SFC Säulen für analytische und preparative Anwendungen · •Calculate the other from (L/d p)...

Post on 27-Mar-2020

3 views 0 download

Transcript of SFC Säulen für analytische und preparative Anwendungen · •Calculate the other from (L/d p)...

©2016 Waters Corporation 1

SFC Säulen für analytische und

preparative Anwendungen

Technology Symposium

Vienna, 25th October 2016

DI Verena Schmid

©2016 Waters Corporation 2

CHIRAL SEPARATIONS ACQUITY UPC2 Trefoil™

©2016 Waters Corporation 4

ACHIRAL SEPARATIONS Viridis Columns

©2016 Waters Corporation 5

New Torus™ 5 µm

Analytical and OBD™ Preparative

Achiral SFC Columns

October 2016

©2016 Waters Corporation 6

Torus Columns

A new particle technology designed specifically for SFC

Novel, two-stage bonding process yielding high density ligands

The second stage imparts the unique selectivity for each phase

– new interactions with analytes

US 6,686,035

US 7,223,473

Others patent pending

1.7 & 5 µm BEH Particles

High Density Bonding

O Si

O

O

O

OH

N

H

N

O Si

O

O

O

OH

N

H

O Si

O

O

O

OH

N

O Si

O

O

O

OH

OH

Torus 2-PIC

Torus DEA

Torus DIOL

Torus 1-AA

©2016 Waters Corporation 7

Torus™ Columns

Highlights

– Scale-up from 1.7 µm analytical to 5 µm preparative scale

– 4 innovative chemistries for SFC Applications

o 1.7 µm and 5 µm particles

– Excellent peak shape

– Added selectivity – wide range of compounds

– Improved Robustness

©2016 Waters Corporation 8

Time-0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

AU

-2.0e-3

0.0

2.0e-3

4.0e-3

6.0e-3

8.0e-3

1.0e-2

1.2e-2

Goldenseal_Extract-01_2016-09-14_19x150mm-1w014a-05_MeOH AmOH_02_2PIC_800µL 2: Diode Array 220

Range: 6.672e-1

1.05

1.99

1.64 2.882.28 2.48

3.02

3.84

4.024.32

1

3 4

Scale from Torus Analytical to Achiral Preparative SFC Columns Torus 2-PIC 1.7 µm to 5 µm Scale-up

Goldenseal Extract: 1. Canadine 2. Hydrastine 3. Isocorypalmine 4. Methyl Hydrastine 5. Berberine

AU

0.000

0.028

0.056

0.084

0.112

Minutes

0.00 0.50 1.00 1.50 2.00 2.50 3.00

AU

0.000

0.028

0.056

0.084

0.112

Minutes

0.00 0.50 1.00 1.50 2.00 2.50 3.00

1 4

3

Analytical SFC Column:

Torus 2-PIC 1.7 µm

3.0 x 50 mm

Analytical SFC Column:

Torus 2-PIC 5 µm

3.0 x 50 mm

Preparative SFC Column:

Torus 2-PIC 5 µm

19 x 150 mm

2 5

1 4

3

2 5

2 5

Analytical SFC Conditions

System: ACQUITY UPC2 with PDA

Columns: Torus 2-PIC 1.7 µm 3.0 x 50 mm

Torus 2-PIC 5 µm 3.0 x 50 mm

Co-Solvent: 20mM Ammonium Hydroxide in Methanol

Flow Rate: 1.2 mL/min

Gradient: 5 to 50% B in 2.85 min, hold at 50%

Column Temp: 30°C

Detection: UV @ 220 nm

ABPR Setting: 1625 (1.7 µm)

2250 (5 µm)

Injection Volume: 2.0 µL

Preparative SFC Conditions

System: SFC Prep 100q with PDA

Column: Torus 2-PIC 5 µm 19 x 150 mm

Co-Solvent: 20mM Ammonium Hydroxide in Methanol

Flow Rate: 100 mL/min

Gradient: 5 to 50% B in 5.14 min

Column Temp: 30°C

ABPR Setting: 120 bar (1740 psi)

Detection: UV @ 220nm

Injection Volume: 1.0 mL

©2016 Waters Corporation 9

Factors that control effective

scale-up in SFC

©2016 Waters Corporation 10

Outline

Introduction

– Importance of scale-up

– Different approaches

A rule-based approach for SFC

– Why LC approach may not always work in SFC

– Solution – an additional step in LC rule

Conclusion

©2016 Waters Corporation 11

Scaling up

©2016 Waters Corporation 12

“L/dp” rule for HPLC systems

Designing prep column dimensions and particle size

Stationary phase

• Select the same chemistry

Column specs

• Choose either L or dp

• Calculate the other from (L/dp)anal = (L/dp)prep

Linear velocity (u)

