Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy...

66
Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences Course year 2014-2015

Transcript of Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy...

Page 1: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

Half Minor

Molecular Targets and Cancer Therapy

September–November 2014

 

 

 

 

 

 

M O D U L E B O O K

LUMC

Bachelor third year

Medicine and Biomedical Sciences

Course year 2014-2015  

 

Page 2: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

 

© 2014 Alle rechten voorbehouden

LUMC

Behoudens de in of krachtens de Auteurswet van 1912 gestelde uitzonderingen, mag niets uit deze

uitgave worden verveelvoudigd en/of openbaar gemaakt worden door middel van druk, Photographkopie,

microfilm, web-publishing of op welke andere wijze dan ook en evenmin in een gegevensopzoeksysteem

worden opgeslagen zonder voorafgaande schriftelijke toestemming van de houder van de copyrights.

Voor vragen of informatie kunt u contact opnemen met:

Directoraat Onderwijs en Opleidingen, PB 9600, 2300 RC Leiden

Page 3: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

1  

 

Module committee and teachers ................................................................................................................... 2 

Preface .......................................................................................................................................................... 3 

Overview of the teaching activities in the half minor. .................................................................................... 5 

Learning goals, assessment and competences ................................................................................................ 6 

Assessment matrix ........................................................................................................................................ 8 

Prerequisites ................................................................................................................................................. 9 

Study material and use of literature ............................................................................................................ 11 

Theme 1: Signaling in cancer ........................................................................................................................ 12 

1.1  Introduction to theme 1 ........................................................................................................................... 12 

1.2. Onco1: Sezary Syndrome ......................................................................................................................... 17 

1.3 Onco 2: Giant Cell Tumor of Bone ............................................................................................................. 20 

1.4 Onco3: Breast Cancer ...............................................................................................................................  23 

1.5 Onco 4: Renal Cell Carcinoma ................................................................................................................... 26 

1.6 Onco5: Melanoma .................................................................................................................................... 29 

1.7 Onco 6: Colorectal Cancer ......................................................................................................................... 32 

1.8 Prevention and screening ......................................................................................................................... 35 

1.9 The Practical: drug testing in cell cultures ................................................................................................. 38 

Theme 2: Imaging in cancer ......................................................................................................................... 39 

2.1 Week 5: Oncology and nuclear medicine .................................................................................................. 39 

2.2 Week 6: Pathology and microscopic imaging............................................................................................ 41 

2.3 Week 7: Image guided surgery and in vivo optical imaging ...................................................................... 43 

Theme 3: From bench to bedside ................................................................................................................. 45 

3.1 Introduction to theme 3 ............................................................................................................................ 45 

3.2. Step 1: Introduction (scientific background) & rationale .......................................................................... 48 

3.3 Step 2: Define objectives and study parameters ....................................................................................... 49 

3.4 Step 3: Inclusion criteria & statistics ......................................................................................................... 53 

3.5 Step 4: Treatment and toxicity .................................................................................................................. 57 

3.6 Step 5:  Ethics ........................................................................................................................................... 60 

3.7 Step 6: Final product ................................................................................................................................. 63 

3.8. The patient in clinical trials ...................................................................................................................... 64 

   

Page 4: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

2  

Module committee, lecturers and tutors   

Module coordinators 

Dr. Károly Szuhai, Molecular Cell biology 

Dr. Judith Kroep, Oncology 

 

Module committee members 

Dr. Roeland Dirks 

Prof. Peter ten Dijke 

Dr. Carolina Jost 

Prof. Koos van der Hoeven 

Prof. Hans Gelderblom 

Dr. Jolanda van der Zee (on behalf of BW‐track students) 

 

Secretariat 

Mail address: mcb‐[email protected] 

Phone: 5269200 

 

Tutors/Lecturers  

Please consult the Blackboard module for up‐to‐date information. 

 

 

Page 5: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

3  

 

Preface In 1971 president Richard Nixon of the United States started the ‘War on Cancer’ by signing the  

National Cancer Act of 1971, a United States federal law. The act was intended to strengthen the 

National Cancer Institute in order to make funds available for and to more effectively carry out cancer 

research. In 2011 a special issue of Science celebrated the 40th anniversary of this Act and it was 

concluded that although there was reason for a small celebration, there was still a lot to be done 

[Science 25 March 2011: Vol. 31 no. 6024 p. 1539 DOI: 10.1126/science.331.6024.1539‐a]. The last 

couple of years a lot of research has focused on a more targeted approach. In this half  minor we will 

look at the steps that have been taken and search for new ways to go. 

 

Cancer develops as a result of genetic mutations, alterations in non‐coding RNA repertoires, and 

changes in epigenetic regulators and metabolic states. The interplay between cancer cells and  their 

microenvironment also has substantial impact on development and progression. Patients and tumors 

are heterogeneous in nature, implying not only that each patient presents a unique disease, but also 

that each patient may respond differently to therapy. Consequently, there is a high level of complexity 

with respect to the mechanisms by which tumors develop, progress, metastasize, and by which tumor 

therapies can become (more) effective. 

 

The half minor module: Molecular Targets and Cancer Therapy will utilize and extend your basic 

knowledge ranging from molecular biology to pathology and oncology, and help you to translate this to 

investigative cancer treatment possibilities. It aims to provide understanding of the current concepts of 

translational research. Treatment of cancer with conventional treatment regimens such as classical 

chemotherapy or radiotherapy have reached their limits and need further improvements for satisfactory 

long‐term results. Understanding of physiological cellular processes will enable you to understand 

disease mechanisms and pathological processes, with as final goal modulation of these processes by 

specific drugs. This will help you to identify novel druggable targets within signaling pathways that affect 

cell proliferation, apoptosis, and/or the efficacy of immune‐, radio‐ and chemotherapy, or pathways 

inducing tumor angiogenesis and metastasis.  

 

Classical histo‐pathological characterization of tumors can nowadays be extended with tumor specific 

expression markers and genetic information on the presence of potential oncogenic mutations and 

translocations. For example, fine mapping by large scale sequencing enables further stratification that 

can serve as the base of targeted treatment. Moreover, functional studies on tumor growth can provide 

new opportunities for treatment. This involves in‐depth studies of the cellular and molecular 

mechanisms that cause normal cells to become tumorigenic, including animal models. Monitoring of 

treatment responses and early detection of tumor cells or remaining tumor cells are essential elements 

of successful tumor eradication. This also involves advanced imaging tools, based on sophisticated 

instrumentation, and designing of tumor specific tracers, which are indispensable elements of advanced 

medical imaging. Importantly, introduction in the clinic of novel drugs or molecular tools for treatment 

or diagnostic purposes needs special protocols to test efficacy, safety and clinical utility. Designing and 

Page 6: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

4  

conducting clinical trials are essential elements and their number will increase, based on the numerous 

recent discoveries in cancer research.  

 

During this half minor, you will not only be able to link the basics of cellular processes to recent 

advances in discoveries in oncology, but you will gain insight into emerging targeted therapies. Six tumor 

conditions have been chosen for this process, i.e. Sezary syndrome, giant cell tumor in bone, breast 

cancer, renal cell carcinoma, melanoma and colorectal cancer. The background of these tumor 

conditions will be introduced to you in the first theme of the half minor: Signaling in cancer.  In addition, 

small scale laboratory experiments will be conducted using different tumor cell lines in combination 

with drugs used to treat cancer. These kind of experiments are the basis of target selection for new 

drugs. In the second theme Imaging in cancer, you will learn how to interpret results from different 

imaging modules (MRI, CT and histology) that are used to establish diagnosis and monitor disease 

progression in clinical settings. In the final theme, From bench to bedside, all aspects of a clinical trial 

design will be covered by lectures and workgroups using dedicated assignments. These tasks will be 

directly translated into a real clinical trial situation, coached by tutor‐clinicians, and result in the design 

of a clinical trial proposal. In this process you will also visit the clinic and meet patients participating in 

clinical trials.  

 

We hope that you will enjoy this half minor and will join the ‘battle against cancer’.  

Module committee ‘Molecular Targets and Cancer Therapy’.   

Page 7: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

5  

Overview of the teaching activities in the half minor.  Short description. 

The program of Molecular Targets and Cancer Therapy consists of three linked themes, containing a 

range of teaching activities: 

 

 

Theme 1: 

Singaling in 

cancer 

(Week 1‐4) 

 

 

This theme  focuses on six tumor conditions, i.e. Sezary syndrome, giant cell tumor in 

bone, breast cancer, renal cell carcinoma, melanoma and colorectal cancer.  It contains: 

‐lectures presented by (medical) specialists (tutors in the 3rd module) using exemplary 

diseases as models where alterations in normal cellular and molecular mechanisms lead 

to impaired regulation in cancer.  

‐work groups to analyse how altered cellular processes can be used as target and 

translated into precision therapy for cancer patients, and  to learn how to formulate and 

analyse research questions, to discuss literature. 

‐practical to set up and conduct drug treatment assays, and learn how to analyse and 

interpret experiments.  

 

Theme 2: 

Imaging in 

cancer 

(Week 5‐7) 

 

You will follow this theme together with students of  the half minor Biomedical imaging 

“from molecule to man”. The theme contains: 

‐series of lectures on Oncology and nuclear medicine, Pathology and microscopic 

imaging, and Image guided surgery and in vivo optical imaging.  

‐work groups to obtain critical insight about presently developing and future imaging 

modalities in cancer diagnostics and monitoring disease course during treatment. 

 ‐practical on various imaging techniques. 

 

Theme 3:  

From bench to 

bedside 

(Week 8‐10) 

 

 

This theme contains: 

‐lectures related to various aspects of clinical trials, in order to learn how to translate a 

scientific research question into a clinically relevant research trial.  

‐workgroups on ethical considerations, statistical pitfalls and patient selection criteria of 

study design. 

‐discussions with tutors, to design and write a clinical trial proposal for a specific tumor 

condition  

‐meetings with oncology patients 

 

Your presence during the half minor 

All activities of the minor are mandatory. Should you unexpectedly be absent, it's requested that you 

contact the coordinators as soon as possible. They decide on any replacing assignments or other 

activities that are necessary to fulfill the requirements of the half minor. 

Schedule of the half minor  

Detailed information is provided in the schedule of the minor, see Blackboard. 

 

Page 8: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

6  

Learning goals, assessment and competences 

Learning goals / general The student can

Assessment type Competences

1. Indicate the mechanisms by which cells communicate with each other

-Exam-1, open questions

2. Describe the signaling pathways that control cellular proliferation and differentiation

-Exam-1, open questions -Write and present Proposal

3. Reflect how impaired regulation of specific signal transduction pathways underlies cancer in order to develop better treatment strategies.

-Exam-1, open questions -Write and present Proposal

4. Explain how novel biological markers

can be identified -Presentation, report -Write and present Proposal

5. Determine how to apply these identified biological markers in translational medicine

-Presentation, report Write and present Proposal

6. Conduct simple molecular and biochemical experiments frequently used in cancer research.

-Presentation, report -Exam-1, open questions

7. Interpret results and draw conclusions on simple molecular and biochemical experiments frequently used in cancer research and present these in a short report.

-Presentation, report -Exam-1, open questions

8. Evaluate (criticize and assess) the application of new clinical imaging research lines (e.g. fluorescence imaging methods, hybrid modalities as PET-MRI, and image guided navigation techniques);

-Exam-2, open questions -Write and present Proposal

   

Page 9: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

7  

Learning goals / general The student can

Assessment type Competences

9. Consider different aspect of biomedical imaging in basic, translational and clinical oncology (Pathology and microscopic imaging, image guided surgery, oncology and nuclear medicine)

-Exam-2, open questions -Write and present Proposal

10. Reproduce and evaluate the crucial ethical and regulatory steps necessary in developing innovative cancer therapies

-Write and present proposal

11. Link information between data obtained from various molecular and clinical imaging applications and clinical outcome (e.g. toxicity survival) from a patient 

-Write and present proposal

12. Perform literature search to obtain

relevant information -Write and present proposal

13. Propose innovative therapeutic strategy

that may be developed, for targeting a specific oncological problem

-Write and present proposal

14. Formulate an opinion on the design and

implementation of clinical trials to test new (combinations of) therapeutic agents

-Write and present proposal

15. Acquire the essentials of clinical trial design

-Write and present proposal

16. Design and write a (simple) clinical

trial proposal -Write and present proposal

 

 

Page 10: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

8  

Assessment matrix*  

Period 

(wk) 

Subject(s)  Assessment by  Score (points) 

or other 

Duo/indiv

/etc 

Total score 

(maximum 

points) 

1‐4   Intro 1 and 2 

Onco 1‐6 

Practical 

Exam‐1 open 

questions; 2 

questions / subject 

10 points 

/subject  gives 

90 points 

Indiv   

  Literature 

discussion on 

Onco 1‐6 

presentation  Pass/no pass  Duo   

  Screening  discussion  Pass/no pass  Indiv   

  Practical  presentation  Pass/no pass  Duo   

  Practical  report  10  Duo   

          Total 100 

(55 to pass) 

5‐7  Imaging**  Exam‐2 open 

questions 

100  Indiv   

    Case presentation  Pass/no pass  Duo  Total 100 

(55 to pass) 

8‐10  Step 1 proposal  Final proposal  25   Trio   

  Step 2 proposal  Final proposal  25  Trio   

  Step 3 proposal  Final proposal  25  Trio   

  Step 4 proposal  Final proposal  25  Trio   

  Step 5 proposal  Personal statement  

on ethics 

5  Indiv   

  Final proposal  presentation  10  Indiv   

  Presentation  Quality of 

questions 

Pass/no pass  indiv   

*) For the assessment matrix for the BW‐track students, we refer to Blackboard.  

**) for more detailed info on the assessment on the theme Imaging, we refer to the Toetsplan of the half minor 

Biomedical imaging “from molecule to man” on their Blackboard module. 

Page 11: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

9  

 

Period 

(wk) 

Subject(s)  Assessment by  Score (points) 

or other 

Duo/indiv

/etc 

Total score 

(maximum 

points) 

8‐10  Final proposal  Peer review  5  Trio   

  Final proposal  Quality of peer 

review 

10  Indiv   

  Process  Discussion with 

tutor 

10  Indiv  Total 140 

(75 to pass) 

1‐10  Final grade  each theme has to 

be passed, no 

compensation 

  Indiv  Total 340  

 

Prerequisites Participants in this half minor come with various backgrounds, either in medicine or biomedical sciences. 

This is a challenge, not only for you as participant, but also for us, the coordinators of this minor. Some 

of the study material will be familiar to you and other maybe less or not at all.  It is important to be 

aware of this and look at all the assignments and study material with an open mind and check what you 

know and might not know. It is also important to share your knowledge with others and e.g. help them 

with preparing the assignments and reading the (study) material. Extra reading is always provided for 

those who would like to go the extra mile. We are looking forward to interesting and exciting 

discussions!  

This half minor programme is based on knowledge gained earlier in the curriculum of medicine,  

biomedical sciences, or equivalent: 

Medical students: 

‐“Van Cel tot Molecuul” 

‐Mechanism of disease 2  

Biomedical students: 

‐“Cellulaire communicatie” 

‐Human Pathology 

   

Page 12: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

10  

Practical organization of the half minor The module book presents the skeleton that will lead you through this course. The module book is 

present in electronic form and will be provided and accessible at the Blackboard  module of this minor.  

