q pp H qecole-de-gif.in2p3.fr/Cours/GIF01/virdee_plots.pdfWW, ZZ fusion q Ho W,Z W,Z q q H o W, Z...

Post on 24-Feb-2021

2 views 0 download

Transcript of q pp H qecole-de-gif.in2p3.fr/Cours/GIF01/virdee_plots.pdfWW, ZZ fusion q Ho W,Z W,Z q q H o W, Z...

Fig.1

qq

qq

HWW

Z0

p p

Z0

Fig.2

Fig.3

Fig.4

Fig.5

Training Quenches at 1.8K - first runs

6.006.256.506.757.007.257.507.758.008.258.508.759.009.259.509.75

10.00

Quench Number

Mag

netic

Fie

ld a

t Que

nch

B [T

esla

]

Ultimate Field = 9T Nominal Field = 8.34 Tesla

No Quench

Training Quench

Provoked Quench

HCMBB-A000102000001

HCMBB-A000101000002

HCMBB-A000101000001

HCMBB-A000103000001

Fig.6

Fig.7

solenoid

ATLAS

CMS

Fig.8

Fig.9

Fig.10

1.2m

3.5m

Fig.11

digitaloptical link

Optical transmitter

ADC

RAMTTCrx

TTCrx µPFront End Driver

T1

Front End Controller

I2C

Front End ModuleDetector

Control module

PLL

CLK

CCU

analogueoptical link

DCU

Tx/Rx

Tx/Rx

APV

APVMUX

256:1

FPGA

FPGA

programmable gain

50 ns CR-RC shaper

192-cell analoguepipeline

1 of the 128 channels

SFSF

Analogue unity gain inverter

S/H

APSP

128:1 MUX

Differential current O/P

APV25 functional schematic

Fig.12

MDTMDT

TGC

RPC

CSC

Fig.13

Fig.14

Fig.15

Fig.16

CMS: Transverse energy flow in ∆ηx∆φ ~ 0.1x0.1 at L=1034 cm -2s-1

η=0.1 η=2.2

Fig.17

Loss of efficiency at Hi L for H γγ

Rejection power against π0s in jets

o

area used to measure energy

area used for isolation

γ

∆R

∆R= sqrt(∆φ2 + ∆η2)

Fig.18

CMSATLAS

Fig.19

Muons

Pions

ATLASPattern

Recognition>9 precision hits

+ 2 pixel hits+ σd < 1mm

Fig.20

Fig.21

ETe=35 GeV CMS Barrel

Fig.22aFig.22b

Conversions CMS BarrelHiggs γγεγ ~ 90%

¼ of conversions cannot be reconstructed

Unconverted γs Converted γs

5x5 5x9 anddynamic

Fig.23

Classical ‘cone’ algorithm - jet built around a seed• parameters: ET

seed cut, cone opening radius ∆RATLAS

∆R=0.4pileup+el noise *

el noise o

W + jetsET

jet > 20 GeV

ATLAS: W jet-jet mass resolution

pTW(GeV) ∆R σLoL σHiL (GeV)

pT<50 0.4 9.5 13.8 100<pT<200 0.4 7.7 12.9200<pT<700 0.3 5.0 6.9

100<pTW<200 200<pT

W<700

with pileup

Fig.24

A ττ mA=150 geV

Fig.25

Cuts (ATLAS)ETγ1,ETγ2 > 40, 25 GeV with |η| < 2.5EH1/Eem

Eem23x3/ Eem2

7x7

Shower width in ηTrack Veto

ATLAS EM calorimeter4 mm η-strips in first compartment

3 longitudinal segments

Detailed MC

εγ ~ 80% all L

(γ−jet + jet-jet) < 40% γγFig.26bFig.26a

Likelihood methodForm significance Si for i-th trk in jetForm ri=fb(Si)/fu(Si)Form Jet weight W = Slog ri

Fig.27bFig.27a

ATLAS

High pT

Medium

Low

τ-jets QCD jets

Fig.28b Fig.28c

Fig.28a

ETmiss

τ1 l + νs

τ2 h (+π0s)+ νs

Jets system

Mass resolution ~ 10%

Fig.29bFig.29a

Tagging Jets

Fig.30

ET( ) + max ET( ) > ETmin

φη

ET

Electromagnetic Hadron

Hit

72 φ x 54 η x 2 = 7776 towers

0.087 φ

0.0145 η

0.0145 η

E-H Tower

Trigger Tower = 5x5 EM towers

ET( ) / ET( ) < HoEmax Isolated

“e/γ”At least 1 ET( , , , ) < Eisomax

Fine-grain: ≥1( ) > R ETmin

Fig.31

Pt = 3.5, 4.0, 4.5, 6.0 GeV

Fig.32

Fig.33

Fig.34

- 30 Collisions/25ns ( 10 9 event/sec ) 107 channels (10 16 bit/sec)

