KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > }...

60

Transcript of KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > }...

Page 1: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?
Page 2: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?
Page 3: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?
Page 4: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?
Page 5: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

ggff

ggff

ii

ji

4

Page 6: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

if jg fg

5

高速度ビデオでの運動解析プログラムの開発 ― CPUおよびGPUによるトレース高速化の検討 ―

Page 7: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

0

0.1

0.2

0.3

0.4

0.5

0.6

8 3 2 2 5 6 5 1 2

Proc

essi

ng ti

me

(sec

)

Numbers of rois

Performance saturation

GTX580

GTX1080Ti

6

高速度ビデオでの運動解析プログラムの開発 ― CPUおよびGPUによるトレース高速化の検討 ―

Page 8: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

7

高速度ビデオでの運動解析プログラムの開発 ― CPUおよびGPUによるトレース高速化の検討 ―

Page 9: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

Research on the long-term trend of solar radiation at Tokai University Space Information Center in Kumamoto

Shu TAKESHITA (Department of Optical and Imaging Science and Technology, School of Engineering, Tokai University)

Yasuhiko Ohba (Tokai University Space Information Center)

Keywords: solar radiation, UV-A radiation, long-term trend, suspended particle matter

To evaluate long-term trend of solar irradiance, global Total irradiance and global UV-A irradiance measured at Tokai University Space Information Center in Kumamoto from 2001 to 2015 are analyzed. Daily maximum global Total irradiance recorded over solar constant is 52 days. It is considered that this enhancement in global Total irradiance is caused by the multi-reflection between low layer cloud and ground. Long-term trend of global Total and global UV-A irradiances integrated daily from 2008 to 2015 shows statistically decreasing trend about -0.62 %/year in Total and -0.23 %/year in UV-A, respectively. It is considered that these decreasing trends caused by the increasing trend of sunshine duration. A decreasing rate of global UV-A irradiance integrated daily is smaller than that of global Total irradiance integrated daily. Long-term trend of the suspended particle matter (SPM) measured at the town office of Mashiki shows decreasing trend in this period. It suggests that decreasing trends of global Total and global UV-Airradiance integrated daily caused by the decreasing trend of sunshine duration are cancelled by the cleanness of the atmosphere.

1.1990 10

35 21 139 16 UV-B280 nm 315 nm UV-A 315 nm 400 nm 300 nm 3000 nm 1)2) 1990

32 50 130 521996 6

300 nm – 3000 nm UV-A 315 nm – 400 nmUV-B 280 nm – 315 nm 10 UV-B

3)

4)5) 2001 1 1 2015 8 31UV-A

8

Page 10: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

2.

Figure 1 MS-801UV-A MS-210A

UV-B MS-210W

Solac III10

1

UV-A1996 3

2010 2

JCSSJPD-100V-500WCS

20021 1

UV-A

3.2001 1 1

2015 8 31 53564816 89.9 % UV-A 4721

88.1 %32 49

130 4217.8 km

2001 2004

Figure 2 Global Total irradiance measured at Tokai University Space Information Center from Jan. 2001 to Aug. 2015.

(a) Daily integrated irradiance, (b) Daily maximum irradiance

Figure 1 Photograph of solar radiation monitoring system installed at Tokai University Space Information Center.

9

東海大学宇宙情報センターにおける太陽放射の長期観測結果

Page 11: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

1461 1019 69.7 %UV-A 910 62.3 %

2001 1 1 2015 8 315356 4809 89.8 %

UV-A 4658 87.8 %

UV-A-0.56 %/ UV-A

1996 3 2010 2-0.30 %/

UV-A

UV-A

-0.30 %/

Figure 231.2 MJ/m2 2004

6 13 1530 W/m2 20106 8

1362 W/m2

536)

UV-AFigure 3

1985kJ/m2 2003 5 9 88.6 W/m2

2003 5 1288.6 W/m2

365

20012004

1

Figure 3 Global UV-A irradiance measured at Tokai University Space Information Center from Jan. 2001 to Aug. 2015.

(a) Daily integrated irradiance, (b) Daily maximum irradiance

Figure 4 365-Days moving average of global Total irradiance measured at Tokai University Space Information Center from Oct. 2004 to Aug. 2015.