The half minor course has several self‐study assignments (SSA) that are related to study materials used 

during this course. The self‐study assignments indicate relevant parts from text books and refers to full 

papers from literature.  

Teaching modalities: 

‐Lectures (LC in Theme 1): will be given by clinicians and will provide info on the disease of interest and 

are linked to the molecular basis of the discussed tumor type with relation to novel treatment 

modalities.  

‐Self‐study assignments (SSA): form the basis of this course. Self‐study assignments are necessary for 

the workgroup and have to be completed. The questions are based on the core books and indicated 

literature.  

‐Workgroups (WG): Active participation of students in workgroups is necessary, because these will 

provide the opportunity to deepen your knowledge in view of the self‐study assignments and disease 

entities presented beforehand. During the workgroups students will have the opportunity to discuss 

what they have learned. The tutor of the workgroup is steering the discussion and may bring up new 

questions.  

‐Literature discussion: Students will be asked to prepare a PowerPoint presentation about a specific  

article related to onco 1‐6. Articles will be discussed at two occasions, indicated in the schedule 

(depending on the actual group size, 2 or 3 students will give a presentation to cover various 

topics/manuscripts. These manuscripts are related to disease entities discussed in earlier LCs and WGs. 

The presentation should include the research question presented in the manuscript, explanation of 

methods/techniques used, explanation of results (using figures, tables presented in the manuscript) and 

Discussion of the results. Finally, the presented work should be related to core book concepts and 

figures. For better group discussion, 2 or 3 students (again depending on the group size) will be asked to 

read the same manuscript prepare questions and comments. Participation in the discussion and the 

quality of the presentation will be assessed by the tutor.  

‐Tutor sessions (TS): in theme 3 Students will form small groups (2 or 3 depending on the actual number 

of student enrolled to this half minor) and select a cancer modality as model for targeted therapy. With 

the guidelines, self‐study assignments and lectures students will be able to draft a trial protocol. During 

the TS student will consult their tutor and get feed‐back on the set up. Clinicians, who presented the 

different cancer types with underlying mechanism in theme 1 will be the tutors.  

‐Practical (PC): PC will require self‐study. The practical experiments are complementary to experimental 

protocols used for drug discovery screening. Your results of this practical will be presented and written 

in a report that will contribute to your final examination mark (see Assessment matrix) 

‐Bedside teaching/Grand round (theme 3): Half of the group will join one of the oncologists on a patient 

visit in the clinic or in the out‐patient clinic and will follow the weekly grand round. The other half of the 

group will do the same in the next week. 

Page 13: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

11  

Study material and use of literature In assignments the following books will be used: (please borrow or buy these books if you do not have 

them and/or look in the library) 

‐Alberts et al.: The biology of the cell, 5th edition, 2008, ISBN: 978‐0‐8153‐4105‐5 (hardcover) ISBN 978‐

0‐8153‐4106‐2 (paperback) 

‐Kumar et al.: Robbins and Contran pathologic basis of disease. 8th edition, 2010, ISBN 978‐4160‐3121‐5 

‐Rang & Dale: Pharmacology 

‐Harrison’s Principles of Internal Medicine (18th ed.), online available through the Walaeus library 

 

Use of Literature: 

The terminology that is used in medicine has not or only minimally changed over the preceding decades, 

while the knowledge presented in textbooks cannot cope with the speed by which new insights are 

obtained and becomes outdated quickly. Therefore, health professionals that needs to translate recently 

gathered knowledge into clinical practice rely on scientific literature. For this reason, we will not only 

look at texts from study books, but will also use scientific articles during this course. Scientific literature 

will be an intrinsic part of this course, especially in reference to novel developments and discoveries in 

cancer research that form the basis of targeted therapy in clinical settings, in other words a clinical trial. 

For the study assignments particular parts of papers will be selected when we believe that the whole 

content might be too complicated. For other cases, the selected manuscript, especially review papers, 

are extending the information given in the course textbooks.  

Literature should be considered as part of the course, which means that the information given is part of 

the examination. For legal reasons the “pdf” files of published literature may not be included in the 

course book (printed or electronic), the referred literature should be accessed by the students through 

library web page links and saved by them as individual end user (for more info see the Blackboard 

module).  

 

During the whole minor, two major papers will be frequently referred and you are expected to be 

familiarized by most of the concepts presented therein by the end of the 4th week.  

 

The hallmarks of cancer. Hanahan D, Weinberg RA. Cell. 2000 Jan 7;100(1):57‐70. 

Hallmarks of cancer: the next generation. Hanahan D, Weinberg RA. Cell. 2011 Mar 4;144(5):646‐74.  

 

   

Page 14: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

12  

Theme 1: Signaling in cancer  

1.1 Introduction to theme 1 In this introduction to the first theme, we will refresh and extend your basic knowledge on signal 

transduction, molecular biology,  pathology and oncology.  Textbooks and literature will be discussed in 

lectures and 2 workgroups. 

 

1.1.1 Intro1: lectures 

Title:  LC1: Hallmarks of cancer  

LC2: From signal transduction to targeted therapy; an 

introduction 

Lecturer:    Prof. Dr. P. ten Dijke (Mol Cell Biology) 

Literature/ Background  See SSA 1  

 

The purpose of signal transduction research is to understand at a molecular level how cells 

communicate with each other. Furthermore, we would like to gain knowledge on how cells recognize 

signals from their environment and the mechanisms by which the signals are transduced across the 

plasma membrane inside the cell leading to cellular morphological and/or functional changes. Signals 

can originate from other cells, but also light, heat, salt and acid are examples of signals upon which cells 

react. With this knowledge we can understand all kind of normal, but also pathological processes. 

Compromised signal transduction from perturbed pathways by (epi)genetic mechanisms may lead to 

abnormal cell behavior and  may ultimately lead to metastasis in distant organs 

Whereas in the past 10‐20 years signal transduction research has mainly focused on understanding the 

basic fundamental principles and on how perturbation in signal transduction processes underlie human 

diseases, the field is changing.  Nowadays, more and more basic researchers and clinicians are teaming 

up to translate the basic findings into better targeted treatments that have less side‐effects. In 

particular, recent developments focus on personalized treatment.  

In this introductory lectures the main inter‐ and intracellular pathways that control proliferation, 

survival, migration and differentiation of cells will be covered. How a normal cell develops into a tumor 

cells will be discussed, as well as  the general principles for targeted treatments that are used to restore 

the subversions in signal transduction processes in cancer cells. These lectures will give you an 

introduction to SSA1, help you to refresh your knowledge on signal transduciton and help you to 

prepare for the first workgroup. 

   

Page 15: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

13  

1.1.2.  Intro1: SSA1 on Cellular communication and signal transduction in cancer (intro1) 

Introduction 

Communication between cells is translated via signal transduction to various intracellular responses. 

Intracellular signaling pathways are activated through extracellular signal molecules via interaction with 

receptor proteins. These receptors proteins activate one or multiple downstream intracellular signaling 

proteins evoking a cascade of reactions which lead to the activity of effector proteins that in turn effect 

the behavior of the cell. At any given time, each cell is exposed to multiple signaling stimuli and still is 

able to execute very different reactions resulting either in survival,  cell growth or differentiation, or 

even in cell death. Alterations in cell signaling pathways lead to various pathological conditions from 

inflammation to degenerative diseases and from infections to neoplastic lesions.  All these changes are 

resulting from perturbation of already existing signaling routes in cells. Understanding of physiological 

cellular processes is necessary to understand pathological processes and disease mechanisms. In this 

assignment we will recapitulate and extend your knowledge on cellular communication and signal 

transduction mechanisms with a focus on tumor formation.   

Objectives 

- You will refresh your knowledge on main signal transduction pathways 

- You will recapitulate how molecular processes control signal transduction 

- You can explain how abnormal growth can happen via growth factor receptor activation  

- You can relate abnormal activation to the development of cancer 

- You can describe the role of various signaling pathways in the development of cancer 

Instruction 

Study in Alberts pages: 

880‐ Extracellular signal molecules bind to specific receptors till  886‐ A cell can alter…. 

889‐ Nuclear receptors are ligands… ‐899 till A cell can use…. 

904—Signaling through G‐protein…‐909Some G proteins activate… 

 

921‐ Signaling through enzyme….‐927 till TRKs activate… 

928‐ Ras activates a MAP kinase‐941 till Bacterial chemotaxis depends 

946‐ Signaling pathways dependent on … 951 end of page 

1241‐ Molecular  basis of cancer…‐ till 1245 Mutation in genes… 

Study in Kumar: 

279‐ Self‐sufficiency in growth…284 Till Transcription factors. 

 

 

 

Page 16: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

14  

The following questions will guide you through the text and emphasize the most important subjects.  

Questions 

1. Briefly summarize the essence of signal transduction and indicate which molecules play a key role in 

signal transduction. 

2. Briefly describe the differences and similarities between endocrine, paracrine, autocrine signals. 

3. Why is the lifespan of a signal molecule usually short? 

4. Steroid hormones usually give a primary and a secondary response. Describe the difference 

between both responses. 

5. What are "first " and "second " messengers? Give an example of both. 

6. What is a "molecular switch"?  

7. What role do Regulators of G ‐protein signaling ( RGS ) have in the activation and inactivation of G‐

proteins? Why is inactivation as important as activation?  

8. Phosphorylation of proteins is an important modification in signal transduction processes. Which 

amino acids are phosphorylated and why can they be phosphorylated? What happens to the activity 

of a protein when it is phosphorylated?  

9. Many intracellular signaling molecules contain "interaction domains". What do interaction domains 

consist of and what is their function? 

10. What are the binding partners of SH2, SH3, PTB, and PH domains? 

11. Growth factor receptors also activate a GTP‐binding protein. To what extent is that different from 

the G‐proteins that are activated by G‐protein coupled receptors?  

12. A mitogenic growth factor activates the so‐called MAP kinase pathway. What does this mean?  

13. Why is signaling through tyrosine kinase receptors often associated with cancer? Which components 

of the signal transduction pathway involved? Discuss 2 pathways mentioned in Alberts.  

14. What role does 14‐3‐3 play in preventing cell death? 

15. Which receptors have serine / threonine kinase activity and which ligands bind them? 

16. Which proteins will be found in the degradation complex that is present in the cell when Frizzled 

and LRP are not bound by Wnt ? 

Product 

The answers to these questions. In  workgroup  1 we will discuss these subjects and new questions. 

   

Page 17: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

15  

1.1.3. Intro2: Clinical, pathological and molecular recapitulation of hallmarks of cancer   

Title:  LC 3: Neoplasia 

Lecturer:    Prof. dr. JVMG Bovee, dr. T Bosse  

Literature/ Background  The modules Mechanisms of Disease 2 and Human 

Pathology 

 

The basic morphological and biological properties of benign and malignant tumors have largely been 

covered in previous courses. We will review some of this knowledge during this assignment?. When we 

talk about cancer, we can cover multiple aspects ranging from epidemiological studies at  population 

level to basic molecular processes at the subcellular level. Neoplastic tissues have altered cellular 

signaling pathways leading to an increased volume of a cell pool that differs in several aspects from its 

normal counterpart. Based on features that we can visualize and measure, tumors are classified into 

different subclasses. The classification and used nomenclature is an essential language for a clear 

communication between professionals. We make a distinction between different tumors based on their 

histo‐morphological appearance and clinical behavior, but we also further classify tumors using 

nomenclature that relies on the tissue of origin. Furthermore, cellular appearance, differentiation status 

and relation to the surrounding tissue compartments is essential information that can be used for 

classification. For further stratification, the genetic changes that are responsible for alterations in the 

cellular pathways that enables neoplastic proliferation are used.  

This lecture will help you refresh your knowledge on the classification and nomenclature of tumors. 

Important aspects of tumor formation will be discussed. In addition, clinical and morphological elements 

of neoplasia will be recapitulated.  

1.1.4  Intro2: SSA 2 on Clinical, pathological and molecular recapitulation of hallmarks of 

cancer  

 

Introduction 

See LC3. 

Objectives 

- You will recapitulate the nomenclature related to classification of tumors 

- You will be able to identify major characteristics of benign and malignant tumors 

- You will be able to classify major tumor types based on their tissue of origin 

- You will be able to recall basic features of cancer epidemiology, incidence and factors that influence 

predisposition to cancer 

- You will be able to select and interpret relevant information that can be found in scientific  literature 

dealing with the molecular basis of cancer  

Page 18: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

16  

Instruction 

‐Kumar 260‐296 

‐The Hallmarks of Cancer, Hanahan and Weinberg, Cell, 2000 

Questions 

1. Explain how a pathologist can identify the tissue of origin of a tumor. 

2. Tumors can sometimes  be histologically malignant but clinically benign or histologically benign but 

clinically malignant. Explain what the differences between each situation are. Provide examples.  

3.  What are non‐epithelial malignant tumors? Give examples. 

4. How do you make a distinction between invasive and non‐invasive malignant epithelial tumors.  

5. Three major types of tumor dissemination (metastasis) have been identified. What are these, give 

examples for each. Explain the clinical relevance of these. 

6. Replication of the genome is a tightly controlled process involving multiple phases with built in 

checkpoints controlling the transition from one phase to another. Make a diagram about cell cycle 

with key proteins that are involved in both physiological and pathological processes focused  to the  

development of tumors.  

7. Study Figure 20‐10 in Alberts p. 1212. Explain why the figure legend is not correct. Draw an image 

that correctly represents the figure legend.  

8. What is the difference between hyperplasia, metaplasia, dysplasia and anaplasia? 

9. The presence of necrosis in tumors is often associated with a poorer prognosis. Explain why 

apoptosis is not associated with a poor prognosis and why it does not have such negative effect on 

prognosis? 

Product 

The answers to these questions. In  workgroup  2 we will discuss these subjects and new questions. 

   

Page 19: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

17  

1.2. Onco1: Sezary Syndrome  

1.2.1   

Title:   LC 4:  Epigenetic Therapy in Sézary Syndrome   

Lecturers:   Dr. CP Tensen, Prof. dr. MH Vermeer 

Tumor type:   Sezary Syndrome  

Mutation/mechanism:   Epigenetic modifications 

Target:   DNA‐and histone modifying enzymes 

Literature/ Background  Geutjes EJ, Bajpe PK, Bernards R. Targeting the epigenome 

for treatment of cancer. Oncogene. 2012;31:3827‐44 

Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S, Frankel SR, Chen C, Ricker JL, Arduino JM, Duvic M. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T‐cell lymphoma. J Clin Oncol. 2007;25:3109‐15. 

 

Sézary Syndrome (SS) is an aggressive form of cutaneous T‐cell lymphoma (CTCL) characterized by 

severe pruritus, generalized erythroderma, lymphadenopathy, and the presence of neoplastic CD4+ T 

cells (SzS cells) in skin, lymph nodes and peripheral blood. SS patients have a 5‐ year survival of around 

25% and novel therapies are urgently needed.  