Multilevel trigger and readout systems

Luminosity = 1034 cm-2 sec-1 25 ns

25ns40 MHz

105 Hz

103 Hz

102 Hz

Trigger Rate

Lvl-1

Lvl-2

Lvl-3

Front end pipelines

Readout buffers

Processor farms

Switching network

Detectors

µsec

ms

sec

25ns40 MHz

105 Hz

102 Hz

Trigger Rate

Lvl-1

HLT

Front end pipelines

Readout buffers

Processor farms

Switching network

Detectors

µsec

sec

ATLASCMS

Fig.35

16 Million channels

100 kHzLEVEL-1 TRIGGER

1 Megabyte EVENT DATA

200 Gigabyte BUFFERS500 Readout memories

3 Gigacell buffers

500 Gigabit/s

Gigabit/s SERVICE LAN Petabyte ARCHIVE

Energy Tracks

Networks

1 Terabit/s(50000 DATA CHANNELS)

5 TeraIPS

EVENT BUILDER.A large switchingnetwork (512+512 ports) with a total throughput ofapproximately 500 Gbit/s forms the interconnectionbetween the sources (Readout Dual Port Memory)and the destinations (switch to Farm Interface). TheEvent Manager collects the status and request ofevent filters and distributes event building commands(read/clear) to RDPMs

EVENT FILTER. It consists of a set of highperformance commercial processors organized into manyfarms convenient for on-line and off-line applications.The farm architecture is such that a single CPUprocesses one event

40 MHzCOLLISION RATE

Charge Time Pattern

Detectors

Computing services

Fig.36

Fig.37

LEVEL-1 Trigger Hardwired processors (ASIC, FPGA) Pipelined massive parallel

HIGH LEVEL Triggers Farms of

processors

10-9 10-6 10-3 10-0 103

25ns 3µs hour yearms

Reconstruction&ANALYSIS TIER0/1/2

Centers

ON-line OFF-line

sec

Giga Tera Petabit

Fig.38

Fig.39a

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

t (25ns units)

puls

e sh

ape

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

t (25ns units)

puls

e sh

ape

In+Out-of-time pulses

Fig.39b

Fig.40a

Muon Momentum Resolution

Spatial resolution Š 100 µm/station

δpt/pt - 10% at pt=500 GeV at η=2 )

PbWO4 CRYSTAL ELECTROMAGNETIC

CALORIMETEREnergy reconstructed in 3 x 3 crystals

σ / E - 2.7% / ¦ E ⊕ 0.5% ⊕ 20%/E (E in GeV)

Fig.40b

m

gg H

qq Hqq

gg,qq Hbb

gg,qq Htt

qq HZ

qq' HW

107

106

105

104

103

102

10-1

10-2

10-3

10-4

10

1

0 200 400 600 800 1000

MH (GeV)

σ (

pb)

σ(pp H+X)

s = 14 TeV

mt = 175 GeV

CTEQ4M

NLO QCD

M. Spira et al.

5–

1

102g

g g fusion

g tHot

t

g

g

Ho

t

t

t

t

t t fusion

q

q

WW, ZZ fusion q

Ho

W,Z

W,Z

q

q Ho

W, Z bremsstrahlungq

W,Z W,Z

eve

nts

fo

r 1

0 p

b

Fig.41

Fig.42

Fig.43a

Detailed MC

Fig.43b

CMS CMS

Fig.44a Fig.44b

γγ + l + X

γγ + ≥ 2 jets pT > 40 GeV

Fig.45

ATLAS

Fig.46

ATLAS100 fb-1

30(70) fb-1 at lo(hi)L

mH = 120 GeV

Fig.47

Fig.48

ATLAS 30 fb-1

mH =150 GeV

Fig.49

Normalised impact parameter

H → 4 µ

bZbtt

4 8 12

Fig.50

Fig.51

Fig.52

20 fb-1 100 fb-1

Fig.53

ATLAS : 100 fb-1

Fig.54

CMS

Fig.55

mH = 800 GeV, 30 fb-1

Etag>200 GeV

Etag>400 GeV

ATLASmH = 1TeV, 30fb-1

Fig.56

Fig.57

LEP2

Fig.58

Fig.59

Higgs production via WW fusion

Zeppenfeld et. al. 100 fb-1

30fb-1

Fig.60

102

10

20

30

103MH (GeV/c2)

H → γγttH (H → bb)

H → ZZ(*) → 41

H → WW → lνlν

Err

or

on

σx

BR

(%

)

