MC1650-DataSheet

download MC1650-DataSheet

of 11

Transcript of MC1650-DataSheet

  • 8/13/2019 MC1650-DataSheet

    1/11

    SEMICONDUCTOR TECHNICAL DATA

    4334 REV 5Motorola, Inc. 1996

    3/93

    The MC1650 and the MC1651 are very high speed comparators utilizing

    differential amplifier inputs to sense analog signals above or below a reference

    level. An output latch provides a unique sample-hold feature. The MC1650

    provides high impedance Darlington inputs, while the MC1651 is a lowerimpedance option, with higher input slew rate and higher speed capability.

    The clock inputs (Caand Cb) operate from MECL III or MECL 10,000 digital

    levels. When Cais at a logic high level, Q0 will be at a logic high level provided

    that V1 V2(V1is more positive than V2). Q0 is the logic complement of Q0.

    When the clock input goes to a low logic level, the outputs are latched in their

    present state.

    Assessment of the performance differences between the MC1650 and the

    MC1651 may be based upon the relative behaviors shown in Figures 4 and 7.

    PD = 330 mW typ/pkg (No Load) tpd = 3.5 ns typ (MC1650)

    = 3.0 ns typ (MC1651)

    Input Slew Rate = 350 V/s (MC1650)= 500 V/ s (MC1651)

    Differential Input Voltage: 5.0 V (30C to +85C) Common Mode Range:

    3.0 V to +2.5 V (30C to +85C) (MC1651)2.5 V to +3.0 V (30C to +85C) (MC1650)

    Resolution: 20 mV (30C to +85C) Drives 50 lines

    Number at end of terminal denotes pin number for L package (Case 620).

    LOGIC DIAGRAM

    +

    +

    V1A6

    V2A5

    CA4

    V1B12

    V2B11

    CB13

    2 Q0

    3 Q0

    14 Q1

    15 Q1

    VCC = +5.0 V = PIN 7, 10

    VEE = 5.2 V = PIN 8

    GND = PIN 1, 16

    D Q

    Q

    D Q

    Q

    TRUTH TABLE

    C V1, V2 Q0n+1 Q0n+1

    H V1 V2 H L

    H V1 V2 L H

    L X X Q0n Q0n

    PIN ASSIGNMENT

    GND

    Q0

    Q0

    CA

    V2A

    V1A

    VCC

    VEE

    GND

    Q1

    Q1

    CB

    V1B

    V2B

    VCC

    NC

    1

    2

    3

    4

    5

    6

    7

    8

    16

    15

    14

    13

    12

    11

    10

    9

    L SUFFIX

    CERAMIC PACKAGE

    CASE 62010

  • 8/13/2019 MC1650-DataSheet

    2/11

    MC1650 MC1651

    4335 MOTOROLAMECL Data

    DL122 Rev 6

    ELECTRICAL CHARACTERISTICS

    Test Limits

    30C +25C +85C

    Characteristic Symbol Min Max Min Max Min Max Unit

    Power Supply Drain Current Positive

    Negative

    ICCIE

    25*

    55*

    mAdc

    Input Current MC1650

    MC1651

    Iin 10

    40

    Adc

    Input Leakage Current MC1650

    MC1651

    IR 7.0

    10.0

    Adc

    Clock Input Current IinH 350

    Output Voltage Logic 1 VOH 1.045 0.875 0.960 0.810 0.890 0.700 Vdc

    Output Voltage Logic 0 VOL 1.890 1.650 1.850 1.620 1.830 1.575 Vdc

    Threshold Voltage (Note 2.) Logic 1 VOHA 1.065 0.980 0.910 Vdc

    Threshold Voltage (Note 2.) Logic 0 VOLA 1.630 1.600 1.555 Vdc

    1. All data is for 1/2 MC1650 or MC1651, except data marked (*) which refers to the entire package.2. These tests are done in order indicated. See Figure 5.

