BG Phuc Chat

87
 TRƯỜNG ĐẠI HC KHOA HC HUKHOA HÓA HC BMÔN HÓA VÔ CƠ        TRN NGC TUYN BÀI GING HOÁ HC PHC CHT (COORDINATION CHEMISTRY) (TÀI LIU LƯU HÀNH BI B) Huế 2013

Transcript of BG Phuc Chat

Page 1: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 1/87

  TRƯỜNG ĐẠI HỌC KHOA HỌC HUẾKHOA HÓA HỌC

BỘ MÔN HÓA VÔ CƠ  

  

   

TRẦN NGỌC TUYỀN 

BÀI GIẢNG 

HOÁ HỌC PHỨC CHẤT(COORDINATION CHEMISTRY)

(TÀI LIỆU LƯU HÀNH BỘI BỘ)

Huế 2013

Page 2: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 2/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

1

Chương 1

MỞ ĐẦU

1. KHÁI NIỆM VỀ PHỨC CHẤT1.1. Phức chất

Các nguyên tố hoá học khi kết hợp với nhau tạo thành các hợp chất đơn giản

hay hợp chất bậc nhất, chẳng hạn: Na2O, CaO, NaCl, CuCl2... Các hợp chất đơn giản

có thể kết hợp với nhau tạo thành hợp chất phân tử hay hợp chất bậc cao, gọi là phức

chất, chẳng hạn: K 2[HgI4] (HgI2.2KI), [Ag(NH3)2]Cl (AgCl.2NH3), K 4[Fe(CN)6]

(Fe(CN)2.4KCN)... Người ta gọi chúng là hợp chất phân tử nhằm nhấn mạnh rằng

chúng không phải là các nguyên tử, các gốc mà là các phân tử kết hợp với nhau. Vấn

đề đặt ra là hợp chất phân tử nào thì được gọi là phức chất.

Theo A. Werner, phức chất là hợp chất phân tử nào bền trong dung dịch nước,

không phân huỷ hoặc chỉ phân huỷ rất ít ra các hợp phần tạo thành tạo thành hợp chất

đó.

Theo A. Grinbe: phức chất là những hợp chất phân tử xác định, khi kết hợp các

hợp phần của chúng lại thì tạo thành các ion phức tạp tích điện dương hay âm, có khả

năng tồn tại ở dạng tinh thể cũng như ở trong dung dịch. Trong trường hợp riêng, điện

tích của ion phức tạp đó có thể bằng 0.

Theo K. B. Iaximirxki: phức chất là những hợp chất tạo được các nhóm riêng

 biệt từ các nguyên tử, ion hoặc phân tử với những đặc trưng:

a)  có mặt sự phối trí

 b)  không phân ly hoàn toàn trong dung dịch

c)  có thành phần phức tạp, số phối trí và số hoá trị không trùng nhau.

Phức chất là hợp chất tạo thành giữa ion hay nguyên tử kim loại M với các phối

tử A là các phân tử hay ion khác. Số liên kết tạo thành giữa M với A nhiều hơn hóa trị

thông thường của M. Công thức chung của phức chất là: [MAa].

Ví dụ: [AgCl2]-, [Ag(NH3)2]

+, [Co(NH3)6]3+, [Fe(CO)5]

 Nhiều ion kim loại trong nước tồn tại ở dạng phức aquơ, chẳng hạn:

[Cu(H2O)6]2+, [Al(H2O)6]

3+…

Page 3: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 3/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

2

1.2. Ion trung tâm và phối tử

- Ion hay nguyên tử kim loại M được gọi là ion trung tâm. M là axit Lewis vì có

các orbital hóa trị đang còn trống, có thể nhận các cặp electron của các phân tử hay ion

khác. Ion trung tâm thường là các nguyên tử hay ion kim loại chuyển tiếp.

- Phối tử A là bazơ Lewis. A có các cặp electron tự do. Ví dụ: Cl-, CN-, H2O,

 NH3...

1.3. Cầu nội, cầu ngoại

- Dấu móc vuông [ ] được dùng để chỉ các nguyên tử liên kết với nhau bằng liên

kết cộng hóa trị, các nguyên tử đó được gọi chung là cầu nội hay ion phức.

- Nếu cầu nội mang điện thì cần kết hợp thêm các ion trái dấu để tạo hợp chất

trung hòa điện, các ion đó được gọi là cầu ngoại.

Ví dụ: Trong các phức chất [Ag(NH3)2]Cl, Na[AgCl2], các ion Na+, Cl-  là cầungoại.

 Như vậy, nếu cầu nội không mang điện thì không có cầu ngoại. Vì thế, từ phức

chất thường dùng để chỉ cầu nội.

Phức chất trung hòa là chất điện ly trong nước. Lúc đó:

- Ion phức và cầu ngoại tách khỏi nhau (điện ly hoàn toàn)

- Ion phức điện ly rất yếu, có thể bỏ qua sự điện ly của ion phức.

Ví dụ: [Ag(NH3)2]Cl  [Ag(NH3)2]+

 + Cl-

  Nếu quan tâm đến sự điện ly của ion phức, ta có cân bằng:

MAa ⇌ M + a A

Phức chất càng bền, hằng sốa

a

]A][M[

]MA[  càng lớn.

 được gọi là hằng số bền của phức chất MAa.

1.4. Số phối trí

Số phối trí của M là số liên kết mà ion trung tâm M tạo được với các phối tử. Số phối trí quan hệ mật thiết với cấu trúc hình học của phức chất (Bảng 1.1).

Số phối trí được quyết định chủ yếu bởi kích thước của ion trung tâm và phối

tử: Khi ion trung tâm M có kích thước nhỏ, phối tử A có kích thước lớn thì số phối trí

nhỏ và ngược lại.

Ví dụ: FeCl4- nhưng FeF6

3- 

Page 4: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 4/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

3

  Số phối trí > 6 ít gặp vì khi thêm một phối tử vào phức bát diện thì lực đẩy A-A

tăng nên liên kết M-A trở nên yếu.

Bảng 1. Mối quan hệ giữa số phối trí và cấu trúc hình học của phức chất

Số phối trí

Cấu trúc hình họccủa phức chất Ví dụ

2 Thẳng [CuCl2]-, [Ag(NH3)2]

+, [AuCl2]- 

4 Vuông phẳng [Ni(CN)4]2-, [PdCl4]

2-, [Pt(NH3)4]2+

4 Tứ diện [Cu(NH3)4]2+, [Zn(NH3)4]

2+, [MnCl4]2- 

6 Bát diện [Cr(H2O)6]3+, [V(CN)6]

4-, [Cu(NH3)4Cl2]+, [Co(En)3]

3+ 

1.5. Phối tử đơn răng, đa răng- Phối tử đơn răng là phối tử chỉ cho M một cặp electron tự do, mặc dù nó có

thể có nhiều cặp electron tự do.

Ví dụ: X- , OH-, CN-, SCN-, NH3, H2O...

- Phối tử đa răng là phối tử có thể cho M từ hai cặp electron trở lên.

Ví dụ:

+ Phối tử 2 răng: etylendiamin: NH2-CH2-CH2-NH2  (En), cacbonat, oxalat, bpy

(bipyridin), o-phenanthrolin...

+ Phối tử 6 răng: EDTA4- (etylen diamin tetraaxetat)

Oxalat Cacbonat   bipyridin  o-phenanthrolin 

EDTA

Page 5: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 5/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

4

  Phối tử đa răng được gọi là phối tử chelat. Chela tiếng Hy lạp nghĩa là con cua.

Phức chỉ chứa các phối tử đa răng được gọi là phức vòng càng hay chelat.

Phức chất chứa phối tử chelat bền hơn phức chỉ có phối tử đơn răng (Hiệu ứng chelat).

Ví dụ: (1) [Ni(H2O)6]2+

 + 6 NH3  [Ni(NH3)6]2+

 + 6 H2O  = 4.108

(2) [Ni(H2O)6]2+ + 3 en  [Ni(en)3]

2+ + 6 H2O  = 2.1018 

Có nhiều cách giải thích, nhưng đơn giản nhất là giải thích theo entropy:

Ở phản ứng (1), 7 mol chất tạo thành 7 mol sản phẩm. Ở phản ứng (2), 4 mol

chất tạo thành 7 mol sản phẩm: entropy tăng hơn ở (1) rất nhiều, nên sản phẩm của (2)

 bền hơn.

- Một phối tử chelat quan trọng thường gặp trong phòng thí nghiệm là EDTA4- 

2. PHÂN LOẠI PHỨC CHẤTCó nhiều cách khác nhau để phân loại các phức chất:

- Dựa vào các hợp chất:

+ Axit phức: H2[SiF6], H[AuCl4], H2[PtCl6], ...

+ Bazơ phức: [Ag(NH3)2]OH, [Co(en)3](OH)3...

+ Muối phức: K 2[HgIF4], [Cr(H2O)6]Cl3...

- Dựa vào dấu điện tích của ion phức:

+ Phức chất cation: [Co(NH3)6]Cl3, [Zn(H2O)6]Cl3 ...

+ Phức chất anion: H2[PtCl6], K 4[Fe(CN)6],...

+ Phức chất trung hoà: [Pt(NH3)2Cl2], [Co(NH3)3Cl3]...

- Dựa vào bản chất phối tử:

+ Phức chất aquơ, phối tử là H2O: [Co(H2O)6]SO4, [Cu(H2O)4]Cl2 ...

+ Phức chất amoniacat, phối tử là NH3: [Ag(NH3)2]NO3, [Cu(NH3)4]SO4...

[M(EDTA)]n-   [Fe(C2O4)3]-  [Co(en)3]

Page 6: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 6/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

5

  + Phức chất axit, phối tử là gốc của các axit khác nhau: K 2[MnCl4],

[Co(CN)6]Cl3...

+ Phức chất hydroxo, phối tử là OH-: K 3[Al(OH)6], Na3[Cr(OH)6]...

+ Phức chất hydrua, phối tử là H-: Li[AlH4],...

+ Phức chất cơ kim, phối tử là các gốc hữu cơ -: Na[Zn(C2H5)3],

Li3[Zn(C6H5)3],...

+ Phức chất π, phối tử là các phân tử chưa bão hoà như: etilen, propilen,

 butilen, stiren, axetilen, rượu allylic, cacbon oxit, nitơ oxit... Ví dụ:

 Na[PtCl3(C2H4)3].H2O, [Cr(C6H9)3], [Ni(CO)4], K 2[Fe(CN)5 NO]... Trong các phức

chất trên, các phối tử liên kết với nguyên tử kim loại trung tâm nhờ các electron π của

các phân tử chưa bão hoà.

3. VAI TRÒ CỦA PHỨC CHẤT3.1. Trong hoá học phân tích

Phức chất đóng một vai trò rất quan trọng trong việc phát triển các phương

 pháp phân tích định tính và định lượng.

- Trong phân tích định tính, thuốc thử tạo với các ion kim loại các phức chất có màu

đặc trưng, thường được dùng để nhận biết ion kim loại. Ví dụ:

+ Thuốc thử Na3[Co(NO2)6] kết hợp với M+ (K +, Cs+, Ag+, Tl+, NH4+) cho phức

rắn có màu:2M+  + Na3[Co(NO2)6]   M2 Na[Co(NO2)6]↓  + 2Na+ 

+ Thuốc thử Nestler K 2[HgI4] trong môi trường kiềm tạo phức với NH4+ có màu

vàng rất đặc trưng:

 NH4+  + 2[HgI4]

2- + 2OH-    [NH2(HgI)2]I↓ + 5I- + 2H2O

+ Thuốc thử K 4[Fe(CN)6] trong môi trường axit tạo phức với Fe3+ có màu xanh

 berlin đặc trưng:

4Fe3+  + 3[Fe(CN)6]4-    Fe

4[Fe(CN)

6]

3↓ 

+ Thuốc thử K 3[Fe(CN)6] trong môi trường axit tạo phức với Fe2+ có màu xanh

tuabin đặc trưng:

3Fe2+  + 2[Fe(CN)6]3-    Fe3[Fe(CN)6]2↓ 

- Những phức chất tan có màu đậm thường được dùng trong phương pháp so màu để

xác định nồng độ ion kim loại. Ví dụ:

Page 7: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 7/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

6

+ Để xác định nồng độ Cu2+ người ta tạo phức với NH3  tạo thành dung dịch

[Cu(NH3)4]2+ có màu xanh đặc trưng:

Cu2+  + 4NH3    [Cu(NH3)4]2+ 

+ Để xác định nồng độ Ti(IV), người ta tạo phức với H2O2 tạo thành dung dịch

[TiO(H2O2)2]2+ có màu vàng đặc trưng:

TiOSO4  + 2H2O2    [TiO(H2O2)2]SO4 

- Trong phân tích định lượng, người ta dùng muối dinatri của axit etylendiamin

tetraaxetic (EDTA, complexon III hay trilon B, ký hiệu là Na2H2Y). EDTA kết hợp

với các cation kim loại tạo thành các phức chất điện ly rất yếu, bền đến mức bằng các

 phản ứng định tính thông thường không thể tím thấy các cation kim loại. Phản ứng của

EDTA với các cation kim loại xảy ra theo tỷ lệ hợp thức đương lượng nghiêm ngặt:

 Na2H2Y ⇌ 2Na+  + H2Y2- 

Me2+  + H2Y2-    MeY2-  + 2H+ 

Trong đó, Me2+ là: Ca2+, Mg2+, Ba2+, Co2+, Ni2+, Cu2+, ...

Me3+  + H2Y2-    MeY-  + 2H+ 

Trong đó, Me3+ là: Al3+, Fe3+, In3+, ...

Me4+  + H2Y2-    MeY + 2H+ 

Trong đó, Me4+ là: Th4+, Ce4+, ...

Theo các phương trình trên, cation kim loại phản ứng với EDTA theo tỷ lệ mol

1:1, không phụ thuộc vào hoá trị của nó. Chính điều này đã mở ra khả năng to lớn của

cho việc dùng complexon để định lượng nhiều cation kim loại, thường gọi là phép

chuẩn độ complexon.

- Trong phân tích thể tích người ta thường dùng sự tạo phức để che các ion lạ (ví dụ:

để xác định Cu2+ khi có mặt Fe3+ người ta dùng F- để che Fe3+) hoặc dùng làm thuốc

thử để chuẩn độ các ion kim loại, hoặc làm chất chỉ thị của các phản ứng oxi hoá khử.

3.2. Trong điều chế kim loại

Phức chất còn được dùng trong việc điều chế các kim loại tinh khiết, tách riêng

các nguyên tố hiếm, các kim loại quý, đặc biệt là họ platin, các nguyên tố sau uranium.

Ví dụ: để tách Au ra khỏi quặng người ta thường cho Au tạo phức với CN- trong môi

trường kiềm khi có mặt oxy:

Page 8: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 8/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

7

4Au + O2 + 8NaCN + 2H2O  4Na[Au(CN)4] + 2NaOH

Phản ứng được sử dụng để tách Au ra khỏi quặng có hàm lượng vàng thấp và không

thể tách bằng phương pháp trọng lực.

Các kim loại họ Pt có nhiều điểm đặc trưng, chúng là những chất tạo phức rất

tốt, nên các phương pháp tách chúng từ dung dịch đều dựa vào việc sử dụng tính chất

của các phức chất tương ứng.

3.3. Trong công nghiệp hóa chất

Phức chất được dùng làm chất xúc tác và là các sản phẩm trung gian trong tổng

hợp hữu cơ. Ví dụ: sản phẩm tương tác của titan tetraclorua với nhôm triankyl là chất

xúc tác của phản ứng trùng hợp etylen và các đồng đẳng của nó. Hoặc phản ứng ngưng

tụ các olefin và các dẫn xuất của axetylen xảy ra được dưới tác dụng của niken cacbonyl

hay niken cyanua. Phản ứng oxi hoá các hydrocacbon khi có chất xúc tác là muối Co2+ xảy ra qua giai đoạn tạo thành sản phẩm trung gian peroxyt và các gốc tự do.

- Phức chất cũng được dùng để loại trừ độ cứng của nước, dùng trong mạ điện,

trong công nghệ nhuộm và thuộc da.

3.4. Trong đời sống sinh vật

Phức chất có ý nghĩa rất to lớn trong hoạt động sống của sinh vật. Có 24 nguyên

tố cần thiết cho đời sống sinh vật, trong đó có 7 nguyên tố quan trọng nhất (Fe, Zn, Co,

Cu, Mn, Cr, V) hoạt động dựa trên cơ sở tạo chelat.Ví dụ: Fe: Hemoglobin; Mg: chlorophyll; Co: Vitamin B

- Nhiều chelat tự nhiên được tạo thành trên cơ sở phân tử porphyrin

Hình 1.1. Cấu tạo của porphyrin

Khi hai nguyên tử H liên kết với N bị tách đi, porphyrin là phối tử 4 răng.

Page 9: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 9/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

8

  Phức chất tạo thành từ các dẫn xuất của porphyrin với các kim loại được gọi là

các porphyrin. Hai porphyrin quan trọng là heme (Fe2+, đọc là hem) và chlorophyll

(Mg2+).

- Heme

Là chelat mà nguyên tử trung tâm là sắt và các phối tử là các vòng porphyrin.

Chính các vòng porphyrin làm cho heme có màu đỏ. Trong heme, sắt có số phối trí 6,

 bốn vị trí trong số đó nằm trong mặt phẳng của vòng porphyrin, hai vị trí còn lại thẳng

góc với mặt phẳng đó. Trong hai vị trí này thì một vị trí sẽ liên kết với một baz thuộc

cấu trúc protein (thường là globin khi tạo hemoglobin), còn vị trí thứ hai liên kết với

oxi phân tử khi vận chuyển oxi từ phổi đến tế bào trong cơ thể.

Hình 1.2. Cấu tạo của Heme

- Hemoglobin

Hemoglobin (có trong thành phần của máu người và động vật) gồm có chất

albumin gọi là "globin" và một hợp chất màu gọi là "hem". Hemoglobin gồm 4 đơn vị

 protein, mỗi đơn vị chứa một heme, làm nhiệm vụ vận chuyển oxi từ phổi đến các tế

 bào:

Hb + 4 O2 ⇌  Hb-(O2)4 màu đỏ

Khi từ tế bào về lại phổi, vị trí của O2 được thay bằng H2O: Hb-(H2O)4  màu

xanh da trời.

Page 10: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 10/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

9

  CO liên kết rất bền với Fe2+ trong heme nên không còn vị trí trống để heme liên

kết với oxi (hemoglobin bị ngộ độc), vì vậy các tế bào chết do không có oxi nuôi

dưỡng.

Hình 1.3. Cấu tạo của Hemoglobin

- Chlorophyll

Chlorophyll là chất màu xanh lục của thực vật (diệp lục tố), nhân diệp lục là

 phần quan trọng nhất trong phân tử diệp lục, gồm 1 nguyên tử Mg ở trung tâm liên kết

với 4 nguyên tử N của vòng porphyrin.

Hình 1.4. Cấu tạo của Chlorophyll

Page 11: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 11/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

10

Điều quan trọng nhất của phân tử này là nó có hệ thông nối đôi liên hợp tạo nên phân

tử diệp lục tố có hoạt tính quang hoá mạnh. Khả năng hấp thụ ánh sáng phụ thuộc vào

số lượng liên kết đôi trong phân tử. Diệp lục đóng vai trò quan trọng trong quá trình

quang hợp của cây xanh:

- Hấp thụ năng lượng ánh sáng mặt trời

- Vận chuyển năng lượng vào trung tâm phản ứng

- Tham gia biến đổi năng lượng ánh sáng thành năng lượng hoá học.

Tổng hợp quang hóa là phản ứng thu nhiệt, chuyển CO2 và H2O thành gluco và O2 nhờ

thực vật khi có ánh sáng.

6 CO2 + 6 H2O C6H12O6 + 6 O2 

Để tổng hợp 1 mol gluco cần 48 mol photon.