Epigenetic modifications are defined as heritable, but potentially reversible, alterations in gene 

expression without an accompanying change in primary DNA sequence. Epigenetic regulation includes 

DNA methylation and covalent histone modifications. DNA methylation is catalyzed by DNA 

methyltransferases (DNMTs) and usually takes place at the 5’ position of the cytosine ring within CpG 

dinucleotides, leading to silencing of genes and noncoding genomic regions. Histones can undergo 

multiple post‐translational modifications by enzymes that add or remove, among others, methyl, acetyl, 

ubiquitin, and phosphor groups. Combinations of these histone modifications influence the accessebility 

of chromatin for active transcription by inducing a more ‘open’ or ‘closed’ chromatin structure. Notably, 

DNA methylation and histone modifications are intimately linked and work together to establish and 

maintain a global and local condensed or decondensed chromatin state that eventually determines gene 

expression. 

Cancer cells show aberrant epigenetic architecture with genome wide hypomethylation and site specific, 

CpG island promoter hypermethylation, which is associated with silencing of tumor suppressor genes. 

Disruption of the normal pattern of covalent histone modifications is another hallmark of cancer, 

characteristically with global reduction of trimethylation of H4K20(H4K20me3) and acetylation of 

H4K16(H4K16Ac). Combined these epigenetic pertubations result in changes in chromatin structure that 

subsequently affect gene expression. The importance of epigenetic malfunctioning in the development 

of cancer is further illustrated by the recent identification of mutations in the epigenetic machinery and 

Page 20: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

18  

specific alterations of histone editing enzymes in different types of cancer. 

Contrary to genetic mutations epigenetic alterations are potentially reversible and therapies directed at 

the enzymatic processes that control the epigenome represent an opportunity to restore the normal 

epigenetic landscape and correct aberrancies in gene expression. Specifically, DNA methylation 

inhibitors (DMI) and histone deacetylase inhibitors (HDACI) are emerging as novel therapies.  

The US Food and Drug Administration (FDA) have approved four epigenetic drugs for cancer treatment: 

two DMI (vidaza and decitabine) for patients with myelodysplastic syndrome and two HDACI (vorinstat 

and romidepsin) for patients with CTCL. Trials with (novel) HDACI and DMI as single agent or in 

combination are now underway in diverse cancer types including hematologic and solid tumors but have 

not yet reached the clinic. 

However, insight in the mechanisms through which different HDACI suppress tumors is limited and 

elucidation how epigenetic drugs exert their anti‐cancer effect will be crucial to further develop and 

optimize these therapies. Given the exceptional efficacy of HDACI treatment in CTCL, these lymphomas 

provide an attractive opportunity to investigate epigenetic treatment. 

Suggested further reading  

Willemze R, Jaffe ES, Burg G, Cerroni L, Berti E, Swerdlow SH, Ralfkiaer E, Chimenti S, Diaz‐Perez JL, Duncan LM, Grange F, Harris NL, Kempf W, Kerl H, Kurrer M, Knobler R, Pimpinelli N, Sander C, Santucci M, Sterry W, Vermeer MH, Wechsler J, Whittaker S, Meijer CJ. WHO‐EORTC classification for cutaneous lymphomas. Blood. 2005;105:3768‐85.  

1.2.2 SSA 3: Altered epigenetic landscape during cancer development  

Epigenetic mechanisms play a major role in the fine tuning of transcription and translation of genetic 

information in both time and space and thereby contribute largely to tissue specific expression, control 

of differentiation and maintaining “stemness” (stem  cell‐like features). Epigenetic modifications are 

defined as heritable, but are potentially reversible alterations in gene expression without an 

accompanying change in the primary DNA sequence. Epigenetic regulation includes DNA methylation, 

post‐translational modifications of histone proteins, chromatin remodeling and noncoding RNAs and 

controlling of alternative splicing. Cancer cells show an aberrant epigenetic architecture with genome 

wide hypo‐methylation and gene specific, CpG island promoter hyper‐methylation. Hypo‐methylation is 

associated with genomic instability and aberrant gene activation, while promoter hyper‐methylation is 

often linked with silencing of tumor suppressor genes. The importance of epigenetic malfunctioning in 

the development of cancer is further illustrated by the recent identification of mutations in DNA methyl‐

transferases (DNMTs) and TET methyl‐cytosine dioxygenase as well as alterations of histone editing 

enzymes, especially histone acetylation, in different types of cancer. Combined, these epigenetic 

perturbations result in changes in chromatin architecture that may subsequently affect gene expression. 

Page 21: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

19  

In this assignment we will discuss how tumor associated epigenetic changes can be used as a target in 

treating cancer.  

Objectives 

‐ You can explain the importance of the transcription machinery in relation to tissue specific gene 

expression 

‐ You can describe and explain different regulatory mechanisms influencing transcription 

‐ You can explain how DNA packaging can influence gene expression 

‐ You can explain how DNA methylation patterns can be transmitted from one cell generation to 

another 

‐ You can describe how alterations in the methylation status of CpG islands can be studied 

‐ You can describe how chemicals reversing epigenetic changes may influence overall gene expression 

patterns 

‐ You will be able to summarize the potential benefits of drugs that can act on epigenetic regulation 

 

Instruction 

Study:  

‐Alberts 467‐477, 1213‐1214, 1235‐1237 

‐Kumar 601 table, 616, 1184 for clinical features on Sezary syndrome 

‐Rodríguez‐Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011;17:330‐9. ‐Mark A. Dawson and Tony Kouzarides. Cancer Epigenetics: From Mechanism to Therapy Cell 150, July 6, 

2012  

Questions 

1. What is the mechanism that allows DNA methylation patterns to be inherited from progenitor cells to daughter cells? Explain the role of semiconservative replication in this process. 

2. Describe tools that allow you to identify altered epigenetic regulation.  3. MYC is an oncogene and a transcription factor. Describe mechanisms by which MYC is able to alter 

the epigenetic landscape in a tumor cell. Correlate this with your findings from assignment 1.  4. Explain the possible effect of HDAC inhibitors on cancer cells.  5. Explain possible long term side‐effects of drug influencing epigenetic controls. Investigate its role in 

normal tissue. 6. Mono‐allelic expression of genes is best known as X chromosome  inactivation. The inactivated X 

chromosome,   either  paternal or maternal, is randomly distributed between cells of any given tissue. Sometimes it is difficult to make a distinction between neoplastic or reactive lesions. Based on the information given here, design a test that can make a distinction between neoplastic an reactive lesions. Explain the concept and its limitations.   

   

Page 22: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

20  

1.3 Onco 2: Giant Cell Tumor of Bone  

1.3.1. 

Title:  LC 5: Giant cell tumor of bone  

Lecturers:   Prof. dr. JVMG Bovee, dr. PDS Dijkstra, Prof. dr. H Gelderblom 

Tumor type:   Giant Cell Tumor of Bone (GCTB)  

Mutation:   RANKL‐OPG  

Target:  RANKL   

Literature/ Background   The clinical approach toward giant cell tumor of bone. van der Heijden L, Dijkstra PD, van de Sande MA, Kroep JR, Nout RA, van Rijswijk CS, Bovée JV, Hogendoorn PC, Gelderblom H.; Oncologist. 2014 May;19(5):550‐61.  

 

Giant cell tumor of bone is a locally aggressive bone tumor . The tumor is localized at the “end of the 

bone” (epi‐metaphyseal), mainly in the long bones, especially around the knee (in >50%), followed by 

the axial skeleton, especially the sacrum. It typically affects patients >25 years. Histologically, giant cell 

tumor of bone contains an mixture of reactive round mononuclear histiocytic cells, pre‐osteoclasts, 

numerous osteoclast‐like giant cells and neoplastic spindle‐shaped mononuclear stromal cells. 

Osteoclast‐like giant cells have eosinophilic cytoplasm and vesicular nuclei (up to 20 to 50) with 

prominent nucleoli, and are often larger than normal osteoclasts. The giant cells are evenly distributed. 

The tumor is locally aggressive and may break though the cortex and invade the soft tissue and vessels. 

Metastatic spread to the lungs is rare. Intra‐laesional curettage, with or without local adjuvant is the 

treatment of choice .  

The giant cells originate from the blood and are reactive. The mononuclear cells are the proliferating 

and neoplastic cells, which highly express receptor activator of nuclear factor kappa‐B ligand (RANKL) 

thereby mediating osteoclast formation, differentiation and survival . This interplay can be blocked using 

denosumab (monoclonal antibody against RANK ligand) to which the tumors respond well. GCTB serves 

as an example in which our understanding of signal transduction and communication between the 

different cellular components of the tumor has led to a targeted treatment option specifically interfering 

with a crucial pathway to diminish tumor growth. 

 

1.3.2. SSA 4: Tumor‐stromal interaction 

Introduction 

For a long time a reductionist model has been applied in cancer studies. This approach focuses solely on 

tumor cells and the genetic and molecular alterations associated with tumor development.  Heterotypic 

cellular interactions, such as interactions between tumor cells and stromal cells‐tumor cells and stromal 

matrix components, are increasingly recognized for their role in tumor biology.  

Page 23: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

21  

 

 

 From: Hanahan and Weinberg The Hallmarks of Cancer: Cell, 100, 57–70, 2000 

 

Research on the tumor compartment (parenchyma) resulted in the mapping of several tumor cell 

related changes, but for in vivo models and especially for the treatment of cancer cells in an organism 

the influence of the stromal cells cannot be ignored. Stromal cells have an intimate relation with the 

parenchymal cells.  

Stromal fibroblast, endothelial cells and immune cells are often recruited by signaling molecules 

secreted by tumor cells.  In response, signaling molecules secreted by these stromal cells help the 

maintenance of tumor survival by generating a paracrine, self‐sustaining signal loop. In some cases, the 

effect of tumor cells on stromal cells lead to such a high accumulation of reactive stromal cells that they 

will outnumber tumor cells. This is  also known as the field effect.  

These recruited reactive cells can be partially responsible for the tissue destruction observed during 

neoplastic expansion. Discovery of signaling pathways involved in these heterotypic cellular processes 

are essential elements to translate these findings in applications to treat or temper tumor expansion. 

Drugs targeting receptor‐ligand interaction on the stromal cells might be used as a successful target for 

treatment. In view of this concept a rare benign but locally destructive bone tumor –giant cell tumor of 

bone‐ that rarely forms metastasis in the lungs and sometimes transform to high‐grade sarcoma will be 

discussed in detail. 

 

Objectives 

- You will be able to analyze how heterotopic interactions between tumor and surrounding stromal 

occur and how reactive normal cells can interact, resulting in local destruction and tumor growth.   

- You will be able explain the role of stromal cells in tumor growth and explain the involved pathways.  

- You will be able to identify potential targets that can be used to act on tumor‐stromal cell 

interaction thereby enabling novel treatment possibilities. 

-  You can deduct possible scenarios that limits the success of chosen treatment options for GCTB.  

Page 24: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

22  

Instruction 

Study: 

‐ Weinberg 703‐709 (handout with copy of pages) 

‐ Kumar: 1233‐1234; pg 1247 

‐ Alberts: pg 1470, on CD 

Questions 1. Giant cell tumor of bone is a locally destructive disease, characterized by the presence of large 

numbers of tumor associated giant cells. These giant cells have features of mature but displaced 

osteoclasts as they are present in the stromal compartment and not only on bone resorption 

surfaces. Osteoclasts are characterized by the presence of multiple nuclei.  

Describe how osteoclast activation occurs. 

2. A GCTB researcher observed high expression of RANKL by tumor cells. Make a composite tissue 

based on this knowledge, include stromal cells as target of RANKL activation.  

3. Denosumab is a humanized antibody against RANKL. What effect do you expect from this treatment 

on the tumor? Make a composite tissue and compare the major features of the normal and tumor 

tissue.  

4. Design a potential novel drug based on the schemes you have established in question 2 and 3 and 

explain their mode of action.  

5. Bisphosphonates (BP) are known to inhibit osteoclastic osteolysis in osteolytic metastatic disease 

and in osteoporosis. Bisphosphonate treatment was successfully used in GCTB. 

a. Describe the mechanisms by which bisphospohonates work 

b. Compare the mode of action of BP to Denosumab. 

 

Product 

The answers to these questions. In  workgroup  3 we will discuss these subjects and new questions. 

   

Page 25: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

23  

1.4 Onco3: Breast Cancer  

1.4.1. 

Title:  LC 6: Personalized medicine in breast cancer  

Lecturers:  Prof. dr. P Devilee, dr. JR Kroep 

Tumor type:  Breast Cancer  

Mutation:  BRCA1, BRCA2 

Target:  Poly(ADP‐ribose) Polymerase (PARP) 

Literature/ Background  Balmaña J et al: Stumbling blocks on the path to personalized medicine in breast cancer: the case of PARP inhibitors for BRCA1/2‐associated cancers. Cancer Discov. 2011 Jun;1:29‐34.; 

Juvekar A et al: Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1‐related breast cancer. Cancer Discov. 2012 Nov;2:1048‐6.;  

 

The popular vision for the future of oncology includes the rational design of therapies inhibiting 

specific targets, for which development would be less expensive and the chance of success greater 

because the agent, the target, and a population predicted to benefit maximally would be known 

from the outset. In the breast cancer arena, successful targeted therapies have entered clinical 

practice. Recently, patients with BRCA1/2‐associated cancers have been identified as eligible for 

novel investigational therapies targeting their genetic deficiency. Preclinical data, phase I results, 

and 2 phase II proof‐of‐concept studies support the continued development of PARP inhibitors, 

either as single agents or in combination with specific cytotoxic drugs in this setting. In this 

workgroup we will discuss current developments concerning PARP inhibitors in BRCA‐associated 

cancers and challenges to further development. 

BRCA1 and BRCA2 are two major genes underlying hereditary forms of breast cancer. 

Approximately 3% of all breast cancer, and 6‐8% of premenopausal breast cancer are due to 

germline mutations in these genes. An important first discovery of how both genes cause breast 

cancer was that virtually all breast tumors arising in gene carriers have lost the wild‐type allele. This 

indicated that BRCA1 and BRCA2 act as tumor suppressor genes. A second major breakthrough was 

the discovery that both genes are involved in DNA damage repair through homologous 

recombination (HR). HR is important to repair double‐strand DNA breaks, which may arise after 

replication‐fork stalling at single‐strand breaks. poly‐ADP‐ribose‐polymerases  (PARPs) constitute a 

family of enzymes involved in base‐excision repair, a key pathway in the repair of DNA single‐strand 

breaks. Because tumors arising in carriers of BRCA1 and BRCA2 mutations are predicted to be HR‐

deficient, it was hypothesized that inhibition of PARP1 in these tumors would cause an 

accumulation of DNA lesions that would not be adequately repaired, leading to apoptosis. 

Page 26: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

24  

Importantly, normal cells which have not lost BRCA‐function would not be affected by PARP 

inhibition, creating a wide therapeutic window potentially allowing minimal side‐effects of 

treatment. 