    3. Maximum Power Supply Voltages (beyond which device life may be impaired): |VEE| + |VCC|

    12 Vdc.

    4. All Temperature VA3 VA4 VA5 VA6

    MC1650 +3.0 +2.98 2.5 2.48

    MC1651 +2.5 +2.48 3.0 2.98

  • 8/13/2019 MC1650-DataSheet

    3/11

    MC1650 MC1651

    MOTOROLA MECL DataDL122 Rev 6

    4336

    ELECTRICAL CHARACTERISTICS(continued)

    TEST VOLTAGE VALUES(Volts)

    @ Test Temperature VIHmax VILmin VIHAmin VILAmax VA1 VA2 VA3 VA4 VA5 VA6 VCC3. VEE

    3.

    30C 0.875 1.890 1.180 1.515 +0.02 +0.02 +5.0 5.2

    +25C 0.810 1.850 1.095 1.485 +0.02 +0.02 See Note 4. +5.0 5.2

    +85C 0.700 1.830 1.025 1.440 +0.02 +0.02 +5.0 5.2

    TEST VOLTAGE APPLIED TO PINS LISTED BELOW

    Characteristic Symbol VIHmax VILmin VIHAmin VILAmax VA1 VA2 VA3 VA4 VA5 VA6

    (VCC)Gnd

    Power Supply Pos

    Drain Current Neg

    ICCIE 4,13

    4,13 6,12

    6,12

    1,5,11,16

    1,5,11,16

    Input Current MC1650

    MC1651

    Iin 4 13 12 6 1,5,11,16

    Input Leakage MC1650

    Current MC1651

    IR 4 13 12 6 1,5,11,16

    Clock Input Current IinH 4 13 6,12 1,5,11,16

    Output Voltage Logic 1 VOH 4,13 6,12

    5,11

    5,11

    6,12

    6,12

    5,11

    5,11

    6,12

    5,11

    6,12

    6,12

    5,11

    1,5,11,16

    1,6,12,16

    1,161,16

    1,5,11,16

    1,6,12,16

    1,16

    1,16

    Output Voltage Logic 0 VOL 4,13

    5,11

    6,12

    6,12

    5,11

    5,11

    6,12

    6,12

    5,11

    6,12

    5,11

    5,11

    6,12

    1,5,11,16

    1,6,12,16

    1,16

    1,16

    1,5,11,16

    1,6,12,16

    1,16

    1,16

    Threshold Logic 1Voltage

    Note 2.

    VOHA 13 4

    4

    4

    4

    6

    6

    6

    6

    1,5,16

    Threshold Logic 0

    Voltage

    Note 2.

    VOLA 13 4

    4

    4

    4

    6

    6

    6

    6

    1,5,16

    1. All data is for 1/2 MC1650 or MC1651, except data marked (*) which refers to the entire package.2. These tests are done in order indicated. See Figure 5.3. Maximum Power Supply Voltages (beyond which device life may be impaired): |VEE| + |VCC| 12 Vdc.

    4. All Temperature VA3 VA4 VA5 VA6

    MC1650 +3.0 +2.98 2.5 2.48

    MC1651 +2.5 +2.48 3.0 2.98

    Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has beenestablished. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained.Outputs are terminated through a 50ohm resistor to 2.0 volts. Test procedures are shown for only one gate. The other gates are tested in thesame manner.

  • 8/13/2019 MC1650-DataSheet

    4/11

    MC1650 MC1651

    4337 MOTOROLAMECL Data

    DL122 Rev 6

    MC1651 Inputs

    VCC7, 10

    Gnd

    1

    Gnd

    16

    A

    B

    C

    2 Q

    3 Q

    4

    Clock

    RP

    8 VEE

    D

    E

    (Both Devices)A

    BC

    D

    E

    V1

    6

    V25

    MC1650 Inputs

    A

    BC

    V16

    V25

    D

    E

    CIRCUIT SCHEMATIC1/2 of Device Shown

    SWITCHING TEST VOLTAGE VALUES

    @Test (Volts)

    Temperature VR1 VR2 VR3 VX VXX VCC1 VEE

    1

    30C +2.0 +1.04 +2.0 +7.0 3.2

    +25C +2.0 See Note 4 +1.11 +2.0 +7.0 3.2

    +85C +2.0 +1.19 +2.0 +7.0 3.2

    30C +25C +85C Conditions

    Characteristic Symbol Min Max Min Max Min Max Unit (See Figures 13)

    Switching Times

    Propagation Delay

    (50% to 50%) V-Input

    tpd

    2.0 5.0 2.0 5.0 2.0 5.7

    ns VR1to V2, VXto Clock, P1to V1, or,

    VR2to V2, VXto Clock, P2to V1, or,

    VR3to V2, VXto Clock, P3to V1.