• Calculate u from (u x dp)anal = (u x dp)prep

Flow rate

• Calculate Q from, Q=u x A

L = column length, dp = particle size, u = linear velocity,

A = column void cross-section

©2016 Waters Corporation 13

Works for LC Method Transfer

AU

0.00

0.01

0.02

0.03

0.04

0.05

0.60 1.00 1.40 1.80 2.20 2.60 3.00 3.40 3.75

AU

0.00

0.01

0.02

0.03

0.04

0.05

2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00

XBridge C18 5 µm, 4.6 x 150 mm

XBridge C18 2.5 µm, 3.0 x 75 mm

ACQUITY BEH C18 1.7 µm, 2.1 x 50 mm

1485 psi

5555 psi

10433 psi

AU

0.00

0.01

0.02

0.03

0.04

0.05

Minutes 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70

Courtesy of Jon Turner – April 2015

©2016 Waters Corporation 14

Outline

Introduction

– Importance of scale-up

– Different approaches

A rule-based approach for SFC

– Why LC approach may not always work in SFC

– Solution – an additional step in LC rule

Conclusion

©2016 Waters Corporation 15

Outline

Introduction

– Importance of scale-up

– Different approaches

A rule-based approach for SFC

– Why LC approach may not always work in SFC

– Solution – an additional step in LC rule

Conclusion

©2016 Waters Corporation 16

Effect of Pressure Difference on LC scale-up

LC scale-up – minimum effect from pressure changes

Nearly incompressible fluid

uAnal > uPrep

DP

Column length

DP

Column length

Dr

Column length

Dr

Column length

Analytical Prep

Analytical

Prep

Matching density profile

©2016 Waters Corporation 17

Effect of Pressure Difference on SFC scale-up

SFC scale-up – effect from pressure changes

Compressible fluid

uAnal > uPrep

DP

Column length

DP

Column length

Dr

Column length

Dr

Column length

Analytical Prep

Analytical Prep

Different density profiles

©2016 Waters Corporation 18

Caffeine, Carbamazepine, Uracil, Hydrocortisone, Prednisolone, and Sulfanilamide

AU

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

1

2,3

6

4

5

AU

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

1

2

6

4

5

3

4.50 5.00

Minutes

Higher Density

Mobile Phase

Lower Density

Mobile Phase

Different density = different thermodynamic interactions = different retentions

2.1 x 150 mm 5µm

BEH 2-EP,

1.4 mL/min

ABPR = 103.5 bar

Temp: 40°C

What it means?

To apply LC scaling

rules,

address the density

difference 1.7 µm

5 µm

Effect of Density Changes

2.1 x 150 mm 1.7µm

BEH 2-EP,

1.4 mL/min

ABPR = 103.5 bar

Temp: 40°C

C. Hudalla et. al. Waters Application Note. 720004818en

©2016 Waters Corporation 19

Addressing Density Difference

Ideal situation – matching density profiles

Simpler approach - matching average density

Analytical column

Dr

Column length

Prep column

Dr

Column length

Analytical column Dr

Column length

Prep column Dr

Column length

Average density

Average density

©2016 Waters Corporation 20

Addressing Density Difference

SFC System Scheme

Any changes upstream of ABPR can change

chromatography!

Set: ABPR

B

Column

Injector Detector

C

O2

ABPR = Automatic Back Pressure Regulator

©2016 Waters Corporation 21

How to manipulate Ave P?

Assuming linear pressure drop – Calculate average pressure

Manipulating ABPR pressure, match average pressure

Analytical column

DP

Column length

Prep column

DP

Column length

Analytical column

DP

Column length

Prep column

DP

Column length

Increased ABPR pressure

System P ABPR P

System P ABPR P

Ave P

Ave P

©2016 Waters Corporation 22

Simplified - manipulate Ave P!

Sensor = pump outlet Sensor = regulator inlet

Back pressure

regulator

Assume linear pressure drop across the entire range

Implementable

Take simple average pressure

across the system

SystemP

ABPRP

2

ABPRSystem

Average

PPP

©2016 Waters Corporation 23

Scale-up Steps for SFC

Stationary phase

• Select the same chemistry

Column specs

• Choose either L or dp

• Calculate the other from (L/dp)anal = (L/dp)prep

Linear velocity (u)

• Calculate u from (u x dp)anal = (u x dp)prep

Flow rate

• Calculate Q from, Q=u x A

Average Density

• Adjust ABPR to ensure same average pressure

L = column length, dp = particle size, u = linear velocity,

A = column void cross-section

©2016 Waters Corporation 24

Step by Step.

©2016 Waters Corporation 25

Effect of Lower Density

©2016 Waters Corporation 26

Effect of Lower Density

©2016 Waters Corporation 27

Density Profiles

©2016 Waters Corporation 28

Use of Average Density

©2016 Waters Corporation 29

Use of Average Density

ABPR = Automatic Back Pressure Regulator

©2016 Waters Corporation 30

Impact of Flow Rate

©2016 Waters Corporation 31

Impact of Flow Rate

©2016 Waters Corporation 32

Regarding Particle Size & Prep Practice

©2016 Waters Corporation 33

Regarding Particle Size & Prep Practice

©2016 Waters Corporation 34

Professional Scale Up

©2016 Waters Corporation 35

Conclusion

A simplified method-transfer rule in SFC is developed

Average pressures in SFC and UPSFC systems should be the

same

Applicable over a wide range of standard conditions used in

SFC/UPSFC operations

©2016 Waters Corporation 36

Links and Literature

upc2.waters.com

All Application Notes:

http://www.waters.com/waters/promotionDetail.htm?id=13477

1024&locale=en_US

YouTube Channel:

https://www.youtube.com/playlist?list=PL6yA4jv5tA-

k5q6M391V0_yuFesh_eywJ

UPC2 Strategy for Scaling from Analytical to Preparative

SFC Separations (LiteraturNr. 720004818EN)

©2016 Waters Corporation 37

Acknowledgements

Waters Corporation

– Abhijit Tarafder

– Jason Hill

– Tom Swann

– Steve Collier

©2016 Waters Corporation 38

THANK YOU FOR YOUR ATTANTION!

QUESTIONS?!