DNA‐damaging agents such as cisplatin (which forms DNA intra‐and inter‐strand breaks leading to 

double strand breaks), inhibitors of PARP and newer agents like phosphoinositide 3‐kinase (PI3K) 

inhibitors (perhaps by increased DNA damage), can be combined into a two‐hit strategy  called 

synthetic lethality. Several new agents are currently in clinical investigation (phase I‐III) and will be 

discussed. Future therapeutic directions for PARP inhibitors are focused at designing the most 

effective regimens, determining optimal combination and timing of therapy as well as identification 

of biomarkers for patient selection. Several PARP inhibitor (combinations) are under investigation 

but the exact place of this novel and exciting new class of compounds has to be determined. 

 

1.4.2. SSA 5: Personalized medicine in breast cancer  

Introduction 

Breast cancer is the most common cancer among women in the Netherlands. About 1 in 8 women will 

develop invasive breast cancer during their lifetime. Although about  14.000 new cases of invasive 

breast cancer were diagnosed in 2012 and the incidence is slightly increasing, death rates are declining 

since 1989 probably because of screening and improved treatment. 

Nearly all breast cancers are treated by surgery and adjuvant therapy. An adjuvant therapy  might 

consist of radiotherapy, chemotherapy, hormone therapy or a targeted therapy. The adjuvant therapy is 

given to kill tumor cells that have spread from the primary breast tumor.  Chemotherapy or hormone 

therapy may also be given before surgery as a neo‐adjuvant therapy with the aim to shrink the tumor to 

facilitate surgery. Recently, a lot of effort is put in the development of targeted therapies because they 

are potentially more effective while showing less side effects . Such targeted therapies however require 

a genetic and/or molecular characterization of the tumor.  Sequencing analysis of metastatic breast 

cancers revealed that 25% of the tumors have a mutation in the estrogen receptor, keeping the receptor 

active even in the absence of  estrogen. Other cancers revealed mutations in other growth promoting 

receptors offering targets for therapy.   

A relatively new targeted therapy for breast cancer is concentrating on a weakness of cancer cells that 

lost the activity of both copies of BRCA1/2 and thus a DNA repair mechanism. These cells are therefore 

dependent on another repair mechanism to survive. By blocking this repair mechanism by PARP 

inhibitors the cancer cells are forced to die.  This concept is an example of synthetic lethality. 

 

Objectives 

‐ You can explain how hereditary and non‐hereditary breast cancers may originate and develop. 

‐ You can explain the working mechanism of PARP inhibitors. 

‐ You can explain what is meant by synthetic lethality. 

‐ You can explain why targeted therapies can be successful in treating breast tumors and why they may 

(eventually) fail. 

 

 

Page 27: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

25  

Instruction 

 

Study:  

‐ Alberts, pages 295‐311 and 558‐559. 

‐ Robbins and Cotran, pages 302‐303 (genomic instability – enabler of malignancy) and 1073‐1079 (until 

Classification of breast carcinoma). 

‐ Balmana et al, Stumbling blocks on the path to personalized medicine in breast cancer: the case of 

PARP inhibitors for BRCA1/2‐associated cancers. Cancer Discov 1, 29‐34, 2011. 

‐ Brough et al, Searching for synthetic lethality in cancer. Curr Opin Genet Dev. 21, 34‐41, 2011. 

 Questions 

1. Describe possible signaling pathways involved in breast cancer and explain what is meant by triple‐

negative breast tumors. 

2. Explain why not every carrier of a BRCA1/2 mutation will develop a breast or ovarian cancer. 

3. Describe the roles of BRCA1/2 and PARP in DNA damage repair. 

4. Draw a replication fork and the result of PARP inhibition on DNA synthesis. 

5. Explain how PARP inhibition will lead to tumor cell death in patients with BRAC1/2 mutation‐

associated breast and ovarian cancer. 

6. Explain what is meant by synthetic lethality. 

7. Explain why not every type of breast cancer can be successfully treated with a PARP inhibitor. 

8. Explain why a combined therapy of a PI3K inhibitor with a PARP inhibitor can be effective in treating 

breast cancer. 

9. Unfortunately, tumors may become resistant to treatment with PARP inhibitors. Describe and 

explain the molecular routes that may lead to resistance. 

 

 

Product 

The answers to these questions. In  workgroup  4 we will discuss these subjects and new questions. 

 

 

1.4.5 SSA 6: Presentations on papers related to Onco 1‐3  

In  workgroup  5, students will give short presentations on selected papers related to Onco 1‐3. Further 

instructions and the selected papers will be given on Blackboard. 

   

Page 28: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

26  

1.5 Onco 4: Renal Cell Carcinoma  

1.5.1. 

Title:   LC 7: Ups and downs in targeted therapy based on  

inhibition of angiogenesis 

Lecturers:   Prof. dr. P ten Dijke  

Tumor type:   Renal Cell Carcinoma  

Mutation/mechanism:   VEGF 

Target:   VEGF, ALK1, endoglin 

Literature/ Background  Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000 Sep 14;407(6801):249‐57.   Bhatt RS, Atkins MB Molecular Pathways: Can Activin‐like Kinase Pathway Inhibition Enhance the Limited Efficacy of VEGF Inhibitors? Clin Cancer Res. 2014 May 7 

 

 

Four decades after Judah Folkman's postulate that angiogenesis could be a therapeutic target in cancer, 

anti‐angiogenic treatment has now evolved into a widely used, clinically approved strategy for the 

treatment of patients with advanced colorectal, breast, ovarian, renal, non–small cell lung cancer and 

glioblastoma. The identification of vascular endothelial growth factor (VEGF) as a key effector of 

endothelial cell growth and tumor vessel formation has transformed the VEGF receptor (VEGFR) 

signaling pathway to an appealing therapeutic target in preclinical experiments and clinical trials. 

However, despite initial encouraging signs from preclinical studies that sustainable benefit might be 

expected in cancer patients by targeting VEGF signaling, recent preclinical reports raised concerns 

regarding evasive adaptation. Moreover, the use of bevacizumab in adjuvant chemotherapeutic 

regimens has led to less promising results than expected. Despite our poor understanding of how 

bevacizumab acts in micrometastatic disease, numerous clinical trials (involving >20,000 cancer 

patients) are ongoing or are planned to test the therapeutic benefit in the adjuvant setting. 

Simultaneously targeting multiple steps involved in tumor angiogenesis is a potential means of 

overcoming resistance to VEGF therapy.  Activin like kinase 1 (ALK1) and endoglin (ENG) stimulate 

angiogenesis differently from VEGF. While VEGF is important for vessel initiation, ALK1 and endoglin are 

involved in vessel network formation. Thus, ALK1 and endoglin pathway inhibitors are attractive 

partners for VEGF‐based combination anti‐angiogenic therapy. Genetic evidence supports a role for this 

receptor family and its ligands, bone morphogenetic proteins (BMP) 9 and 10, in vascular development. 

Patients with genetic alterations in ALK1 or endoglin develop hereditary hemorrhagic telangiectasia, a 

disorder characterized by abnormal vessel development. There are several inhibitors of the ALK1 

pathway advancing in clinical development for treatment of various tumor types including renal cell, and 

Page 29: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

27  

ovarian carcinomas. Targeting of alternate angiogenic pathways, particularly in combination with VEGF 

pathway blockade, holds the promise of optimally inhibiting angiogenic driven tumor progression. 

 1.5.2 SSA 7: Tumor angiogenesis 

Introduction 

Tumor associated blood vessels play a key role for tumors to grow beyond a few millimeters in size, 

when diffusion of O2 and nutrients and removal of waste products becomes limited for further rapid 

growth. Moreover, tumor vessels are also needed for the spread of cancer cells to distant organs, a 

process termed metastasis.   

The extensive vascularization of tumor tissue was found to be correlated with more aggressive behavior. 

On the other hand, the existence of extensive necrosis in highly proliferative tumors, most likely caused 

by the lack of sufficient angiogenesis to keep the pace of the tumor growth, was found to be a negative 

prognostic factor. During embryonic development the overall architecture of major blood vessels is 

predominantly related to the shape and size of a developing organ, while the organization of capillary 

networks and midsize blood vessels is more dependent on local signaling based on actual needs from 

the tissue. Neovascularization is principally limited to female reproductive organs and wound healing in 

adults in healthy situations. Otherwise, adult neovascularization occurs as a result of a pathologic 

situation, such as cancer or inflammation. Identification of key stimulatory and inhibitory factors in 

angiogenesis has led to the concept of inhibiting tumor growth by restraining angiogenesis by selective 

targeting on these regulatory elements. In a way, by starving the tumor cells to death by angiogenesis 

inhibition. Despite the fact that preclinical and clinical studies have shown that inhibition of the vascular 

endothelial growth factor (VEGF) pathway impedes tumor growth, other observations indicated that 

these therapies may have limited efficacy, or even promote the invasive characteristics of tumor cells. 

Although these agents typically produce inhibition of primary tumor growth, lasting responses are rare, 

with only a moderate increase in progression‐free survival and little benefit in overall survival indicating 

that other (combinatorial) approaches should be considered for better clinical use.  

 

Objectives 

- You can explain the role of different angiogenic factors (VEGF, hypoxia, nutrition state) in blood 

vessel formation, including endothelial cell proliferation, migration and sprout formation. 

- You understand the role of other stromal components in angiogenesis, such as pericytes, 

macrophages cancer associated fibroblasts 

- You can explain how alternative pathways can lead to resistance to anti‐angiogenic treatment. 

- You can propose novel approaches to overcome these limitations in anti‐angiogenic treatment 

 

Instruction 

Study:  

‐ Alberts: 1220‐1222 

‐ Kumar pgs. 99‐102 and pgs. 297‐298 

‐ Carmeliet P, Jain RK.: Molecular mechanisms and clinical applications of angiogenesis Nature. 2011 

May 19;473(7347):298‐307. doi: 10.1038/nature10144. 

 

 

Page 30: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

28  

Questions 

1. How do tumor cells overcome the limited capillary diffusion of nutrients and oxygen in order to form a large tumor? 

2. In this figure (Fig 13.27 adapted from Weinberg) different metabolic parameters were measured in tumor cells with an increasing distance between capillaries.  Explain what sort of metabolic processes are activated to generate energy (meaning ATP) in tumor cells located approximately 90 um between two capillaries. 

  

  

3. Explain principal differences of endothelial cell features occurring in low and high grade malignant tumors. 

4. Explain the mechanisms of angiogenic switch and relate the occurrence of this phenomenon during tumor progression 

5. Clinical trials using VEGFR inhibitors showed regression of tumor size in multiple model experiments and in clinical settings. However, the long‐term effects of these treatment were not that promising due to quickly appearing resistance.  Generate a concept sheet or scheme that maps the possible pathways leading to resistance.  

6. Based on this concept sheet, design possible treatment combinations that may overcome or slow down resistance.  

 

Product 

The answers to these questions. In  workgroup  6 we will discuss these subjects and new questions. 

   

Page 31: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

29  

1.6 Onco5: Melanoma  

1.6.1.  

Title:  LC8 Targeted therapy in metastatic skin melanoma 

Lecturers:   Dr Kapiteijn, dr van Doorn 

Tumor type:   Melanoma (onco5) 

Mutation:   BRAF, NRAS and KIT 

Target:   BRAF, NRAS and KIT 

Literature/ Background  Flaherty KT, Hodi FS and Fisher DE 

From genes to drugs: targeted strategies for melanoma. Nat Rev Cancer. 2012 Apr 5;12(5):349‐61.  Ryan J. Sullivan, Keith T. Flaherty. Resistance to BRAF‐targeted therapy in melanoma European Journal of Cancer (2013) 49, 1297– 1304 

 Patients with metastatic skin melanoma have a median survival of 6 to 10 months. Few patients have a response to the classic systemic chemotherapy with dacarbazine and the majority of responses are only partial.  Melanomas are composed of several biologically distinct categories of neoplasms that differ in their clinical and histologic presentations, cell of origin, age of onset, ethnic variation, pathogenetic role of ultraviolet radiation, predisposing germline alterations, type of genomic instability, pattern of metastasis, and patterns of somatic mutation. The latter contain a set of recurrent gain‐of‐function mutations in the genes NRAS, BRAF and KIT, that tend to occur in a mutually exclusive pattern early during progression. Pharmacologic inhibition of the mitogen‐activated protein kinase (MAPK) pathway has proved to be a major advance in the treatment of metastatic melanoma. Approximately 50% of melanomas have a V600 BRAF mutation that activates the MAPK pathway. The use of vemurafenib, an agent that blocks MAPK signaling in patients with melanoma and the BRAF V600 mutation, has been associated with prolonged progression‐free survival and overall survival in randomized phase III trials involving patients with previously untreated melanoma. Despite of these advances, the majority of patients who are treated with BRAF inhibitors have disease progression within 6 to 12 months after the initiation of treatment. Several mechanisms mediating resistance to BRAF inhibitors through MAPK reactivation have been described, including the up‐regulation of bypass pathways mediated by cancer Osaka thyroid kinase (COT), development of de novo NRAS or MEK mutations, and dimerization or variant splicing of mutant BRAF V600. In addition, MAPK‐independent signaling through receptor tyrosine kinases, such as platelet derived growth factor receptor β,  insulin‐like growth factor 1 receptor, and hepatocyte growth factor receptor, has been associated with acquired resistance. Combination treatment with BRAF and MEK‐inhibitors may be a good option to overcome acquired or de novo resistance to BRAF inhibition.  Inhibitors of MAP/ERK kinase (MEK) have already shown clinical benefit alone and in combination with vemurafenib in BRAF‐mutant tumors.(15,16) MEK inhibitors alone are also effective in patients with BRAF wild‐type, NRAS‐mutant melanoma, which is associated with poor prognosis. Hodi et al. reported the final results of a multicenter phase II trial of imatinib in patients with advanced melanoma harboring mutations or amplification of the KIT proto‐oncogene. KIT is a transmembrane receptor tyrosine kinase, normally expressed on melanocytes, that plays a critical role in melanocyte 

Page 32: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

30  

migration, survival, proliferation, and differentiation. Mutations and amplification of KIT have been identified in melanomas arising from mucosal, acral or chronically sun‐damaged surfaces, and they characterize a distinct genetic subset of disease. In conclusion, the therapeutic options have increased for metastatic skin melanoma due to the fundamental discoveries of BRAF, NRAS and KIT activating mutations. BRAF‐, MEK‐ and KIT‐inhibitors are incorporated as therapeutic options already outside of studies but also still in trials. Further research will focus on the combination of targeted agents to overcome or postpone resistance. Developments in immunotherapeutical options will hopefully further increase the prognosis of metastasized skin melanoma patients.  

1.6.2 SSA 8 Cutaneous melanoma 

Introduction 

Cutaneous melanoma is considered one of the most aggressive malignancies and advanced stages are 

generally resistant to chemotherapy and radiotherapy. Most commonly, melanomas arise from 

epidermal melanocytes of the skin and can be quite easily recognized on basis of morphological features 

which can be supported by histology. Therefore, patients with early stage melanoma can be treated 

with surgical resection. Patients with distant metastasis, however, have a poor prognosis with less than 

10% of patients alive after 5 years. Because the incidence of melanoma in the Netherlands is still 

increasing (see figure below) there is an urgent need for treatment protocols. Since the underlying 

molecular aberrations in tumor cells became clear new treatment strategies have been developed some 

of which proved very successful, although for a limited period of time. 