3.5. Trong dược phẩm- Insulin: thuốc chữa bệnh đái đường, là dẫn xuất phức của kẽm.

- Vitamin B12:

Hình 1.5. Cấu tạo của Vitamin B12

Vitamin B12 là những hợp chất hữu cơ có nguyên tử cobalt ở trung tâm, với tên gọi là

những cobalamin và có hoạt tính sinh học trên cơ thể người. Vitamin B12 tham gia

Page 12: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 12/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

11

 phản ứng tổng hợp thymidylate, một thành phần trong phân tử ADN, cung cấp nguyên

liệu để tổng hợp ADN, góp phần vào quá trình phân chia tế bào và trưởng thành tế bào

trong cơ thể. Thiếu vitamin B12 cho thấy ảnh hưởng rõ rệt lên những dòng tế bào có

sự phân bào nhiều như các tế bào máu, tế bào biểu mô (nhất là ở niêm mạc đường tiêu

hóa); gây suy thoái chất myelin, một chất béo và là thành phần quan trọng của tế bào

thần kinh, gây ra những triệu chứng thần kinh.

- Thuốc chống ung thư cisplatin:

Cisplatin là hợp chất của platin gồm 1 nguyên tử platin nối với 2 nguyên tử clo

và 2 phân tử amoniac ở vị trí cis, có tác dụng độc với tế bào, chống u và thuộc loại các

chất alkyl hóa. Cisplatin tạo thành các liên kết chéo bên trong và giữa các sợi DNA,

nên làm thay đổi cấu trúc của DNA và ức chế tổng hợp DNA. Ngoài ra, ở một mức độ

thấp hơn, cisplatin ức chế tổng hợp protein và RNA. Thuốc không có tác dụng đặchiệu trên một pha nào của chu kỳ tế bào.

Hình 1.6. Cấu tạo của cisplatin

- Thuốc chống viêm khớp Auranofin:

Hình 1.7. Cấu tạo của Auranofin

Page 13: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 13/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

12

Auranofin là phức của vàng với các phosphin được sử dụng như thuốc chống

thấp khớp, dùng điều trị bệnh viêm khớp dạng thấp.

- Một số kim loại có liên kết kiểu phức là những hợp phần quan trọng của một số men

(enzim), đặc biệt là những men oxi hoá, chẳng hạn các phenol oxidazơ hay enzim (có

khả năng oxi hoá phenol hoặc amin thành quinon) là dẫn xuất phức của đồng.

Phức chất còn đóng vai trò to lớn đối với hoá học lý thuyết như góp phần cung

cấp thêm các hiểu biết về trạng thái của các ion trong dung dịch, hay phát triển lý

thuyết tĩnh điện về axit- baz.

Page 14: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 14/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

1

Chương 2

DANH PHÁP VÀ ĐỒNG PHÂN CỦA PHỨC CHẤT

1. DANH PHÁP PHỨC CHẤT THEO IUPAC 

Tên của phức chất theo danh pháp quốc tế (IUPAC: Internation Union of Pured

and Applied Chemistry) được đọc theo quy tắc sau:

- Gọi tên cation trước, anion sau (giống các loại hợp chất khác).

- Với cầu nội: gọi tên phối tử trước, theo thứ tự anion, phân tử trung hòa, cation, gọi

tên ion trung tâm M cuối cùng, kèm theo số oxi hóa bắng số La mã đặt trong dấu

ngoặc đơn. Thứ tự đọc tên ngược với thứ tự viết trong công thức phân tử.

+ Phối tử anion: cộng thêm đuôi "o" hay đổi đuôi thành "o".

Ví dụ:

F-  Cl-  OH-  CN-  CO32-  C2O4

2- SCN-

floro cloro hydroxo cyano cacbonato oxalato thiocyanato

+ Phối tử trung hòa: gọi tên thường dùng, trừ:

H2O NH3  CO NO

aquơ ammin cacbonyl nitrosyl

Ví dụ:

H2 N-CH2-CH2-NH2  H2 N-CH2-CH2-CH2-NH2  CH3-NH2 etylen diamin (en) propylen diamin metyl amin

Phenanthrolin (phen) Bipyridyl (bipy)

+ Phối tử cation: cộng đuôi "ium".

Ví dụ: N2H5+ : hydrazinium.

+ Số phối tử : số phối tử được chỉ bằng các tiền tố: di (2), tri (3), tetra (4), penta

(5), hexa (6)... Nếu trong tên phối tử đã có sẵn các từ trên, ví dụ: en, thì dùng các từ :

 bis (2), tris (3), tetrakis (4)... để chỉ số phối tử, lúc đó tên phối tử được viết trong ngoặc

đơn.

Page 15: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 15/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

2

  + Nếu cầu nội là ion âm, phải gọi tên kim loại bằng tên La tinh, cộng thêm đuôi

"at" nếu phức chất là muối, đuôi "ic" nếu phức chất là axit. Sau đây là cách gọi tên của

một số kim loại thường gặp trong phức anion:

Fe: ferrat Cu: cuprat Hg: hygrat

Pb: plumbat Ag: argentat Pt: platinat

Au: aurat Sn: stannat Co: cobaltat

Al: aluminat Zn: Zincat

Ví dụ:

[Cr(NH3)6](NO3)3 : Hexaammin cobalt (III) nitrat

[Pt(en)2Cl2]Br 2 : Dicloro bis(etilendiamin) platin (IV) bromua

K 2[Ni(CN)6] : Kali hexacyano niccolat (II)

K[Au(CN)2] : Kali dicyano aurat (I)2. ĐỒNG PHÂN CỦA PHỨC CHẤT

Một trong những nguyên nhân làm cho hóa học phức chất trở nên rất phức tạp

là sự đa dạng của các đồng phân và các cách phát sinh ra chúng.

Có hai loại đồng phân chính:

- Đồng phân cấu trúc: M liên kết với các nguyên tử khác nhau

- Đồng phân lập thể: M liên kết với các nguyên tử như nhau nhưng cách sắp xếp

các nguyên tử trong không gian xung quanh M khác nhau.2.1. Đồng phân cấu trúc

Gồm hai loại: đồng phân cầu phối trí và đồng phân liên kết.

2.1.1. Đồng phân cầu phối trí

Đồng phân cầu phối trí xuất hiện khi phối tử ở bên ngoài chuyển vào trong cầu

nội. Tùy theo loại phối tử được thay thế mà đồng phân cầu phối trí lại được phân thành

3 loại:

a- Đồng phân hydrat: tạo nên do sự thay thế phối tử H2O trong cầu nội bằng ion khác ở

cầu ngoại.

Ví dụ: Hợp chất CrCl3(H2O)6 có 3 đồng phân hydrat:

[Cr(H2O)6]Cl3: màu tím

[Cr(H2O)5Cl]Cl2.H2O: màu xanh lục

[Cr(H2O)4Cl2]Cl.2H2O: màu xanh lục

Page 16: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 16/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

3

 b- Đồng phân ion hóa: tạo nên do sự thay phối tử trong cầu nội bằng ion hay phân tử

khác (không phải H2O) ở cầu ngoại.

Ví dụ: [Co(NH3)4Br 2]SO4: màu tím; [Co(NH3)4SO4]Br 2: màu đỏ.

c- Đồng phân phối trí: xảy ra trong những phức chất mà cả cation và anion đều là ion

 phức, sự trao đổi phối tử giữa các ion phức đó làm xuất hiện đồng phân phối trí.

Ví dụ: [Pt(NH3)4][PtCl6] và [Pt(NH3)4Cl2][PtCl4]

2.1.2. Đồng phân liên kết

Một số phối tử có thể tạo liên kết với M bằng các nguyên tử khác nhau, những

 phối tử này là nguyên nhân tạo nên đồng phân liên kết của phức.

Ví dụ: Trong phức [Co(NH3)5 NO2]2+, NO2

- có thể tạo liên kết với M qua nguyên tử N

hay qua nguyên tử O:

- Khi nitrat tạo liên kết với M qua N thì phối tử được gọi là "nitro":[Co(NH3)5 NO2]

2+ penta ammin nitro coban (III) - màu vàng.

- Khi nitrat tạo liên kết với M qua O thì phối tử được gọi là "nitrito":

[Co(NH3)5 NO2]2+ penta ammin nitrito coban (III) - màu đỏ.

2.2. Đồng phân lập thể

2.2.1. Đồng phân hình học

Trong phức vuông phẳng [Pt(NH3)2Cl2], hai phân tử NH3 có thể tạo với nhau

góc 90

O

 (cis) hay 180

o

 (trans).

Hình 2.1. Đồng phân hình học của phức [Pt(NH3)2Cl2] 

Phức bát diện cũng có đồng phân cis - trans: cis-[Co(NH3)4Cl2]: tím; trans-[Co(NH3)4Cl2]: xanh lục.

Page 17: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 17/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

4

 Hình 2.2. Đồng phân hình học của phức [Co(NH3)4Cl2]

- Số lượng đồng phân hình học của phức chất phụ thuộc vào cấu trúc không gian của

nó. Chẳng hạn: phức chất dạng đường thẳng và tứ diện không có đồng phân hình học,

trong khi phức chất dạng vuông phẳng và dạng bát diện có đồng phân hình học.

- Số đồng phân hình học của phức chất phụ thuộc vào số phối tử khác nhau:

● Phức chất vuông phẳng dạng MA2B2 có 2 đồng phân hình học:

● Phức chất bát diện dạng MA2B2C2 có 5 đồng phân hình học

- Các đồng phân hình học có độ tan khác nhau: do các đồng phân hình học có độ phân

cực phân tử khác nhau, dạng trans ít phân cực hơn dạng cis nên độ tan trong các dung

môi của chúng sẽ khác nhau.

- Các đồng phân hình học có tính chất hóa học khác nhau.

B

AA

B

M

cis

B

BA

A

M

trans

C

BB

C

M

A

A

C

CB

B

M

A

A

C

CA

B

M

A

B

C

BA

C

M

A

BB

BA

C

M

A

C

Page 18: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 18/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

5

3.2.2. Đồng phân quang học 

Đồng phân quang học là những chất có cùng thành phần, khối lượng phân tử và

các liên kết trong phân tử, chúng chỉ khác nhau chiều quay mặt phẳng phân cực của

ánh sáng. Các đồng phân quang học còn được gọi là các enantiomer (đồng phân

gương).

Hiện tượng đồng phân quang học xảy ra khi một phân tử (hay ion) và ảnh qua

gương của nó không chồng khít lên nhau (như bàn tay phải và bàn tay trái).

Ánh sáng không phân cực (như ánh sáng từ một đèn điện thông thường) là ánh

sáng mà trong đó dao động (chuyển động sóng) xảy ra theo mọi phương vuông góc với

nhau và vuông góc với phương truyền sóng. Ánh sáng phân cực là ánh sáng mà trong

đó dao động chỉ xảy ra trong một mặt phẳng. Mặt phẳng đó được gọi là mặt phẳng

 phân cực của ánh sáng. Muốn tạo ánh sáng phân cực, người ta cho ánh sáng phân cực

đi qua lăng kính Nicol (thiết bị lọc sáng phân cực, chỉ để lại các dao động cùng thuộc

một mặt phẳng và loại bỏ tất cả các dao động khác).

 Những chất làm quay mặt phẳng phân cực của ánh sáng được gọi là chất có

hoạt tính quang học hay chất quang hoạt. Khả năng này được phát hiện lần đầu tiên ở

thạch anh. Khi cho ánh sáng phân cực qua dung dịch chất có hoạt tính quang học, mặt

 phẳng phân cực sẽ quay sang phải (phương dao động quay theo chiều kim đồng hồ khi

Page 19: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 19/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

6

người quan sát nhìn về phía tia sáng) hoặc sang trái (phương dao động quay ngược

chiều kim đồng hồ khi người quan sát nhìn về phía tia sáng).

- Các enantiomer có thể quay mặt phẳng của ánh sáng phân cực.

- Các phức chất có thể tạo enantiomer được gọi là chiral.

Phần lớn cơ thể người là chiral (như hai bàn tay).

- Hầu hết các tính chất vật lý và hóa học của các enantiomer là như nhau, do đó

khó tách chúng khỏi nhau.

Hình trên là hai đồng phân quang học của ion phức [Co(en)3]3+. Chúng không

trùng nhau và là ảnh của nhau qua gương.

Mỗi phức chất có hoạt tính quang học sẽ có hai dạng đồng phân quang học:

- Dạng quay mặt phẳng phân cực sang phải gọi là đồng phân quay phải, ký hiệu

D hay d (dextro), lúc đó góc quay  mang dấu +

- Dạng quay mặt phẳng phân cực sang trái gọi là đồng phân quay trái, ký hiệu L

hay l (levo), lúc đó góc quay  mang dấu -- Các đồng phân d và l của một chất hoàn toàn giống nhau về các tính chất vật

lý và hóa học, chỉ khác nhau khả năng quay mặt phẳng phân cực: góc quay bằng nhau

nhưng ngược chiều. Vì vậy hỗn hợp của hai dạng d và l với số mol như nhau được gọi

là raxemic (racemate: chất triệt quang). Hỗn hợp này không quay mặt phẳng phân cực

của ánh sáng (không có hoạt tính quang học). Raxemic được ký hiệu là (d,l).

- Điều kiện để phức chất có hoạt tính quang học là có sự bất đối trong cấu tạo

 phân tử (nghĩa là không có tâm và mặt phẳng đối xứng).+ Phức vuông phẳng không có đồng phân quang học vì mặt phẳng đối

xứng ở đây chính là mặt phẳng cấu trúc.

+ Nếu phức có cấu trúc tứ diện với các phối tử khác nhau, ví dụ

[MXYLZ] thì có đồng phân quang học.

Page 20: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 20/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

7

  + Phức bát diện dạng cis có đồng phân quang học vì không có mặt phẳng

đối xứng. Dạng trans không có đồng phân quang học vì có mặt phẳng đối xứng.

Ví dụ: Xét phức [Co(en)2Cl2]+

Dạng cis trong hình trên không có yếu tố đối xứng trong toàn bộ phân tử nên cóhoạt tính quang học (Ảnh của nó qua gương chính là đồng phân II, không trùng với

 bản thân nó)

Dạng trans sẽ có mặt phẳng đối xứng là mặt phẳng qua trục Cl - Cl nên phức

không có hoạt tính quang học (ảnh qua gương của nó trùng với bản thân nó).

- Các phương tách đồng phân quang học:

Trong đa số trường hợp, nhờ các phản ứng thông thường người ta điều chế

được các raxemic không có hoạt tính quang học. Để tách các chất đối quang từ cácraxemic có thể dùng các phương pháp sau:

1/ Tách riêng hỗn hợp bằng phương pháp cơ học:

Trong một số trường hợp, khi kết tinh, dạng d và dạng l sẽ kết tinh riêng rẽ và

có dạng tinh thể khác nhau. Nếu các tinh thể khá lớn và rõ ràng thì có thể dùng tay để

tách riêng chúng.

Ví dụ: Ở nhiệt độ thấp hơn 13,2oC các đồng phân d và l- K 3[Co(C2O4)3] có dạng tinh

thể khác nhau sẽ tách ra từ dung dịch raxemic K 3[Co(C2O4)3] và ta có thể tách chúng

ra bằng tay.

Tuy nhiên vì tính chất vật lý của các dạng đối quang thường giống nhau nên ít

khi có thể tách chúng ra bằng phương pháp vật lý như kết tinh hoặc chưng cất phân

đoạn. Chỉ khi có mặt một chất quang hoạt khác thì các dạng đối quang mới xử sự khác

nhau, nên hầu hết các phương pháp tách đều dựa trên cơ sở đó.

Page 21: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 21/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

8

  2/ Kết tinh một đồng phân bằng cách cho thêm tinh thể chất đồng hình vào để

tạo mầm tinh thể.

Ví dụ: Để tách đồng phân d từ dung dịch raxemic [Co(en)2(C2O4)]+  (hay

[Co(en)2(NO2)2)]+, [Cr(en)2(C2O4)]

+) Werner đã đưa các tinh thể d- [Co(en)(C2O4)]+ 

vào dung dịch raxemic bão hoà rồi thêm rượu hoặc ete vào, trên các tinh thể mầm này

sẽ xảy ra sự kết tinh ưu thế dạng d.

3/ Phương pháp hấp phụ trên các chất hấp phụ có hoạt tính quang học:

Trong số các chất hấp phụ vô cơ và hữu cơ có nhiều chất có hoạt tính quang

học, trên các chất này xảy ra sự hấp phụ ưu thế dạng d hoặc dạng l. Chất hấp phụ có

hoạt tính quang học thường dùng là thạch anh nghiền nhỏ, tinh bột, xenlulô...

Bằng phương pháp này người ta tách được các dạng đồng phân quang học của

các phức chất không điện ly.Để tách riêng các đồng phân ra khỏi raxemic phải lắc mạnh dung dịch raxemic

với bột chất hấp phụ, nó sẽ ưu tiên hấp phụ một trong hai dạng đối quang, lọc. Trong

một số trường hợp, người ta cho dung dịch raxemic đi qua cột chứa chất hấp phụ. Sau

đó rửa dạng được hấp phụ bằng chất giải hấp thích hợp.

 Người ta chưa tìm được mối liên hệ giữa khả năng quay của chất hấp phụ và

chất được hấp phụ. Chẳng hạn: thạch anh dạng l hấp phụ dạng l của [Co(en) 3]Br 3,

nhưng lại hấp phụ dạng d của [Co(en)2 NH3Cl]Br 2.4/ Cho dung dịch raxemic tác dụng với chất quang hoạt:

Thêm vào dung dịch racemat một chất hoạt động nào đó có khả năng phản ứng

với mỗi đối quang tạo ra hợp chất muối. Muối tạo thành sẽ là hỗn hợp hai chất không

đối quang: (d-axit + d-bazơ) và (l-axit + d-bazơ). Chúng không đối quang nên không

 phải là ảnh qua gương của nhau vì thế sẽ khác nhau về tính chất vật lý. Các muối này

có thể khác nhau về độ tan, điểm nóng chảy, áp suất hơi… Dựa vào sự khác nhau đó,

người ta tách chúng ra khỏi nhau. Người ta cũng có thể tách chúng ra bằng các phương

 pháp khác như sắc ký, chiết...

Để tách cation phức racemat, người ta thường dùng các axit hoạt động quang

học. Ví dụ: d-tactric, d-malic, d-camphosulfonic, l-malidelic...

Để tách anion phức racemat, người ta thường dùng các bazơ hoạt động quang

học. Ví dụ: bruxin, strychnin, quinin, sinconin....

Page 22: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 22/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

9

Ví dụ: để tách hỗn hợp racemat cis-[Co(en)2Cl2]Cl, người ta cho chúng tác dụng với

muối amoni của axit d-α-bromcamfosunfonic, tạo thành hỗn hợp các muối theo

 phương trình:

Sau khi tách 2 muối này bằng các phương pháp đã nêu trên, người ta cho các muối này

tác dụng với HCl để đuổi anion hữu cơ và thu riêng 2 đối quang.

[d-Co(en)2Cl2]Cl [d-Co(en)2Cl2][d-C10H14BrO4S]+ 2NH4[d-C10H14BrO4S] →

[l-Co(en)2Cl2]Cl [l-Co(en)2Cl2][d-C10H14BrO4S]

+ 2NH4Cl

Page 23: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 23/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

1

Chương 3

LIÊN KẾT HOÁ HỌC TRONG PHỨC CHẤT

Các thuyết thường được dùng để mô tả liên kết trong phức chất của kim loại

chuyển tiếp là thuyết VB (Valence Bond), thuyết trường tinh thể (Crystal field theory) 

và thuyết MO (Molecular Orbital).

1. THUYẾT VB VỀ PHỨC CHẤT

Thuyết này được Pauling đưa ra năm 1931 dựa trên cơ sở của thuyết VB về liên

kết cộng hóa trị.

Theo thuyết VB về phức chất, liên kết giữa ion trung tâm và phối tử là liên kết

2 electron kiểu Heitler - London được tạo thành do sự xen phủ của orbital hóa trị chứa

cặp điện tử của phối tử với orbital hóa trị trống của ion trung tâm. Liên kết như vậy

được gọi là liên kết phối trí (liên kết cho – nhận). Số liên kết giữa ion trung tâm và

 phối tử đúng bằng số phối trí của ion trung tâm.

