCompressivestrength(MPa)SplittensileAbsorption(%)numbernumber

    density(kg/m3)1day3days7days28days90daysstrength

    (MPa)30minFinalSeriesI115524.26.6

  • 7/30/2019 Silica Fu Me

    34/75

    7.610.210.61.530.6955.424216985.87.211.215.014.02.040.9035.3553197910.212.814.021.421.22.16

    1.0494.882415034.46.88.410.212.22.100.7414.596Series

    II518565.210.615.219.819.12.231.3063.52061748

    5.010.417.618.518.62.201.2443.14071546

  • 7/30/2019 Silica Fu Me

    35/75

    4.09.212.415.014.92.150.7302.570SeriesIII817626.610.211.612.011.21.831.3503.630917714.69.8

    14.21717.22.021.2503.1501017939.813.415.616.216.5

    2.221.2702.5401118739.816.419.820.821.22.321.0002.340

    4.2.Compressivestrength4.2.1.EffectofageThe

  • 7/30/2019 Silica Fu Me

    36/75

    variationofthecompressivestrengthwithageshowsacontinuousincreaseinalmostallthemixes.Therateofstrengthdevelopmentwasgreaterinitially

    anddecreasedastheageincreased.Therateofstrengthgainat7,

    28,and90daysispresentedinFig.1.Acomparisonofstrengths

    at7daysrevealsthatconcreteswith3%silicafume

  • 7/30/2019 Silica Fu Me

    37/75

    developedalmost75%ofits28-daystrength,whilethatwith5%and9%silicafumedevelopedalmost85%and95%ofthecorresponding28-day

    strength.Therewasnoappreciablestrengthimprovementat90days.Fromthis,it

    isclearthattherateofstrengthgainwasincreasingwithanincreasing

    percentageofsilicafume.

    4.2.2.Effectofdensity

  • 7/30/2019 Silica Fu Me

    38/75

    andEPSvolumeThedensityoftheconcretewascontrolledbyvaryingtheEPSvolumeinthemix.Thevariationofcompressivestrengthwith

    theplasticdensityofconcrete(andpercentvolumeofEPS)waspresentedin

    Fig.2.ThestrengthofEPSconcretesappearstoincreaselinearlywithan

    increaseinconcretedensity,orwithadecreaseinthe

  • 7/30/2019 Silica Fu Me

    39/75

    EPSvolume.

    4.2.3.EffectofEPSbeadsizeThestrengthofEPSconcreteincreasedwithadecreaseintheEPSbeadsize

    forthesamemixproportions.Thisis

    Table4Corrosionstudies

    onEPSconcretes(SeriesI)

    SlnumberCharge(C)90-dayOCP

    (.mV)Corrosionrateat100mV(mpy)ACCstudies

  • 7/30/2019 Silica Fu Me

    40/75

    ADR(V)Totalchargetocracking(C)Mix1Mix2Mix3Mix4676.74496.37460.71372.513303006703050.502

    0.3900.4510.3645.405.605.304.1017,94220,97412,66913,176

    ACCacceleratedcorrosioncracking;ADRaveragedailyresistance.

    clearfromtheresultsof

    theconcretesofSeriesIImadewithonlyTypeB

  • 7/30/2019 Silica Fu Me

    41/75

    (smallerEPSbeads),whichshowedhigherstrengthvalues,thanthemixesmadewiththecombinationofTypeAandTypeBbeadsforthe

    sameconcretedensities.

    4.2.4.EffectofnormalaggregatesizeComparingthe

    strengthresultsofMixes8and10containing16-mm,downgraded,normalcoarseaggregate

    withthoseofMixes9and11containing20-mm,downgraded,

  • 7/30/2019 Silica Fu Me

    42/75

    normalcoarseaggregate(Fig.3),itisclearthatthecompressivestrengthincreasedwithincreasingaggregatesize.Thepercentageincreaseinstrengthwithsize

    wasalsoobservedtobehigherintheleanmixescomparedtothe

    richmixes.

