Luis Marcelo Tavares

download Luis Marcelo Tavares

of 24

Transcript of Luis Marcelo Tavares

  • 7/30/2019 Luis Marcelo Tavares

    1/24

    TOWARDS HIGH-FIDELITYSIMULATION OF SAG MILLS USING A

    Rodrigo M. de Carvalho and Lus Marcelo TavaresDepartment of Metallurgical and Materials Engineering

    Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil

  • 7/30/2019 Luis Marcelo Tavares

    2/24

    Outline

    Introduction

    Objective

    Characterizing breakage DEM simulation of charge motion

    Results

    Future developments

    Conclusions

    Acknowledgements

  • 7/30/2019 Luis Marcelo Tavares

    3/24

    IntroductionCurrent methods used to design and optimize the operation of SAG/AG mills can

    answer some relevant questions:

    How much power with a mill draw?

    What is the industrial mill performance (provided good pilot data is available)? ...

    ... however, their application may be risky to respond to other questions (Greenfield

    projects, unusual ores, ...):

    s go ng o wor or a par cu ar ore

    How will the mill respond to blends of hard-soft?

    Will critical size material be accumulated in the mill?

    What is the optimum ball load?

    How will the mill respond to changes / fluctuations in ore grindability?

    How will grinding change with liner wear?

    To respond all these questions, significantly improved modeling and characterizationapproaches should become available to industry

  • 7/30/2019 Luis Marcelo Tavares

    4/24

    Objective

    Develop a new model framework that:overcomes limitations of current methods used in AG and

    SAG mill design and optimization

    decouples contributions of ore and grinding environment

    describes each breaka e mechanism in AG and SAG mills

    over a wide range of sizes and collision energies

    describes mechanistically the effect of mill design and

    operating variables

  • 7/30/2019 Luis Marcelo Tavares

    5/24

    Characterizing breakage

    Use testing methods that allow describing a

    single event involving an ore particle in a mill

    as a function of:

    Breakage mechanism

    body breakage surface breakage

    particle weakening

    Stressing energyParticle size

  • 7/30/2019 Luis Marcelo Tavares

    6/24

    Characterizing breakage

    Particle breaks?(body)

    Collision energy

    YES NO

    Particle fracture energyminimum energy required to break a particle

  • 7/30/2019 Luis Marcelo Tavares

    7/24

    Characterizing breakage Distribution of particle fracture energies

    Single particle: 2-120 mm

    20

    40

    60

    80

    100

    Force(N) Particle primary

    fractureRebreakage of

    the fragments

    2.4 mm Copper ore

    Impact Load CellTavares & King (1998), Int. J. Miner. Process. 54

    10 100 1000 10000Mass-specific fracture energy - E

    m(J/kg)

    99.9

    99

    90

    70

    50

    30

    10

    1

    0.1

    Cumulativedistr

    ibution(%)

    2.83-2.36 mm

    5.60-4.75 mm

    11.2-9.50 mm

    22.4-19.5 mm

    45.0-37.5 mm

    63.0-53.0 mm

    0 200 400 600 800 1000 1200 1400

    Time (ms)

    0

  • 7/30/2019 Luis Marcelo Tavares

    8/24

    Characterizing breakage Distribution of particle fracture energies

    Single particle: 2-120 mm

    1

    10

    energyEm50

    (kWh/t)

    Particle bed: 0.2-2 mm

    ... which approximately matches the size range of

    interest in AG/SAG mills

    Barrios, Carvalho & Tavares (2011), Trans. Instn. Min. Metall. 120

    0.1 1 10 100Particle size (mm)

    0.001

    0.01

    0.1

    Me

    dianmass-spec

    ificfrac

    ture

    Model

    Single particle breakage

    Bed breakage test

  • 7/30/2019 Luis Marcelo Tavares

    9/24

    Characterizing breakage

    Particle breaks?(body)

    Collision energy

    YES NO

    Energy-specific

    surface breakage

    function

    WeakeningSurface breakage

  • 7/30/2019 Luis Marcelo Tavares

    10/24

    Characterizing breakage

    Weakening and surface breakage

    80

    100

    en

    (%) 80

    100

    ution

    (%)

    Copper ore: 125-75 mm

    0 10 20 30 40

    Number of drops

    0

    20

    40

    Cumu

    lativeb

    ro

    0.005 kWh/t

    0.011 kWh/t

    0.022 kWh/t

    0.01 0.1 1 10

    Particle weight loss (%/impact)

    0

    20

    40

    Cumu

    lative

    dis

    trib

    39.2 J/kg

    19.6 J/kg

    Both influenced by stressing energy! Low energynormal collision

    Continuum damage model

    Tavares & King (2002), Powder Technol.