Đối với phức chất có các phối tử giống nhau thì năng lượng liên kết giữa ion

trung tâm và phối tử phải giống nhau. Trong khi đó ion trung tâm phải sử dụng các

orbital hóa trị có năng lượng khác nhau để tham gia liên kết. Do vậy, trước khi xen

 phủ với orbital hóa trị của phối tử, các orbital hóa trị trống của ion trung tâm đã lai

hóa. Điều kiện để các orbital tham gia lai hóa là năng lượng của chúng phải xấp xỉnhau và có tính đối xứng giống nhau. Dạng lai hóa của ion trung tâm quyết định cấu

trúc hình học của phức chất.

Bảng 3.1. Cấu trúc hình học của phức chất và dạng lai hóa của ion trung tâm

Công thứcchung

Số phối tríCấu trúc hình

họcDạng lai hóa Ví dụ

ML2  2 thẳng sp [Ag(NH3)2]+ 

ML4  4 tứ diện sp3 [Cu(NH3)4]2+ 

ML4  4 vuông phẳng dsp2 [PtCl4]2- 

ML5  5Lưỡng chóp

tam giácdsp3  [Fe(CO)5]

ML6 6 bát diện d2sp3 hay sp3d2 [Co(NH3)6]3+ 

Page 24: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 24/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

2

Từ tính của phức chất: )2n(n    

Tổng spin của phức chất: n2

1S  

Trong đó, n là số điện tử độc thân của ion trung tâm.

Ví dụ 1: Xét sự hình thành và cấu trúc hình học của phức [Ti(H2O)6]3+ theo thuyết VB.

Cấu hình electron của Ti3+ là 3d1:

Để tạo liên kết phối trí với 6 phối tử H2O, ion Ti3+ sử dụng 6 orbital: 3dz2, 3dx2-

y2

, 4s, 4px , 4py và 4pz. Như vậy, Ti3+

 ở trạng thái lai hóa d2

sp3

, 6 orbital lai hóa d2

sp3

 có hình dáng và năng lượng hoàn toàn giống nhau hướng về 6 đỉnh của bát diện đều.

Mỗi orbital lai hóa trống của Ti3+  sẽ xem phủ với một orbital hóa trị sp 3  của

 phối tử H2O chứa cặp electron. Như vậy, các phối tử H2O nằm ở 6 đỉnh, ion trung tâm

Ti3+ nằm ở tâm của bát diện đều nên phức [Ti(H2O)6]3+ có cấu trúc bát diện.

Hình 1. Cấu trúc hình học của phức [Ti(H2O)6]3+

Phức [Ti(H2O)6]3+ có 1 electron độc thân nên thuận từ, momen từ lý thuyết

)2n(n    = 1,73 (Manheton Bo), tổng spin S = 1/2.Ví dụ 2: Xét sự hình thành và cấu trúc hình học của phức [Ag(NH3)2]

+ theo thuyết VB.

Cấu hình electron của Ag+ là 4d10:

H2O

Ti3+ 

d2sp3 

↑3d 4p4s

Page 25: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 25/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

3

 

Để tạo liên kết phối trí với 2 phối tử NH3, ion Ag+ sử dụng 2 orbital: 5s và 5px.

 Như vậy, Ag+ ở trạng thái lai hóa sp, 2 orbital lai hóa sp có hình dáng và năng lượng

hoàn toàn giống nhau hướng về 2 phía của đường thẳng.

Mỗi orbital lai hóa trống của Ag+  sẽ xem phủ với một orbital hóa trị sp3  của

 phối tử NH3 chứa cặp electron. Như vậy, phức Ag(NH3)2]+ có cấu trúc dạng thẳng.

Hình 2. Cấu trúc hình học của phức Ag(NH3)2]+ 

Phức Ag(NH3)2]+  không có electron độc thân nên nghịch từ, momen từ lý

thuyết )2n(n    = 0 (Manheton Bo), tổng spin S = 0.

Ví dụ 2: Xét sự hình thành và cấu trúc hình học của phức [Cu(NH 3)4]2+ theo thuyết

VB.

Cấu hình electron của Cu2+ là 3d9:

Để tạo liên kết phối trí với 4 phối tử NH3, ion Cu2+ sử dụng 4 orbital: 4s, 4px ,

4py và 4pz. Như vậy, Cu2+ ở trạng thái lai hóa sp3, 4 orbital lai hóa sp3 có hình dáng và

năng lượng hoàn toàn giống nhau hướng về 4 đỉnh của tứ diện đều.

Mỗi orbital lai hóa trống của Cu2+ sẽ xem phủ với một orbital hóa trị sp3  của

 phối tử NH3 chứa cặp electron. Như vậy, các phối tử NH3 nằm ở 4 đỉnh, ion trung tâm

Cu2+ nằm ở tâm của tứ diện đều nên phức [Cu(NH3)4]2+ có cấu trúc tứ diện.

sp

↑↓ ↑↓ ↑↓ ↑↓ ↑↓ 4d 5p5s

 NH3 

Ag+ 

sp

↑↓ ↑↓ ↑↓ ↑↓  ↑ 3d 4p4s

Page 26: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 26/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

4

 

Hình 2. Cấu trúc hình học của phức [Cu(NH3)4]2+

Phức [Cu(NH3)4]2+ có 1 electron độc thân nên thuận từ, momen từ lý thuyết

)2n(n    = 1,73 (Manheton Bo), tổng spin S = 1/2.

 Như vậy, sự phân bố hình học của các phối tử xung quanh ion trung tâm phụ

thuộc chủ yếu vào cấu hình electron của ion trung tâm. Ngoài ra, sự phân bố này còn

 phụ thuộc vào bản chất của phối tử.

Ví dụ: Cùng là phức chất của Ni2+ nhưng [NiCl4]2- có cấu trúc tứ diện và thuận

từ, trong khi [Ni(CN)4]2- có cấu trúc vuông phẳng và nghịch từ.

Điều này được thuyết VB giải thích như sau:

Cấu hình electron của ion Ni2+ tự do là 3d8:

Theo thuyết VB, trong [NiCl4]2-, tương tác giữa Ni2+và Cl- là tương tác yếu, vì

 bán kính Cl- lớn, cấu hình electron của ion Ni2+ tự do và của ion trung tâm Ni2+ giống

nhau. Ion trung tâm Ni2+ ở trạng thái lai hóa sp3, 4 orbiatl lai hóa sp3 hướng về 4 đỉnh

của tứ diện đều.

Mỗi orbital lai hóa trống của Ni2+ sẽ xem phủ với một orbital hóa trị 3p của phối tử Cl - 

chứa cặp electron. Như vậy, phức [NiCl4]2- có cấu trúc tứ diện. Phức chất [NiCl4]

2- có

hai electron độc thân nên thuận từ.

sp3 

↑↓ ↑↓

 ↑↓

 ↑

 ↑

 3d 4p4s

 NH3 

Cu + 

↑↓ ↑↓ ↑↓  ↑  ↑ 3d 4p4s

Page 27: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 27/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

5

 

Hình 2. Cấu trúc hình học của phức [NiCl4]2-

Phối tử CN- có khả năng tương tác mạnh với ion trung tâm nên sẽ gây ra hiện tượng

dồn electron trong các orbital d của Ni2+.Sự dồn electron của CN- đối với Ni2+ làm xuất hiện một orbital trống trong phân

lớp 3d. Bốn cặp electron tự do của bốn phối tử CN- sẽ chuyển vào orbital 3d đó, orbital

4s và hai orbital 4p. Các orbital này lai hóa dsp2  nên phức chất có cấu trúc vuông

 phẳng.

Sự lai hóa có mặt orbital thuộc lớp bên trong như vậy được gọi là sự lai hóa

trong.

Phức chất [Ni(CN)4]2-

 không còn electron độc thân nên nghịch từ.

Thuyết VB giải thích được cấu trúc hình học và tính chất từ của phức chất,

nhưng không thể tính toán định lượng chính xác và không giải thích được tại sao các

 phức chất lại có màu.

Cl- 

 Ni + 

dsp2 

↑↓ ↑↓ ↑↓ ↑↓ 3d 4p4s

Cấu hình electron của Ni : 

Ni2+ 

CN- 

CN

-

 

CN- 

CN

-

 

Page 28: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 28/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

6

2. THUYẾT TRƯỜNG TINH THỂ

2.1. Nội dung cơ bản

Theo thuyết trường thể, mỗi phối tử được xem là điện tích điểm âm (hoặc lưỡng

cực điểm), phức chất vô cơ tồn tại bền vững là do tương tác tĩnh điện giữa ion trung

tâm và phối tử. Cấu hình cân bằng của phức chất được xác định bởi cân bằng giữa lực

hút và lực đẩy giữa các ion (hoặc ion và lưỡng cực). Các phối tử nằm xung quanh ion

trung tâm trên các đỉnh của đa diện, tạo nên phức chất có tính đối xứng nhất định. Các

 phối tử tạo nên trường tĩnh điện bao quanh ion trung tâm (gọi là trường phối tử).

Trường phối tử tác động lên ion trung tâm và làm các mức năng lượng của orbital d

suy biến bị tách thành các mức khác nhau. Vì vậy, khi xét ion trung tâm có chú ý đến

cấu trúc electron chi tiết của nó.

2.1. Ảnh hưởng của các phối tử lên các orbital - Sự tách mức năng lượng d - Đối với phức bát diện:

Ví dụ: Trong phức [Ti(H2O)6]3+ ion trung tâm nằm ở tâm của bát diện, sáu phối tử bao

quanh ion trung tâm ở trên các trục x, y, z (Hình 3.1)

Hình 3.1. Phức bát diện

Dưới tác động của trường lực tĩnh điện tạo bởi các phối tử, các mức năng lượng suy

 biến d của ion trung tâm sẽ không còn suy biến nữa. Dựa vào sự phân bố không gian

của các orbital d (Hình 3.2) ta nhận thấy: các orbital d x2-y2, dz2 có các đám mây nằm

trên các trục, hướng thẳng vào các phối tử nên bị đẩy mạnh, các orbital d xy, dyz, dxz 

Page 29: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 29/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

7

có các đám mây không hướng vào các phối tử mà chen giữa các phối tử nên bị đẩy yếu

hơn. Theo thuyết trường phối tử, các orbital dx2-y2, dz2 được gọi là các orbital e, các

orbital dxy, dyz, dxz được gọi là các orbital t2.

Hình 3.2. Hình dạng các orbital d của ion trung tâm

 Như vậy trong trường bát diện, 5 orbital d suy biến sẽ bị tách thành hai mức:

một mức suy biến bậc 3 gồm các orbital dxy, dyz, dxz (ký hiệu là t2g) và một mức suy

 biến bậc 2 gồm các orbital dx2-y2, dz2 (ký hiệu là eg), có năng lượng cao hơn mức t2g.

Hiệu của 2 mức năng lượng này được gọi là năng lượng tách của trường tinh thể

(Crystal-field splitting energy):

O = E(eg) – E(t2g)

O: octahedron (bát diện)

Ta có: 3E(t2g) + 2E(eg) = 5E(d)

E(eg) - E(t2g) = O 

Giải hệ phương trình ta có:

E(eg) - E(d) = 3/5 O = 0,6 O 

E(t2g) - E(d) = -2/5 O = -0,4 O

Page 30: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 30/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

8

 

Hình 3.3. Sự tách mức năng lượng orbital d trong trường phối tử của phức bát diện

Một hệ quả quan trọng của hiện tượng tách mức năng lượng là sự làm bền thêm

cho hệ bởi trường tinh thể. Đối với trường bát diện, các orbital t2g thấp hơn mức năng

lượng các orbital d trong ion kim loại tự do. Khi điện tử điền vào các orbital t2g  thì

chúng chắn hạt nhân dương của ion trung tâm ít hơn so với trường hợp không bị tách.

Do đó, các phối tử sẽ bị ion trung tâm hút mạnh hơn, làm cho hệ phức trở nên bền hơn.

 Nói các khác, khi điện tử điền vào các orbital t2g sẽ làm năng lượng của hệ giảm xuống

một đại lượng 2/5O. Ngược lại, khi điện tử điền vào mức eg sẽ làm cho năng lượng

của hệ tăng thêm một đại lượng 3/5O.

Để đánh giá độ bền của phức chất, người ta dựa vào đại lượng năng lượng bền

hoá bởi trường phối tử LFSE (Ligand field stabilisation energies), đại lượng này càng

lớn, phức chất càng bền.

Đối với phức bát diện:

LFSE = a(-5

2o) + b(

5

3o) (3.1)

với: a là số electron ở mức t2g 

 b là số electron ở mức eg

Trong trường hợp của phức [Ti(H2O)6]3+, LFSE bằng o5

2 .

Cấu hình electron của phức [Ti(H2O)6]3+ sẽ được viết là: 1

g2t .

dz2  dx2-y2 

dxy  dyz  dxz 

O  5

3O 

-5

2O 

dxy  dyz  dxz  dz2  dx2-y2 

Ion kim loại trongtrường đối xứng cầu

Ion kim loại trongtrường bát diện

Eeg 

t2g 

E(d)

Page 31: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 31/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

9

  Khi bị kích thích, electron ở mức t2g  sẽ nhận năng lượng h  để chuyển sang

mức eg. Nếu  ứng với tần số của một bức xạ trong vùng khả kiến thì chùm ánh sáng

trắng sẽ mất đi một tia nên chùm ánh sáng còn lại sẽ có màu, đó là màu của phức chất.

Ví dụ, nếu tia đỏ bị hấp thụ khỏi chùm ánh sáng trắng thì ánh sáng còn lại sẽ có

màu lục, nên phức sẽ có màu lục. Nếu ánh sáng lục bị tách đi thì ánh sáng còn lại có

màu đỏ, phức sẽ có màu đỏ. Chúng ta nói đỏ và lục là các màu phụ của nhau - nghĩa là

màu mà ánh sáng trắng sẽ tạo thành nếu màu kia bị tách đi. Các màu phụ nằm đối đỉnh

nhau trên vòng tròn màu (Hình 3.5).

Bước sóng bức xạ bị hấp

thụ

Màu bị hấp thụ Màu nhìn thấy

< 400 Tia tử ngoại Không màu

380 – 435 Tím Lục – vàng

435 – 480 Lam Vàng

480 – 490 Lam – lục nhạt Cam

490 – 500 Lục nhạt Đỏ

500 -560 Lục Đỏ tía

560 – 580 Lục – vàng Tím

580 – 595 Vàng Lam

595 – 650 Cam Lam – lục nhạt650 – 780 Đỏ Lục – lam nhạt

> 780 Tia hồng ngoại Không màu

Page 32: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 32/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

10

 

Hình 3.4. Sự tách mức năng lượng orbital d của Ti3+ trong trường bát diện

Hình 3.5. Vòng tròn các màu phụ

- Nếu xét phức tứ diện, các phối tử chiếm các đỉnh của một tứ diện nội tiếp

trong một lập phương có các trục x, y, z đi qua tâm các mặt đối diện.

↑ 

  5

5

2 3d

Ion Ti + trongtrường đối xứng cầu

Ion Ti + trongtrường bát diện

Eeg 

t2g 

Page 33: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 33/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

11

 

Hình 3.6. Phức tứ diện

Trong phức tứ diện, các orbital dxy, dyz, dxz  hướng vào giữa các trục và tạo

một góc 35,3o  tương ứng với các phối tử. Các orbital dx2-y2, dz2 hướng vào các mặt

lập phương, chia đôi góc giữa các cặp phối tử và tạo một góc 54,7 o với các phối tử.

Các tính toán cho thấy các điện tử trên các orbital dx2-y2, dz2 sẽ bị các phối tử đẩy ít

hơn các điện tử trên các orbital dxy, dyz, dxz . Do đó năng lượng của các orbital d tách

làm hai mức: mức suy biến bậc ba (ký hiệu t2) tăng5

2T , mức suy biến bậc hai (ký

hiệu e) giảm5

3T với T là năng lượng tách của trường tứ diện.

Hình 3.7. Sự tách mức năng lượng orbital d trong trường phối tử của phức tứ diện

LFSE = a(- T5

3 ) + b( T5

2 )

dz2  dx2-y2 

dxy  dyz  dxz 

T 5

3T 

5

2T dxy  dyz  dxz  dz2  dx2-y2 

Ion kim loại trongtrường đối xứng cầu

Ion kim loại trongtrường tứ diện

E

e

t2 

Page 34: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 34/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

12

  Kết quả tính toán cho thấy: nếu hai phức tứ diện và bát diện có khoảng cách ion

trung tâm - phối tử như nhau thì T =9

4O. Điều này được giải thích là do điện tích

âm tổng cộng của 4 phối tử nhỏ hơn của 6 phối tử.

 Năng lượng tách  thường có giá trị nằm trong khoảng từ 1 eV đến 4 eV, nghĩalà tương đương với năng lượng của bức xạ khả kiến. Vì vậy phức chất của các kim loại

chuyển tiếp thường có màu.

Màu của phức là tổng hợp các màu còn lại không bị phức hấp thụ.

- Phổ hấp thụ của phức là đồ thị biểu diễn sự phụ thuộc giữa cường độ hấp thụ

ánh sáng của phức và bước sóng của ánh sáng bị hấp thụ.

+ Cách xác định phổ hấp thụ của một phức chất:

- Một tia sáng hẹp được cho qua một lăng kính để tách tia sáng thành những tiađơn sắc có bước sóng khác nhau.

- Lăng kính được quay để các tia đơn sắc được tạo thành tuần hoàn theo thời

gian.

- Ánh sáng đơn sắc được cho đi xuyên qua mẫu.

- Các ánh sáng không bị hấp thụ được phát hiện

- Phổ hấp thụ là đồ thị của độ hấp thụ theo  

Hình 3.8. Phổ hấp thụ của phức [Ti(H2O)6]3+ 

Page 35: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 35/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

13

Ví dụ: Phổ hấp thụ của [Ti(H2O)6]3+ có cực đại hấp thụ tại 510 nm (lục vàng), nghĩa là

 phức truyền qua (không hấp thụ) tất cả những tia đơn sắc trừ tia lục vàng. Các tia còn

lại không bị hấp thụ tổ hợp thành màu đỏ tía, vì vậy phức có màu đỏ tía.

Ví dụ: Hãy xác định màu và tính năng lượng tách o  (KJ/mol) của phức bát diện

[Ti(H2O)6]3+. Biết khi chuyển e từ mức t2g lên mức eg có sự hấp thụ ánh màu lục ứng

với  = 492,6 nm.

- Phức [Ti(H2O)6]3+ hấp thụ ánh sáng màu lục có  = 492,6 nm nên theo bảng màu phụ

thấy phức sẽ có màu đỏ tía.

- Năng lượng tách ứng với một photon là:

o = h =

hc =

cm10.6,492

)s.cm(10.3). photon.s.J(10.625,67

110134

= 4,034.10-19 (J.photon-1) 

Để tính cho 1 mol ta có:

o = 9,79.10-14 (J.photon-1). 6,022.1023 (photon.mol-1)

= 243 (kJ/mol) = 2,52 (eV/mol)

2.2. Dãy quang phổ hoá học 

Từ bước sóng của ánh sáng bị phức chất hấp thụ ta có thể xác định được năng

lượng tách  của trường phối tử của một dãy phức có các phối tử khác nhau ứng với

cùng một ion trung tâm. Dựa vào  có thể xếp các phối tử vào một dãy phổ hoá học để

so sánh mức độ tương tác của phối tử với ion trung tâm. Phức có   lớn gọi là phức

trường mạnh (trường lực tĩnh điện của các phối tử tương tác mạnh với ion trung tâm).

Phức có  bé gọi là phức trường yếu (trường lực tĩnh điện của các phối tử tương tác

yếu với ion trung tâm). Phức trường yếu sẽ hấp thụ ánh sáng có bước sóng dài hơn

 phức trường mạnh.