(a) Daily integrated irradiance, (b) Daily maximum irradiance

10

東海大学宇宙情報センターにおける太陽放射の長期観測結果

Page 12: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

2004 10 26UV-A 1

2008 9 11 200810 28 365

Figure 4 Figure 5UV-A

-0.62 %/-0.02 %/

UV-A-0.23 %/ +0.23 %/

Figure 6365 Figure 7

-0.63 %/-0.61 %/

UV-A -0.23 %/

UV-A

7)

32 48 130 487.0 km

Suspended particulate matter SPM

Figure 5 365-Days moving average of global UV-Airradiance measured at Tokai University Space Information Center from Oct. 2004 to Aug. 2015.

(a) Daily integrated irradiance, (b) Daily maximum irradiance

Figure 6 Daily integrated global Total irradiance and daily sunshine duration measured at Kumamoto Meteorological Observatory of Japan Meteorological Agency from Jan. 2001 to Aug. 2015.

(a) Daily integrated irradiance, (b) Daily sunshine duration

11

東海大学宇宙情報センターにおける太陽放射の長期観測結果

Page 13: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

2001 1 2015 8

Figure 8SPM 2011 12010

2004 11 2015 8-2.06 %/

SPM

SPMSPM

-0.02 %/UV-A +0.23 %/

UV-A

SPM

SPM

4.2001 1 2015 8

UV-A53

200410 -0.62 %/

UV-A

Figure 8 Monthly average of SPM density measured at the town office of Mashiki from Jan. 2001 to Aug. 2015.

(Up) 12-Months moving average from Oct. 2004 to Aug., (Down) Monthly average of SPM density

Figure 7 365-Days moving average of global Total irradiance and sunshine duration measured at Kumamoto Meteorological Observatory of Japan Meteorological Agency from Oct. 2004 to Aug. 2015.(a) Daily integrated irradiance, (b) Daily sunshine

duration

12

東海大学宇宙情報センターにおける太陽放射の長期観測結果

Page 14: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

-0.23 %/UV-A SPM

SPMUV-A

UV-A

UV-ASPM

UV-BUV-B SPM

SPM 3UV-B

[1] Sasaki, M., S. Takeshita et al.,, Ground-based observation of biologically active solar ultraviolet-Birradiance at 35 N latitude in Japan, J. Geomag. Geoelectr., 45, pp. 473-485 (1993).

[2] Sasaki, M., S. Takeshita, M. Sugiura and T. Sakata, An increase in the global solar ultraviolet-Birradiance at 35oN in Japan since 1990, J. Geomag. Geoelectr., 46, pp. 827-834 (1994).

[3] UV-B78 537 – 544 (1994).

[4] Sasaki, M., S. Takeshita, H. Yokotsuka and T. Sakata, Measurement of solar ultraviolet-B irradiance –Comparison between Tokai sites in Kumamoto and Hiratsuka, Photomedicine and Photobiology, 20, pp. 55 – 56 (1998).

[5] Takeshita, S. and Masako Sasaki, Solar radiation monitoring network of Tokai University, Japan, Proc. SPIE, 5156, pp. 303 – 310 (2003).

[6] 2016 37, pp.4 – 7 (2018).

[7]https://www.nies.go.jp/igreen/

13

東海大学宇宙情報センターにおける太陽放射の長期観測結果

Page 15: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

2017

2015 8 1

” ”

150

91500 30

14

Page 16: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

2018 2 7

2018 3 1

15

2017-2018年度総合科学技術研究所 活動記録

Page 17: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

2018

NASA

2

1

National Institute of Aerospace

16

2017-2018年度総合科学技術研究所 活動記録

Page 18: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

DTU)

DTU

JAXA/

100

17

2017-2018年度総合科学技術研究所 活動記録

Page 19: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

18

Page 20: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

The motion of gas-dynamic pattern after the interaction of a plane shock wave

with pulse volume discharge in shock tube

Kuznetsov A., Mursenkova I., Sysoev N. and Znamenskaya I. Lomonosov Moscow State University, Faculty of Physics