    Clock2 2.0 4.7 2.0 4.7 2.0 5.2 VR1to V2, P1to V1and P4to Clock,

    or, VR1to V1, P1to V2and P4to Clock.

    Clock Enable3 tsetup 2.5 ns

    Clock Aperture3 tap 1.5 nsR1 o 2, 1 o 1, 4 o oc

    Rise Time (10% to 90%) t+ 1.0 3.5 1.0 3.5 1.0 3.8 ns

    Fall Time (10% to 90%) t 1.0 3.0 1.0 3.0 1.0 3.3 nsVRto V2, VXto Clock, P1to V1.

    NOTES:

    1. Maximum Power Supply Voltages (beyond which device life

    may be impaired:

    VCC+ VEE 12 Vdc.2. Unused clock inputs may be tied to ground.

    3. See Figure 3.

    All Temperatures VR2

    MC1650 +4.9

    MC1651 +4.4

    VR3

    0.4

    0.9

    4.

  • 8/13/2019 MC1650-DataSheet

    5/11

    MC1650 MC1651

    MOTOROLA MECL DataDL122 Rev 6

    4338

    FIGURE 1 SWITCHING TIME TEST CIRCUIT @ 25C

    Vinto Channel A

    VR1, VR2, VR3

    P1P2P3

    VX

    P4

    +

    VCC=

    +7.0 Vdc

    VXX=

    +2.0 Vdc

    Voutto

    Channel B

    0.1 F 0.1 F

    10 7 1 16

    VEE

    0.1 F

    VEE=

    3.2 Vdc

    VCC Gnd

    D Q

    QC

    D Q

    C Q

    Note: All power supply and logic levels are shown shifted 2.0 volts positive.50 ohm termination to ground located in each scope channel input.All input and output cables to the scope are equal lengths of 50 ohm coaxial cable.

    +

    V INPUT TO OUTPUTCLOCK TO OUTPUT

    Vin

    Q

    50%

    tpd

    50%

    tpd

    90%

    t+

    10%

    50%

    t

    VIH

    VR

    VIL

    Test pulses: t +, t= 1.5 0.2 ns (10% to 90%)f = 5.0 MHz

    50% Duty Cycle

    P1

    Vin

    30 ns

    P4

    C

    Q

    50%

    tpd

    50%

    40 ns

    50%

    30 ns

    30 ns40 ns

    30 ns

    tpd

    +0.31 V

    +1.11 V

    VIH+ 2.1 V

    VR+ 2.0 V

    VIL+ 1.9 V

    P4: t +, t= 1.5 0.2 ns.

    FIGURE 2 SWITCHING AND PROPAGATION WAVEFORMS @ 25C

    The pulse levels shown are used to check ac parameters

    over the full common-mode range.

    Coax

    P1 P2 P3

    TEST PULSE LEVELS

    VIL

    VR

    VIH

    MC1650 MC1651 MC1650 MC1651 MC1650 MC1651

    +2.1 V +2.1 V +5.0 V +4.5 V 0.3 V 0.8 V

    +2.0 V +2.0 V +4.9 V +4.4 V 0.4 V 0.9 V

    +1.9 V +1.9 V +4.8 V +4.3 V 0.5 V 1.0 V

  • 8/13/2019 MC1650-DataSheet

    6/11

    MC1650 MC1651

    4339 MOTOROLAMECL Data

    DL122 Rev 6

    Vinto Channel A

    VEE= 3.2 Vdc8

    0.1 F

    50

    VEE

    D

    Vin

    0.1F

    D

    10 7

    +

    Q

    Q

    C

    VR

    Q

    Q

    16

    C

    Gnd

    +

    VCC1

    Voutto Channel B

    0.1F

    FIGURE 3 CLOCK ENABLE AND APERTURE TIME TEST CIRCUIT AND WAVEFORMS @ 25C

    VinNegative

    VinPositive

    C

    Q Positive

    Q Negative

    Clock AperatureTime

    50%V 1

    0

    1

    V

    50%

    VR+ 100 mV = +2.1 V

    Clock EnableTime

    VR= 2.0 V

    VR 100 mV = +1.9 V

    VIH= +1.11 V

    VIL= +0.31 V

    0

    Clock enable time = minimum time between analog and clock signal such that output switches, and tpd(analog to Q) is not degraded by more than 200 ps.