Xét các phức bát diện có cùng ion trung tâm, ta có dãy phổ hoá học sau:

∆ tăng

I- > Br - > Cl- > SCN- > F- > OH- > H2O > NH3 > en > NO2- > CN- > CO

Phức trường yếu Phức trường mạnh

Page 36: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 36/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

14

Bảng . Năng lượng bền vững hoá

CH e-  Ví dụ

Phức bát diện Phức tứ diện

Trường yếu Trường mạnh Trường yếu Trường mạnh

CH e-  LFSE CH e-  LFSE CH e-  LFSE CH e-  LFSE

d0  Ca2+, Sc3+  t2g0 eg0  0.0 t2g0 eg0  0.0 e0 t20  0.00 e0 t20  0.00d1  Ti3+  t2g

1 eg0  0.4 t2g

1 eg0  0.4 e1 t2

0  0.27 e1 t20  0.27

d2  V3+, Ti2+  t2g2 eg

0  0.8 t2g2 eg

0  0.8 e2 t20  0.53 e2 t2

0  0.53

d3  Cr 3+, V2+  t2g3 eg

0  1.2 t2g3 eg

0  1.2 e2 t21  0.36 e3 t2

0  0.80

d4  Mn3+, Cr 2+  t2g3 eg

1  0.6 t2g3 eg

1  1.6 e2 t22  0.18 e4 t2

0  1.07

d5  Mn2+, Fe3+  t2g3 eg

2  0.0 t2g3 eg

2  2.0 e2 t23  0.00 e4 t2

1  0.89

d6  Fe2+, Co3+  t2g4 eg

2  0.4 t2g4 eg

2  2.4 e3 t23  0.27 e4 t2

2  0.71

d7  Co2+, Ni3+  t2g5 eg

2  0.8 t2g5 eg

2  1.8 e4 t23  0.53 e4 t2

3  0.53

d8  Ni2+  t2g6 eg2  1.2 t2g6 eg2  1.2 e4 t24  0.36 e4 t24  0.36d9  Cu2+  t2g

6 eg3  0.6 t2g

6 eg3  0.6 e4 t2

5  0.18 e4 t25  0.18

d10  Zn2+, Cu+  t2g6 eg

4  0.0 t2g6 eg

4  0.0 e4 t26  0.00 e4 t2

6  0.00

2.3. Sự sắp xếp electron vào các orbital d trong phức chất

 Như vậy, trong phức bát diện hoặc tứ diện, các orbital d suy biến của ion trung

tâm M bị tách thành hai mức. Các electron trên các orbital d ban đầu sẽ chuyển sang

xếp vào hai mức năng lượng mới theo trật tự sao cho năng lượng của hệ là cực tiểu.

Đầu tiên, các electron sẽ rãi đều vào các orbital của mức thấp cho đến khi hết ô

trống. Lúc hết ô trống ở mức thấp, electron sẽ có hai chọn lựa: hoặc (1) ghép đôi vào

orbital ở mức thấp, hoặc (2) xếp lên orbital ở mức cao. Sự chọn lựa này phụ thuộc vào

độ lớn của năng lượng tách  và năng lượng ghép đôi P.

- Nếu  > P : electron sẽ ghép đôi vào mức thấp.

- Nếu  < P : electron sẽ xếp sang mức cao.

↑↓

Δ > P

↑Δ < P

Page 37: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 37/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

15

Ví dụ: Hãy viết cấu hình electron và dự đoán tính chất từ của các phức bát diện

[Fe(CN)6]4-, [Fe(H2O)6]

2+. Biết năng lượng tách o của chúng lần lượt là 94,3 kcal/mol

và 29,7 kcal/mol. Năng lượng ghép đôi electron ở đây bằng 50,2 kcal/mol.

Tổng spin của Fe2+ tự do: SFe2+ = 4(1/2) = 2

Phức [Fe(CN)6]4-  với o  > P có cấu hình electron: 6

g2t , có hiện tượng dồn

electron, không còn electron độc thân nên nghịch từ. Tổng spin của phức: S phức = 0 <

SFe2+ nên được gọi là phức spin thấp hay phức trường mạnh.

Phức [Fe(H2O)6]2+  với o  < P có cấu hình electron: 2

g4

g2 et , không có hiện

tượng dồn electron, có 2 electron độc thân nên thuận từ. Tổng spin của phức: S phức = 2

= SFe2+ nên được gọi là phức spin cao hay phức trường yếu

↑↓ ↑  ↑  ↑  ↑ 

↑↓ 

O = 94,3 kcal/mol > P

3d

Ion Fe + trongtrường đối xứng cầu

Ion Fe + trong[Fe(CN)6]

4- 

Eeg 

t2g ↑↓ ↑↓ 

↑↓ ↑  ↑  ↑  ↑ 

↑↓ 

↑  ↑ 

O = 29,7 kcal/mol < P

3d

Ion Fe + trongtrường đối xứng cầu

Ion Fe + trong[Fe(CN)6]4- 

E eg 

t2g ↑  ↑ 

Page 38: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 38/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

16

  Thuyết trường phối tử giải thích được tính chất từ và màu sắc của phức chất,

nhưng do chỉ quan tâm đến cấu hình electron của ion trung tâm M mà không quan tâm

đến cấu trúc electron của phối tử nên không giải thích được nhiều tính chất của phức

chất như:

- Không mô tả được các liên kết cộng hoá trị, nghĩa là không mô tả được những

hiệu ứng trao đổi giữa các electron của phối tử và ion trung tâm.

- Không mô tả được các liên kết kép, tức sự có mặt đồng thời của liên kết  và

liên kết . Do khả năng tạo liên kết  phụ thuộc vào cấu tạo electron của phối tử mà

điều này lại không được chú ý đến ở trường phối tử.

Do không thể mô tả được các liên kết bội và các liên kết cộng hoá trị nên thuyết

trường phối tử không thể dùng để mô tả các phức chất như phức cacbonyl, phức

cyanua, phức nitrozyl, đa số các muối nội phức, các phức chất với các amin thơm...

 Nếu áp dụng thuyết trường phối tử cho các đối tượng này thì các kết quả thu

được sẽ không phù hợp với các dữ kiện thực nghiệm.

3. THUYẾT MO VỀ PHỨC CHẤT

Thuyết MO hiện là lý thuyết tổng quát nhất về phức chất. Trong thuyết MO,

ngoài những trạng thái electron của ion trung tâm M, các trạng thái electron của phối

tử cũng được sử dụng trong việc thành lập các orbital phân tử (MO).

Để mô tả liên kết của phức chất, dựa vào tính đối xứng của phức chất, thuyếtMO sẽ xét khả năng xen phủ giữa các orbital của M và của các phối tử, trên cơ sở đó

thành lập các MO chung cho phân tử bằng cách tổ hợp tuyến tính các orbital trên. Sau

đó, người ta sẽ vẽ giản đồ năng lượng các MO theo các kết quả năng lượng tính toán

được, phân bố electron của phức chất vào các MO đó theo các quy tắc đã biết, và xét

cấu hình electron của phức, từ đó có thể dự đoán hay giải thích các tính chất của phức.

Cụ thể, ta xét sự tạo thành các liên kết  của một phức bát diện đều không chứa

liên kết  , ví dụ: phức [Ti(H2O)6]

3+

.Ti3+ có 9 orbital hóa trị: năm orbital 3d, một orbital 4s và ba orbital 4p.

Mỗi phối tử H2O có hai cặp electron tự do trên hai orbital lai hóa sp3, một trong

hai orbital này sẽ tham gia xen phủ với các orbital hóa trị của ion trung tâm. Như vậy

có 6 orbital của phối tử, ký hiệu từ 1 đến 6.

Tổng cộng trong phức chất [Ti(H2O)6]3+ có 15 orbital tham gia tổ hợp tạo MO.

Page 39: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 39/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

17

  Để xen phủ với các AO của Ti3+, các orbital i của 6 phối tử phải tổ hợp thành

các orbital có tính đối xứng cùng dạng với AO.

Dựa vào cấu trúc hình học của phức bát diện và yếu tố đối xứng của các AO

của nguyên tử trung tâm, ta có các tổ hợp sau:

- Orbital 4s của nguyên tử trung tâm có tính đối xứng cầu nên có thể tham gia

tổ hợp với cả 6 orbital  của phối tử (Hình 3.6a) để tạo một MO liên kết (ký hiệu s)

và một MO phản liên kết (ký hiệu là *s ). MO liên kết s được biểu diễn bởi hàm sóng

sau:

Ψ(s) = c1s + c2 (1 + 2 + 3 + 4 + 5 + 6)

Trong đó c1, c2 là thừa số chuẩn hoá.

Hàm sóng phản liên kết có dấu ngược với hàm sóng liên kết.

- Các orbital i của các phối tử khi tương tác với orbital dz2 của nguyên tử trung

tâm sẽ tổ hợp như hình 3.6b để tạo hai MO: MO liên kết σz2 và MO phản liên kết

σ*z2.

Ψ(σz2) = c3 dz2 + c4 (25 + 26 - 1 - 2 - 3 - 4 )

- Orbital dx2-y2 của nguyên tử trung tâm chỉ tổ hợp với các orbital 1 , 2 , 3 ,

4 của các phối tử (Hình 3.6c) cho MO liên kết x2-y2 và MO phản liên kết *x2-y2 

Ψ(x2-y2) = c5 dx2-y2 + c6 ( 1 - 2 + 3 - 4 )- Các orbital dxy, dxy, dxy không hướng vào các phối tử nên không có sự xen

 phủ với các orbital i , vì thế các orbital này là những MO không liên kết, được ký

hiệu là o.

- Mỗi orbital px, py, pz của nguyên tử trung tâm khi tổ hợp với các orbital i 

của các phối tử (Hình 3.6d) cũng cho một MO liên kết  p và một orbital phản liên kết

* p  .

Ψ(x) = c7 px + c8 ( 1 - 3 )

Ψ(y) = c9 py + c10 ( 2 - 4 )

Ψ(z) = c11 pz + c12 ( 5 - 6 )

Page 40: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 40/87

Page 41: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 41/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

19

  Giản đồ các mức năng lượng của các MO được trình bày ở hình 3.7.

Lưu ý: Trong giản đồ trên, mức năng lượng của (n-1)d nằm thấp hơn mức ns

chứ không phải nằm trên như trong nguyên tử kim loại tự do. Hiện tượng này được gọi

là hiệu ứng d: khi có mặt electron trên orbital d thì các orbital được bền vững hóa, làm

năng lượng của orbital giảm. Vì thế trong một ion kim loại chuyển tiếp thuộc dãy thứ

nhất, năng lượng của orbital 3d thấp hơn năng lượng của orbital 4s.

Mỗi phối tử đóng góp hai electron cho các MO, 12 electron này được dùng để

điền vào sáu MO: s, x2 - y2, z2, x, y, z. Các electron của ion trung tâm được dùng

để điền vào các mức từ o trở lên. Như vậy, cấu hình electron của phức [Ti(H2O)6]3+ ở

trạng thái cơ bản là:

(s)2 (x2 - y2)2 (z2)2 (x)

2 (y)2 (z)

2 (o)1

Cấu hình trên cho thấy đây là phức thuận từ. Sự kích thích electron của phức

[Ti(H2O)6]3+ từ mức o lên mức d* (tức *x2 - y2, *z2) đòi hỏi sự hấp thụ năng lượng

của bức xạ thuộc vùng khả kiến nên phức chất có màu.

Từ giản đồ năng lượng các MO, so sánh với các thuyết VB và trường phối tử ta

thấy:

- Các MO liên kết tương ứng với các orbital lai hóa d 2sp3 của thuyết VB. Tuy

nhiên thuyết VB không đề cập đến các MO phản liên kết nên không giải thích được

tính chất quang học của phức chất.

- Hai mức o và d* tương ứng với hai mức t2g và eg của thuyết trường phối tử.

Page 42: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 42/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

1

Chương 4

PHẢN ỨNG CỦA PHỨC CHẤT TRONG DUNG DỊCH

1. SỰ ĐIỆN LY CỦA PHỨC CHẤT

Quá trình điện ly của phức chất để tạo ion phức và ion cầu ngoại được gọi là

cân bằng ion. Quá trình này tuân theo các quy luật của dung dịch chất điện ly mạnh.

Ví dụ: [Cr(H2O)4Cl2]Cl = [Cr(H2O)4Cl2]+ + Cl-

[Cu(NH3)4](OH)2 = [Cu(NH3)4]2+ + 2OH-

K 3[Fe(CN)6] = [Fe(CN)6]3- + 3K + 

Các phức chất không không có cầu ngoại thì không có cân bằng ion. Ví dụ:

[Co(NH3)3(NO2)3], [Pt(NH3)2Cl2]...

Bằng phương pháp hoá học người ta dễ dàng phát hiện sự có mặt ion phức vàion cầu ngoại trong dung dịch. Ví dụ: để tìm ra ion [Fe(CN)6]

3- người ta dùng Fe2+ 

Fe2+ + [Fe(CN)6]3-  Fe3[Fe(CN)6]2  xanh Turbile 

còn để tìm ra ion [Fe(CN)6]4- người ta dùng Fe3+:

Fe3+ + [Fe(CN)6]4-  Fe4[Fe(CN)6]3  xanh Berlin 

 Nhờ quá trình điện ly mạnh này, có thể xác định bản chất và lượng ion cầu

ngoại trong một phân tử phức.

Ví dụ: khi cho 1 mol muối có công thức thực nghiệm Co(NH 3)5Cl3 tác dụng vớiAgNO3 dư, thu được 2 mol AgCl. Ta có thể kết luận muối trên là phức chất với 2 ion

Cl- nằm ở cầu ngoại.

[Co(NH3)5Cl]Cl2 + AgNO3  [Co(NH3)5Cl](NO3)2 + 2AgCl  

2. CÂN BẰNG SOLVAT - HẰNG SỐ KHÔNG BỀN

Đây quá trình điện ly yếu của ion phức hay quá trình thay thế các phối tử của

 phức bằng các phân tử dung môi

Cân bằng solvat là phản ứng trao đổi, trong đó một số xác định các phân tử hayion phối tử của phức chất bị trao đổi bằng các phân tử của dung môi.

Ví dụ: [Cu(NH3)4]2+ + 4 H2O ⇌ [Cu(H2O)4]

2+ + 4 NH3 

Cân bằng solvat thường xảy ra theo từng bậc, ta có thể tìm thấy các sản phẩm

trung gian trong dung dịch.

Page 43: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 43/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

2

Ví dụ: [Cr(H2O)4Cl2]+

dd xanh lục + H2O ⇌ [Cr(H2O)5Cl]2+ dd lục sẩm + Cl- 

[Cr(H2O)5Cl]2+ + H2O ⇌ [Cr(H2O)6]3+

 dd xanh tím + Cl- 

Có thể nhận biết sự tồn tại của cân bằng solvat bằng những phản ứng rất đơn

giản, như quan sát sự thay đổi màu của dung dịch: CoCl2 khan (hay trong rượu) cómàu xanh ngọc (màu của Co2+), còn trong dung dịch nước có màu hồng (màu của

[Co(H2O)6]2+). Cân bằng solvat tạo ra ion trung tâm bị solvat hoá và các phối tử nên đó

chính là cân bằng phân ly ion phức.

Ion phức nào cũng có phân ly trong dung dịch với mức độ ít hay nhiều khác

nhau, nhưng nói chung là không đáng kể, vì vậy cân bằng này tuân theo quy luật của

các chất điện ly yếu.

Ví dụ: [Ag(NH3)2]+ ⇌ Ag+ + 2NH3  K  pl = ]) NH(Ag[ ] NH][Ag[23

2

3

= 4.10-7

Một cách chính xác, phương trình phân ly trên phải được viết dưới dạng:

[Ag(NH3)2]+ + 2H2O ⇌ [Ag(H2O)2]

+ + 2NH3 

nên K  pl được viết là:

K  pl = 2223

2322

]OH][) NH(Ag[] NH][)OH(Ag[

 

Tuy nhiên trong đa số trường hợp, người ta chỉ viết phản ứng đơn giản, khôngcó mặt H2O.

Trong dung dịch loãng có thể không cần quan tâm đến sự hydrat hoá của ion

 phức.

Hằng số K  pl đặc trưng cho độ kém bền của phức chất, nó càng lớn, phức càng

kém bền nên K  pl được gọi là hằng số không bền của phức chất, ký hiệu là K kb. Quá

trình phân ly như trên chính là phản ứng nghịch của quá trình tạo phức nên nghịch đảo

của K kb là hằng số bền .

MAa ⇌ M +a A]AM[]A][M[

K a

a

kb    

M + a A ⇌ MAa kb

aa

K 1

]A][M[]MA[

 

Page 44: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 44/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

3

  Quá trình phân ly cũng như quá trình hình thành phức chất thực tế diễn ra theo

từng nấc: M + A ⇌ MA]A][M[

]MA[1   

MA + A⇌

 MA2  ]A][MA[

]MA[ 2

2   

... MAa-1 + A ⇌ MAn ]A][MA[

]MA[

1a

nn

 

i được gọi là hằng số bền nấc i.  được gọi là hằng số bền tổng cộng. Ta có:

 = 1.2.... n 

 Những phức có   lớn, như [Ag(NH3)2]+, thì phải dùng những phản ứng rất

nhạy mới tìm ra sự có mặt của ion Ag+.

Trong thực tế, để tránh số mũ, người ta thường sử dụng chỉ số hằng số không

 bền pK: pK = - log K kb

Ví dụ: [Fe(CN)6]3- có K kb = 1,0.10-44 nên pK = 44

Phức càng bền thì K kb càng bé nên pK càng lớn.

3. CÁC YẾU TỐ ẢNH HƯỞNG ĐẾN ĐỘ BỀN CỦA PHỨC CHẤT 

Độ bền của phức chất trong dung dịch phụ thuộc vào đặc tính và độ bền của

liên kết giữa nguyên tử trung tâm và phối tử, tức là phụ thuộc vào: bản chất, mức oxi

hoá, kích thước và cấu trúc electron của nguyên tử trung tâm, cũng như bản chất của phối tử.

3.1. Ảnh hưởng của nguyên tử trung tâm 

- Thực nghiệm cho thấy: phức càng bền khi ion trung tâm có bán kính càng

nhỏ, điện tích ion càng lớn.

Ví dụ: Bán kính ion của Co2+  và Co3+  lần lượt là 0,78 Å và 0,64 Å. Phức

[Co(NH3)6]2+ bị nước phân huỷ:

[Co(NH3)6]2+ + 6 H2O ⇌ [Co(H2O)6]2+ + 6 NH3 

trong khi [Co(NH3)6]3+ hầu như không bị nước phân huỷ.

Với các ion trung tâm có bán kính và cấu trúc electron tương tự nhau, phức

càng bền khi điện tích ion càng lớn.

Page 45: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 45/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

4

  - Độ bền của phức còn phụ thuộc vào tỷ lệ bán kính giữa ion trung tâm và phối

tử: cation nhỏ sẽ tạo phức bền với anion nhỏ, cation lớn sẽ tạo phức bền với anion lớn.

Điều này có thể giải thích dựa vào thuyết của Pearson về tính cứng - mềm của

axit - baz (1963). Theo Pearson, các ion được phân thành hai loại cứng, mềm theo đặc

tính sau:

Các ion cứng Các ion mềm

- Bán kính nhỏ - Bán kính lớn

- Điện tích cao - Điện tích thấp

- Cấu hình d -   - Cấu hình d

- Đám mây khó biến dạng - Đám mây dễ biến dạng (bị phân cực

mạnh)

- Có xu hướng tạo liên kết ion - Có xu hướng tạo liên kết cộng hóa trịVí dụ:

H+, ion KL kiềm, kiềm thổ, Al3+, La3+,

Mn2+, Cr 3+, Fe3+...

Ví dụ:

Cu+, Ag+, Hg+, Au+, Pd2+, Cd2+, Pt2+...

Ta đã biết, trong phức chất, M là axit Lewis, A là baz Lewis.

Theo Pearson: axit cứng có xu hướng tạo phức bền với baz cứng, axit mềm có

xu hướng tạo phức bền với baz mềm.

3.2. Ảnh hưởng của phối tử  - Thực nghiệm cho thấy: phức càng bền khi các phối tử có bán kính càng nhỏ,

điện tích ion càng lớn.

- Phối tử có dung lượng phối trí lớn tạo phức bền hơn phối tử có dung lượng

 phối trí bé. Vì vậy phức bền thường là những phức vòng. Bền nhất là những phức

vòng 5 hay 6 cạnh.

Ví dụ: [Cd(NH3)4]2+ có pK = 6,48, trong khi phức vòng 5 cạnh [Cd(en)2]

2+ có

 pK = 12,17.

Page 46: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 46/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

5

  - Độ bền của phức còn phụ thuộc vào trường lực của phối tử. Phối tử có trường

lực càng mạnh, phức càng bền.