  • 7/30/2019 Luis Marcelo Tavares

    11/24

    Characterizing breakage

    Particle breaks?(body)

    Collision energy

    YES NO

    Energy-specific

    surface breakage

    function

    Energy-specific bodybreakage function

    WeakeningSurface breakage

  • 7/30/2019 Luis Marcelo Tavares

    12/24

    Characterizing breakage

    Body breakage distribution

    20

    40

    60

    80

    100

    tn(

    %)

    t1.2

    t1.5t2

    t4

    t25t50

    t75

    10

    100

    1 10 100Stressing impact en ergy / Specific median fracture energy - Em

    / Em50

    63.0-53.0 mm45.0-37.5 mm31.5-26.5 mm22.4-19.2 mm16.0-13.2 mm5.60-4.75 mm2.83-2.36 mm

    1

    10

    100

    t10

    (%)

    0 10 20 30 40 50 60

    t10 (%)

    0

    0.01 0.1 1 10 100Particle size (mm)

    0.1

    1

    Passing

    (%)

    22.4-19.2 mm (2.50 kWh/t)

    22.4-19.2 mm (1.00 kWh/t)

    22.4-19.2 mm (0.25 kWh/t)

    16.0-13.2 mm (2.52 kWh/t)

    16.0-13.2 mm (1.00 kWh/t)

    5.60-4.75 mm (2.50 kWh/t)

    5.60-4.75 mm (2.50 kWh/t)

    2.83-2.36 mm (5.00 kWh/t)

    2.83-2.36 mm (2.50 kWh/t)

    Tavares (2009), Powder Technol.

  • 7/30/2019 Luis Marcelo Tavares

    13/24

    Characterizing breakage

    Model predictions: single particle breakage

    100

    )

    63-53 mm

    100

    )

    0.600-0.425 mm

    Fine Coarse

    0.1 1 10 100

    Particle size (mm)

    1

    10

    Passing

    (

    0.10 kWh/t

    0.25 kWh/t

    0.80 kWh/t

    0.01 0.1 1

    Particle size (mm)

    1

    10

    Passing

    (

    1.0 kWh/t

    2.5 kWh/t

    7.0 kWh/t

  • 7/30/2019 Luis Marcelo Tavares

    14/24

    Characterizing breakage

    utions

    Collision energy is sufficient to break

    all particles Collision energy is insufficient to

    break any particles

    For particles contained in a size class:

    Body breakage

    Collision energies

    Fracture energies

    100%

    0%

    100%

    Energy

    Cumu

    lativedistr

    i

    Collision energy is sufficient to

    break some of the particles

    Surface breakage

    Damage

    Bodybreakage

    ur ace rea age

    Damage

    Distribution of collision energies

    0%

    Energy

    100%

    0%

    Energy

    Energy

    100%

    0%

  • 7/30/2019 Luis Marcelo Tavares

    15/24

    DEM simulation of charge motion

    Comercial software (EDEM) used

    Calibration of contact parameters is requiredfor realistic simulations

  • 7/30/2019 Luis Marcelo Tavares

    16/24

    DEM simulation of charge motion6 (1.8 m) 38 (11.6 m)

    Balls and particles coarser than grate size (DEM particles)

    Particles finer than grate size (sub DEM particles)

    Barrios, Carvalho & Carvalho (2011), Minerals Eng.

  • 7/30/2019 Luis Marcelo Tavares

    17/24

    DEM simulation of charge motion

    Contact class Elements in contact Diameter of particles in collision

    k Dp (mm) Dq (mm)

    1 Ball-ball 160 160

    4 Ball-particle 160 14010 Ball-liner 160

    28 Particle-particle 140 140

    34 Particle-liner 140

    53 Particle-particle 14 14

    -

    Extracting distributions of collision energies (6 mill)

    -

  • 7/30/2019 Luis Marcelo Tavares

    18/24

    Mechanistic model framework

    0.01 0.1 1 10 100

    Particle size (mm)

    0.00

    0.01

    0.02

    Dischargerate(s-1)

    Power

    Model can describe breakage of multi-component (hard-soft, heavy-light, ... ) blends

    Model is dynamic in nature

  • 7/30/2019 Luis Marcelo Tavares

    19/24

    Results

    Literature: size-dependent breakage rates in

    AG/SAG mills

    Morrell et al. (1996), Int. J. Miner. Process. 44-45

  • 7/30/2019 Luis Marcelo Tavares

    20/24

    Results

    Predictions: Apparent breakage rates of a

    copper ore in a 6 SAG mill

    100

    101

    te(1/s)

    1 10 100

    Particle size (mm)

    10-4

    10-3

    10-2

    10-1

    Relativebreakag

    er

    Total (body+surface)

    Surface breakage

    Body breakage

  • 7/30/2019 Luis Marcelo Tavares

    21/24

    Future developments

    Modeling

    Validate in multiple scales (lab, pilot & industrial)

    Incorporate SPH/CFD to describe discharge

    Characterization

    Standardize surface breakage testing

    Simplify body breakage characterization

  • 7/30/2019 Luis Marcelo Tavares

    22/24

    Conclusions

    A mechanistic model framework has been

    proposed for AG/SAG mills

    Apparent breakage rates for grinding in a 6

    mill have been estimated

    After maturity, method will be used as a lowercost alternative or complement to pilot scale

    studies

  • 7/30/2019 Luis Marcelo Tavares

    23/24

    Acknowledgements

  • 7/30/2019 Luis Marcelo Tavares

    24/24

    Contact

    Prof. Lus Marcelo Tavares

    Gracias

    Obrigado

    Thank you

    .