  

 

Incidence of new patients with an invasive melanoma in the Netherlands (oncoline). 

 

In 60 – 70% of melanomas activating mutations in BRAF are found and in 10 – 15% of melanomas 

activating mutations in NRAS. Other melanomas revealed activating mutations in cKIT or loss of PTEN. It 

is based on these mutations that targeted therapies have been developed. A remarkable observation 

was that nevi have the same activating mutations in NRAS or BRAF as found in melanomas. Nevi, 

however, very rarely become malignant because of oncogene‐induced senescence. This means that 

additional changes must accumulate for tumor progression.   

 

 

Objectives 

‐ You can describe the clinical features of melanomas. 

‐ You can explain how nevi may develop into aggressive melanomas. 

Page 33: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

31  

‐ You can describe the pathways that lead to cell senescence (in general). 

‐ You can explain why and how induction of senescence may function as a tumor suppressor 

mechanism. 

‐ You can give examples of anti‐cancer drugs interfering with melanoma growth and explain their 

molecular mechanisms. 

‐ You can explain the mechanisms by which melanomas become resistant to treatment with specific 

BRAF inhibitors in order to propose additional treatment strategies. 

 

 

Instruction (selection) 

Study: 

‐ Robbins and Cotran, pages 1169‐1175. 

‐ Flaherty KT, Hodi FS and Fisher DE From genes to drugs: targeted strategies for melanoma. Nat Rev Cancer. 2012 Apr 5;12(5):349‐61.  ‐ Peeper et al., Oncogene‐induced senescence and melanoma: where do we stand? Pigment Cell 

Melanoma Res 24, 1107‐1111, 2011. 

 

Questions 

1. Explain how a clinician can morphologically distinguish a melanocytic nevus from a melanoma. 

2. Describe two pathways and the function of each protein in these pathways that regulate cell survival 

and proliferation in melanomas. (This refers to Fig 25‐9, pp1174 in Robbins.) 

3. A clinician decides to treat a melanoma containing the BRAFV600E mutation with a small molecule 

drug targeting the KIT receptor and thereby the MAPK pathway.  What do you expect to be  the 

outcome of this treatment?  

4. A striking observation was that BRAFV600E mutations are also present in nevi. Still nevi show a very 

low proliferative activity.  

a. Explain why a BRAFV600E mutation does not lead to uncontrolled cell growth.  

b. Considering the multi‐step cancer model, explain what other mutations may be needed to develop a 

melanoma. 

5. Some melanomas show a loss of p14/ARF. Explain how this loss contributes to oncogenesis.  

6. Describe how you would distinguish senescence from proliferative cells in a melanoma tissue. 

7. Standard chemotherapeutic agents can induce senescence and thereby preventing tumor 

progression. Explain why melanomas do not respond to such treatments.    

 

8. Tumor cell dormancy is a well‐known phenomenon in melanoma and other tumors. Some part of 

the signaling pathways involved in cancer dormancy is understood. Propose signaling pathways that 

might be involved in the switch between proliferation and dormancy. Explain your reasoning.  

 

Product 

The answers to these questions. In  workgroup  8 we will discuss these subjects and new questions.

Page 34: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

32  

1.7 Onco 6: Colorectal Cancer  

1.7.1  

Title:  LC9 Prevention of colorectal cancer in the era of targeted 

therapy of advanced disease 

Lecturers:   Prof. dr. Morreau, Prof. dr. van der Hoeven 

Tumor type:   Colorectal Cancer  

Mutation:  RAS, MMR (mismatch repair) 

Target:   EGFR, MMR/MSI 

Literature/ Background  Turgeon DK, Ruffin MT: Screening strategies for colorectal cancer in asymptomatic adults. Prim Care. 2014 Jun;41(2):331‐353. doi: 10.1016/j.pop.2014.02.008. Epub 2014 Mar 26. Review  Douillard JY, Oliner KS, Siena S et al.Panatinumab‐FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med. 2013 Sep 12;369(11):1023‐34. doi: 10.1056/NEJMoa1305275

 

Colorectal cancer (CRC) is mainly a disease of the elderly with half of the patients being over 70 years of 

age. In the Netherlands, partly due to an ageing population, the incidence increased to currently 14.000 

new CRC cases every year. Until now almost half of the newly diagnosed CRC patients die of this disease. 

The more advanced the stage of the disease at time of operation, the higher the chance of death. Not so 

long ago the treatment of advanced colorectal cancer (CRC) was not extremely complicated nor 

expensive. Patients with metastasized CRC to liver, lung or peritoneal were only considered to be eligible 

for palliative treatments. This landscape has changed dramatically in the last ten years.  

Genetic screening for high risk patients has been implemented in order to have them enrolled in very 

effective pre‐symptomatic surveillance programs. Advanced genetic high throughput DNA/RNA 

technology enables the identification of genetic variants that associate with an increased CRC risk. 

Population wide screening for CRC has just started in the Netherlands for individuals at the age > 55 

starting with a faecal occult blood test. Anyone positive for this test is eligible for endoscopic screening 

in search of precursor polyps (adenomas) or early carcinomas. It is expected that mortality due to CRC 

with decrease by 25%. 

Introduction of novel endoscopic equipment and image guided surgical techniques enable better 

recognition of precursor lesions during surveillance and small metastases during operations of CRC with 

a curative intent. Endoscopic surgical removal of large colon sections and superficial located mucosal 

lesions is feasible with reduction of morbidity or mortality in patients of advanced ages. 

Novel more effective chemotherapy regimens were introduced in neo‐adjuvant (preoperative) or 

adjuvant (postoperative) settings. Furthermore in rectal cancer the use of preoperative radiotherapy has 

Page 35: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

33  

become standard practice. Removal of liver and/or lung metastases is common practice as well as the 

use of lung and liver perfusion in patients not eligible for surgical removal. “HIPEC” treatment for intra‐

peritoneal metastasis can prolong life. Precision treatment of CRC using targeted small molecule drugs 

or monoclonal antibodies has become standard practice. Testing of genetic biomarkers can predict 

response of the latter drugs.  

 

1.7.2. SSA 9 Rational basis of combination treatment and biomarker tests in common cancers 

 

Introduction 

Large efforts have been made to identify frequently recurrent genetic alterations in commonly 

deregulated pathways that can be used in targeted treatment for common cancer types, such as breast 

and colorectal carcinoma (CRC). The epidermal growth factor receptor (EGFR) is expressed in about 80% 

of colorectal cancers. This observation makes EGFR  one of the most promising targeted therapy in 

colorectal cancer treatment as EGFR signaling pathways are involved in cell differentiation, proliferation 

and angiogenesis. For example, humanized anti‐EGFR antibody based therapy might be an appealing 

choice in CRC. However, approximately 30% to 50% of colorectal tumors are known to have a mutated 

KRAS gene inferring resistance to this treatment. On the other hand, still about 50% of patients with 

colorectal cancer might respond to anti‐EGFR therapy. Clinical observations, however, showed that 40% 

to 60% of patients with wild‐type KRAS tumors do not respond to such therapy indicating that further 

stratification for this particular patient group is necessary. Mutation of the BRAF gene is present in 

about up to 10% or CRC patients. 

 BRAF is a protein kinase downstream of RAS in the RAS/RAF/MEK/ERK pathway and has been observed 

in other tumor types such as melanoma, thyroid and lung cancer. The presence of BRAF mutation 

confers adverse effect on survival of patients treated with anti‐EGFR therapy. The predominant 

mutation of BRAF in CRC is identical to what is seen in melanoma, the classic V600E mutation. Targeted 

therapy using Vemurafenib, specifically inhibiting BRAFV600E mutant is highly effective in the treatment of 

melanoma. However, CRC patients with the same mutation showed only a very limited response to this 

drug and were found to have worse prognosis. Improving our understanding on the cross‐talks between 

different parts of the EGFR‐RAS‐RAF‐MEK‐ERK pathways is necessary  for the selection of the best 

treatment modality for CRC patients.  

Objectives 

- You will be able to link different aspects of signaling pathways in CRC with treatment options 

- You can explain how oncogenic mutations can lead to treatment resistance in CRC 

- You can understand the importance of biomarker selection in view of designing targeted therapy 

and identifying predictive markers in order to successfully treat cancer 

Instruction 

Study: 

‐ Alberts: 1250‐1256 

‐ Kumar: 308‐309, 323‐327, 822‐825 

‐ Prahallad et al Nature. 2012 Jan 26;483(7387):100‐3. doi: 10.1038/nature10868. 

Page 36: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

34  

‐ Wilson PM, Labonte MJ, Lenz HJ. Molecular markers in the treatment of metastatic colorectal cancer. 

Cancer J. May‐Jun 2010;16(3):262‐72. 

Questions 

1. Why is molecular stratification of cancer subtypes and not only accurate histological diagnosis  

essential for targeted therapy? 

2. Explain how an identical BRAFV600E mutation in melanoma and colorectal carcinoma results in a 

strikingly different response to a BRAF inhibitor. 

3.  EGFR is a receptor tyrosine kinase. Based on this knowledge what sort of strategies could you use to 

target EGFR? Explain. 

4. Mutation of the RAS proto‐oncogene drives cells into senescence. In view of a multistep 

carcinogenesis model describe the role of this mutation and explain what additional steps are 

necessary to transform this as an activating mutation.  

5. BRAF‐mutant CRC is associated with hypermethylation of CpG islands and minimal chromosomal 

instability, which is molecularly distinct from the traditional model of adenoma–carcinoma 

progression. Based on this information, propose a possible treatment option. Explain your choice.  

6. Some CRC cell lines with BRAFV600E show low level of EGFR expression. What sort of reaction would 

you expect by treating these cells with PLX4032, an inhibitor of BRAFV600E? Explain. 

7. Conversely, melanoma cell lines with a BRAFV600E mutation express EGFR at high level. What sort of 

reaction would you expect upon treatment of these cells with PLX4032? Explain. 

 

Product 

The answers to these questions. In  workgroup  9 we will discuss these subjects and new questions. 

 

 

1.7.3 SSA 10 Presentations on papers related to Onco4‐6  

In  workgroup  10, students will give short presentations on selected papers related to Onco4‐6. Further 

instructions and the selected papers will be given on Blackboard. 

   

Page 37: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

35  

1.8 Prevention and screening   

1.8.1. Lecture and PD 

 

Title:  LC10: Bowel cancer screening in the Netherlands 

Lecturer:  Dr. Langers (MDL) 

Literature/ Background  NA 

 In the Netherlands, there is a national program for bowel cancer screening since February 2014. All men 

and women between 55 and 75 years of age are invited to participate in this screening. Eligible 

participants are invited by mail; they receive information about the bowel cancer screening and an 

iFOBT test (immunohistochemical occult blood test), which can be sent back by mail. When the iFOBT 

test yields a positive result, the participant is referred to a local certified endoscopy centre for 

colonoscopy. Of these iFOBT‐test positive individuals, 8‐10% will have colorectal cancer. Those 

participants are asymptomatic and in most patients cancer will be discovered at an early stage and lead 

to a better survival than in symptomatic patients. A substantial number of iFOBT‐test positive individuals 

will have advanced adenomas; those are polyps that are at high risk of advancing to colorectal cancer in 

the coming years.  These polyps will  be removed by colonoscopy. Therefore, this colorectal cancer 

screening program will not only lead to a better survival of colorectal cancer patients due to a shift to 

the earlier stages of the disease, but will also prevent colorectal cancer in those individuals  who 

undergo polypectomy before cancer can develop. 

  

1.8.2. SSA 11: Prevention, Screening & Cancer Therapy  

Introduction 

There is increasing interest and evidence that cancer can (partly) be prevented by avoiding contacts with 

known carcinogens, changing lifestyle and diet. Additionally screening for tumors may lead to cures at 

an early stage of (noninvasive) cancer before a life‐threatening situation is established. Cancer 

prevention includes efforts to forestall the process that leads to cancer, along with the detection and 

treatment of precancerous conditions at their earliest, most treatable stages, and the prevention of 

new, or second primary, cancers in survivors. Cancer screening identifies either pre‐cancers or early 

cancers that are still highly amenable to treatment while the number of malignant cells is very small. 

Learning objectives 

You can describe the basic principles of cancer prevention.  You can describe the basic principles of screening  in order to discuss the pros and cons of screening   You are aware of the current cancer screenings program in the Netherlands 

You have obtained knowledge which screening methods are used for which age groups and which 

tumor types 

You can present pro and con arguments on the (public) debate on cancer screening programmes 

Page 38: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

36  

Instruction Study:  ‐ Turgeon DK, Ruffin MT: Screening strategies for colorectal cancer in asymptomatic adults. Prim Care. 2014 Jun;41(2):331‐353. doi: 10.1016/j.pop.2014.02.008. Epub 2014 Mar 26. Review 

‐Search the internet for information regarding  the public opinion on Dutch screening programmes 

 

Questions 1 Can cancer be prevented? Explain. 

2 What would be the most effective measure to decrease the total cancer burden in Western 

countries? 

3 Mention all cancer screening programs offered by the government in the Netherlands. What are the 

methods, at which ages are people tested and what is the sensitivity and selectivity of these tests?  

4   Family health history and personal health history can place a person at increased risk for 

colorectal cancer. How are high‐risk candidates identified for molecular genetic test a) using MSI for 

hereditary non‐polyposis colorectal cancer (HNPCC) / LYNCH syndrome and how for b) FAP? 

5  How are adults at increased risk for colorectal cancer screened? 

 

Clinical case  

‐For general information of diagnosis and treatment of specific cancers it may be useful to consult 

www.oncoline.nl (language can toggle between Dutch and English).  

‐You can also use Rang & Dale Ch. 55: Anticancer drugs. 

 

A 57‐year old man had a positive iFOBT. He fears that he has colorectal cancer, especially since his sister 

has had colorectal cancer. He feels otherwise well and has no complaints.  

Past Medical History: No previous operations. Social History: married and has 2 daughters. The eldest is 

26 and the youngest is 24. Intoxications: smoking 20 pack/year, alcohol occasionally. Length 1.77, weight 

98 kg.  

 1 What additional questions would you ask this men to see if he has other risk factors for colorectal 

cancer cancer?  

2 Which risk factors does our patient have? 

 

Colonoscopy revealed a tumor of the colon. Histopathology showed an invasive colorectal carcinoma.  

 3  Should he undergo future research into the genetics underlying the disease with one first degree 

family member with colorectal cancer? 

3 Explain the characteristics of curative, palliative therapy and give an example of each treatment. 

4 Explain the characteristics of neoadjuvant and adjuvant therapy and give an example of each 

treatment. 

 

Page 39: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

37  

He got a curative therapy consisting of a hemicolectomy. Histopathology revealed a T2N0M0 disease. 

No adjuvant therapy was needed.   

 

5 What can he do to maximally prevent a second tumor 

 

Unfortunately after 3 years he had complains about constipation and laboratory analysis showed an  

elevated liver function and CEA. A CT scan was performed which showed the suspicion of a recurrent 

 colon carcinoma with multiple liver metastases. 