Low-temperature nonequilibrium plasma of gas discharges is widely used in many technological processes. In plasma aerodynamics, the generation of controlled plasma areas can be used to reduce dynamic and thermal loads on the surface of an aircraft, to correct the flow regime and to ignite the fuel in the engines. To influence the high-speed flows, it is necessary to know the mechanism of interaction of the shock wave with the plasma region. For nanosecond discharge, a rapid change in the state of the gas occurs, including rapid heating in the energy input region, which leads to the gas-dynamic discontinuities breakdowns at the boundaries of gas and plasma. The shadow visualization and analysis of the flow field after the interaction of pulsed discharges with a plane shock wave inside the discharge volume and outside it give information on the peculiarities of the motion of shock-wave patterns after the discharge. The dynamics of the combined volume discharge of nanosecond duration in the airflow with the plane shock wave was studied. The combined volume discharge with plasma electrodes providing uniform energy input into the gas due to the diffusive form was studied in stationary air and in the gasdynamic flow with a plane shock wave. The presence of shock waves in the discharge volume may change the discharge current regime, the spatial distribution of charged particles, and the radiation structure and duration. Shock wave with Mach number 1.9-4.5 was in the discharge volume or near it while the electric pulse was switched on. The radiation spectra and the discharge

currents were registered in the air pressure range 10-150 Torr, a pulsed voltage of 25 kV, and an electric current ~1 kA. It is shown that the electric current duration depends on shock wave position relative to the discharge gap and does not exceed 500 ns at various conditions. Because of discharge energy input, the shock breakdown occurs with the formation of shock waves and contact surfaces. The high-speed shadow imaging was used to study the flow evolution after the discharge pulse. The experimental data on shock waves and contact surfaces positions is is used to determine the energy input during the discharge electric current time.

Figure 1. Discharge photoimages and shadow images of the flow field in

the first series of experiments (x = -7 mm, left) and in the second series of

experiments (x = 8 mm, right). The left side of the marker indicates the edge of

the discharge volume. Initial shock wave moves from left to right.

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

19

Page 21: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

* *

JAXA 30 32

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

20

Page 22: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

* *

Rotating Detonation Engine, RDERDE

RDERDE

2Computational Fluid Dynamics CFD

Point Diffraction Interferometry, PDI

CFD

2

PDI

DPSSL PM SFSM RDE

PM SMBPF Pinhole

High-speed cameraPDI

Fig. A schematic diagram of quantitative visualization of rotating detonation wave with point diffraction interferometry.

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

21

Page 23: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

* *

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

22

Page 24: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

* *

2

8%

2

3

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

23

Page 25: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

* ** * **

75%10%

1/50mm 100mm 20mm

6 2CP CP

FULCOME

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

24

Page 26: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

* ** *** * ,

** , ***

WHO 3 1

Bio-degradable

Particle-resolved approach

Reynolds

2 Navier-Stokes Euler-Newton

Level set Ghost cell Fig. 1

Fig. 1Fig. 2

Reynolds (Rec = 2000) Reynolds (Rec = 6000)

Figure 1. Vorticity distribution at Re = 4000. Figure 2. Points of adhered particles at a bottom wall.

総合科学技術研究所 2018年度 第1回シンポジウム「流体工学に関するトピックス」

25

Page 27: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

* ** *** *** *** *

** *** ****

CO2 2015 2 1300CO2 12 2700 17.4%86% 15% CO2

FVV

2

5

5 SIP

50%

CFDVOF

1

1

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

26

Page 28: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

* *

4

1. (1)

Direct Numerical Simulation: DNS

DNS4 DNS

1 Re = 25002 (Q > 30)

2. SGS (2)

CAE (Large Eddy

Simulation: LES)SGS

DNSSmagorinsky LES ( / )

/ GSBardina (BM) Smagorinsky (SM)

(SSRM) 2 DNS

3. (3)

4.

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

27

Page 29: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

DNS GPU(Graphics Processing Unit)

DNS

SIDNS HCCI( )

3

(4)

1) , pn. 0507, 2pp. (2013)2) N. Fukushima, et. al., Proc. TSFP 9, pn. 1B2, 6 pp., (2015)3) , 2pp., (2018)4) N. Fukushima, et. al., Proc. Comb. Inst., 35, pp. 3009–3017 (2015).