    Clock aperture time = time difference between clock enable time and time that output does not switch andV is less than 150 mV.

    Note: All power supply and logic levels are shown shifted 2.0 volts positive.

    50%

    ANALOG SIGNAL POSITIVE AND NEGATIVE SLEW CASE

    50 ohm termination to ground located in each scope channel input.All input and output cables to the scope are equal lengths of 50 ohms coaxial cable.

    Vdc VdcVCC= +7.0 VXX= +2.0

    tpd

    tpd

  • 8/13/2019 MC1650-DataSheet

    7/11

    MC1650 MC1651

    MOTOROLA MECL DataDL122 Rev 6

    4340

    TEST CIRCUIT

    POSITIVE PULSE DIAGRAM NEGATIVE PULSE DIAGRAM

    PROPAGATION DELAY versusPULSE AMPLITUDE

    PROPAGATION DELAY versusOVERDRIVE

    FIGURE 4 PROPAGATION DELAY (tpd) versus

    INPUT PULSE AMPLITUDE AND CONSTANT OVERDRIVE

    Vin

    Vref

    VIH

    50

    Vref= Gnd

    D Q

    1/2 Device

    C Q

    Q

    50502.0 V

    PositiveOverdrive

    Vref

    VinPA

    tpd

    50%Q

    NegativeOverdrive

    PBVin

    Vref

    tpd

    Q

    Input Switching time is constantat 1.5 ns (10% to 90%).

    +

    MC1651

    MC1650

    OVERDRIVE (VOLTS)

    0.3 0.5 0.7

    1.0

    0.04 102.50.07 1.00.20.1

    2.0

    0.0200.01

    MC1650

    tpdreferenced to PA, PB= 20 mV

    102.51.00.50.20.10.050.020.01

    4.0

    PULSE AMPLITUDE PA, PB(VOLTS)

    0

    1.0

    2.0

    3.0

    5.0

    Negative Going Pulse

    PROPAGATIOND

    ELAYINCREASE(ns)

    PROPAGATION

    DELAYINCREASE(ns)

    Overdrive Constant @ 100 mVPositive Going Pulse

    tpdis referenced to 2.5 V overdrive.

    PA, PB, Constant @ 100 mV

    Positive Overdrive (PA)Negative Overdrive (PB)

    tpdis measured from Vrefon the inputto 50% on the output.

    MC1651

  • 8/13/2019 MC1650-DataSheet

    8/11

    MC1650 MC1651

    4341 MOTOROLAMECL Data

    DL122 Rev 6

    FIGURE 5 LOGIC THRESHOLD TESTS (WAVEFORM SEQUENCE DIAGRAM)

    +0.02 V

    0.02 VVin

    VIHA

    VILA

    C

    1

    0

    1

    Q

    0

    Q

    1 2 3 4

    Sequential

    Test Number

    (See Test Table)

    DifferentialInputVin

    +

    VIH

    Vref

    D Q

    C Q

    Q

    50

    2.0 Vdc

    1/2 Device

    2.5 Vdc Vref +2.5 Vdc

    +

    Q.OUTPUTVOLTAGE(VOLTS)

    0

    1.0

    2.020 15 10 5.0

    Vref

    5.0 10 15 20

    Logic 1

    Logic 0

    Vin,DIFFERENTIAL INPUT VOLTAGE (mV)

    TYPICAL TRANSFER CURVES

    FIGURE 6 TRANSFER CHARACTERISTICS (Q versusVin)

    TEST CONFIGURATION

    Resolution

  • 8/13/2019 MC1650-DataSheet

    9/11

    MC1650 MC1651

    MOTOROLA MECL DataDL122 Rev 6

    4342

    (A) TEST CIRCUIT

    (B) TYPICAL OUTPUT LOGIC SWING versus FREQUENCY

    FIGURE 7 OUTPUT VOLTAGE SWING versusFREQUENCY

    VIH

    V1

    V2D Q

    C Q

    1/2 Device

    Q

    5050

    2.0 Vdc

    +

    50

    FREQUENCY (MHz)