 

6 Can we still cure the patient? 

7 Which therapeutic options do you consider in the first line? 

8 Which genetic test should be considered for second or third line therapy? 

 

Two years later there is progression of disease after 2 lines of chemotherapy 

(capecitabine/oxaliplatin/bevacizumab and irinotecan. The tumor has a k‐RAS mutation. 

He has a relative good condition and a strong therapy wish. 

 

8  Which further treatment can you offer? 

9   What is the endpoint of a phase I trial? 

10  Which antitumor effect might be expected from a phase I trial? Explain. 

 

Product 

The answers to these questions and the case. In workgroup  11 we will discuss these subjects and new 

questions. 

1.8.3.  

Title:  LC11 Drug discovery 

Lecturer:  Prof. B vd Water (LACDR) 

Literature/ Background  tba 

 

1.8.4.  

Title:  LC12  Animals in drug research 

Lecturer:  tba 

Literature/ Background  tba 

 

1.8.5. Oefententamen en vragenuurtje   

Page 40: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

38  

1.9 The Practical: drug testing in cell cultures 

Introduction 

The aim of this practical is to get acquainted with the basic principles of drug testing in cell cultures. The 

basis of such a test  is mammalian cell culture: the counting and seeding of cells. You will  learn how to 

handle cells and prepare cells for drug treatment. Various cell lines will be used and different drugs will 

be applied. Furthermore,  cell  lines with  resistant and  sensitive phenotypes  towards  targeted  therapy 

agents will be used. Cell viability assay will be used as a read out to monitor treatment.  

Planning of the practical 

Day 1 

Introduction  to cell culture and  to working  in a  laboratory. Learn how  to use a pipette, work without 

contamination, and how to seed cells into culture dishes with different densities for usage on day 2.  

Day 2 

Various drug concentrations will be applied to plates.  

Day 3, Day 4 

Cell viability read out. 

Day 5 

Interpretation of data, calculation of IC50. Preparation of short report and presentation. 

 

A detailed protocol will be provided prior to the practical.  

   

Page 41: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

39  

Theme 2: Imaging in cancer  

For more detailed information we refer to the Blackboard module of the half minor Imaging 

week 5,6,7. 

 

2.1 Week 5: Oncology and nuclear medicine     Clinical coordinator: Drs. F. Smit (Radiology) Scientific coordinator: Dr. F.W.B. van Leeuwen (Radiology) Other teachers involved: Dr. R.A. Valdes-Olmos, prof.dr. J. van der Hoeven, dr. L. Pereira, dr. K. Schimmel, drs. D. Rietbergen, drs. Y. al Younis, dr. M. Reijnierse, prof.dr. H.J. Lamb

In this week we will focus on the use of nuclear medicine techniques in the management of breast cancer patients. This will be followed by some examples that illustrate how similar imaging approaches can be applied for other cancers.

In the clinic, nuclear medicine traditionally is the discipline that provides an in-depth view based on the molecular fingerprint of a disease. Specific tumor biomarkers can be targeted using dedicated radiotracers; radiotracers can be detected in-depth with a sensitivity that is superior to any other modality. When radiotracers are tailored for a specific tumor-biomarker, molecular imaging approaches provide a personalized means for: disease staging, treatment and therapy monitoring in oncological patient groups. The nuclear medicine modalities available are complemented by other radiological modalities (or the other way around), making it of importance to place the available molecular technologies in context with anatomical and physiological (perfusion based) modalities like US, CT and MRI. Learning objectives:

Gain insight into imaging technologies available for management of breast cancer patients (literature study / self-study);

Obtain an overview of available (nuclear) molecular imaging technologies; Define requirements for tracer development; requirements for clinical tracer application;

GMP; Identify complementarity of anatomical, physiological and molecular imaging approaches; Evaluate the use of nuclear medicine technologies to guide (surgical) interventions. Case reading: Sentinel node, and PET image analysis (breast cancer, in part self-study).

Contact hours (~12 h): Workgroup (Case discussion) Lectures Lectures with patient cases Demonstration Details: Applications of nuclear medicine in oncology +week-SSA (Valdes) PET in breast oncology (vd Hoeven) Case reading PET in combination with other modalities (Smit) Gamma camera technologies (Blokland and Pereira) Tracer development (van Leeuwen/Schimmel)

Page 42: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

40  

Preclinical SPECT (Buckle) Sentinel node Case reading (Valdes + Rietbergen) Hybrid surgical guidance during SN biopsy (Van Leeuwen) Demo surgical navigation technologies (Rietbergen) Therapeutic applications nuclear medicine (Al Younis) Musculoskeletal applications / oncology (Reijnierse) Integration nuclear and radiological imaging (Smit/Lamb) Self-study hours (~28h): literature Case preparation Study exam 2 Evaluation: Exam 2 Case discussion Exam 3 (case discussion) Opinion paper (role modalities in medical imaging)

Page 43: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

41  

2.2 Week 6: Pathology and microscopic imaging       

Clinical coordinator: Prof. dr. J. Bovée (Pathology) Scientific coordinators: Prof. dr. A. Koster and dr. R. Dirks (MCB) Other teachers involved: Prof. dr. A.M. van den Maagdenberg, dr. G.M. Terwindt, Prof.dr. H.J. Tanke, Prof. H. Morreau, dr. K. Szuhai, Prof. J.A. Bruijn, dr. S. van Duinen, dr. L.A. McDonnell, dr. B. Balluf

The topic of this week is microscopic imaging, primarily electron- and light microscopy (EM and LM). In the context of “ Imaging: from Molecule to Man” these techniques provide the highest resolution (spatial details) of cells and cellular constituents. Microscopic analysis is essential in diagnostic pathology, but also in research as it provides information on molecular regulatory mechanisms in healthy and diseased cells. Ultrastructural analysis by EM unravels molecular structures at the highest level and is key to the development of novel drugs. Light microscopy, in particular fluorescence microscopy, has become a widely used research tool in combination with labeling methods as fluorescence in situ hybridization (FISH) and green fluorescent protein (GFP). EM and LM deliver the molecular information that feeds “upstream” imaging techniques as preclinical molecular imaging of laboratory animals and targeted diagnostic imaging in man.

Learning objectives:

Have an overview of microscopic technologies for the molecular evaluation of cells and tissue segments (EM, LM, FISH, MS-imaging)

Know how to apply advanced light microscopy (SCLM) in animal models: Case reading pathology/microscopy (in part self-study): Analysis of hereditary tumors / soft

tissue tumors. Contact hours (19 h): Workgroup (Case discussion) Lectures Lectures with patient cases Practicum Details: The application of EM in the diagnosis of renal disease (J.A. Bruijn) EM of mitochondrial structures in case of congenital myopathies, metabolic disorders and congenital anaemia (van Duinen) Cryo EM preparation techniques and correlative LM-EM (Koning) Headache diseases and EM (Terwindt / van den Maagdenberg:) LM and FISH (painting and translocation detection) (Tanke / Szuhai) Principles of immunohistochemistry and its application in the diagnosis of soft tissue tumours (Bovée) Advanced light microscopy (Dirks) Principle of MS-imaging (McDonnell) Current research examples of MS-Imaging (Balluf) Self-study hours (21 h):

Page 44: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

42  

Literature Case preparation Study exam 2 Evaluation: Exam 2 Case discussion Exam 3 (case discussion) Opinion paper (role modalities in medical imaging)

Page 45: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

43  

2.3 Week 7: Image guided surgery and in vivo optical imaging       

Clinical coordinator: Dr. A. Vahrmeijer (Surgery) Scientific coordinator: Prof. C. Löwik (Radiology) Other teachers involved: Prof.dr. B. Lelieveldt, dr. G. van der Pluijm, dr. L. Mezzanotte, dr. C. Janse, dr. E. Kaijzel, dr. J. Hardwick, dr. F.W.B. van Leeuwen, Prof. dr. G.P.M. Luyten

In many cases of cancer, surgery is the only curative treatment. Hereby a surgeon mainly relies on visual and palpable feedback during surgery. Illumination of the diseased area, in real-time, via fluorescence has demonstrated potential to improve the visual feedback. Next to the availability of dedicated camera systems, this application relies heavily on the availability of dedicated fluorescence tracers. Next to the use of fluorescence in a microscopic setting, in the preclinical area, whole body optical tracer imaging technologies are also rapidly emerging. Through these technologies fluorescence tracers and their potential for image guided surgery can be evaluated using a variety of preclinical cancer models. Next to fluorescence in the preclinical setting, bioluminescence imaging can be performed using genetically modified tumor cell lines and animal models. Such optical reporter systems can be used to enable researchers to non-invasively monitor molecular and cellular processes in small animals e.g. during chemotherapeutic response monitoring studies. Within the LUMC the surgical demand for optical imaging technologies goes hand-in-hand with preclinical and chemical studies allowing us to translate new optical technologies “from molecule to man”. Learning objectives:

Assess clinical and preclinical demand and possibilities for optical technologies; Evaluate requirements and limitations of optical technologies in image guided surgery

applications. Understand the role of genetic reporter systems for preclinical optical imaging (cell lines and

animal models);. Contact hours (~12 h): Lectures Demonstration (fluorescence guided surgery on animal tissue specimen). Details: Interventional desires for optical guidance + self study assignment (Vahrmeijer) Fundamental aspects of optical imaging (Löwik) Image processing of multi-modal data (Lelieveldt) The use of gene-reporter systems in therapy response monitoring (Pluijm) Bioluminescence-basics (Mezzanotte) Optical imaging during the development of treatment regimes for malaria (Janse) Fluorescence endoscopy (Hardwick) Fluorescence imaging during robotic surgery of the prostate (Van Leeuwen) Fluorescence microscopy in ophthalmology (Luyten) Fluorescence imaging during open surgery (Vahrmeijer)

Page 46: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

44  

Self-study hours (~28 h): literature Study exam 2 Evaluation: Exam 2 Opinion paper (role modalities in medical imaging)

 

In this week we will also have a group discussion on choosing your subject for the trial 

proposal and making the teams (see 3.1.1). 

   

Page 47: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

45  

Theme 3: From bench to bedside 

 

3.1 Introduction to theme 3 The design and implementation of clinical trials to test new (combinations of) therapeutic agents in 

phase I/II studies and large multicenter phase III trials in patient populations is studied in this final part 

of our ½ minor. You will design and write a clinical trial proposal for one tumor condition tutored by 

specialists working in the field. To generate ideas and design a trial proposal is a complicated and 

multistep process with the involvement of a lot of people: a real team effort. Therefore you will work in 

a team and as a team. A guideline has been developed, based on the CCMO guideline 

[http://www.ccmo.nl/], to lead you and your team members through this multistep process. Each step 

has interactive lectures with discussions related to the various aspects of clinical trials, which will give 

you the input to make another step in the process. Based on literature studies, you will be able to 

identify weak and strong elements of novel treatment strategies. You will learn how to translate 

scientific research questions into a clinically relevant research trial. Guided by clinical and non‐clinical 

tutors, you will have discussions amongst others on ethical considerations, statistical pitfalls and patient 

selection criteria. Milestones for delivering specific documents are given and discussions with and 

feedback from your tutor and peers are planned and will help you to write your clinical trial proposal. 

 

3.1.1 The start: choose the subject of your trial proposal (wk 7). 

In the previous weeks you have learned a lot about (signaling) pathways leading to 6 tumor conditions, 

their clinical implications and ways to detect and treat them by imaging techniques. In the first 4 weeks 

we have defined the 6 cancers that we will use to design a clinical trial and to write a  trial‐proposal. In a 

meeting in week 7 we will discuss which subject you would like to use for your trial proposal and make 

teams.  

Project number  Title/subject  tutors  target 

Onco1  Sezary Syndrome  Dr. CP Tensen, Prof.dr. MH 

Vermeer 

Methylation and 

deacetylation 

Onco2  Giant Cell Tumor of Bone 

(GCTB)  

Prof.dr. JVMG Bovee, dr. PDS 

Dijkstra, Prof.dr. H Gelderblom 

RANKL 

Onco3  Breast Cancer  Prof. dr. P Devilee, dr. JR Kroep  PARP, synthetic 

lethality 

Onco4  Renal Cell Carcinoma  Prof.dr. P ten Dijke, Prof.dr. S. 

Osanto 

VEGF 

Onco5  Melanoma  Dr. Kapiteijn, dr. van Doorn  B‐RAF/RAS 

Onco6  Colorectal cancer  Prof. dr. Morreau, Prof. dr. Ir. 

JJM van der Hoeven 

EGFR/k‐RAS/B‐RAF 

 

Page 48: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

46  

3.1.2 

Title:  LC 1 Introduction to clinical trial phases 

Lecturer:  Prof. H. Gelderblom (Oncology) 

Literature/ Background  See SSA 1 

 

Dr. Gelderblom, professor of experimental pharmacotherapy in oncology, will give a lecture on the different phases of drug development while using an example from clinical practice. He we also explain alternative drug development models and in what situations they can be used. After the lecture you will be able to understand the different phases and options in drug development, the specific challenges and how to handle them. 

 

3.1.3 SSA1: Principles of cancer treatment 

Introduction 

The treatment of a malignant tumor is based on the following principles. First, for patients treated with 

curative intent the primary tumor is resected or treated with chemo‐radiation to prevent local 

recurrence. Secondly, in case of relative high risk disease the killing of distant micro‐metastases by 

means of (neo)adjuvant (chemo)therapy is performed. Another treatment principle is palliation, to 

decrease symptoms and possibly to prolong survival in cases where cure is not possible.  

There are many drugs available which are potentially able to kill tumor cells. Milestones in the systemic 

therapy of solid tumors are hormonal therapy, chemotherapy, monoclonal antibodies, and targeted 

therapy. There are major differences in targets, pharmacology, efficacy and side effects between these 

drugs. Nowadays oncologists strive for a more personalized therapy. 

Despite advances in technology and understanding of biological systems, drug discovery is still a lengthy 

(about 10 years), expensive, difficult, process with low rate of new therapeutic discovery. Drug discovery 

is done by pharmaceutical companies, with research assistance from universities. The "final product" of 

drug discovery is a patent on the potential drug. The drug requires very expensive Phase I, II and III 

clinical trials, and most of them fail. New trial formats are developed in order to bring potential new 

agent earlier in the clinic [Printz C, Cancer, 2013]. 

Objectives 

You can describe the basic principles of cancer treatment modalities. 

You can describe the available treatment options and discern possible improvements. 

You can categorize anti‐cancer drugs on the basis of their mechanism of action; chemotherapy, 

hormonal therapy, targeted therapy (small molecules and monoclonal antibodies) 

You have understanding of the various trial phases. 

Instruction 

Study: 

Page 49: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

47  

Harrison’s Part 7, Chap 85 (online Waleaus library) 

Kumar & Clark, p.350 – p.355 

Rang & Dale Chaps. 55 and 60.  

Questions 1 Explain the aim of staging tumors and discuss the most commonly used staging system 

2 Why is multidisciplinary therapy often used? Can systemic therapy alone cure patients? 

3 What is the theoretical advantage of combination of systemic therapies and what 

pharmacological characteristics are important in the combination treatment? 