Fig. 2 Instantaneous 2D distributions of one in-plane component of velocity at t = 3:0 and Re = 175:4 with / init =22.7: (a)

filtered DNS, (b) Smagorinsky, (c) Bardina and (d) scale self-recognition mixed models.

Fig. 1 Contour surfaces of the second invariant of

velocity gradient tensor colored by the streamwise

velocity fluctuation.

Fig. 3 Temporal developments of distribution of heat release

rate (T’init = 6.1 K, ’init= 0.00) without heat loss (a), with heat

loss (b).

(a)

(b)

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

28

Page 30: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

* ** * ,

1.

(1).

(2)

(3).

2.

Fig.1(a)60[mm] 150[mm] S0(S0: Square cylinder 0)

(2)

Fig.1(b) SH(SH: Square cylinder with Horizontal grooves) Fig.1(c)SC(SC: Square cylinder with concave)

Table1

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

29

Page 31: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

3.Fig.2

ANSYSk-

S0SH

SC

S0 SC4.2%

SH 9.8%

Fig.3

Fig.3 Cp=1 -0.6 Fig.3(a)S0 Fig.3(b) -0.6

SH -0.6 SC SH

5.(1) (1994), 3 ,

61(486)(2) (2013), (

), . 53(1), 69-74(3) (2017), The aerodynamic characteristics of concave square cylinder(Influence of aspect ratio),Pacific Symposium on Flow Visualization and Image processing 1-3.

Fig.2 Drag coefficient of each results

Fig.3 pressure coefficient distribution diagram of each square cylinders. (a) S0 (b) SC (c) SH [cp]

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

30

Page 32: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

* * *

12kim/s

Park 22

N2(2+) N2+(1-)

N2(1+)N2(2+)

N2(2+) N2(1+)

CFD N2(2+) CFDN2(1+) B

B CFD

(a) N2(2+) (b) N2(1+)

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

31

Page 33: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

* *,** * , **

Microfluidic Probe MFP

MFP

MFP (Fig. 1) MFP

MFPANSYS

100 μM Fluorescein

Fig. 1 Schematic illustrations of microfluidic device and system. (A) Microfluidic device integrated with microfluidic probe channels. (B)Microfluidic system consists of the device with the jig, syringe pumps and a microscope.

(1) M. J. Berridge, P. Lipp, M. D. Bootman, “The versatility and universality of calcium signalling”, Nature Reviews

Molecular Cell Biology, 1(1), 11-21, 2000(2) D. Juncker, H. Schmid, E. Delamarche, “Multipurpose microfluidic probe”, Nature materials, 4(8), 622-628, 2011

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

32

Page 34: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

Cn2

* **

Reynolds Mach

Background-Oriented Schlieren BOS

Cn2

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

33

Page 35: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

2Fluid Dynamic Interaction between Two Dolphins Swimming Side by Side

Yoshinobu Inada , Maako Miyake, Yukina Marushima (Department of Aeronautics and Astronautics, School of Engineering)Shotaro Nara, Shun Takahashi (Department of Prime Mover Engineering, School of Engineering)

Email: [email protected]

AbstractSwimming in company is often observed in dolphins in nature. When two dolphins such as a mother and a calf swim side by side, so-called “dolphin drafting” occurs owing to the fluid dynamic interaction between them. The dolphin drafting may be influenced by the geometrical factors such as the relative position or the size of two dolphins and the shape of their body. In this research, the fluid dynamic force acting on the mother and the calf in dolphin drafting was investigated in the various geometrical conditions by conducting wind tunnel experiments. As a result, the fluid dynamic drag acting on two dolphin models was clarified to have characteristic features of drag reduction not only for the calf but also for both the mother and the calf, and the head shape of newborn calf was optimum for reducing the drag in the dolphin drafting indicating the adaptive relationship between the behavior and the body shape.

