Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences,...

21
JEROEN TROMP Academic Degrees Ph.D., Princeton University, 1992 M.S., Princeton University, 1990 B.Sc., University of Utrecht, 1988 Positions Held 2017–present, Director, Princeton Institute for Computational Science & Engineering, Princeton University 2008–present, Blair Professor of Geology, Department of Geosciences, Prince- ton University 2008–present, Professor of Applied & Computational Mathematics, Pro- gram in Applied & Computational Mathematics, Princeton University 2013–2019 Member of the Technology Advisory Council of British Petroleum 2013–2017, Associate Director, Princeton Institute for Computational Sci- ence & Engineering, Princeton University 2010–2014, Faculty Fellow, Princeton Institute for Theoretical Science, Princeton University 2009–2013, Director, Princeton Institute for Computational Science & En- gineering, Princeton University 2008–2009 Distinguished Visiting Professor, Department of Civil Engi- neering, National University of Singapore 2003–2008, Director of the Seismological Laboratory, Division of Geologi- cal and Planetary Sciences, California Institute of Technology 2003–2008, Eleanor and John R. McMillan Professor of Geophysics, Divi- sion of Geological and Planetary Sciences, California Institute of Technol- ogy 2000–2002, Professor of Geophysics, Division of Geological and Planetary Sciences, California Institute of Technology 1997–2000, Professor of Geophysics, Department of Earth and Planetary Sciences, Harvard University 1998–1999, Visiting Professor of Geophysics, Division of Geological and Planetary Sciences, California Institute of Technology

Transcript of Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences,...

Page 1: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

JEROEN TROMP

Academic Degrees

Ph.D., Princeton University, 1992

M.S., Princeton University, 1990

B.Sc., University of Utrecht, 1988

Positions Held

2017–present, Director, Princeton Institute for Computational Science & Engineering, Princeton University

2008–present, Blair Professor of Geology, Department of Geosciences, Prince-ton University

2008–present, Professor of Applied & Computational Mathematics, Pro-gram in Applied & Computational Mathematics, Princeton University

2013–2019 Member of the Technology Advisory Council of British Petroleum

2013–2017, Associate Director, Princeton Institute for Computational Sci-ence & Engineering, Princeton University

2010–2014, Faculty Fellow, Princeton Institute for Theoretical Science, Princeton University

2009–2013, Director, Princeton Institute for Computational Science & En-gineering, Princeton University

2008–2009 Distinguished Visiting Professor, Department of Civil Engi-neering, National University of Singapore

2003–2008, Director of the Seismological Laboratory, Division of Geologi-cal and Planetary Sciences, California Institute of Technology

2003–2008, Eleanor and John R. McMillan Professor of Geophysics, Divi-sion of Geological and Planetary Sciences, California Institute of Technol-ogy

2000–2002, Professor of Geophysics, Division of Geological and Planetary Sciences, California Institute of Technology

1997–2000, Professor of Geophysics, Department of Earth and Planetary Sciences, Harvard University

1998–1999, Visiting Professor of Geophysics, Division of Geological and Planetary Sciences, California Institute of Technology

Page 2: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

1996–1997, John L. Loeb Associate Professor of the Natural Sciences, Department of Earth and Planetary Sciences, Harvard University

1992–1996, Assistant Professor of Geophysics, Department of Earth and Planetary Sciences, Harvard University

Honors and Awards

2013, Beno Gutenberg Medal, European Geosciences Union

2007, Corresponding Member, Royal Netherlands Academy of Sciences

2004, Medal of the Vening Meinesz Research School of Geophysics

2003, Gordon Bell Award, SuperComputing 2003 (SC2003)

1999, Fellow, American Geophysical Union

1999, James B. Macelwane Medal, American Geophysical Union

1997, Honorary Master’s Degree, Harvard University

1994–1999, Packard Fellowship, David and Lucile Packard Foundation

1994, Doornbos Memorial Prize, International Association of Seismology and Physics of the Earth’s Interior

1990 – 1992, Francis Robbins Upton Graduate Fellowship, Princeton Uni-versity

1988, John von Neumann Prize in Supercomputing, Princeton University

Current Professional Activities & Service

Scientific Advisory Committee for the Leadership Class Computing Facil-ity of the Texas Advanced Computing Center

IRIS High Performance Computing and Seismic Data Working Group

ExaHyPe Advisory Board

Professional Societies

American Geophysical Union

Royal Astronomical Society

European Geophysical Society

Seismological Society of America

Page 3: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

Publications

Books

[1] Dahlen, F.A., and Tromp, J., 1998. Theoretical Global Seismology , 1,025 pages, Princeton University Press, Princeton, NJ.