 Ngoài ra, khi xét độ bền của phức chất cần chú ý đến sự ảnh hưởng lẫn nhau

của các phối tử, độ linh động khác nhau của chúng do ảnh hưởng trans.

4 . PHẢN ỨNG THẾ PHỐI TỬ CỦA PHỨC CHẤT 

Cơ chế và vận tốc phản ứng thế phối tử của phức chất phụ thuộc vào cấu trúc

của phức chất ban đầu, bản chất của các phối tử thế và bị thế.

Trong trường hợp chung, các phản ứng thế có thể chia thành phản ứng thế ái

nhân (S N) hoặc phản ứng thế ái electron (SE) tuỳ thuộc nhóm thế đưa vào là cho hay

nhận electron: các tác nhân ái nhân nhường cặp electron của mình cho nguyên tử trung

tâm, còn tác nhân ái electron thì nhận cặp electron từ tác nhân ái nhân (phối tử).

Theo thuật ngữ thông thường, sự thế một phối tử này bằng một phối tử khácđược gọi là thế ái nhân (S N), còn sự thế một nguyên tử trung tâm này bằng một nguyên

tử trung tâm khác được gọi là sự thế ái electron (S E). Trong hoá học phức chất, thường

gặp trường hợp thế S N.

Dựa vào cơ chế, có thể chia phản ứng thế phối tử của phức chất làm hai kiểu:

kiểu phân ly S N1 và kiểu kết hợp S N2.

4.1. Kiểu phân ly SN1 

Vận tốc của phản ứng thế kiểu này chỉ phụ thuộc vào bản chất và nồng độ ban đầu của

 phức chất .

v = k [ML6]

số phối trí 6

L

LL

L

M

L

L

chậm- L

L

LL

M

L

L

L

LL

Y

M

L

L

nhanh+ Y

số phối trí 5 số phối trí 6

Page 47: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 47/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

6

2. Kiểu kết hợp SN2 

Vận tốc của phản ứng thế kiểu này phụ thuộc vào bản chất và nồng độ của cả phức

chất đầu lẫn phối tử thế.

v = k [ML6].[X]

Với cùng một ion trung tâm, khi cấu trúc phức thay đổi, vận tốc phản ứng sẽthay đổi theo.

Phức bát diện thường tham gia phản ứng thế theo cơ chế S N1, còn phức tứ diện

và vuông phẳng thường theo cơ chế S N2.

[Co(en)2Cl2]+           cháûm,-Cl

-

  [Co(en)2Cl]2+            nhanh,X-

 [Co(en)2ClX]+ 

[Pt(en)Cl2] + Br -        cháûm  [Pt(en)Cl2Br]-         nhanh  [Pt(en)ClBr] + Cl- 

Trong thực tế, các phản ứng thế xảy ra phức tạp, khó phân biệt cơ chế.

3. Quy luật ảnh hưởng transPhản ứng của phức chất tuân theo tất cả các định luật cơ bản của hoá học.

 Ngoài ra bản thân chúng cũng có những quy luật riêng của mình. Đặc biệt với các

 phức vuông phẳng thực nghiệm cho thấy: một số phối tử trong phức chất có thể làm

nhóm phối tử ở vị trí trans đối với nó dễ bị thay thế bằng phối tử khác. Hiện tượng này

được gọi là ảnh hưởng trans của phối tử. Khả năng ảnh hưởng trans của một phối tử

thay đổi phụ thuộc vào ion trung tâm M.

Chẳng hạn, với ion Pt2+

 ta có dãy ảnh hưởng trans như sau:CN-   CO  C2H4 > PH3   H2S > NO2

-   SCN- >

I- > Br - > Cl- > F- > NH3  en > Py > OH- > H2O

Với Pt4+: I- > Br - > Cl- > OH- > NH3 > NO 2  > Py

Ví dụ: xét phức chất [Pt(NH3)3Cl]+:

số phối trí 6

L

LL

L

M

L

L

chậm+ X

L

XL

L

M

L

L

nhanh- L

số phối trí 6

L

LL

L

M

L

L

số phối trí 7

X

Page 48: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 48/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

7

  Trong phức chất này, phân tử NH3 nằm ở vị trí trans với Cl - sẽ linh động hơn

hai phân tử NH3 kia, vì Cl- có ảnh hưởng trans lớn hơn NH3.

 Nhờ quy luật ảnh hưởng trans, người ta điều chế được một số đồng phân theo ý

muốn. Ví dụ:

- Điều chế đồng phân cis- diclo diammin platin (II):

- Điều chế đồng phân trans- diclo diammin platin (II):

 Ngoài ra, khi điều chế các đồng phân, còn phải lưu ý đến độ bền liên kết M-L.

Ví dụ: có thể điều chế đồng phân [Pt(CH3 NH2)(NH3)(NO2)Cl] theo các phản

ứng sau:

Cl

 NO2 Cl

Cl

Pt

CH3 NH2 

 NO2 Cl

Cl

Pt

CH3 NH2 

 NO2  NH3 

Cl

Pt NH3 (4)

CH3 NH2 (3)

Cl

 NO2 Cl

Cl

Pt

 NH3 

 NO2 Cl

Cl

Pt

 NH3 

 NO2 CH3 NH2 

Cl

PtCH3 NH2 (2)

 NH3 (1)

 NH3 

 NH3  NH3 

 NH3 

M Cl- 

Cl

 NH3  NH3 

 NH3 

M Cl- 

Cl

Cl NH3 

Cl

M

không màu vàng vàng

Cl

ClCl

Cl

M  NH3 

Cl

 NH3 Cl

Cl

M  NH3 

Cl

 NH3  NH3 

Cl

M

đỏ da cam vàng

Cl

 NH3 

Pt

H3 N

H3 N

Page 49: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 49/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

8

 Các phản ứng (1), (3), (6) biểu hiện ảnh hưởng trans. Các phản ứng (2), (4), (5)

 biểu hiện ảnh hưởng của độ bền liên kết Pt - phối tử.

5. ẢNH HƯỞNG CỦA SỰ TẠO PHỨC ĐẾN THÊ ĐIỆN CỰC

Đối với điện cực loại 1:

Ví dụ 1: Xét ảnh hưởng của sự tạo phức giữa Ag+ và S2O32- đến thế điện cực Ag+/Ag.

Ta có bán phản ứng : Ag+  + e ⇌  Ag E0 = 0,80 V

Khi thêm phối tử S2O3

2-

 vào dung dịch Ag

+

:Ag+  + 2S2O3

2-  ⇌  [Ag(S2O3)2]3-

1322

32

232 10.9,2]OS][Ag[])OS(Ag[

   

Khi đó bán phản ứng :

[Ag(S2O3)2]3- + e ⇌  Ag + 2S2O3

2- 

có thế điện cực chuẩn tính theo phương trình Nest:

]Agln[nFRTEE Ag/Ag

0Ag/])OS(Ag[

0232

   

Ở đkc: [Ag(S2O3)2]3- = [S2O3

2-] = 1M

 Nên:

  1

]OS[])OS(Ag[

]Ag[22

32

232  

)V(01,010.9,21

lg059,08,0E 13Ag/])OS(Ag[0

232    

Điện cực loại 2:

Ví dụ 1: Xét ảnh hưởng của sự tạo phức giữa Fe2+, Fe3+  và CN-  đến thế điện cực

Fe3+/Fe2+.

Ta có bán phản ứng : Fe3+  + e ⇌  Fe2+  E0 = 0,77 V

Khi thêm phối tử CN- vào dung dịch hỗn hợp Fe2+ và Fe3+:

CH3 NH2 

 NO2  NH3 

Cl

Pt

CH3 NH2 

 NO2  NH3 

CH3 NH2 

Pt

Cl

 NO2  NH3 

CH3 NH2 

PtCl(6)

CH3 NH2 (5)

Page 50: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 50/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

9

Fe2+  + 6CN-  ⇌  [Fe(CN)6]4-  β1 = 8.1036 

Fe3+  + 6CN-  [Fe(CN)6]3-  β2 = 8.1043 

Khi đó bán phản ứng :

[Fe(CN)6]3-  + e ⇌ [Fe(CN)6]4- 

có thế điện cực chuẩn tính theo phương trình Nest:

]Fe[]Fe[

lnnFRT

EE 2

3

Fe/Fe0

])CN(Fe/[])CN(Fe[0

2346

36

   

Ở đkc: [Fe(CN)6]4- = [Fe(CN)6]3- = 1M

 Nên:2

12

3

]Fe[]Fe[

 

)V(36,010.810.8

lg059,077,0E 43

36

])CN(Fe/[])CN(Fe[0

46

36    

Kết luận: phức [Fe(CN)6]3- bền hơn [Fe(CN)6]4- nên thế điện cực giảm

6. ẢNH HƯỞNG CỦA SỰ TẠO PHỨC ĐẾN ĐỘ TAN CỦA KẾT TỦA

Sự tạo phức có ảnh hưởng lớn đến độ tan của các chất điện ly ít tan.

Ví dụ 1: Hãy so sánh độ tan của AgCl trong nước và trong dung dịch NH3.

Biết: TAgCl = 1,8.10-10 và β = 1,0.108 

AgCl(R)  ⇌ Ag+  + Cl-  TAgCl = 1,8.10-10 

Ag+  + 2NH3  ⇌ [Ag(NH3)2]+  β = 1,0.108 

Cộng 2 vế PT:

AgCl(R)  + 2NH3  ⇌ [Ag(NH3)2]+  + Cl- 

Hằng số CB của phản ứng:

AgCl23

23 T] NH[

]Cl][) NH(Ag[K   

Hoà tan AgCl trong dung dịch NH3  1M. Gọi độ tan của AgCl trong nước và trong

dung dịch NH3 lần lượt là S1 và S2 

AgCl(R)  + 2NH3  ⇌ [Ag(NH3)2]+  + Cl- 

Page 51: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 51/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

10

Ban đầu: 1 0 0

Cân bằng: (1-2S2) S2  S2 

Ta có:

2

22

22

23

23

10.8,1)S21(

)S(

] NH[

]Cl][) NH(Ag[

 

 

S2 = 0,105 (mol/l)

S1 = 1,3.10-5 (mol/l)

S2/S1 = 8077 lần  AgCl tan đáng kể trong NH3 

Ví dụ 2: Hãy so sánh độ tan của AgI trong nước và trong dung dịch NH 3. Biết: TAgI =

8,3.10-17 và β = 1,0.108 

AgI(R)  ⇌ Ag+  + I-  TAgI = 8,3.10-17 

Ag+  + 2NH3  ⇌ [Ag(NH3)2]+  β = 1,0.108 

Cộng 2 vế PT:

AgI(R)  + 2NH3  ⇌ [Ag(NH3)2]+  + I- 

Hằng số CB của phản ứng:

AgI23

23 T] NH[

]I][) NH(Ag[K   

Hoà tan AgI trong dung dịch NH3 1M. Gọi độ tan của AgI trong nước và trong dungdịch NH3 lần lượt là S1 và S2 

AgI(R)  + 2NH3  ⇌ [Ag(NH3)2]+  + I- 

Ban đầu: 1 0 0

Cân bằng: (1-2S2) S2  S2 

Ta có:

92

2

22

23

23 10.3,8)S21(

)S(

] NH[

]I][) NH(Ag[K   

 

S2 = 9.1.10-5 (mol/l)

S2 = 9,1.10-9 (mol/l)

 AgI không tan trong NH

Page 52: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 52/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

11

7. GIẢN ĐỒ PHÂN BỐ

Khi biết hằng số bền của các phức chất tạo thành giữa ion kim loại và phối tử,

chúng ta có thể tính toán được nồng độ các dạng tồn tại trong dung dịch ở trạng thái

cân bằng. Ví dụ, ion kim loại M tạo thành một số phức chất với phối tử X và các dạng

tồn tại của các phức chất này đang ở trạng thái cân bằng trong dung dịch. Giả thiết ion

kim loại tạo phức chất với phối tử có số phối trí bằng 4. Nếu phức chất có số phối trí

khác thì quá trình tính toán cũng được thực hiện theo cách tương tự.

Ta có hằng số bền của các dạng phức tương ứng:

Cd2+ + OH- ⇌ [Cd(OH)]+  [Cd(OH)] = β1[Cd2+][OH-]

Cd2+ + 2OH- ⇌ [Cd(OH)2] [Cd(OH)2] = β2[Cd2+][OH-]2 

Cd2+

 + 3OH-

 ⇌ [Cd(OH)3]-  [Cd(OH)3] = β3[Cd

2+

][OH-

]3

 

Cd2+ + 4OH- ⇌ [Cd(OH)4]2- [Cd(OH)4] = β3[Cd2+][OH-]4 

Tổng nồng độ của Cd(II) là CM  bao gồm nồng độ của ion kim loại tự do và

nồng độ các dạng phức chất của nó với phối tử trong dung dịch:

CM = [Cd2+] + [Cd(OH)] + [Cd(OH)2] + [Cd(OH)3] + [Cd(OH)4]

CM = [Cd2+](1 + β1[OH-] + β2[OH-]2 + β3[OH-]3 + β4[OH-]4)

% các dạng tồn tại của Cd(II) trong dung dịch được tính theo các công thức:

)]OH[]OH[]OH[]OH[1(1

C]Cd[

44

33

221M

0  

01M

1 ]OH[C

)]OH(Cd[   0

22

M

22 ]OH[

C])OH(Cd[

 

03

3M

33 ]OH[

C])OH(Cd[

  04

4M

44 ]OH[

C])OH(Cd[

 

Ví dụ: Xây dựng giản đồ phân bố các dạng tồn tại của Pb2+ theo pH của dung dịch.

Xét sự tạo phức của Cd2+

 với phối tử NH3. Hằng số bền của các dạng phức như sau:Cd2+ + NH3 ⇌ [Cd(NH3)]

2+ ] NH][Cd[

)] NH(Cd[K 

3

31   = 447

[Cd(NH3)]2+ + NH3 ⇌ [Cd(NH3)2]

2+ ] NH)][ NH(Cd[

]) NH(Cd[K 

33

232   = 126

Page 53: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 53/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

12

[Cd(NH3)2]2+ + NH3 ⇌ [Cd(NH3)3]

2+ ] NH][) NH(Cd[

]) NH(Cd[K 

323

333   = 27.5

[Cd(NH3)3]2+ + NH3 ⇌ [Cd(NH3)4]

2+ ] NH][) NH(Cd[

]) NH(Cd[K 

333

434   = 8.5

Bảng . Nồng độ phần mol của các dạng tồn tại của ion Cd 2+ trong dung dịch theo nồngđộ của NH3 

 pNH3 α0  α1  α2  α3  α4 

5.00 0.996 0.004 0.000 0.000 0.000

4.50 0.986 0.014 0.000 0.000 0.000

4.00 0.957 0.043 0.001 0.000 0.000

3.50 0.872 0.123 0.005 0.000 0.000

3.00 0.665 0.297 0.037 0.001 0.000

2.75 0.505 0.401 0.090 0.004 0.0002.50 0.330 0.467 0.186 0.016 0.000

2.40 0.265 0.472 0.237 0.026 0.001

2.25 0.179 0.450 0.319 0.049 0.002

2.00 0.078 0.350 0.441 0.121 0.010

1.75 0.027 0.216 0.484 0.237 0.036

1.50 0.007 0.106 0.422 0.367 0.099

1.25 0.002 0.041 0.291 0.450 0.216

1.10 0.001 0.021 0.210 0.459 0.3101.00 0.000 0.013 0.162 0.446 0.379

0.85 0.000 0.006 0.104 0.404 0.486

0.75 0.000 0.003 0.075 0.367 0.555

0.65 0.000 0.002 0.053 0.325 0.620

0.55 0.000 0.001 0.037 0.283 0.679

0.50 0.000 0.001 0.030 0.263 0.707

0.40 0.000 0.000 0.020 0.223 0.756

0.300.000 0.000 0.014 0.187 0.799

0.20 0.000 0.000 0.009 0.156 0.835

0.10 0.000 0.000 0.006 0.128 0.866

0.05 0.000 0.000 0.005 0.116 0.879

0.00 0.000 0.000 0.004 0.105 0.891

Page 54: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 54/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

13

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

4

3

2

1

0

   N    å  n  g   ®   é  p   h    Ç  n  m  o   l   (        )

pNH3  

Ví dụ: Xây dựng giản đồ phân bố các dạng tồn tại của Pb2+ theo pH của dung dịch

Page 55: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 55/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

14

CHƯƠNG 5

CÁC PHƯƠNG PHÁP NGHIÊN CỨU PHỨC CHẤT

Hiện nay, để nghiên cứu phức chất người ta sử dụng hai loại phương pháp:

 phương pháp nghiên cứu phức rắn và phương pháp nghiên cứu phức chất trong dung

dịch.

Với phức rắn người ta sử dụng các phương pháp tổng hợp: phức chất phải được

tách ra dưới dạng rắn, sau đó dùng các phương pháp hoá học, phương pháp vật lý hoặc

hoá lý để xác định thành phần và tính chất của phức. Thuyết phối trí đã được xây dựng

dựa trên những dữ kiện thực nghiệm thu được từ các phương pháp này.

Với phức tan trong dung dịch, người ta sử dụng những phương pháp phân tích

hoá lý để xác định thành phần và độ bền của chúng mà không cần phải tách chúng rakhỏi dung dịch.

1. CÁC PHƯƠNG PHÁP TỔNG HỢP NGHIÊN CỨU PHỨC CHẤT

1.1. Phương pháp hóa học

Dùng để xác định thành phần của ion phức. Đầu tiên, ta phải phân tích hoá học

để xác định thành phần tổng cộng của phức chất đã tổng hợp được, sau đó khảo sát các

 phản ứng trao đổi của phức với các thuốc thử khác nhau để xác định thành phần của

cầu nội (ion phức) và cầu ngoại.Ví dụ: Xét muối phức màu tím có tên gọi thông thường là luteô.

- Phép phân tích hoá học cho thấy muối luteô ứng với công thức thực nghiệm:

CoCl3.6NH3.

- Hoà tan phức vào nước rồi thử bằng quỳ tím thấy dung dịch trung tính; cho

dung dịch muối tác dụng với kiềm: không thấy có NH3 bay lên. Vậy trong dung dịch

không có NH3 tự do.

- NH3  chỉ bay lên khi đun sôi dung dịch muối, đồng thời lúc đó sẽ thu đượcCo2O3.

- Cho dung dịch tác dụng với dung dịch muối cacbonat hay photphat: không

thấy có kết tủa. Vậy dung dịch không có Co3+ tự do.

- Cho dung dịch tác dụng với AgNO3 thì thu được kết tủa trắng AgCl. Một mol

muối cho 3 mol kết tủa AgCl và khi cho muối tác dụng với H 2SO4 đặc thì có HCl bay

Page 56: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 56/87

Page 57: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 57/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

16

  Sở dĩ có được sự tương ứng đơn giản đó là do các phức chất tan trong nước đều

 phân ly như những chất điện ly mạnh để tạo ion phức và ion cầu ngoại. Trong các

dung dịch loãng (đến milimol) các muối tan có thể xem như điện ly hoàn toàn, vì thế

độ dẫn điện mol của chúng là tổng số dẫn điện của các ion.

Ví dụ: Độ dẫn điện đo được của muối luteô là 401 -1.cm2.mol-1 nên công thức

đã dự đoán [Co(NH3)6]Cl3 là chính xác vì khi điện ly nó sẽ tạo 4 ion.

Lưu ý:

1- Để giải thích đúng các kết quả thu được thì không chỉ tính đến số ion, mà

còn phải tính đến điện tích của các ion nữa. Các trị số "chuẩn" 100, 400, 500 nêu trên

chỉ áp dụng đúng cho các phân tử phân ly tạo các ion cầu ngoại hoá trị 1, nghĩa là

những chất điện ly kiểu)(

n

)n(

XM

. Nếu chất điện ly kiểu khác, ví dụ: CdSO4, thì tuy phân

ly thành hai ion nhưng độ dẫn điện mol của CdSO4 lại bằng 268 (bằng tổng số độ dẫn

điện mol của Cd2+  và SO42-, một ion SO4

2-  tính bằng hai ion X-). Tuy nhiên, nếu ta

không tính độ dẫn điện mol mà tính độ dẫn điện đương lượng thì trị số sẽ gần với trị số

chuẩn ở trên.