Open symbols : ∆+ / + = 10%Closed symbols : ∆+ / + = 5%

Fig.61

Mass spectra for MSUSY>1TeV

Two-loop / RGE-improved radiative corrections included

No stop mixing

MSUSY= 1 TeV

H, tan β= 2

H, tan β= 20

h, tan β= 2

h, tan β= 20

H±, tan β= 2

H±, tan β= 20

300

250

200

150

100

50

0 25 50 75 100 125 150 175 200 225 250

MA (GeV/c2)

MH

IGG

S (

Ge

V/c

2)

MA (GeV/c2)

Maximal stop mixing

MSUSY= 1 GeV H, tan β= 2

H, tan β= 20

h, tan β= 2

h, tan β= 20H±, tan β= 2

H±, tan β= 20

300

250

200

150

100

50

0 25 50 75 100 125 150 175 200 225 250

Fig.62

σ (

pb

)

gg hgg H

hW

HW

hZ

HZ

hqq

Hqqhbbhtt

Htt

Hbb

H

σ (pp h / H+X) [pb]s = 14 TeV

Mt = 175 GeVCTEQ4

tgβ= 1.5

M. Spira et al.

50 100 200 500 103

σ (

pb

)

Mh/H (GeV/c2)

h

g

g t,t,b,b

h,H

~ ~

h,HW,Z

W,z

q

q

b

g

g

h,H

gg h

gg H

hZ

HZ

hW

HW

hqq

Hqq

Htt

htt

hbb

Hbb

h H

σ (pp h / H+X) [pb]s = 14 TeV

Mt = 175 GeVCTEQ4

tgβ = 30

10–2

10–3

10–4

10–1

104

103

102

10

1

50 100 200 500 103

g b

bb

bg

h,H

b

Mh/H (GeV/c2)

10–2

10–3

10–4

10–1

104

103

102

10

1

Fig.63

No mixing, MS=1TeV

Fig.64

Fig.65

ATLASσm~12%

CMSσm~14%

mH=500 GeVtanβ=25

Fig.66aFig.66b

CMS 30 fb-1

Fig.67a

Fig.67b

Fig.68a

1 b-tag

Fig.68b

Fig.69

Fig.70

Fig.71

a

b

Fig.72

a

b cFig.73

Fig.74

Adding bb on the τ modes can “close” the plane

Wh

bb

maximal stopmixing with

30 fb-1 maximal stop mixingwith 300 fb-1

Area coveredby H0→ χ 02χ0

2,→4ℓeptons

100 fb-1

No stop mixing

(e/µ)ν

Fig.75

Fig.76

Minimal mixing(mh < 115.5 GeV)NB: log scale

Caveat: coverage depends strongly on exact upper bound on mh

Fig.77

Maximal mixing(mh < 130 GeV)NB: linear scale

Caveat: possible suppression of e.g. bbH coupling could affect significantlyH observation at LHC

Fig.78

In this region only h observable(h ≈ SM Higgs)→ disentangle SM /MSSM ?

4 Higgs observable3 Higgs observable2 Higgs observable1 Higgs observable

MSSM Higgs bosons

h,A,H,H±

h,A,H,H±

Assuming decaysto SM particles only

h,H±

h

h,H±

h,A,H

H,H±

h,,H,H±

h,H

5σ contours

Fig.79

102

10

1

10—1

100 200 300 400 500 600

MHiggs [GeV]

H → γγH → ZZ

H → WW

LHC 14 TeV (SM NLO Cross Sections)

Dis

cove

ry L

um

ino

sity

[fb

—1

]

D_

D_

12

85

c

5σ Higgs Signals (statistical errors only)

~ 1 month@1033

~ 1 year@1033

~ 1 year@1034

CMS

lept. isol. , jet veto, Etmiss

lept. acceptance, lept. isol.

”L dt = 1, 10, 100, 300 fb-1

A0= 0, tanβ= 35, µ > 0

ET (300 fb-1)miss

ET (100 fb-1)miss

ET (10 fb-1)miss

ET (1 fb-1)miss

g(1000)~

q(1500)

~

g(1500)~

g(2000)~

q(2500)

~

g(2500)~

q(2000)

~

g(3000)~

q(1000)~

q(500)

~g(500)~

Ωh

2 = 0.4

Ωh

2 = 1

Ωh 2 = 0.15

h(110)

h(123)

1400

1200

1000

800

600

400

200

50000

1000 1500 2000

m0 (GeV)

m1/

2(G

eV)

CMS q, g mass reach in E + jets inclusive channel for various integrated luminosities

~ ~ miss

T

EX

TH

DD

_210

1

CMS

~ one year@1033

~ one year@1034

~ one month@1033

Fermilab reach: < 500 GeV

~ one week@1033

cosmologically plausible region

Fig.80