1-3)

Fig. 1L1 , L2 ξ

η

Fig. 2(a)NACA66018

4) CAD3D

Fig. 2(b)

2L1=0.30m L2=0.65m

L1= L2=0.65mFig. 3

B/AB/A=0.79 1.24

26 Fig. 4

3)

30m/s L1

CFDOpenFOAM 3

SIMPLE

ξFig. 5 2ξ/L1

η (η=0.0945m)Fig. 5

70%

Fig. 1 Definition of parameters

(a) (b)

Fig. 2 Experimental model

Fig. 3 Head model for a calf

NACA66018NACA66018

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

34

Page 36: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

22ξ/L1 2

2

Fig. 6

25%

Fig. 6

Y70%

ξ Fig. 7Fig. 7 B/A=0.94

B/A=0.94 B/A=0.79

B/A=0.94

CFDFig. 8 Fig. 8

22

1)2) 2

3)

CFD

1) Sakai, M., Morisaka, T., Kogi, K., Hishii, T., Kohshima, S.:Fine-scale Analysis of Synchronous Breathing in Wild Indo-Pacific Bottlenose Dolphins, Behavioral Processes, 83, Issue1(2010), pp.48-53.

2) D. Weihs.: “The hydrodynamics of dolphin drafting”, Journalof Biology 2004, pp. 8.1-8.16.

3) D. Weihs, M. Ringel, and M.Victor.: “AerodynamicInteractions Between Adjacent Alender Bodies”, AIAA

Journal 2006, pp. 481-4844) Hertel, H.: Structure, Form, Movement, Reinhold; First

American Edition (1966), pp.251.

Fig. 4 Wind tunnel experiment

Fig. 5 Result of wind tunnel experiment (mother and calf)

Fig. 6 Result of wind tunnel experiment (two adults)

Fig. 7 Result of wind tunnel experiment (head shape)

Fig. 8 CFD result (pressure distribution)

C x2 /L1

0

1

2

3

4

5

-1.5 -1 -0.5 0 0.5 1 1.5

C x

2 /L1

dolphin's dragdolphin's drag(individual)two dolphins's dragtwo dolphins's drag(individual)

C x

2 /L1

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

35

Page 37: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

* ** *** ** ** * , ** , ***

Fig.1 nozzle 1case1-1 case1-2 t* = 118.8 Mach

Mach Mach 27

case1–1 Plasmajet flow case1–2 Non–heated flow

Figure 1 Distributions of velocity magnitude and Mach number at non-dimensional time of t* = 118.8.

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

36

Page 38: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

Figure 2 Distributions of velocity magnitude and Mach number at non-dimensional time of t* = 118.8, showing the influence of total temperatures of plasmajets on jet acceleration.

Figure 3 Distributions of velocity magnitude and Mach number at non-dimensional time of t* = 118.8, showing the influence of Mach numbers of plasmajets on jet acceleration.

Fig.2 nozzle 1 1000 K case2-1 2000 Kcase1-1 3000 K case2-2 4000 K case2-3 t* = 118.8Mach

Mach 1000 K 2000 K 3000 K 4000 K

Fig.3 Mach Mach 1.8 case3-1 1.9 case3-2 2.0case3-3 Mach Mach

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

37

Page 39: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

* ** *** **** * ,

** , *** , ****

3

33 –

loosely coupling 1

2 –

2)Hertz

3

Figure 2. Vortex distributions and cylinder velocities.

Figure 1. Isosurface of Q-criterion and particles.

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

38

Page 40: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

PSP

* *

(Pressure-Sensitive Paint, PSP) PSP

PSP PSP

PSP PSP ( )

PSP ( ) PSP

PSP 2 PSP

PSP PSP

2 PSP 2 PSP PSP

総合科学技術研究所 2018年度 第1回シンポジウム 「流体工学に関するトピックス」

39

Page 41: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

Reduction of aerodynamically undesirable influences due to engine cooling airflow of FF car

Takuto SAWAGUCHI, YokoTAKAKURA

(Tokai Univ., Course of Mechanical Engineering, Kitakaname , Hiratsuka,Kanagawa, 259-1292 Japan)

Key Words : Drag, Lift, Air inlet system, Underfloor velocity, Multi-point pressure measurement

Abstract The purpose of this research is to clarify the change of characteristics of aerodynamic drag and lift of an FF car with the engine loading system of width placement by the air inlet system in wind-tunnel experiments and to consider methods to reduce the drag and lift A simplified 1/5 scale car model was produced with reproduction of the engine room covered with the transparent acryl externals for visualization In the wind-tunnel experiments the moving-belt ground board was adopted to capture ground effects with force measurements by use of load cells. As results, with enlargement of the opening area, the drag increased, the front lift increased and the rear lift decreased. As the exhaust air to the underfloor increased the turbulent intensity measured by RMS increased and the underfloor velocity decreased Consequently it is considered that the higher pressure in the engine room and on the front surface increased the drag, and the higher pressure under the engine room and downward momentum of the exhaust air increased the front lift, and the lower pressure under the floor in the downstream of the engine room decreased the rear lift. It is suggested that treatment of cooling-flow exhaust is important to reduce the drag and lift.