    MC1650

    FREQUENCY (MHz)

    50 75 100

    MC1651

    2001000

    0.85

    0.65

    0.45

    0.25

    0.05

    10 20 30 50 70 100 200 300

    0.45

    0.25

    0.05

    10 20 30 50 70 100 200 300

    0.65

    0.85

    PEAK-TO-PEAKOUTPUT(VOLTS)

    PEAK-TO-PEAKOUTPUT(VOLTS)

    Input Voltage

    mV Peak-to-Peak

    20010075Input Voltage

    mV Peak-to-Peak

    1000

  • 8/13/2019 MC1650-DataSheet

    10/11

    MC1650 MC1651

    4343 MOTOROLAMECL Data

    DL122 Rev 6

    TEST CIRCUIT

    FIGURE 8 INPUT CURRENT versusINPUT VOLTAGE

    VCC+5.0 Vdc

    0.1 F7 10

    +

    +

    D Q

    C Q

    D Q

    C Q

    V1

    V2

    VCC VCC50

    502.0 Vdc

    VIH

    VEE Gnd Gnd

    16180.1 F

    VEE5.2 Vdc

    Iin

    Vin

    +

    I

    ,INPUTCURRENT(

    A)

    in

    Vin, INPUT VOLTAGE (VOLTS)

    Typical MC1651 (Complementary Input Grounded)

    30C

    +85C

    +25C30C

    +85C

    Typical MC1650 (Complementary Input Grounded)

    0 +112 +2

    30

    0

    5

    2.5

    5

    5

    25

    20

    Vin, INPUT VOLTAGE (VOLTS)

    15

    10

    5

    0 21122.5

    0

    2.5

    I

    ,INPUTCURRENT(

    A)

    in

    +2.5

    +25C

  • 8/13/2019 MC1650-DataSheet

    11/11

    MC1650 MC1651

    MOTOROLA MECL Data4344

    OUTLINE DIMENSIONS

    L SUFFIXCERAMIC DIP PACKAGE

    CASE 62010ISSUE V NOTES:

    1. DIMENSIONING AND TOLERANCING PERANSI Y14.5M, 1982.

    2. CONTROLLING DIMENSION: INCH.

    3. DIMENSION L TO CENTER OF LEAD WHENFORMED PARALLEL.

    4. DIMENSION F MAY NARROW TO 0.76 (0.030)WHERE THE LEAD ENTERS THE CERAMICBODY.

    A

    B

    T

    F

    E

    G

    N K

    C

    SEATING

    PLANE

    16 PLD

    SAM0.25 (0.010) T

    16 PLJSBM0.25 (0.010) T

    M

    L

    DIM MIN MAX MIN MAX

    MILLIMETERSINCHES

    A 0.750 0.785 19.05 19.93B 0.240 0.295 6.10 7.49C 0.200 5.08D 0.015 0.020 0.39 0.50E 0.050 BSC 1.27 BSCF 0.055 0.065 1.40 1.65G 0.100 BSC 2.54 BSCH 0.008 0.015 0.21 0.38

    K 0.125 0.170 3.18 4.31

    L 0.300 BSC 7.62 BSCM 0 15 0 15N 0.020 0.040 0.51 1.01

    16 9

    1 8

    Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regardingthe suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, andspecifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters which may be provided in Motoroladata sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including Typicalsmust be validated for each customer application by customers technical experts. Motorola does not convey any license under its patent rights nor the rights ofothers. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or otherapplications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury

    or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorolaand its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney feesarising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges thatMotorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an EqualOpportunity/Affirmative Action Employer.

    How to reach us:USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; TatsumiSPDJLDC, 6F SeibuButsuryuCenter,P.O. Box 5405, Denver, Colorado 80217. 18004412447 3142 Tatsumi KotoKu, Tokyo 135, Japan. 038135218315

    Mfax: [email protected] TOUCHTONE 6022446609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,INTERNET: http://DesignNET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 85226629298

    MC1650/D