    4.2.5.EffectofsandMixes1and5contain

    bothsandandcoarseaggregatewhilecorrespondingMixes4and

  • 7/30/2019 Silica Fu Me

    43/75

    6containonlysandastheaggregate(mortar).Themixproportionsofthetwomixsets(Mixes1and4,andMixes5and

    6)arealsonearlythesame.Acomparisonofthestrengthresultsof

    thesetwosetsofmixeshavingcomparabledensitiesclearlyshowsthattheeffect

    ofsandisnegligible,bothintermsofthestrength

  • 7/30/2019 Silica Fu Me

    44/75

    gainrateaswellasthestrengthat90days.However,itwasobservedthatthemixescontainingcoarseaggregatesalwaysshowaslight

    increaseindensity(about50100kg/m3).

    4.2.6.Effectoflightweightaggregate

    strengthThestrengthofconcreteismainlyinfluencedbythestrengthofthe

    aggregate.Thedevelopmentofhigh-strengthconcretesispossibleonlywhen

  • 7/30/2019 Silica Fu Me

    45/75

    theaggregateshaveenoughstrength.Presently,Mixes10and11weredesignedwiththesametotalcementitiousmaterialandw/(c+s)ratioas

    werereportedearlierbyZhangandGjorv[13].Theyreporteda28-daycompressive

    strengthof102.4MPafortheseconcretesmadewithexpandedclayaggregate.However,

    the28-daystrengthforMixes10and11containingEPS

  • 7/30/2019 Silica Fu Me

    46/75

    wereonly16.2and20.8MPa,respectively,inthepresentstudy.

  • 7/30/2019 Silica Fu Me

    47/75

    K.G.Babu,D.S.Babu/CementandConcreteResearch33(2003)755762Fig.1.Variationofcompressivestrengthwithage.

    This

    widevariationofstrengthismainlyduetothedifferenceinstrengthof

    theaggregates,asEPSaggregateshavealmostzerostrength.

    Moreover,the

    failuremodeoftheconcretespecimenscontainingEPSaggregatesunder

  • 7/30/2019 Silica Fu Me

    48/75

    compressiveloadingdidnotexhibitthetypicalbrittlefailurenormallyassociatedwiththeconventionalaggregateconcrete.Thefailureobservedwastobemoregradual

    (morecompressible),andthespecimenswerecapableofretainingtheloadafterfailure

    withoutfulldisintegration.Asimilartypeoffailurewasalsoreportedearlierfor

    plasticshreddedaggregateconcretes[16].Thisclearlyshowsthehigh

  • 7/30/2019 Silica Fu Me

    49/75

    energyabsorp

    tioncapacityoftheseconcretesthatwassuggestedearlier[5,9].

    4.3.SplittensilestrengthThevariationoftensile

    strengthwiththecompressivestrengthisgiveninFig.4.Fromthis,it

    canbeseenthatthetensilestrengthincreasedwithanincreaseincompressive

    strength.Thesplittingfailuremodeoftheconcretespecimenscontaining

  • 7/30/2019 Silica Fu Me

    50/75

    EPSaggregatesalsodidnotexhibitthetypicalbrittlefailurenormallyobservedinconventionalconcreteasincompressivestrength.Thefailureobserved

    Fig.2.VariationofstrengthwithdensityandEPSvolume.

  • 7/30/2019 Silica Fu Me

    51/75

    K.G.Babu,D.S.Babu/CementandConcreteResearch33(2003)755762Fig.3.Variationofcompressivestrengthwithage(SeriesIII).

    wasmoregradual(compressible)andthespecimensdidnotseparateintwo,

    aswasearlierreportedforplasticshreddedaggregateconcretes[16].

    4.4.

    AbsorptionThedurabilityofconcreteprimarilydependsuponitspermeability,

  • 7/30/2019 Silica Fu Me

    52/75

    whichdefinestheresistancetotheingressofaggressiveions.Theabsorptioncharacteristicsindirectlyrepresenttheporosity,throughanunderstandingofthepermeablepore

    volumeanditsconnectivity.Alimitontheinitial(30min)absorptionfor

    assessingtheconcrete

    qualitywasdefinedbyCEBearlier[17].The

    initialabsorptionat30min,aswellasthefinal

  • 7/30/2019 Silica Fu Me

    53/75

    (total)absorption,wereshowninFig.5.AspertheassessmentcriteriagivenbyCEB,allthemixesinthepresentstudyshoweda

    lowabsorptionrating(