(1, 2, 3)

(75

(4) 1920(CD) 0.8 CD 0.3

100

(4, 5, 6, 7)

(8, 9) (10)

40

Page 42: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

(11)

(12)

Engine

Transmission

radiator

Width placement for FF Length placement for FRFig.1 1/5 scale model

Fig.2 Type of engine loading system

前輪駆動自動車のエンジン冷却風による空気力学的悪影響の低減

41

Page 43: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

width of air inlet length of air inlet

180mm 0mm

180mm 20mm

180mm 40mm

180mm 60mm

180mm 80mm

180mm 100mm

full length 980mm

full width 350mm

full height 315mm

wheel base 670mm

160m

m

100m

m

30m

m

width: 180mm 85mm

length

Table 1 Specification of 1/5 scale model Table 2 Size of air inlet

350mm

Lower position Upper position Fig.3 Detail of air inlet

前輪駆動自動車のエンジン冷却風による空気力学的悪影響の低減

42

Page 44: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

(a)without radiator

(a)without radiator

(a)without radiator

(b) with radiator

(b) with radiator

(b) with radiator

Fig.4 Relation of height of air inlet and drag

Fig.5 Relation of height of air inlet and lift

Fig.6 Relation of height of air inlet and lift

0.650.670.690.710.730.750.770.790.81

0 20 40 60 80 100

coef

icie

nt o

f dra

g

heigth of air inlet mm

lower positionupper position

0.650.670.690.710.730.750.770.790.81

0 20 40 60 80 100

coef

icie

nt o

f dra

g

heigth of air inlet mm

Lower position

upper position

00.10.20.30.40.50.60.70.8

0 20 40 60 80 100

coef

ficie

nt o

f fro

nt L

ift

height of air inlet mm

lower position

upper position

00.10.20.30.40.50.60.70.8

0 20 40 60 80 100

coef

ficie

nt o

f fro

nt L

ift

height of air inlet mm

lower position

upper position

-0.25-0.2

-0.15-0.1

-0.050

0.050.1

0.150.2

0.25

0 20 40 60 80 100

coef

ficie

nt o

f rea

r lif

t

heigth of air inlet mm

lower position

upper position

-0.25-0.2

-0.15-0.1

-0.050

0.050.1

0.150.2

0.25

0 20 40 60 80 100

coef

ficie

nt o

f rea

r lif

t

heigth of air inlet mm

lower position

upper position

前輪駆動自動車のエンジン冷却風による空気力学的悪影響の低減

43

Page 45: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

Fig.7 20mm 80mm20mm

22 80mm

20mm

0 4 24 37 56 72 90 98(cm)

(a) 20mm lower position (b) 80mm lower position Fig.7 Visualization of engine room by smoke method (side view)

Fig.8 Measurement position of velocity under floor and RMS

Distance fromfront end

Air inlet

Air inlet

Unmeasurable range

前輪駆動自動車のエンジン冷却風による空気力学的悪影響の低減

44

Page 46: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

1 26

27

31

40

32

395354

61

Fig.11 Measurement points of pressure

Fig.9 Comparison of velocity under floor Fig.10 Comparison of RMS under floor

79

111315171921

0 20 40 60 80 100

velo

city

und

er fl

oor(

m/s

)

distance from front end(cm)

20mm(lower)with radiator20mm(lower)80mm(lower)with radiator80mm(lower)

00.5

11.5

22.5

33.5

44.5

5

0 20 40 60 80 100

RM

Sdistance from front end (cm)

20mm(lower)with radiator20mm(lower)80mm(lower)with radiator80mm(lower)