2- Nếu dung dịch phức có tính axit hoặc kiềm, thì cần đưa số hiệu chỉnh phần

tham gia của H+ và OH- vào đại lượng . Như vậy, cần phải đo pH của dung dịch. Đối

với ion H+ số hiệu chỉnh đó được tính theo công thức:

H

 = C

350.H

  (4.1)

Với C là nồng độ mol của phức; 350 là độ dẫn điện của H+ ở 25oC. Khi đo ở nhiệt độ

khác thì thay giá trị 350 bằng độ dẫn điện ion của H+ ở nhiệt độ đó.

3- Sự sai lệch với quy luật còn xảy ra khi có sự tương tác giữa hợp chất và dung

môi, làm lượng ion trong dung dịch tăng lên. Ví dụ: các hợp chất kiểu [Co(NH 3)3X3]

và [Pt(NH3)2X4] khi vừa mới pha không phải là chất điện ly, nhưng sau đó độ dẫn điện

của dung dịch tăng dần lên do các anion phối tử được thay thế dần bằng phân tử dungmôi.

[Pt(NH3)2Cl4] + H2O ⇌ [Pt(NH3)2(H2O)Cl3]+ + Cl- 

[Pt(NH3)2(H2O)Cl3]+ + H2O ⇌  [Pt(NH3)2(H2O)2Cl2]

2+ + Cl- 

Page 58: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 58/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

17

  Tuy nhiên, phương pháp đo độ dẫn điện rất khó phân biệt dung dịch chứa các

ion 2K +, [Pt(H2O)Cl3]- với dung dịch chứa các ion 2K +, [PtCl4]

2-. Khi đó, muốn xác

định điện tích ion phức phải sử dụng những phương pháp khác, như phương pháp xác

định ngưỡng nồng độ làm đông tụ các keo tích điện hoặc phương pháp sử dụng nhựa

trao đổi ion.

4- Dung lượng phối trí của của phối tử cũng ảnh hưởng đến độ dẫn điện: các

 phức có vòng 5 hay 6 cạnh rất bền nên độ dẫn điện của chúng trong dung dịch thực tế

không thay đổi theo thời gian và nhỏ hơn độ dẫn điện của phức trong đó phối tử là đơn

răng.

5- Độ dẫn điện mol còn phụ thuộc cấu tạo của ion phức: Độ dẫn điện của các

đồng phân trans lớn hơn của đồng phân cis một ít vào thời điểm ban đầu và sau đó

không thay đổi theo thời gian, trong khi độ dẫn điện của đồng phân cis tăng dần lên do phối tử bị thay thế dần bởi dung môi.

1.3. Phương pháp đo độ cảm từ của phức chất 

1.3.1. Một số khái niệm 

Khi điện trường chuyển động thì phát sinh ra từ trường. Giữa độ từ hoá I, cường

độ từ trường ngoài H và mật độ dòng đường sức ở bên trong vật có mối liên hệ sau:

  B = H + 4I (4.2)

với B là cường độ từ trường ở bên trong vật.Độ từ hoá I được đo bằng đại lượng momen tác dụng lên vật đặt trong từ

trường, momen này muốn quay vật dọc theo hướng của đường sức.

Từ (4.2) ta có:H

I41

HB  

 

Đại lượngHB

 được gọi là độ thẩm từ của chất.

Đại lượng H

I

 được gọi là độ cảm từ của chất, đặc trưng cho khả năng từ

hoá của một chất trong từ trường. Độ cảm từ (χ) không có đơn vị.

Độ cảm từ  là tính chất của chất xuất hiện dưới tác dụng của từ trường. Dưới

tác dụng của từ trường, trong chất xuất hiện sự phân cực từ, sự phân cực này gây ra

 bởi ảnh hưởng của từ trường đến các electron của chất.

Page 59: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 59/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

18

  Từ biểu thức trên ta có: μ = 1 + 4πχ

χ đo độ cảm từ của 1 cm 3 chất. Ngoài χ, người ta còn sử dụng độ cảm từ riêng

dr 

 (d là tỷ trọng của chất) và độ cảm từ phân tử: χ M = χ.Vmol = χ r .M

Chất nghịch từ có χ, χ r  , χ M < 0Chất thuận từ có χ, χ r  , χ M > 0.

Các chất thuận từ có χ, χ r  , χ M >> 0 sẽ được gọi là chất sắt từ.

Vì trong từ trường, độ từ hoá của các chất nghịch từ nhỏ hơn trong chân không,

nên chúng bị đẩy ra khỏi từ trường. Ngược lại, độ từ hoá của các chất thuận từ trong từ

trường lớn hơn trong chân không nên chúng được từ trường hút.

Tính nghịch từ là thuộc tính vốn có của những chất có momen từ cảm ứng (hầu

như có với mọi chất), còn tính thuận từ chỉ có ở những chất mà phân tử hay ion củachúng có momen từ thường xuyên.

Độ cảm từ phân tử của chất liên hệ với momen từ  của nó theo hệ thức:

 = 2,84 T.M   (4.3)

với T là nhiệt độ tuyệt đối; 2,84 là trị số của hằng số N

R 3; R là hằng số khí; N là số

Avogadro.

Momen từ toàn phần của hệ gồm momen từ orbital và momen từ spin. Momentừ spin đóng vai trò chủ yếu, còn momen từ orbital không đáng kể. Khi từ tính orbital

 bị triệt tiêu thì momen từ có thể được tính theo số electron độc thân n:

)2n(n     (4.4)

Đơn vị đo momen từ  là manheton Bohr, ký hiệu là µo,

µo = 9,17.10-21 Gauss/cm3.

Độ cảm từ của chất được xác định bằng phương pháp thực nghiệm.

1.3.2. Áp dụng tính chất từ để giải thích các tính chất của phức - Ta có thể dự đoán cấu hình không gian của các phức chất dựa vào đại lượng

momen từ của chúng: khi đo được độ từ cảm của chất, ta tính được  và từ  tính ra n.

So sánh n với số electron độc thân của ion trung tâm tự do ta sẽ suy ra cấu trúc hình

học của phức dựa vào số orbital lai hoá.

Page 60: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 60/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

19

Ví dụ: Ion Ni2+ 3d8 có 2 electron độc thân với momen từ bằng 2,83 o:

Đối với phức chất:

có  cũng bằng 2,83 o, nghĩa là có 2 electron độc thân. Như vậy, phức này có lai hoá

sp3 nên có cấu trúc tứ diện.

 Nếu 2 electron độc thân của Ni2+ ghép đôi để tạo một ô 3d trống thì có thể tạo phức

vuông phẳng với lai hoá dsp2 và phức sẽ có momen từ bằng không (n = 0).

Thật vậy, khi đo độ cảm từ của phức K 2[Ni(CN)4] và phức:

người ta thấy chúng có  bằng 0 (nghịch từ). Như vậy, chúng có cấu tạo vuông phẳng.

- Có thể sử dụng phép đo độ cảm từ để suy luận về tính chất của liên kết trong

 phức chất, nghĩa là xem liên kết đó có tính ion hay cộng hoá trị.

Ví dụ: Xét các phức của Fe3+:

Ion Fe3+ có cấu hình 3d5, với momen từ bằng 5,92 o.

Thực nghiệm cho thấy Fe3+  trong phức (NH4)3[FeF6] cũng có momen từ bằng

5,92o. Như vậy đây là phức spin cao.

 Nếu có sự ghép đôi electron trong phân lớp d thì Fe3+ sẽ có 2 orbital trống: với

1 electron độc thân, momen từ bằng 1,73o, muốn tạo liên kết với các nhóm phối trí

↑ ↑  ↑  ↑  ↑ 3d 4p4s

CH = NH

O

O

 NH = CH

 Ni

↑↓ ↑↓ ↑↓  ↑  ↑ 3d 4p4s

sp3 

↑↓ ↑↓ ↑↓ ↑↓ 3d 4p4s

dsp

CH = OO

OO = CH

 Ni

Page 61: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 61/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

20

thì các nhóm này (ví dụ: CN-) phải chuyển các cặp electron tự do vào các orbital lai

hóa d2sp3 của Fe3+.

Phép đo độ cảm từ của phức chất K 3[Fe(CN)6] cho thấy Fe3+ trong phức có momen từ

 bằng 2,3o. Như vậy theo tính chất của liên kết thì hợp chất này gần với các phức cộng

hoá trị.

- Trong một số trường hợp người ta còn áp dụng phép đo độ cảm từ để xác định

mức oxi hoá của ion trung tâm.

Ví dụ: Ta biết rằng tất cả các hợp chất của PtII

 5d8

 và PtIV

 5d6

 đều nghịch từ,còn các phức PtIII 5d7 coi như có 1 electron độc thân và như vậy phải thuận từ. Có một

số hợp chất của platin về hình thức theo công thức thực nghiệm là hợp chất của Pt III,

như (Pt(en)Br 3)2, (PtBr 3)2, (Pt(NH3)Cl2OH)2... Nhưng trên thực tế phép đo độ cảm từ

cho thấy chúng đều nghịch từ. Do đó chúng phải là hỗn hợp của PtII  và PtIV:

Pt(en)Br 2.Pt(en)Br 4, PtBr 2.PtBr 4, PtCl2.Pt(NH3)2Cl2(OH)2.

Ví dụ: Ở 25oC độ cảm từ phân tử của phức [MnCl4]2- là 0,015. Hãy xác định kiểu lai

hoá và cấu trúc hình học của phức trên.

Cấu hình electron của Mn (Z=25): 3d5 4s2.

Cấu hình electron của Mn2+: 3d5 

Từ (4.3) và (4.4) ta có: 2,84 T.M = )2n(n    với M = 0,015 và T=273+25= 298.

Giải phương trình trên ta được:

n1 = -7,08 : loại

n2 = 5,08: chọn và làm tròn bằng 5.

↑↓ ↑↓  ↑ 3d 4p4s

d2sp3 

↑ ↑  ↑  ↑  ↑ 3d 4p4s

Page 62: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 62/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

21

 

Vậy phức [MnCl4]2-

 trên có kiểu lai hoá sp3

 và có cấu trúc tứ diện.

1.4. Quang phổ hấp thụ của phức chất 

Theo bảng phổ, tần số của các bức xạ tăng dần theo thứ tự: Sóng radio - Vi

sóng - Hồng ngoại xa - Hồng ngoại trung bình - Hồng ngoại gần - Khả kiến - Tử

ngoại - Tia X

- Vùng tử ngoại (UV: ultra-violet):  nằm giữa vùng tia X và vùng khả kiến

(VIS: vissible). Các tia tử ngoại được tạo thành khi có sự bức xạ của:1. Các vật rắn được nung nóng (như đèn nung nóng)

2. Các chất khí hoặc hơi được kích thích khi phóng điện.(đèn phóng điện qua

hơi hydro).

- Vùng hồng ngoại (IR: infra-red)  nằm giữa vùng khả kiến và vùng sóng

radio. Người ta phân biệt các tia hồng ngoại sóng ngắn (hồng ngoại gần), sóng trung

(hồng ngoại trung bình) và sóng dài (hồng ngoại xa). Nguồn phát tia hồng ngoại là các

vật được nung nóng. Chẳng hạn, người ta thu được các tia hồng ngoại khi đốt nóng các

thanh oxit kim loại khó nóng chảy (như oxit ziriconi, oxit thori, oxit ceri...) hoặc thanh

cacbua silic bằng dòng điện, hay khi phóng điện qua các khí.

Chúng ta cũng đã biết rằng:

- Khi phân tử hấp thụ hay phát ra một bức xạ có tần số   thì năng lượng của

 phân tử biến thiên một lượng tương ứng là:

E = h  (erg)

với h là hằng số Planck (h = 6,625.10 -27 erg.s),  là tần số bức xạ (s-1).

- Tần số ứng với chuyển động của electron ( 1015 s-1) lớn hơn tần số dao động

của các hạt nhân (tức dao động nguyên tử,  1012 s-1) và chuyển động quay của phân tử

(1010 s-1).

 Như vậy, khi electron chuyển từ mức năng lượng electron này sang mức năng

lượng electron khác sẽ xảy ra sự hấp thụ hay phát xạ các tia có tần số cao, vì thế các

sp

↑ ↑  ↑  ↑  ↑ 3d 4p4s

Page 63: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 63/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

22

vạch hấp thụ tương ứng với sự chuyển electron sẽ xuất hiện ở các vùng tử ngoại hay

khả kiến.

Tần số chuyển động dao động của các nguyên tử (chính xác hơn là dao động

của các hạt nhân của chúng) thấp hơn tần số chuyển động của các electron, nên các

vạch hấp thụ sẽ xuất hiện ở vùng hồng ngoại. Chuyển động quay của các phân tử có

tần số tương đối nhỏ nên các vạch hấp thụ sẽ xuất hiện ở vùng hồng ngoại xa và vùng

sóng radio.

* Một số đặc điểm của quang phổ hấp thụ của phức chất  :

- Quang phổ hấp thụ phụ thuộc vào cấu tạo của các lớp electron. Quang phổ hấp

thụ của phức chất kim loại chuyển tiếp có các vạch hập thụ cường độ nhỏ, xuất hiện

trong vùng khả kiến. Đôi khi chúng chuyển chút ít sang vùng tử ngoại. Các vạch phổ

này liên quan đến sự chuyển e giữa các orbital chưa điền đầy. Vì vậy, đa số phức chấtcủa các kim loại chuyển tiếp đều có màu.

- Số lượng các hấp thụ trong quang phổ tăng lên khi cấu trúc hình học của ion

 phức bị lệch (không còn là đa diện đều). Ví dụ: ion [MA6]3+ có số vạch hấp thụ ít hơn

ion [MA4B2]3+.

- Số vạch hấp thụ của đồng phân trans ít hơn của đồng phân cis, vì đồng phân

cis kém đối xứng hơn. Vì vậy, dựa vào phổ hấp thụ có thể phân biệt được đồng phân

cis và đồng phân trans.- Các vạch hấp thụ trong vùng tử ngoại xuất hiện do sự dao động của các e tạo

liên kết giữa ion trung tâm và phối tử. Quang phổ này thường được gọi là quang phổ

chuyển điện tích.

- Điện tích của ion trung tâm có ảnh hưởng đến quang phổ hấp thụ. Ở các phức

chất cùng kiểu, cực đại của các vạch hấp thụ sẽ càng chuyển sang vùng sóng ngắn khi

mức oxi hóa của ion trung tâm càng cao.

Điều này được giải thích là do khi M có oxi hóa thấp tạo hợp chất thì các e hóa

trị bên ngoài có thể tham gia vào sự hấp thụ hay phạt xạ năng lượng. Có thể kích thích

chúng bằng những lượng tử có năng lượng nhỏ. Khi tăng số oxi hóa của M thì số e hóa

trị bổ sung sẽ tham gia vào sự tạo thành chất, các e liên kết bền hơn với hạt nhân, để

kích thích chúng cần các phôtn có năng lượng lớn hơn.

Page 64: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 64/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

23

  Có thể ứng dụng phương pháp phổ để nghiên cứu các phức chất trong dung

dịch bằng phương pháp dãy đồng phân tử . Cơ sở của phương pháp này là nồng độ

của phức chất sẽ cực đại khi các chất đầu (M và L) có mặt trong dung dịch theo tỷ lệ

hợp thức. Trong các dung dịch đó, tính chất của phức chất, kể cả tính chất quang phổ,

thể hiện ở mức độ cực đại.

2. CÁC PHƯƠNG PHÁP NGHIÊN CỨU PHỨC CHẤT TRONG DUNG DỊCH 

Các phương pháp tổng hợp cho phép xác định cấu tạo và một số tính chất của

 phức chất nhưng không cho chúng ta các thông tin về tính chất của phức chất trong

dung dịch, trong khi những biến đổi xảy ra khi tạo phức trong dung dịch là rất đặc

trưng đối với phức chất và rất có ý nghĩa đối với thực nghiệm.

Việc nghiên cứu các cân bằng trong dung dịch phức, kết hợp với các phương pháp hoá lý khác sẽ giúp chúng ta xác định được các tính chất của phức trong dung

dịch, thành phần và độ bền của phức tạo thành.

Thông thường, khi thêm những lượng khác nhau của phối tử A vào dung dịch

chứa ion kim loại M thì tuỳ theo tỷ lệ nồng độ M/A hoặc độ pH mà có thể tạo thành

một hay một số phức chất MmAa.

 Nhiệm vụ của nhà nghiên cứu là phải xác định được kiểu phức chất nào sẽ được

tạo thành ở điều kiện đó, nghĩa là tìm các giá trị m và n rồi xác định các hằng số bềntương ứng của phức chất.

Vấn đề sẽ đơn giản khi trong dung dịch chỉ tạo thành một phức chất, hoặc tạo

thành nhiều phức chất nhưng vùng tồn tại của chúng (tỷ lệ nồng độ, pH...) tách biệt

khỏi nhau. Vấn đề sẽ phức tạp hơn nhiều nếu đồng thời có một số phức chất nằm cân

 bằng với nhau.

Trước tiên nhà nghiên cứu phải nghiên cứu định tính, nghĩa là xem phức chất

có tạo thành hay không và các cấu tử nào trong dung dịch tham gia tạo phức, rồi sau

đó mới nghiên cứu định lượng.

Hằng số không bền là đặc trưng quan trọng nhất của quá trình tạo phức trong

dung dịch. Từ hằng số không bền có thể xác định cơ chế của phản ứng, tìm được điều

kiện tối ưu để tiến hành phản ứng theo hướng mong muốn, tính được thành phần cân

 bằng của hệ ở các điều kiện bất kỳ. Tuy nhiên, tuỳ theo cách xác định, hằng số không

Page 65: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 65/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

24

 bền của cùng một phức chất đôi khi có thể rất khác nhau. Nguyên nhân: do hằng số

không bền không phải là hằng số nhiệt động học, mà là hằng số nồng độ. Ngoài nồng

độ, nhiệt độ và lực ion cũng có ảnh hưởng đến các kết quả xác định K kb.

Thực tế, chỉ trong các dung dịch rất loãng mới có thể tính K theo nồng độ cân

 bằng Ci của các cấu tử trong dung dịch, còn trong các dung dịch đậm đặc hơn thì phải

dùng hoạt độ cân bằng ai của các cấu tử.

Ta có: ai = f i.Ci

với f i là hệ số hoạt độ của các cấu tử i. f i được tính theo phương trình:

- log f i =

B1

.z.A 2i  

zi là điện tích ion i;  là lực ion tính theo công thức:  =

i

2i C.z

2

1; A là hằng số, tính

theo phương trình: A =2/3

6

)T(10.82,1

;  là hằng số điện môi của môi trường; T là nhiệt độ

tuyệt đối; B = a.2/1)T(

29,50

 là hằng số kinh nghiệm, thường bằng 1.

Biểu thức tính f i trên chỉ thuận lợi nếu  < 0,1. Vì vậy, thông thường người ta

không xác định K theo hoạt độ mà theo hai cách sau:

(1) Tiến hành các phép đo trong những dung dịch rất loãng, lúc đó tất cả các hệsố hoạt độ f i đều bằng 1 nên ai =Ci 

(2) Xác định K ở các nồng độ C khác nhau rồi ngoại suy đến C = 0 (pha loãng

vô cùng). Cách 2 này hay được sử dụng hơn.

Các phương pháp xác định hằng số không bền được chia làm hai nhóm.

 Nhóm thứ nhất gồm các phương pháp cho phép tìm trực tiếp nồng độ cân bằng

của các cấu tử tham gia vào phản ứng tạo phức. Thuộc nhóm này có:

- Phương pháp phân tích hoá học - Phương pháp trao đổi ion

- Phương pháp cực phổ - Phương pháp chỉ thị quang học

- Phương pháp điện thế - Phương pháp động học

- Phương pháp sinh vật học - Phương pháp tao đổi đồng vị

- Phương pháp phân bố giữa hai dung môi không trộn lẫn

Page 66: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 66/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

25

  Nhóm thứ hai gồm các phương pháp không thể tính trực tiếp nồng độ cân bằng

của các tiểu phân, nhưng cho phép xác định hằng số không bền dựa vào việc đo các

tính chất hoá lý của dung dịch. Đó là các phương pháp:

- Phương pháp quang học

- Phương pháp đo độ dẫn điện

- Phương pháp nghiệm lạnh và phương pháp nghiệm sôi

- Phương pháp đo nhiệt lượng

- Phương pháp từ hoá học

Sau đây ta xét một số phương pháp thông dụng nhất dùng xác định thành phần

và hằng số không bền của phức chất.