4 Explain why an oncologist may decide to administer targeted therapy instead of chemotherapy. 

 

Product 

The answers to these questions. In workgroup  1 we will discuss these subjects and new questions. 

During the workgroup titles of recent LUMC trial proposals are presented and the trial type or phase will 

be discussed in order to familiarize you with the various trial options. You will discuss the trial phase that 

might be used for your tumor subject and discuss your project plan with team members, peers and 

workgroup tutor. 

 

   

Page 50: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

48  

3.2. Step 1: Introduction (scientific background) & rationale  

3.2.1. SSA1: step 1 

step  subject  content  timeline 

1 Introduction 

(scientific 

background) & 

rationale 

 

-The research protocol must contain an introductory section explaining why the research is to be carried out. The scientific background and social relevance of the project should be indicated with references. 

‐The results of any pre‐clinical studies with potential clinical significance and of any clinical trials or studies relevant to the proposed research should be summarized. 

A minimum of: 

‐ 5 papers on the scientific background of the target, 

‐ 5 papers on clinical background and trials;  

‐ 2 general papers on disease;  

‐ 2 papers on the imaging technique 

are required. 

‐Convincing arguments should be given that, based on the studied literature, there  is not sufficient knowledge available to explain the problem or for the need to test what is known. 

- Perform literature 

search and discuss 

with tutor and peers 

[session 1, week 8] 

- Hand in step 1 to 

tutor [week 8] 

- Feedback tutor 

[session 2, week 9] 

- Final version [week 

10] 

 

3.2.2 SSA 2: Literature search 

Do literature search, select papers, discuss with tutor in session 1, write step 1. 

 

3.2.3  Tutor session 1 In tutor session 1 you will present your selection of papers, discuss your selection and make final choice on the papers. Discuss your thoughts on the trial phase with tutor and decide on trial phase, intended objectives and aim.  Prepare a short presentation for workgroup 2 (max 2 slides) on concise background as well as the study design and intended objectives. There will be 5 minutes for presentation and 10 minutes for discussion for each project.   

3.2.4  Tutor session 2  

Hand in step 1; receive and discuss feedback; prepare final version.  

Page 51: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

49  

3.3 Step 2: Define objectives and study parameters  

3.3.1 SSA3: step 2 

step  subject  content  timeline 

 2  2a. determine 

objective(s) 

2b. choose 

study design 

2c. determine 

study 

endpoint(s) 

‐ Determine the objectives of the study:  

they are the questions that the study is intended to answer and are based on the scientific rationale and/or hypothesis formulated. One can distinguish between the primary objective and secondary objectives:  

    The primary objective is the main question to be answered by the results of the study, which determines study design and sample size.  

   Secondary objectives are additional questions to be addressed if possible. 

‐ Determine the study design of the trial: 

Examples of intervention studies are: double‐blind 

randomized placebo‐controlled trial, cross‐over trial; 

Examples of observational studies are: (nested) case‐

control study, cohort study), the duration and setting 

of the study. 

A flow chart can be included to give an overview of 

the study design and the main procedures that 

subjects will undergo in the course of research. 

‐ Determine the endpoint(s) of the trial: 

Primary study parameter/endpoint: 

describe the main study parameter/endpoint, for 

example number of events/relapse, response rate, 

toxicity, blood hormone levels, etcetera 

Secondary study parameters/endpoints (if applicable)

describe the secondary study parameters/endpoints, 

for example number of adverse and serious adverse 

events, biomarkers etcetera 

For primary or secondary endpoint: imaging has to 

be included. 

‐ Discussion with 

tutor and peers 

[week 8] 

‐ Prepare 2 slides 

for ppt and 

discuss in WG2 

[week 8] 

‐ Info via LCs 

[week 8] 

‐ Hand in step 2 

tutor [week 8] 

‐ Feedback 

[session 2, week 

9] 

‐ Final version 

[week 10] 

 

 

 

 

Page 52: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

50  

3.3.2  WG2: Team presentation on steps 1 and 2. 

In WG2 each project team will present Step 1 and Step 2 (max 2 slides) of their proposal.   

3.3.3  LCs on selection of primary and secondary endpoints 

 

Title:  LC2:  Serum  proteomics  for  early  cancer  detection, prognosis and prediction  

Lecturer:    Dr. W. Mesker (Surgery) 

Literature/ Background    na 

 

Early diagnosis of  cancer  is of pivotal  importance  to  reduce disease‐related mortality.  There  is  great 

need  for non‐invasive screening methods, yet current screening protocols have  limited sensitivity and 

specificity. The use of serum biomarkers to discriminate cancer patients from healthy persons might be 

a tool to  improve screening programs. Once specific discriminating biomarkers have been determined, 

these can be applied to support the choice for adjuvant therapy and monitoring the response of patients 

to treatment regimens.  

Mass  spectrometry  based  proteomics  is widely  applied  as  a  technology  for mapping  and  identifying 

peptides and proteins in body fluids. One commonly used approach in proteomics is peptide and protein 

biomarker  profiling.  Biomarkers  can  be  used  as  indicator  of  disease,  based  on  abnormal  presence, 

absence or changes in genes, RNA, proteins or metabolites.  The ideal biomarker  is both highly specific 

and sensitive. For cancer screening and monitoring programs,  the  required measurements have  to be 

reliable, robust, fast, and economical. The material containing the marker(s) should be easily obtainable 

and have a patient‐friendly application. In this respect, body fluids such as serum are suitable sources of 

biomarkers.  

The translation of the DNA code results in protein expression. In contrast to the genome, the proteome 

reflects a more dynamic state of the cell . During transformation of a normal cell  into a neoplastic cell, 

distinct  changes  occur  at  the  protein  level,  including  altered  expression,  different  protein 

posttranslational modifications, changes  in specific activity and  inappropriate  localization, all of which 

may affect cellular  function  . By comparing  the protein patterns,  i.e., profiles,  in  serum  from patients 

with cancer with those obtained from healthy individuals, proteins that are the most discriminating can 

be classified. The resulting protein fingerprint has the potential to  identify a person with cancer. Mass 

spectrometry (MS) has proven to be a powerful tool in obtaining such protein fingerprints due to its high 

sensitivity and specificity. In fact, proteomic research has benefitted enormously from developments in 

MS technology and has evolved  into a new  field that  is referred to as MS‐based proteomics. Whereas 

proteomics  aims  for  the  full  identification  and  quantification  of  all  expressed  proteins,  profiling 

strategies usually are applied on sub‐sets of the proteome allowing possibilities for monitoring targeted 

therapy. 

   

Page 53: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

51  

 Title:  LC3: Compagnon diagnostics en andere voorspellende testen 

Lecturer:  Prof. K. van der Hoeven (Oncology) 

Literature/ Background   

   Geneesmiddelen tegen kanker zijn lang niet bij alle patiënten effectief. De aard van de tumor, maar ook 

de constitutie van de patiënt en Co.‐morbiditeit, spelen daarbij een belangrijke rol. Als een behandeling 

niet effectief is, moet een patiënt zo kort mogelijk aan de nadelige bijwerkingen van het medicament 

worden blootgesteld. Voor sommige behandelingen kan op grond van bepaalde bepalingen op het 

tumormateriaal van tevoren bepaald worden of een behandeling een goede kans heeft om aan te slaan. 

Bij een Gastro‐Intestinale Stromacel Tumor ( GIST), is er op het weefsel een zogenaamde c‐kit mutatie 

aanwezig. De tyrosinekinaseremmer imaginair grijpt hierop aan. Patiënten die dit hebben, zullen vrijwel 

zeker op de ingestelde behandeling reageren. Soms hebben patiënten met een melanoom ook deze 

mutatie. Zij kunnen ook op imatinib reageren, als ze de mutatie niet hebben, is het niet zinvol het 

medicijn te geven, want het werkt niet. Als patiënten met een gemetastaseerd melanoom een BRAF‐

mutatie hebben, is de kans zeer groot dat ze meer dan een half jaar goed reageren op vemurafenib, als 

de mutatie afwezig is, heeft de behandeling geen zin. Soms is het wat minder uitgesproken, bijvoorbeeld 

bij patiënten met een gemetastaseerd colorectaal carcinoom. Als derde lijnsbehandeling wordt vaak de 

Epidermal Growth Factor Receptor remmer cetuximab of panatinumab gegeven. Deze behandeling is 

lang niet bij iedereen effectief en kan ook veel bijwerkingen geven. Patiënten die in het tumorweefsel 

een zogenaamde KRAS‐mutatie hebben, zullen vrijwel zeker niet op de behandeling reageren. Patiënten 

met een zogenaamde wild‐type KRAS hebben een kans op een tijdelijk gunstige reactie, maar ze kans is 

niet zo groot als bij infiniteit bij GIST. 

Testen die een positief of negatief voorspellende waarde hebben bij behandelingen, heten compagnon 

diagnostics. Voor met name behandelingen die veel bijwerkingen hebben of voor heel dure medicijnen, 

zijn deze testen zeer gewenst, maar lang nog niet altijd beschikbaar. Als er geen voorspellende test 

beschikbaar is, is het belangrijk om snel te kunnen weten of een behandeling effectief is. Meestal wordt 

hierbij gebruik gemaakt van beeldvormende diagnostiek, maar het duurt meestal wel twee maanden 

voordat deze een uitspraak kan doen. In sommige gevallen kan gebruik gemaakt worden van een PET‐ 

scan, omdat deze ook informatie geeft over de metaboliet activiteit in een tumor. Deze verandert vaak 

sneller dan de grootte van een tumor. Tot nu toe wordt hier in de kliniek alleen bij de behandeling van 

lymfomen gebruik van gemaakt. 

  

Title:  LC4: Next generation sequencing 

Lecturer:  Dr. K. Szuhai (MCB) 

Literature/ Background  NA 

 

Page 54: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

52  

Recent advances in sequencing technologies, Next Generation Sequencing (NGS), permits sequencing of 

whole genome at affordable prices, thus  providing new opportunities in tumor stratification for 

targeted therapy. With NGS sequence information can be obtained from both from DNA and RNA, but 

detection of DNA methylation patterns is also feasible. The complexity of the resulting data obtained 

after sequencing of the whole genome can be significantly reduced by reading coding parts (exons) of 

the genome. Reading the transcribed RNA will enable detection of genes with mutations that are 

actually expressed in the tissue of interest. Sequencing of selected genes (targeted sequencing) relevant 

to cancer development, prognosis or selection of targeted therapy may further reduce the complexity of 

the data and thereby the analysis and interpretation of the results. The targeted sequencing approach, 

however, may preclude the detection of yet not identified sequence variants that could be responsible 

for resistance of treatment failure. Depending on the downstream use of the results, NGS results can be 

used as discovery tools, complementary diagnostic tool (companion diagnostics) or as a tool to identify 

predictive markers for clinical endpoints. This lecture will give an overview how different NGS 

approaches can be implemented in clinical and translational settings.  

 

 Title:  LC5: Quality of life 

Lecturer:  Dr. M. Fischer 

Literature/ Background   

 

Interest in Quality of Life has increased exponentially over the last 50 years. The term Health related 

Quality of Life (HRQoL) has been coined to refer to the impact of disease and treatment on the lives of 

patients and those in their social network (e.g. partners, children). It acknowledges the fact that 

whereas clinical outcomes, such as survival, treatment response and side effects can be assessed 

objectively, the experience of the consequences of illness and  treatment is different for every patient 

and must therefore be assessed subjectively. This lecture will discuss several issues regarding the 

definition and operationalization of the HrQoL construct. Several studies showing the importance of QoL 

for clinical practice will be reviewed and students will be introduced to commonly used general and 

disease‐specific instruments to assess HRQoL within the field of oncology.  

 

Title:  LC6: Clinical Imaging in trials 

Lecturer:  Dr. Vahrmeijer (Surgery) 

Literature/ Background  TBA 

 

3.3.4 Tutor session 2 

Hand in step 2; receive and discuss feedback; write  final version. 

   

Page 55: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

53  

3.4 Step 3: Inclusion criteria & statistics  

3.4.1 SSA4 for step 3 

step  subject  content  timeline 

3  3a. statistics  

3b. Inclusion and 

exclusion criteria  

Determine Statistical analysis: 

‐The number of subjects required for the study should be justified.  

‐The number of subjects should always be large enough to provide a reliable answer to questions addressed. Also the size of detectable differences should be of clinical relevance. 

‐The number of subjects is usually determined by the primary objective of the trial. If the sample size is determined on some other basis, then this should be made clear and justified.  

‐There are many formulas to calculate the size of the study population. It should be clear which method is used and the reasons why this method has been chosen.  

‐Also, the calculation itself should be given with a predefined p‐value (usually 5%) and power.  

‐The power of the study is the probability that the study will have a significant (positive) result – provided a positive effect exists. Ask advice from a statistician to help you with this matter. 

Determine Inclusion and exclusion criteria: 

‐The research population should be clearly defined.  

‐From what source population will the subjects be drawn?  

‐What is the likelihood that the planned number of patients can be recruited from the defined source population?  

‐If relevant, prevalence/incidence number should be given.  

‐The characteristics of the study population should be given (age, sex, tumor type, ethnic background (if relevant), etcetera) 

‐This section should also explain why the research 

‐ LC on statistics 

[week 9] 

‐ Discussion with 

tutor and peers 

[session 2, week 

9] 

‐ Hand in step 3 

tutor [week 9] 

‐ Feedback tutor 

[session 3, week 

9] 

‐ Feedback 

statistician [RC, 

week 9] 

‐ Final version 

[week 10] 

 

Page 56: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

54  

needs to be conducted with the selected population. This is particularly important where minors or incapacitated adults are to be used as subjects. 

 

 

3.4.2 LC on statistics in clinical trials 

Title:  LC7: Statistical aspects of clinical trials 

Lecturer:  Prof. Stijnen (medical statistics) 

Literature/ Background  TBA 

 

Aan de orde komen (een keuze uit) de volgende onderwerpen: power and sample size, endpoints, data 

analyse, multiplicity, statistical analysis plan, interim analyses, missing values. 

 

3.4.3 tutor session 2 

In this meeting you will discuss the team’s ideas on statistical analysis with your tutor. 

 

3.4.4 LCs on in‐ en exclusion criteria.  

Title:  LC8: In‐ and exclusion criteria 

Lecturer:  Dr. J. Kroep (Oncology) 

Literature/ Background   

 

 

Wrap up step 1 and 2 and introduction to step 3: Inclusion‐ & Exclusion‐ criteria 

Investigators must include in their protocols a detailed description of the study population. The first 

priority is that the subject population has the attributes that will make it possible to accomplish the 

purpose of the research. Eligibility criteria are meant to capture 

patients that have potential to benefit and exclude patients that may 

be harmed, are not likely to benefit or for whom it is not likely that the 

outcome variable can be assessed 

The investigator must specify inclusion and exclusion criteria for 

participation in a study. Inclusion criteria are characteristics that the 

prospective subjects must have if they are to be included in the study. 