前輪駆動自動車のエンジン冷却風による空気力学的悪影響の低減

45

Page 47: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

Fig.12 Comparison of pressure under floorFig.13 Comparison of pressure on cabin

-200

-150

-100

-50

0

50

100

150

324252ga

uge

pres

sure

(Pa)

measurment point

20mm(lower)with radiator20mm(lower)80mm(lower)with radiator80mm(lower)

-120-100

-80-60-40-20

02040

0 10 20 30

gaug

e pr

essu

re(P

a)

measurment point

20mm(lower)with radiator20mm(lower)80mm(lower)with radiator80mm(lower)

前輪駆動自動車のエンジン冷却風による空気力学的悪影響の低減

46

Page 48: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

4, 3, 2, 1

5

6

7

8, 9, 10, 11

12

13

Fig.14 Measurement points of engine

Fig.15 Comparison of pressure on engine top Fig.16 Comparison of pressure on engine front

Fig.17 Comparison of pressure on engine bottom Fig.18 Comparison of pressure on engine back

-20

0

20

40

60

80

100

1 2 3 4

gaug

e pr

essu

re(P

a)

measurment point

20mm(lower)with radiator20mm(lower)80mm(lower)with radiator80mm(lower)

-50

0

50

100

150

200

250

300

5 6 7

gaug

e pr

essu

re(P

a)

measurement point

20mm(lower)with radiator20mm(lower)80mm(lower)with radiator80mm(lower)

-100-80-60-40-20

020406080

8 9 10 11

gaug

e pr

essu

re(P

a)

measurment point

20mm(lower)with radiator20mm(lower)80mm(lower)with radiator80mm(lower)

-200

20406080

100120

12 13

gaug

e pr

essu

re(P

a)

measurment point

20mm(lower)with radiator20mm(lower)80mm(lower)with radiator80mm(lower)

前輪駆動自動車のエンジン冷却風による空気力学的悪影響の低減

47

Page 49: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

-80

-60

-40

-20

0

20

40

60

80

0 10 20

guag

e pr

essu

rePa

)

measurement point

engine side20mmengine side80mmmissionside 20mmmissionside 80mm

190

200

210

220

230

240

250

front pressure

guag

e pr

essu

rePa

) mission side20mmmission side80mmengine side20mmengine side80mm

Back board

Fig.20 Position of back board behind engine

Fig.21 Comparison of pressure on partition board Fig.22 Comparison of pressure in vicinity of air inlet on car front

1 5 9 13 17

4 8 12 16 20

Pressure holes

Fig.19 Measurement points on back board behind engine

前輪駆動自動車のエンジン冷却風による空気力学的悪影響の低減

48

Page 50: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

(6)

前輪駆動自動車のエンジン冷却風による空気力学的悪影響の低減

49

Page 51: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

前輪駆動自動車のエンジン冷却風による空気力学的悪影響の低減

50

Page 52: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

前輪駆動自動車のエンジン冷却風による空気力学的悪影響の低減

51

Page 53: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

2017 2017

2015 2017

(CM)PZP CM A2ML1

ALSPZP

2015 2017

52

Page 54: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

2015 2017

2015 2017

53

2017年度プロジェクト研究 (総合研究機構プロジェクト研究分)課題紹介

Page 55: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

2015 2017

2015 2017

54

2017年度プロジェクト研究 (総合研究機構プロジェクト研究分)課題紹介

Page 56: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

2016 2018

2014 2015 2018

2016 2018

55

2017年度プロジェクト研究 (総合研究機構プロジェクト研究分)課題紹介

Page 57: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

2016 2018

(FDI)

FDI

2015 2017

56

2017年度プロジェクト研究 (総合研究機構プロジェクト研究分)課題紹介

Page 58: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?

2017 2019

(Los Altos)(Los Agaves)

(Pecked Cross)

16

57

2017年度プロジェクト研究 (総合研究機構プロジェクト研究分)課題紹介

Page 59: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?
Page 60: KM C364e-20190313121807î Ð å « 0£ K S Q b) Ý b)LJ _&g M G G [ É ß ¢ Û Ò c M/ v f K Z > } N *7; b K 8´3$6&$/´ î ¸ ¡ ³ Õ î ² C q#Ý K Z 8 ^ 8 K ?