2.1. Phương pháp điện thế 

Thực chất của phương pháp này là đo thế cân bằng phát sinh giữa kim loại vàdung dịch. Nếu sự phát sinh thế có liên quan đến cân bằng:

M ⇌ Mn+ + ne (1)

Thì đại lượng thế  này có thể xác định hoạt độ của kim loại theo phương trình Nernst:

  M0 aln

nFRT

  (2)

với o là thế điện cực tiêu chuẩn; R là hằng số khí; T là nhiệt độ tuyệt đối; F là hằng số

Faraday; n là số electron trao đổi của M; Ma là hoạt độ của ion kim loại.- Nếu hai điện cực được nhúng vào hai dung dịch Mn+ có nồng độ khác nhau thì

sức điện động của mạch nồng độ là:

2

1

CC

lnnFRT

E     (3)

Đo được E, nếu biết C1 sẽ suy ra C2 hay ngược lại.

- Trên thực tế, nếu chúng ta thiết lập mạch nồng độ:

M│Mn+

(C1)║Mn+

(C) + A-

│M (4)1  2

nghĩa là một điện cực nhúng trong dung dịch Mn+ có nồng độ C1 không đổi, điện cực

kia nhúng vào dung dịch thứ hai chứa cùng nồng độ ban đầu của ion kim loại và một

lượng xác định phối tử A.

Sức điện động của mạch nồng độ này tính theo phương trình:

Page 67: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 67/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

26

 CC

lnnFRT

E 121    

với C là nồng độ Mn+ còn lại trong dung dịch sau khi tạo phức với A. Từ phương trình

trên, biết C1, đo được E ta sẽ suy ra C.

Phương pháp điện thế có thể dùng để:a/ Xác định nồng độ của Mn+ tự do, từ đó xác định được nồng độ của Mn+ tham

gia tạo phức.

 b/ Xác định nồng độ của phối tử tự do. Trong nhiều trường hợp có thể xác định

được cả hai loại nồng độ.

2.1.1. Trường hợp trong hệ chỉ tạo một phức chất đơn nhân 

M + a A ⇌  MAa 

]MA[

]A].[M[K 

a

a

kb     (5)

Gọi CA, CM là nồng độ ban đầu của A và Mn+, C là nồng độ cân bằng của Mn+ 

sau tạo phức. Nếu thí nghiệm có: Ca » CM » C thì:

[M] = C; [MAr ] = CM - C ≈ CM ; [A] = CA - aCM ≈ CA 

Khi đó:M

aA

kb C)C.(C

K      (5')

Lấy logarit (5') và biến đổi ta có: K lgClgaC

Clg A

M   (6)

 Nếu các giả thiết trên là đúng thì đồ thịC

Clg M  theo lgCA sẽ là một đường thẳng

có hệ số góc bằng a, còn đoạn cắt trên trục tung là -lgK (Hình 4.1).

Hình 4.1. Đồ thịC

Clg M  theo lgCA 

CC

lg M

AClg

Page 68: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 68/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

27

  Khi làm thí nghiệm, ta pha một dãy dung dịch có CM = const, CA thay đổi từ

dung dịch này sang dung dịch kia.

Sau khi đo sức điện động của các mạch nồng độ theo kiểu (4), ta tính được nồng độ

cân bằng C của Mn+ trong mỗi dung dịch và vẽ đồ thị theo phương trình (6).Trong thực

tế, bằng phương pháp điện thế người ta đã xác định được thành phần và K kb của các

 phức chất tạo thành trong nhiều hệ.

Ví dụ: Khi nghiên cứu thành phần và K kb của phức chất giữa Pb2+ và I- bằng phương

 pháp điện thế, người ta chuẩn bị một pin nồng độ:

(+) Ag  Ag+ (CM)  I- (CA) + Ag+ (CM)  Ag (-)

Với CM = 0.05M, CA thay đổi từ 0.2M đến 0.4 M. Kết quả xác định sức điện động của

 pin như sau:

STT CM (mol/l) CA (mol/l) E (V)1 0.05 0.20 0.0352 0.05 0.25 0.0453 0.05 0.30 0.0554 0.05 0.35 0.0635 0.05 0.40 0.070

-0.70 -0.65 -0.60 -0.55 -0.50 -0.45 -0.40 -0.35

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

lg(CAg

+ /C)

lg(CI

-)

 

Phương trình hồi quy có dạng lgC

CAg

 = 3,994lg   IC + 3,953

Phương trình hồi quy có hệ số góc n = 3,994 ≈ 4. Như vậy thành phần của phức chất

có dạng [PbI4]2-. Hằng số không bền của phức [PbI4]

2- K kb = 1,12.10-4.

Page 69: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 69/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

28

2.1.2. Trường hợp trong hệ chỉ tạo một phức chất đa nhân 

m M + a A ⇌  MmAa ;]AM[]A.[]M[

K am

am

kb     (7)

 

m/1

a am]A[]AM[

K ]M[  

  

    (8)

Sức điện động của mạch nồng độ là:

a)2(

a)1(

)1(am

)2(amm/1

a)1(

)1(am

m/1

a)2(

)2(am

)1(

)2(

]A[]A[

.]AM[]AM[

lnnFRT

m1

]A[]AM[

]A[]AM[

lnnFRT

]M[]M[

lnnFRT

E  

 

  

 

 

  

 

  (9)

- Nếu hai dung dịch chứa Mn+ với nồng độ khác nhau nhưng có cùng lượng dư

 phối tử A thì:)1(am

)2(am1 ]AM[

]AM[ln

nFRT

m1

E     (10)

 Nếu phức khá bền và lấy rất dư phối tử thì có thể xem tất cả các ion Mn+ đã đi

vào phức, nên: [MmAa](2) ≈ CM(2); [MmAa](1) ≈ CM(1) 

 )1(M

)2(M1 C

Cln

nFRT

m1

E    (11)  Đo giá trị E1 ta tính được m

- Tương tự, khi so sánh hai dung dịch có cùng nồng độ ban đầu của kim loại và

những lượng dư khác nhau của phối tử, ta có:

 )2(A

)1(A2 C

Cln

nFRT

ma

E    (11)  Đo giá trị E2 ta tính được a

Thay các giá trị nồng độ vào phương trình (7) ta suy ra K kb. Nhưng do rất khó

xác định nồng độ cân bằng của các cấu tử nên giá trị K kb  thu được thường chỉ gần

đúng.

Page 70: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 70/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

29

2.2. Phương pháp trắc quang

Cơ sở của phương pháp trắc quang là nghiên cứu các kiểu khác nhau của giản

đồ thành phần - tính chất. Chúng ta xét trường hợp hay gặp nhất là hệ 3 cấu tử:

- Hợp chất chứa chất tạo phức M

- Hợp chất chứa phối tử A

- Dung môi S

S

AMm

m a

a

ss

C

 Hình 4.2. Sơ đồ hệ 3 cấu tử: dung môi S, hợp chất chứa M và hợp chất chứa phối tử A

Hệ này được biểu diễn bằng tam giác thành phần (Hình 4.2) với các đỉnh ứng

với 100% hàm lượng của mỗi cấu tử, còn điểm C bên trong tam giác ứng với dung

dịch có lượng xác định của cấu tử M, A, S.

Đường song song với một trong các cạnh của tam giác ứng với một lát cắt xác định

của hệ:a/ Lát cắt m - a ứng với dãy dung dịch chứa lượng dung môi như nhau; trong

dãy đó tổng nồng độ của các cấu tử M và A là không đổi.

 b/ Lát cắt s - a ứng với dãy dung dịch có nồng độ chất tạo phức M không đổi,

nồng độ phối tử A thay đổi.

c/ Lát cắt m - s ứng với dãy dung dịch có nồng độ phối tử A không đổi, nồng độ

M thay đổi.

Phương pháp trắc quang nghiên cứu một lát cắt nào đó của hệ. Các phương pháp trắc quang đều có các điểm chung sau:

1/ Tính chất được đo là mật độ quang D của dung dịch. D cho biết sự hấp thụ

ánh sáng của dung dịch chứa chất nghiên cứu. Sự hấp thụ này tuân theo định luật

Lambert - Beer: CII

lgD o     (13)

Page 71: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 71/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

30

  Trong đó: Io là cường độ ánh sáng tới (đơn sắc); I là cường độ ánh sáng đi qua

lớp dung dịch có chiều dày ℓ (cm); C là nồng độ mol của chất tan; ελ là hằng số, đặc

trưng cho chất ở bước sóng  xác định, được gọi là hệ số hấp thụ phân tử. Đại lượng

oI

I = T là độ truyền qua (%). D được đo bằng các quang phổ kế.

Định luật Lambert - Beer là định luật có giới hạn, nó chỉ đúng với các điều kiện

lý tưởng:

- Chùm ánh sáng phải đơn sắc

- Dung dịch nghiên cứu phải khá loãng, trong đó không có tương tác giữa các

 phân tử chất hấp thụ. Điều kiện này thường được thoả mãn khi C < 10-2 M

- Dung dịch không phát huỳnh quang và không có huyền phù.

2/ Mật độ quang D là đại lượng cộng tính: Nếu trong dung dịch có các phần tửhấp thụ ánh sáng với các nồng độ C1, C2, ..., Cn thì mật độ quang đo được là mật độ

quang tổng cộng:

D = D1 + D2 + ... + Dn = (ε1C1 + ε2C2 + ... + εnCn)ℓ  (14)

Vì thế, một trong các nhiệm vụ quan trọng của nhà nghiên cứu là phải tìm phần

mật độ quang Di của phức chất MAr  trong dung dịch.

Di = εMAa[MmAa]ℓ  (15)

Khi nghiên cứu trắc quang, người ta thường đo D ở những bước sóng ứng vớicực đại hấp thụ của ion phức. Ngoài ra phép đo còn phải được tiến hành ở vùng mà hệ

số hấp thụ phân tử của các cấu tử sẽ khác nhau nhiều nhất. Trường hợp lý tưởng là

trong dung dịch chỉ có phức chất hấp thụ ánh sáng.

Từ phương trình (15) nếu biết Di, [MAa] và ℓ, có thể tìm được giá trị thực của

hệ số hấp thụ phân tử. Nếu biết D i, εMAa và ℓ, có thể tính được nồng độ cân bằng của

 phức [MAa] và sau đó có thể xác định hằng số bền của nó.

Ở đây ta xét trường hợp trong hệ chỉ tạo một phức chất.2.2.1. Xác định thành phần của phức bằng phương pháp dãy đồng phân tử gam

Muốn áp dụng phương pháp này, trước hết ta cần xác định trong hệ chỉ tạo

thành 1 phức chất bằng 2 cách:

- Nghiên cứu quang phổ hấp thụ của những dung dịch chứa M và A ở những tỷ

lệ khác nhau. Thông thường người ta pha một dãy dung dịch trong đó CM = const, CA 

Page 72: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 72/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

31

tăng dần, từ không dư đến dư so với CM. Nếu đường cong hấp thụ (đường cong biểu

diễn sự phụ thuộc của D vào   ) của các dung dịch đều tương tự nhau thì chứng tỏ

trong dung dịch chỉ tạo thành một phức chất.

- Sau đó khảo sát đường cong hấp thụ của các dung dịch ở các pH khác nhau

khi tỷ lệ CA/CM = const. Nếu chỉ tạo một phức MAa thì các đường cong đó sẽ tương tự

như nhau.

- Giả sử phản ứng tạo thành phức chất là:

M + a A ⇌ MAa  (16)

Hằng số bền của phức là:a

a

]A].[M[]MA[

  (17)

 Nhiệm vụ của nhà nghiên cứu là phải xác định hệ số hợp thức a trong phương

trình (16). Muốn vậy phải áp dụng phương pháp dãy đồng phân tử gam (còn gọi là

 phương pháp biên thiên liên tục).

Dãy đồng phân tử gam là dãy dung dịch có tổng nồng độ các cấu tử giống nhau

nhưng tỷ lệ nồng độ các cấu tử khác nhau, tức là CA + CM = const và CA/CM thay đổi.

Trên thực tế, để pha dãy dung dich đồng phân tử gam thì đầu tiên cần pha hai

dung dịch M và A có nồng độ bằng nhau, sau đó trộn chúng với các tỷ lệ thể tích

VA/VM khác nhau nhưng giữ cho tổng thể tích VA + VM = Vchung = const. Lúc đó ta sẽ

có:CA + CM = const (18)

Đo mật độ quang D ở bước sóng mà ánh sáng được hấp thụ chủ yếu bởi phức

cần nghiên cứu, rồi dựng giản đồ "CA/CM - D ". Đó là đường cong có một cực đại. Giá

trị cực đại của D ứng với tỷ lệ CA/CM mà tại đó các cấu tử M và A phản ứng với nhau

để tạo phức MAa, nghĩa là: CA/CM = a (19)

Page 73: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 73/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

32

 Hình. Đường cong đồng phân tử gam của phức chất bền (A) và kém bền (B)

- Để xác định chính xác hơn vị trí của cực đại hấp thụ, cần pha lại một dãy dung

dịch mới, có tỷ lệ thể tích thay đổi hẹp xung quanh điểm cực đại. Điều này đặc biệt

cần thiết khi cực đại ở đường cong thu được ban đầu không nhọn (do phức chất kém

 bền, có sự phân ly hoặc do phức tạo nên không hoàn toàn).

Ví dụ: Để khảo sát sự tạo phức giữa Ni2+ và o. phenantrolin (phen) bằng phương pháp

dãy đồng phân tử gam, người ta chuẩn bị dãy dồng phân tử gam từ các dung dịch Ni2+ 

và phen đều có nồng độ 0.01M. Kết quả xác định mật độ quang của các mẫu như sau:

STTVM (ml)

dd Ni2+ 10-2 MVA (ml)

dd Phen 10-2 MCA/CM  D

1 10 2 0.20 0.092

2 9 3 0.33 0.150

3 8 4 0.50 0.195

4 7 5 0.71 0.225

5 6 6 1.00 0.290

6 5 7 1.40 0.340

7 4 8 2.00 0.423

8 3 9 3.00 0.568

9 2 10 5.00 0.365

Đường biểu diễn mối quan hệ giữa D và CA/CM có cực đại ứng với tỷ lệ CA/CM bằng 3.

 Như vậy, thành phần của phức chất giữa Ni2+ và phen là: [Ni(phen)3]2+.

CA/CM a  CA/CM 

Page 74: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 74/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

33

0 1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

0.6

     D

CA /C

M  

- Trong trường hợp tổng quát, giả sử trong hệ tạo thành phức chất MmAa  theo

 phản ứng:

m M + a A ⇌ MmAa  (20) Nhà nghiên cứu cần chứng minh rằng thành phần của hợp chất trong phương pháp này

ứng với tỷ lệ hai cấu tử trộn nhau ở vị trí cực đại của D  :

Ở những dung dịch không ứng với điểm cực đại, hàm lượng phức chất bé, nên

có thể xem: [A] ≈ CA và [M] ≈ CM. Vì vậy, từ (20) ta có:

y)C.()C(

]AM[]A.[]M[

K a

Am

M

am

am

kb     (21)

với y là nồng độ của phức MmAa được tạo thành.Lấy logarit của (21): lgy = mlgCM + algCA - lgK kb  (22)

Ở điểm cực đại, vi phân của lgy sẽ bằng không, ta lấy vi phân hai vế của (22)

rồi cho vi phân của lgy bằng không:

0CdC

aC

dCm

ydy

)y(lgdA

A

M

M   (23)

Page 75: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 75/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

34

  Mặt khác, lấy vi phân phương trình (18):

CA + CM = const → dCM + dCA  = 0 hay dCM = - dCA 

Thay biểu thức trên vào (23) ta có:

0C

dC

aC

dC

m A

A

M

A  

 am

CC

A

M   (24)

 Như vậy: ở các tỷ lệ CA/CM khác nhau và CM + CA = const, [MmAa] ở đạt cực đại ở tỷ

lệ tại đó M và A được trộn với nhau theo đúng tỷ lệ hợp thức (hình 4.3).

- Ngoài ra, người ta còn chứng minh được rằng hoành độ x của một điểm bất kỳ trên

đường cong có giá trị là:MA

A

CC

Cx

  (24')

và ở điểm cực đại:ma

aCC

Cx

MA

Amax

  (24'')

Khi xây dựng giản đồ "thành phần - D" cần chú ý các điểm sau:

1/ Giá trị pH của các dung dịch cần giữ không đổi để ổn định các quá trình thuỷ phân

của ion kim loại M và quá trình proton hoá của các phối tử (nếu có). pH phải được

chọn ở giá trị bảo đảm hiệu suất tạo phức là cực đại. Điều này được rút ra từ những thí

nghiệm khảo sát sơ bộ hay tính toán lý thuyết.

0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

x

[MqA

r] hay D

A

Page 76: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 76/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

35

 

Hình 4.3. Sự phụ thuộc của D vào thành phần của dung dịch trong dãy đồng phân tử

gam

2/ Nếu trong điều kiện thí nghiệm, M có thể kết hợp với một phần tử X nào đó để tạo

 phức MXk, thì trong tất cả các dung dịch của dãy phải lấy cùng một lượng X như nhau.3/ Lực ion của các dung dịch đồng phân tử gam phải không đổi.

4/ Nếu các cấu tử M và A cũng hấp thụ ánh sáng tại bước sóng  đã chọn thì mật độ

quang D đo được là mật độ quang tổng cộng. Lúc đó để xây dựng giản đồ "thành phần

- tính chất" cần phải lấy D thay cho D, với:

D = D - Do  (25)

Do là tổng mật độ quang của M và A với các nồng độ bằng nồng độ của chúng

trong dung dịch khảo sát. Muốn xác định Do cần làm các dãy thí nghiệm phụ.Có thể chứng minh biểu thức (25) như sau:

Chọn ℓ = 1 cm, mật độ quang D của dung dịch được tính theo phương trình:

D = DM + DA + DMmAa = εM.[M] + εA.[A] + εMmAa.[MmAa] (26)

Do = εM.CM + εA.CA (27)

 Nhưng: CA = [A] + a[MmAa] ; CM = [M] + [MmAa] (28)

Thay (28) vào (27) rồi thay các giá trị Do, D vào (25), ta có:

D = (εMmAa - a.εA - m.εM ).[MmAa]Vì (εMmAa  - a.εA  - m.εM) là hằng số nên D tỷ lệ với nồng độ phức chất tạo

thành.

Phương pháp dãy đồng phân tử gam chỉ áp dụng cho những hệ tạo thành một

 phức chất. Ngoài ra, phương pháp này còn có một số nhược điểm sau:

Page 77: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 77/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

36

1/ Rất khó xác định cực đại khi đường cong có cực đại tù (phức kém bền).

2/ Sai số thực nghiệm có thể đưa đến kết luận sai lầm về thành phần của phức chất,

đặc biệt khi hình thành những phức chất có số phối trí cao kiểu MAa  (a = 4; 5; 6).

Thực nghiệm cho thấy: xmax ứng với MA là 50%, MA2 là 66,6%, MA3 là 75%, cách xa

nhau. Trong khi xmax của MA4, MA5, MA6 tương ứng là: 80; 83,3; 85,5%, rất gần nhau,

nên rất khó phân biệt.

Muốn có kết quả chính xác, phải dựng giản đồ "thành phần - D" với các  

khác nhau và các nồng độ ban đầu khác nhau. Nếu ở các nồng độ ban đầu khác nhau

đó mà vị trí cực đại bị thay đổi thì có thể kết luận rằng trong hệ xảy ra các quá trình

 phụ hoặc số phức chất tạo thành nhiều hơn một.