They Identify the population in whom intervention is feasible and will 

Page 57: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

55  

produce desired outcome. Exclusion criteria are those characteristics that disqualify prospective 

subjects from inclusion in the study. Excessive exclusions should be avoided in order to decrease 

recruitment, increased complexity and costs and decreased generalizability (external validity) 

Inclusion and exclusion criteria may include factors such as age, gender, race, type and stage of disease, 

the subject’s previous treatment history, and the presence or absence (as in the case of the “healthy” or 

“control” subject) of other medical, psychosocial, or emotional conditions. Defining inclusion and 

exclusion criteria increases the likelihood of producing reliable and reproducible results, minimizes the 

likelihood of harm to the subjects, and guards against exploitation of vulnerable persons. However, trial 

participants often do not represent the patient population that clinicians see in their daily practice.  

An example of inclusion criteria for a study of chemotherapy of breast cancer subjects might be 

postmenopausal women with metastatic breast cancer. An exclusion criterion for this study might be 

abnormal renal function tests, if the combination of study drugs includes one or more that is 

nephrotoxic. In this case it would be required to specify which tests of renal function are to be 

performed to evaluate renal function and the threshold values that would disqualify the prospective 

subject (e.g., creatinine clearance below the 50 cc/min).  

Standard and specific in – and exclusion criteria will be presented and examples discussed. 

 

 Title:  LC9: The elderly in oncology 

Lecturer:  Dr. G.J. Liefers (Surgery) 

Literature/ Background   

 

Met de toename van de vergrijzing zullen er de komende jaren meer ouderen met kanker voorkomen. 

Ouderen kenmerken zicht door een grote heterogeniteit in conditie, co‐morbiditeit en voorkeur. Verder 

zijn ouderen structureel ondervertegenwoordigd in klinisch onderzoek. Hierdoor is er relatief ‘evidence’ 

voor de specifiek behandeling van deze groep patiënten. Een algemeen kenmerk van veroudering is een 

toename  van  de  ‘competing  risk  of  mortality’.  Dit  houdt  in  dat  ondanks  de  aanwezigheid  van 

bijvoorbeeld  borstkanker,  de  prognose  wordt  bepaald  door  de  co‐morbiditeit  en  niet  door  de 

maligniteit. Hierdoor worden veel ouderen met kanker over behandeld. Het tegenovergesteld gebeurt 

ook. Uit bezorgdheid voor bijwerkingen wordt soms een behandeling niet gegeven ondanks een goede 

indicatie.  In  dit  deel  van  de  cursus  gaan we  in  op  de  verschillen  tussen  jongeren  en  ouderen met 

betrekking op 

Stadium bij diagnose 

Behandeling 

Uitkomsten 

Verder zullen we de beperkingen bespreken van de huidige richtlijnen voor de behandeling van kanker 

aan de hand van  literatuur over de externe validiteit van bestaand onderzoek  in de algemene ouderen 

populatie. De moeilijkheden  en  uitdagingen  van  het  klinisch  onderzoek  bij  ouderen  én  alternatieven 

voor de randomized controlled trial (RCT) worden behandeld. 

Page 58: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

56  

 

 Title:  LC10: Young adults 

Lecturer:   Dr. J. Anninga (Pathology) 

Literature/ Background   Coccia et al. J Natl Compr Canc Netw. 2012 Sep;10(9):1112- 50. 

 

The adolescent young adults (AYAs) are a specific population in cancer diagnosis and therapy. The 

outcome of treatment is often worse compared to children and adults for unknown reasons. The AYA 

population encounters specific challenges such as impact on education, work, independency, sex, 

fertility and self‐esteem. After the lecture you will understand the characteristics and needs of this 

specific group cancer patients. 

 

3.4.5 Tutor session 3  

Hand in step 3; receive and discuss feedback; write final version 

3.4.6. RC: final questions on statistical analysis 

In this RC you can discuss your questions regarding the final version of step 3 of your trial proposal with 

a statistician. 

   

Page 59: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

57  

3.5 Step 4: Treatment and toxicity   

3.5.1 SSA5 for step 4 

step  subject  content  timeline 

4  4a. treatment: 

(non) 

investigational 

products  

4b. adverse 

effects and 

toxicity  

‐Determine Treatment of subjects: 

The protocol must contain a detailed description of the procedures that subjects will undergo in the course of the research. 

It should be clearly indicated which procedures are part of the medical treatment (non‐investigational product) and which are extra for this study (investigational product) and whether diagnostic procedures or treatment will be postponed. 

At least the following matters should be addressed (if applicable):  

- Dosage, timeline of administration etc.  - Invasive procedures to be performed 

(injections, venapunction , liquor sampling, scopic examination, biopsy, catheterisation, radiation) 

- Psychological/psychiatric investigations to be performed 

- Questionnaires (e.g. Quality of Life) - Clinical tests to be performed (e.g. HIV, 

pregnancy) -  Laboratory tests to be performed - etcetera 

‐Investigate known toxicity and adverse effects of 

used compound(s) and treatment via literature study 

(min. 5 references) 

When a clinical trial involves several study visits with 

various different procedures and tests at each visit, it 

might be helpful to develop a simple Flowchart to 

help ensure that all protocol required procedures are 

performed appropriately. It is usually helpful to list 

procedures in the order that they would be done 

during a real study visit. A flowchart that summarizes 

the expected actions of the investigator in time 

should be added 

- info via LCs 

[week 9] 

- Discussion with 

tutor and peers 

[session 3, week 

9]) 

- Hand in step 3 

tutor 

- Feedback tutor 

and peers 

[session 4, week 

10] 

- Final version 

[week 10] 

 

 

Page 60: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

58  

3.5.2 LCs on Good Clinical Research. 

 Title:  LC11: The world behind clinical research 

Lecturer:  A. Elise van Leeuwen‐Stok, PhD, managing director and 

study manager, Borstkanker Onderzoek Groep (BOOG), 

Amsterdam 

Literature/ Background   

 

Conducting clinical research and legislation on this subject in the last decade has become quite complex. 

Therefore, it is also time consuming and costly. All the more reason to make good trade‐offs before a 

research project is launched and to monitor the progress and quality thereof.   

At the end of this training you have: 

. insight into the world behind clinical research and the importance of efficient coordination, for 

instance by research groups; 

. insight into the process from a research idea to final study results; 

. insight into the roles en responsibilities of you as a researcher and a study team 

. some knowledge of Good Clinical Practice (GCP)  

 

More information on the trainer and the research group BOOG: www.boogstudycenter.nl 

 

 

Title:  LC12: Data safety and monitoring 

Lecturer:   J. Ouwerkerk, senior research nurse and trial coordinator 

Literature/ Background   

 

Data safety and monitoring are essential to run a safe and valid clinical trial. This to insure the safety of participants, the validity of data, and the appropriate termination of studies for which significant benefits or risks have been uncovered or when it appears that the trial cannot be concluded successfully. For toxicity scoring, NCI‐CTC criteria are used, currently  version 4.0. The extend and frequency of toxicity scoring should be defined in the protocol. Data managers fill in the information from the patient file in the case report form (CRF), that documents  all data on each patient participating in a clinical trial including the adverse events.  During the lecture, the NCI‐CTC toxicity definition, grading and documentation will be discussed using patient cases. Moreover, the role of data monitoring committees, for the purpose of providing independent review of clinical trial data, and Data Safety Monitoring Boards (DSMB) will be discussed.      

Page 61: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

59  

Title:  LC13: Organizing Clinical Research, a roadmap.   

Lecturer:    Dr. F.A.Veltrop‐Duits 

Literature/ Background  For more info on Good Clinical Research go to: 

http://albinusnet.lumc.nl/home/org/com/1015/ 

 

After research on new therapies or procedures in the laboratory, the most promising experimental 

treatments are moved into clinical trials. In these trials new ways will be studied to prevent, detect or 

treat disease or to improvement a standard therapy.  

But what do you have to do before you can include your first volunteer ? It is more than sending 15 

forms to the ethical committee (METC), but where to start in the labyrinth of clinical research. This 

lecture will tell you about the roadmap to organizing clinical research. 

 

3.5.3 Tutor session 3.  

Discuss treatment and toxicity with tutor. 

3.5.4 Tutor session 4  

Hand in step 4; Receive and discuss feedback; write final version. 

   

Page 62: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

60  

3.6 Step 5: Ethics  

3.6.1 SSA6 on step 5 

step  subject  content  timeline 

5  5a. Ethics 

5b. 

personal 

statement 

‐In this chapter it can be stated that the study will be 

conducted according to the principles of the Declaration 

of Helsinki (version, date, see for the most recent 

version: www.wma.net) and in accordance with the 

Medical Research Involving Human Subjects Act (WMO) 

and other guidelines, regulations and Acts  

‐In accordance to section 10, subsection 1, of the WMO, 

the investigator will inform the subjects and the 

reviewing accredited METC if anything occurs, on the 

basis of which it appears that the disadvantages of 

participation may be significantly greater than was 

foreseen in the research proposal. The study will be 

suspended pending further review by the accredited 

METC, except insofar as suspension would jeopardize 

the subjects’ health. The investigator will take care that 

all subjects are kept informed.  

‐Give a description of the recruitment and informed 

consent procedures. How and by whom (investigator, 

supervising doctor, other person) will subjects be 

informed about the study and asked for their consent? 

How much time will they be given to consider their 

decision?  

‐Write a Personal statement 

Geef een kort overzicht van de juiste wijze waarop een 

trial uitgevoerd zou moeten worden. Vervolgens vragen 

we je een kort persoonlijk statement te schrijven over 

de ethische zaken rondom een trial en bespreek jouw 

overwegingen (beargumenteerd) om al dan niet aan 

deze trial deel te nemen (max 1 A4).  

- info and 

discussion via 

LCs and WG 3 

[week 9] 

- Hand in step 5 

in final version 

[week 10] 

 

 

 

 

 

 

 

 

   

Page 63: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

61  

3.6.2 LCs on Trials and more.. 

 

 Title:  LC14: Funding voor klinisch wetenschappelijk onderzoek 

Lecturer:  Prof. K vd Hoeven (Oncology) 

Literature/ Background   

 

Voor zowel fundamenteel als voor klinisch wetenschappelijk onderzoek is in eerste instantie een goed protocol noodzakelijk. Voor klinisch wetenschappelijk onderzoek is toestemming van een medische ethische toetsingen commissie (METC) noodzakelijk. Voor beiden is daarnaast een goede financiering een vereiste. Voor klinisch wetenschappelijk onderzoek moet er financiering zijn voor alle kosten die er buiten de reguliere patientenzorg om gemaakt worden. Dat is niet alleen de interventie die onderzocht wordt, maar ook de extra kosten voor laboratoriumonderzoek en beeldvormend onderzoek. Daarnaast moet het datamangement bekostigd worden en natuurlijk ook de personen die het onderzoek uitvoeren. Soms moet er ook geld betaald worden aan patiënten die in het onderzoek participeren. Als het om een registratieonderzoek voor een medicament gaat, worden. Kosten bijna altijd gedragen door de farmaceutische industrie die het geneesmiddel ontwikkeld heeft. In ander gevallen moet externe  financiering gezocht worden. In Nederland zijn belangrijke bronnen voor de financiering van kankeronderzoek het KWF en ZONMw. Soms kunnen er ook Europese subsidies verkregen worden. Daarnaast zijn er particuliere instellingen die onderzoek in materiële zin óndersteunen. In dit deel van de minor zal voor klinisch wetenschappelijk een adequate financiële ondersteuning worden opgesteld.    

Title:  LC 15: Pharmaceutical companies 

Lecturer:  TBA 

Literature/ Background   

 

 

3.6.3 Workgroup 3: Ethics. 

Title:  Ethics of clinical research 

Lecturer:  Dr. D. Touwen 

Literature/ Background   

 

Medicine needs research, because without research we wouldn’t know what works. But clinical research 

has its own agenda and its own costs: what is good for research purposes may not be beneficial to the 

patient. Not all clinical research is therapeutic (i.e. with a reasonable expectation for the patient‐

Page 64: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

62  

participant to possibly benefit from the treatment),  and even if it is, methodological requirements may 

dictate what happens, instead of the needs of the patient/participant. For example, in a placebo 

controlled trial there is a group of participants that may be undertreated (since they receive placebo). 

Since research purposes and patients’ interests may vie for precedence in clinical trials, clinical research 

is ethically complicated, however necessary and ultimately beneficial to medicine and thus potentially 

beneficial to patient care. This is why informed consent of the participant is absolutely essential, but at 

the same time not considered to be strong enough to safeguard patients’ interests. Researchers have an 

important responsibility to weigh pros and cons, risks and benefits, before they even start to ask 

participants’ consent. Also every clinical trial must be assessed ethically by an ethical review board, a 

group of knowledgeable, experienced peers who assess whether or not the research question is 

scientifically sound and sufficiently relevant, the methodology correct and whether the risks and 

benefits for the participant are on balance.  

In oncology the question of clinical research is further complicated by several facts. 1. The studied drugs 

are highly toxic and can therefore not be administered to healthy volunteers. 2. The effectiveness of a 

trial drug can only be studied in patients who already have cancer that is not effectively treated by 

known drugs and thus are very sick. 3. These cancer patients are often desperate and therefore willing 

to go to great lengths to at least have some hope of a cure. This may mean that they consent to 

participate in the trial with a therapeutic misconception – the wrong idea that there is a hope they will 

be cured.  

In this lecture we will explore these themes in some depth, thus achieving a greater awareness of the 

responsibility of the physician/clinical researcher.  

 

3.6.4. SSA7:  write personal statement 

 

3.6.5 Tutor session 4  

Discuss final questions on step 5. Write final version. 

   

Page 65: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

63  

3.7 Step 6: Final product  

3.7.1 SSA8 on step 6 

step  subject  content  timeline 

6  Final proposal 

including a 

synopsis 

 

‐ Write a synopsis: 

the synopsis should give a clear description of the central question that the research is intended to answer and its justification.  

It should specify the hypothesis (if applicable) and the research objectives.  

In addition the synopsis should briefly describe the design, population, methods and procedures of the study.  

Finally, the nature and extent of the burden and risks should be indicated.  

The synopsis should preferably not exceed one A4 sheet. 

- Feedback tutor on 

final questions 

[session 4, week 

10] 

- Final version 

including synopsis 

[week 10] 

- Presentation of 

trial proposal 

[week 10] 

- Peer review [week 

10] 

 

 

3.7.2 SSA9  peer review 

3.7.3 SSA10  prepare presentation 

 

   

Page 66: Molecular Targets and Cancer Therapy · Half Minor Molecular Targets and Cancer Therapy September–November 2014 MODULE BOOK LUMC Bachelor third year Medicine and Biomedical Sciences

64  

3.8. The patient in clinical trials  

3.8.1 Bedside teaching 

Half of the group (the students that also follow the grand round this morning) will join one of the 

oncologists on a patient visit in the clinic or in the out‐patient clinic. With the patient the anamnesis 

about the disease and therapy and especially the study therapy will be discussed. 

Location: C10p (Department of Clinical Oncology) 

Organiser: Dr. J. Kroep 

 

3.8.2 Grand round 

Half of the group will follow the weekly grand round.  First, all patients of the department of clinical 

oncology that are admitted in the department will be discussed in the conference room with the head of 

the department, oncologists, fellows, doctors in training, students and nurses. After the ‘paper’ visit we 

will visit these patients.