CNS 4-30-10b Lunar Navigational System

18
CENG4625 Senior Projects  Semester 2 Adam Almaguer, Juan Flores, Thomas Ives, and Omar Sanjak April 30, 2010 Celestial Navigational System

Transcript of CNS 4-30-10b Lunar Navigational System

Page 1: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 1/18

CENG4625 Senior Projects – Semester 2

Adam Almaguer, Juan Flores, Thomas Ives,

and Omar Sanjak

April 30, 2010

Celestial Navigational System

Page 2: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 2/18

Agenda

• Background

• Project Motive

• Objectives

• Requirements

• System Functionality and Components

• System Simulation

•Conclusion

2

Page 3: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 3/18

Project Motive

• Current NASA navigational plans :

 – constellation of expensive satellites – 30 meter accuracy

 – Limited to large celestial bodies

•Our navigational system plan: – Provide an inexpensive alternative

 –  provide one meter accuracy position location forsurface activities

 – Useful in any environment with a solid surface

3

Page 4: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 4/18

Objectives

4

Navigation

System

 

Inexpensive

 

Portable Easy to use

 

COTS Parts

 

 Accurate

 

 AccommodateEMU limitations

 

Simple Design 

Lightweight

 

RechargableBattery

 

Limited Controls

 

Low Power Usage

 

Large coverage

 

Durable

 

Shock Resistant

 

Dust Resistant

 

Radiation Shielded

 

Space Temperature

 

Zero Gravity 

Simple Setup

 

Informative Output 

Page 5: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 5/18

Requirements

• Customer Requirements –

System can be used on Mars, and other celestial bodies – Hardware should consume little power and be

rechargeable

 – Receiver unit is easy to use

• Engineering Requirements – Hardware must be enclosed to deter foreign particles

from affecting internal and external components

 – Hardware can be charged using more than one method

 – Receiver screen output should identify itself and allbeacons within its detection range

5

Page 6: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 6/18

Requirements (Cont.)

There are several engineering requirements that our group will not beable to implement for the prototype because we do not have a way oftesting them. They are:

1. Hardware must be built to withstand cosmic radiation andmicrometeorites -This is usually done in a closed lab where componentsare bombarded with radiation and high velocity projectiles

2. Hardware will be able to function in zero gravity - We would need to testthe hardware in a near zero gravity environment like an airplane followingan elliptic flight path relative to the center of the Earth.

3. Hardware must comply with the flammability requirements of NASA-STD-6001, “Flammability, Odor, Off-gassing, and CompatibilityRequirements and Test Procedures for Materials in Environments ThatSupport Combustion”  – We would need access to a laboratory in order toconduct Determination of Off-gassed Products and Total Spacecraft Off-gassing Tests

6

Page 7: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 7/18

Navigation Concept• Automated Survey

 – Beacons transmits angle to Receiver

• Beacon zero-angle identified

• Beacon rotates clockwise

 – Receiver calculates Beacon angles

• Angles between beacons provided

 – Receiver calculates distance to beacons using

triangulation• Build Database

 – Record Beacon info (ID, distance between

beacons, zero-angle direction, health)

 – User specified locations 

• Periodic Re-Survey – Beacon angles re-measured

 – Beacon distances re-measured

 – New specified locations recorded

R

A

B

D

C

0° 

0° 

0° 

0° 

0° 

∠R0B ∠R0A∠R0D ∠R0C

7

W

X

Y

Z

Page 8: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 8/18

8

Beacon Circuit

Reset

12 8

224

Counter(74LS93)

ID Switch

4

5V

16

Preamble(AAAAH)

Parallel to Serial (74165)

Motor Assembly /w

Photo Interrupters

÷2

÷2 ÷416MHz CLK

Prism /w Lens

Buffer

Buffer

Buffer

Laser

PSK Signal Modulator

Buffer

16MHz8MHz

2MHz

30M Distance

Page 9: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 9/18

9

Beacon Message

Message (48 bit) 

   F   r   e   e

    (   8

    b   i   t   s    )

   G   u   a   r    d

    (   2

    b   i   t   s    )

   G   u   a   r    d

    (   2

    b   i   t   s    )

Extra (16 bit) 

Preamble (16 bit) ID (8 bit) Angle (12 bit) 

Page 10: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 10/18

ID

PLL Demodulator

(NE564)

Clock

Data

12UART

(IN58250N)

16

Serial toParallel

(74LS299)

/w Word

ComparePreamble Data Good

8

Angle

Baud

CLK

Navigation

Computer

(Propeller)

RS232112Kb/s

Photo Diode

Display

DC bias

Circuit

DC Blocking

Filter

Amplifier

(OPA37)

Receiver Circuit

10

Page 11: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 11/18

Receiver Microcontroller

 Runs at 3.3V

 8 32bit CPUs32 I/O pins

 One Video Generator per Core

 Programmed in SPIN or PASM

 32KB RAM and 32KB ROM

11 

Page 12: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 12/18

Receiver Process

12

Inputs to Receivers  Calculations  Outputs User:  Range of beacon  Distances between

beacons 

Set values to variables for

future calculation. Visual representation of each

beacon and its location from

the others. 

Beacon Message:  16-bit preamble  Beacon ID  Beacon Rotation number  8-bit message postamble

or Beacon Health  2-bit data separators 

Verify that message is accurate

(using Message format ) Compare message with

previous ones to get enoughinformation about current

location. 

Visual interpretation for

location of the receiver 

Page 13: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 13/18

- 8 m

1

3

2

Latitude

(-2. -.3)

- 24 m

Longitude

24 m

(-2 , 1)

56 m

(-2, 2.3)

RECEIVER DISPLAY

Vector

88 m120 m152 m

(-2, 3.6)(-2, 5)(-2, 6.3)

-5 -4 -3 -2 -1 0 1 2 3

6

5

4

3

2

1

0

13 

Page 14: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 14/18

Page 15: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 15/18

Conclusion (Cont.)

• References

 – NASA, “The Vision for Space Exploration,” Tech. Rep. NP-2004-01-334-HQ, NASA, Washington, D.C., 2004

 – Schier, James. “NASA’s Lunar Space Communication and

Navigation Architecture,” American Institute of

Aeronautics and Astronautics- 092407, NASA HQ,Washington, D.C., 2008

15

Page 16: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 16/18

16

Additional Slides

Page 17: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 17/18

17

Phase Lock Loop (PLL) Demodulator

Phase

Detector

VCOBPF

(2MHz)

Schmitt

Trigger

FSK in

(8/16MHz)Data out (2MHz)

Clock out (16 MHz)

PLL

Page 18: CNS 4-30-10b Lunar Navigational System

8/13/2019 CNS 4-30-10b Lunar Navigational System

http://slidepdf.com/reader/full/cns-4-30-10b-lunar-navigational-system 18/18