3/ Trong trường hợp tổng quát, phương pháp này chỉ cho ta tỷ số giữa các hệ số hợp

thức của các chất đầu chứ không cho giá trị chính xác của các hệ số hợp thức. Nókhông thể phân thể phân biệt sự tạo phức từ các phản ứng:

MA + B ⇌ MB + A

MA + B ⇌  MAB

hoặc: M + A ⇌  MA

2M + 2A ⇌  M2A2 

2.2.2. Xác định hằng số bền của phức chất bằng phương pháp dãy đồng phân tử

gam

Muốn các định hằng số bền  của phức chất bằng phương pháp dãy đồng phân

tử gam, phải xác định hệ số hấp thụ phân tử ελ của các cấu tử trong hệ. Dưới đây là

một số phương pháp xác định ε p và β p (ký hiệu p chỉ phức chất).

a/ Sử dụng hai điểm bất kỳ của dãy đồng phân tử gam và tính toán

Xét phản ứng tạo phức chất đơn giản: M + A ⇌  MA

Ứng với hai điểm đã chọn, ta có thể viết:

)CC)(CC(

C

)CC)(CC(

C''

 p''M

'' p

''A

'' p

' p

'M

' p

'A

' p

 p

  (29)

với C p là nồng độ của phức chất trong dung dịch, CM và CA là nồng độ ban đầu của M

và A.

Page 78: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 78/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

37

Chọn ℓ = 1cm, nếu ở bước sóng  đang khảo sát chỉ có phức chất hấp thụ thì:

 p p

DC

 

Gọi C là nồng độ tổng cộng của M và A (C = CM + CA), theo (24'):

CC

CCC

x A

MA

A

. Thay vào (29), ta có:

 

  

 

 

  

 

 

  

 

 

  

 

 p

''''

 p

''''

''

 p

''

 p

''

'

Dx.C

D)x1(C

D

Dx.C

D)x1(C

D  (30)

Giải phương trình (30) để tìm  p, ta có:

)xx(D)xx(D

DDDD

C

1''2'''2''''

2'''2'''

 p

  (31)

Biết ε p  ta tìm được C p  đối với mỗi dung dịch trong dãy, từ đó tính  p  theo

 phương trình (29).

 b/ Xác định  p bằng phương pháp pha loãng Bapco

Phương pháp này dùng xác định  của các phức chất có độ bền trung bình.

Cách làm: Pha một dung dịch chứa M và A theo tỷ lệ hợp thức, rồi dùng dung

môi pha loãng dung dịch q lần. Lúc đó độ phân ly của phức chất sẽ tăng lên. Giả thiết

M và A không hấp thụ ánh sáng thì độ sai lệch tương đối  so với định luật Lambert -

Beer sẽ là:

1

q1

D

DD     (32)

D1 là mật độ quang của dung dịch đầu.

Dq là mật độ quang của dung dịch đã pha loãng q lần và đã tăng chiều dày cuvet

lên q lần.

Mật độ quang của dung dịch phức chất tỷ lệ với nồng độ của nó. Nếu độ điện lycủa phức chất trong dung dịch ban đầu là 1 , còn trong dung dịch pha loãng là q thì:

1

q

1

q

1

1

D

D

  (33)

Page 79: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 79/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

38

Do đó:1

q1

1

1q

1

1q

1)1(

)1()1(

D

DD

 hay

1

1q

1  

  (34)

Khi 1 « 1 thì:  = q - 1 (35)

- Nếu tạo thành phức MA thì: M21

1

 p C.

1

.

 Nếu 1 « 1 thì:  p = M21kb

M21

 p C.K C.1

  (36)

Vì:q

C.C.C.K 

qC

C 1M2qMq

2q1M

21kb

1M1M    

 q

2q2

1

  hay q1q     (37)

Từ (35) và (37) ta có: )1q(q. 111     (38)

Biết D1, Dq và q có thể tính được 1 theo (32) và (38). Thay 1 vào (36) sẽ tính

được  p.

- Trong trường hợp chung, khi tạo thành phức MmAa như (20) thì hằng số bền sẽ là:

 n

M1m

M1

M1

)Cmn

()C(m

C)1(

  (39) 

- Có thể sử dụng phương pháp pha loãng để xác định  p của các phức chất kém bền khi lấy rất dư phối tử A. Trong trường hợp này, cần pha loãng dung dịch chứa g

lần dư thuốc thử A (chứ không theo đúng tỷ lệ hợp thức như trường hợp trên).

Khi pha loãng dung dịch đầu q lần thì: q = 1.q và  = 1(q -1) nếu  « 1 và

g » 1.

Đại lượng MA sẽ được xác định theo phương trình:

MA =

M1

1

gC1

  (40)

2.2.3. Xác định thành phần của phức bằng phương pháp bão hoà mật độ quang

Theo phương pháp này, người ta nghiên cứu dãy dung dịch cố định nồng độ

một cấu tử (thường là ion kim loại M), thay đổi nồng độ của cấu tử thứ hai (thường là

 phối tử A). Xây dựng giản đồ "thành phần - D" khi CM = const còn CA tăng dần. Các

Page 80: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 80/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

39

giản đồ này có dạng hyperbol với một nhánh song song với trục thành phần (Hình 4.4).

Đường cong thu được gọi là đường cong bão hoà mật độ quang.

Khi đạt đến bão hoà thì mật độ quang tiến đến giá trị giới hạn D∞. Trường hợp bão hoà

xảy ra khi tạo thành phức bền. Tỷ lệ CA/CM = To là tỷ lệ hợp thức khi tạo thành phức

chất.

Khi tạo phức kém bền, đường cong có đoạn đi lên chậm với độ dốc không đổi

và không có vị trí chuyển rõ rệt sang đoạn nằm ngang (Hình 4.5). Ở đây muốn đạt giá

trị mật độ quang bão hoà phải lấy rất dư phối tử.Dạng đường cong này còn gặp trong các hệ tạo một số phức chất kém bền, có

thành phần và tính chất quang học gần giống nhau.

Để xác định thành phần của phức chất người ta thường sử dụng các phương

 pháp riêng vì mỗi phương pháp có một số hạn chế, chủ yếu phụ thuộc vào độ bền của

 phức nghiên cứu.

a/ Phương pháp logarit của Bent - French

Phương pháp này dùng cho phức bền vừa và kém bền.Giả sử phức chất được tạo thành theo phương trình:

m M + a A ⇌ MmAa  (40)

Hằng số không bền là:]AM[]A.[]M[

K am

am

kb     (41)

 Nhiệm vụ của nhà nghiên cứu là phải xác định m và n.

Dα 

To 

CM/CA 

∆D ∆D

CM/CA 

Hình 4.4. Sự biến đổi mật độ quangkhi tạo phức bền 

Hình 4.5. Sự biến đổi mật độ quangkhi tạo phức kém bền 

Page 81: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 81/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

40

  Cách xác định: 

- Lấy logarit (41): lg[MmAa] = mlg[M] + alg[A] - lgK (42)

 Nếu giữ [M] = const và thay đổi [A] thì lg[MmAa] sẽ phụ thuộc tuyến tính lg[A].

- Giả sử ở bước sóng nghiên cứu  chỉ có phức MmAa hấp thụ ánh sáng. Khi đó

lg[MmAa] sẽ tỷ lệ với lgD (với D là mật độ quang của dung dịch ở bước sóng ). Nếu

vẽ đồ thị lgD theo lg[A] khi CM = const, CA thay đổi, ta sẽ được một đường thẳng có

hệ số góc bằng a.

- Mặt khác vẽ đồ thị lgD theo lg[M] khi CA = const, CM thay đổi thì cũng thu

được một đường thẳng có độ dốc (hệ số góc) là m.

 Nếu đồ thị không phải là đường thẳng thì chứng tỏ có các phản ứng phụ ngoài

 phản ứng tạo phức MmAa.

- Muốn xác định các nồng độ cân bằng [M] và [A] thì phải sử dụng những dungdịch rất loãng. Vì phức kém bền nên khi pha loãng dung dịch, phức sẽ phân ly mạnh,

do đó có thể xem [A]  CA; [M]  CM . Khi đó:

lg[MmAa] = mlgCM + algCA - lgK (42')

và chúng ta dựng các đồ thị "lgD - lgCM" hoặc "lgD - lgCA" để xác định m và a.

Bằng phương pháp này Bent và French đã nghiên cứu hệ Fe3+ - SCN- và đã xác

định được m = a =1, nghĩa là có sự tạo phức Fe(SCN)2+.

- Đối với các dung dịch đặc hơn, phải sử dụng phương trình (42). Lúc đó [M]hay [A] được xác định bằng các thí nghiệm phụ. Ví dụ: Khi nghiên cứu hệ Mn 3+ - F- 

cần xây dựng các đồ thị "lgD - lg[Mn3+]" và "lgD - lg[F-]". Nồng độ F- được xác định

nhờ điện cực hỗn hống/ florua chì, [Mn3+] được xác định bằng cách đo thế oxi hoá khử

trong dung dịch bão hoà MnF2.

- Nếu phức được tạo thành theo phản ứng: M + aA⇌  MAa 

thì:]MA[

]A].[M[K 

a

a

kb     và K lg]Alg[a]M[

]MA[lg a  

 Nếu chỉ có phức hấp thụ ánh sáng ở vùng nghiên cứu và nếu đường cong "D -

thành phần" (khi CM = const; CA tăng) có đoạn nằm ngang, nghĩa là có D∞, thì đối với

một dung dịch bất kỳ ở đoạn đang đi lên của đường cong (ứng với mật độ quang D i),

ta có:

Page 82: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 82/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

41

i

ia

DDD

lg]M[

]MA[lg

 

Dựng đồ thị biểu diễn sự phụ thuộc củai

ia

DDD

lg]M[

]MA[lgy

 theo lg[A]

ta sẽ có đường thẳng có độ dốc bằng a. Nếu phức kém bền và lấy dư A thì dựng đồ thị

"y - lgCA".

 b/ Phương pháp tỷ lệ phân tử (Dùng nghiên cứu phức bền)

- Nội dung của phương pháp: 

Đo D ( hay D) của dãy dung dịch có tỷ lệ CA/CM khác nhau khi CM =const và

ngược lại. Sự phụ thuộc của D (D) vào CA/CM  (đường cong bão hoà) có dạng như

hình 4.5. Điểm gãy T trên đường cong, là giao điểm của hai đường tiếp tuyến, sẽ ứng

với tỷ lệ các hệ số hợp thức ở điểm To, vì mỗi lần thêm cấu tử A vào M thì A sẽ liênkết hoàn toàn thành phức chất.

Đối với phức đơn nhân, đại lượng CA/CM ở To là 1; 2; 3;... (nguyên), còn CM/CA 

tương ứng là 1; 0,5; 0,33;...

Đối với phức đa nhân MmAa, tỷ lệ CA/CM thường không nguyên. Ví dụ:

M2A M3A M2A3 M3A2

m

n

C

C

M

A   0,5 0,33 1,5 0,67

nm

CC

A

M   2 3 0,67 1,5

c/ Phương pháp tỷ lệ độ dốc (Dùng nghiên cứu phức rất bền)

Giả sử phức chất được tạo thành theo phương trình:

mM + aA ⇌  MmAa 

và M, A không hấp thụ ánh sáng. Nếu pha các dung dịch có C A = const và đủ lớn (đểCA » CM) nhằm kìm hãm sự phân ly của phức chất, thì nồng độ cân bằng của phức chất

C p sẽ tỷ lệ với CM khi M được thêm vào với lượng không đủ so với lượng hợp thức.

Khi đó: C p =m

CM   (43)

Page 83: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 83/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

42

hoặc: DM =m

Ck M   (43') với k là hệ số tỷ lệ.

Dựng đồ thị DM theo CM sẽ thu được một đường thẳng có hệ số gócmk

tg 1  .

- Nếu lấy thật dư M và thiếu A, tương tự trên, ta sẽ có:

aC

C A p    hay:

aC

kD AA    và

ak

tg 2    (44)

Do đó:mn

tgtg

2

1

  (45)

- Nếu tất cả các cấu tử đều hấp thụ ánh sáng ở bước sóng  , cần thay D bằng

D = C p.ℓ( p - mM - aA).

Để xác định thành phần của chất khi cố định nồng độ một cấu tử, biến thiênnồng độ kia, người ta còn áp dụng nhiều phương pháp khác. Các phương pháp này

được trình bày tỉ mỉ trong các sách chuyên khảo.

2.2.4. Xác định hệ số hấp thụ phân tử của phức chất

Việc xác định  p  của phức chất là một trong những nhiệm vụ khi nghiên cứu

 phản ứng tạo phức trong dung dịch, vì khi biết  p có thể tính được nồng độ cân bằng

của phức và từ đó xác định hằng số bền của phức.

Có thể xác định  p bằng các cách sau:

1/ Trong trường hợp đơn giản nhất, có thể sử dụng đồ thị ở hình 4.16 (đồ thị có

mật độ quang bão hoà). Đoạn nằm ngang trên đồ thị ứng với cân bằng:

M + aA ⇌ MAa 

cân bằng này dịch chuyển hoàn toàn về phía phải. Ở đây [MAa] = CM vì M liên kết

hoàn toàn vào phức, và:.C

D

M p

  (46)

Phương pháp này không áp dụng được với phức kém bền, vì khi đó để cóđường nằm ngang phải lấy rất dư A, điều này không phải lúc nào cũng thực hiện được.  

2/ Có thể tính  p  khi nghiên cứu các dung dịch cân bằng có thành phần hợp

thức, nghĩa là những dung dịch mà tỷ lệ:M

A

CC

= a (47) được giữ không đổi.

Page 84: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 84/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

43

  Pha hai dung dịch có thành phần hợp thức với các nồng độ C’M, C’

A = aC’M;

C’’M, C’’

A = aC’’M. Giả sử trong dung dịch đầu tạo thành x' còn trong dung dịch 2 tạo x''

mol/lít phức chất MAn. Mật độ quang đo được ở cùng một bước sóng là: D' = .x'.ℓ

và D'' = .x''.ℓ

Đặt: ''

'

DD

 = ''

'

xx

 = p (48)

 Nồng độ cân bằng của M và A là:

[M’] = C’M - x'; [A’] = aC’

M - ax' = a(C’M - x')

[M’’] = C’’M - x''; [A’’] = aC’’

M - ax'' = a(C’’M - x'')

Khi đó: a''''

M''''

M

''

a''M

''M

'

aa

a)xC()xC(

x

a)xC()xC(

x]A].[M[]MA[

 

hay: 1a''''M

a

''

1a''M

a

'

)xC(ax

)xC(ax

  (49)

Thay: x' =.

D '

  và x'' =

.D ''

 vào (49) và biến đổi, ta có:

)D..C()'D..C(

''''M

'M

 = 1a  p  = Q (50)

Từ đó ta có:  =

)QCC(

QDD''

M

'

M

'''

  (51)

Thường người ta pha một số dung dịch có thành phần hợp thức với các giá trị

khác nhau của CM và của CA = aCM, rồi đo mật độ quang Di của chúng. Nếu lấy từng

cặp trị số Ci và Di thì tính được  theo (51), sau đó lấy kết quả trung bình.

3/ Để tính hệ số hấp thụ phân tử, có thể sử dụng cách khác để phân tích kết quả

thực nghiệm:

Theo (49):  =1a

iia

i

)xC(ax

  (52)

Từ đó: Ci - xi = 1aa

i

a.x

  (53)

 Nhân (53) cho ℓ/D và lưu ý: D = .xi.ℓ, biến đổi ta có:

1

 = 1aaa

a

D..a.1

  (54)

Page 85: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 85/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

44

.CD

i

 là hệ số hấp thụ phân tử trung bình hoặc hệ số hấp thụ phân tử biểu kiến, nó

được tính bằng cách chia mật độ quang của dung dịch cân bằng cho nồng độ đầu CM 

và ℓ. Còn  là hệ số hấp thụ phân tử thực, tính theo công thức:

D = ε.[MAa].ℓ = ε.xi.ℓ

 Nếu dựng đồ thị biểu diễn sự phụ thuộc của y =1

 vào x = 1aaD

1  ta sẽ được

một đường thẳng. Đường thẳng này cắt trục tung một đoạn bằng1

.

2.2.5. Xác định hằng số bền của phức bằng phương pháp đường cong bão hoà

mật độ quang

a/ Xác định  dựa vào đường cong bão hoà mật độ quang- Đối với phức chất bền MAa có thể dễ dàng tính  nếu đồ thị D theo CA/CM khi CM =

const có đoạn nằm ngang (đường cong bão hoà mật độ quang). Khi đó ta xác định  p 

của phức theo phương pháp đã trình bày ở trên. Từ đó xác định được [MA a] = C p tại

 bất kỳ một dung dịch nào của dãy, nằm trong đoạn đi lên của đường cong và tính  

theo biểu thức:

a

 pA pM

 p

aa

)aCC)(CC(

C

]A].[M[

]MA[

  (55)

 b/ Xác định  theo phương pháp pha loãng Bapco với các phức đơn nhân kém bền

Trong trường hợp phức kém bền, khi CA  » CM, đối với hai điểm bất kỳ của

đường cong thu được khi CM = const, CA thay đổi (ứng với hai thí nghiệm) ta có biểu

thức:

a''A

'' pM

'' p

a'A

' pM

' p

)C)(CC(

C

)C)(CC(

C

  (56)

- Nếu chỉ có phức chất hấp thụ ánh sáng thì D tỷ lệ với C p, khi qCC

DD '

P

''P

'

''

, thay

C p''= q.C p

' vào phương trình (56) ta có:

])C()C[(q])C(q)C[(C

C a'A

a''A

a'A

a''AM'

 p

  (57)

Thay giá trị C p' vào (56) sẽ tính được .

Page 86: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 86/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

45

  - Nếu các cấu tử đều hấp thụ ánh sáng: biểu thức (57) vẫn đúng với q ='

''

DD

 

c/ Tính  theo phương pháp đồ thị của Frank - Ostwall

Đối với phản ứng: M + A ⇌  MA kém bền , ta có:

C p = (CM - C p)(CA - C p) (58)

Do phức kém bền, sau khai triển (58) ta có thể bỏ qua đại lượng C p2  so với

CM .CA rồi biến đổi, ta có: C p =

AM

AM

CC1

C.C

  (59)

 Nếu các cấu tử đều hấp thụ màu: C p =.

D

. Chọn  = 1cm thì:

DC.C AM

 =

.1  +

AM CC  

(60)

Đồ thịDC.C AM

 theo (CM +CA) sẽ là một dường thẳng có hệ số góc là

1

 và cắt

trục tung một đoạn bằng .

1 . Từ đó suy ra .

d/ Tính  bằng đồ thị dựa vào việc xác định nồng độ cân bằng của A từ thực nghiệm

Ở các phương pháp trên, nồng độ cân bằng của M và A không được xác định

 bằng thực nghiệm, mà được tính toán dựa trên tổng nồng độ của chúng (CM, CA) và

nồng độ cân bằng của phức chất. Còn ở đây,  và  p được tính toán dựa trên kết quả

thực nghiệm xác định nồng độ cân bằng của các cấu tử. Chẳng hạn [A] được xác định

nhờ phép đo pH, khi A là anion của axit yếu.

- Với phản ứng: M + a A ⇌ MAa 

 Nếu M và MAa đều hấp thụ ánh sáng, thì: ε.[MAa].ℓD = ℓ(εM[M] + ε p[MAa]) = ℓ(εM[M] + ε pβ[M][A]a) (61)

Thay CM = [M] + [MAa] = [M] + [M][A]a và (61) vào biểu thức tính hệ số hấp thụ

 phân tử trung bình  =MC.

D

, ta có:

Page 87: BG Phuc Chat

7/23/2019 BG Phuc Chat

http://slidepdf.com/reader/full/bg-phuc-chat 87/87

 Bài giảng Hoá học Phức chất Trần Ngọc Tuyền

 a

aPM

[A].1[A]..

  (62)

hay:

..[A]  pa

M  

 Nếu dựng đồ thị củaaM

[A]   theo   thì sẽ được một đường thẳng có độ dốc

 bằng - và cắt trục tung một đoạn bằng .  p.

Cuối cùng cần lưu ý: hầu như tất cả các phương pháp xác định  nêu trên chỉ có

thể sử dụng khi phức tạo thành kém bền và bền vừa. Nếu phức tạo thành có độ bền lớn

(   106) thì việc tính  thường không thực hiện được nếu không nhờ những dữ kiện

mới (như dữ kiện đo pH nếu phối tử là anion của axit yếu, dữ kiện đo thế...) vì hiệu số

CM - C p = [M] và CA - aC p = [M] gần bằng không.