Reviewed Articles

[171] Sripanich, Y., Vasconcelos, I., Tromp, J., and Trampert, J., 2020. Stress-dependent elasticity and wave propagation – New insights & connections Geophysics, submitted.

[170] Langer, L., Ragon, L., Sladen, A., and Tromp, J., 2020. Impact of topog-raphy on earthquake static slip estimates, Tectonophysics, Submitted.

[169] Lei, W., Ruan, Y., Bozdag, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J., Podhorszki, N., Pugmire, D., 2020. Global Adjoint Tomography – Model GLAD-M25, Geophys. J. Int., Submitted.

[168] Das, S.B., Chakraborty, T., Hanasoge, S.M., and Tromp, J., 2020. Sen-sitivity kernels for inferring Lorentz stresses from normal-mode frequency splittings in the Sun, Astrophys. J., Submitted.

[167] Bachmann, E., and Tromp, J., 2020. Source encoding for viscoacoustic Ultrasound Computed Tomography, J. Acoust. Soc. Am., Accepted.

[166] Lognonne et al., 2020. Constraints on the shallow elastic and anelastic structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220.

[165] Banerdt et al., 2020. Initial results from the InSight mission on Mars, Nature Geosciences, 13, 183–189.

[164] Tromp, J., 2019. Seismic wavefield imaging of Earth’s interior across scales, Nature Reviews, 1, 40–53.

[163] Lloyd, A. J., Wiens, D. A., Zhu, H., Tromp, J., Nyblade, A. A., Aster, R. C., Hansen, S. E., Dalziel, I. W. D., Wilson, T.J., Ivins, E. R., and J. P. O’Donnell, 2019. Seismic Structure of the Antarctic Upper Mantle Based on Adjoint Tomography, J. Geophys. Res.

[162] Borisov, D., Gao, F., Williamson, P., and Tromp, J., 2019. Application of waveform inversion of surface and body waves for near-surface onshore imaging, Geophysics, 85, A1–W16.

¨ [161] Ruan, Y., Lei, W., Modrak, R., Orsvuran, R., Bozdag, E., and Tromp, J., 2019. Balancing Unevenly Distributed Data in Seismic Tomography: A Global Adjoint Tomography Example, Geophys. J. Int., 219, 1,225–1,236.

Page 4: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

[160] Tromp, J., and Bachmann, E., 2019. Source Encoding for Adjoint Tomog-raphy, Geophys. J. Int., 218, 2,019–2,044.

[159] Wang, Y., Miller, R.D., Peterie, S.L., Sloan, S.D., Moran, M.L., Cudney, H.H., Smith, J.A., Borisov, D., Modrak, R., and Tromp, J. 2019. Tunnel detection at Yuma Proving Ground, Arizona, USA — Part 1: 2D full-waveform inversion experiment, Geophysics, 84, B95–B120.

[158] Smith, J.A., Borisov, D., Cudney, H., Miller, R., Modrak, R., Moran, M., Peterie, S.L., Sloan, S.D., Tromp, J., and Wang, Y. 2019. Tunnel detection at Yuma Proving Ground, Arizona, USA — Part 2: 3D full-waveform inversion experiments, Geophysics, 84, B107–B105.

[157] Gharti, H., and Tromp, J., 2019. Spectral-infinite-element simulations of magnetic anomalies, Geophys. J. Int., 217, 1,656–1,667.

[156] Gharti, H., Langer, L., and Tromp, J., 2019. Spectral-infinite-element simulations of earthquake-induced gravity perturbations, Geophys. J. Int., 217, 451–468.

[155] Langer, L., Gharti, H., and Tromp, J., 2019. Impact of topography and three-dimensional elastic heterogeneity on modeling coseismic deforma-tion, Geophys. J. Int., 217, 866–878.

[154] Tromp, J., Marcondes, M.L., Wentzcovitch, R.M.M., and Trampert, J., 2019. Effects of Induced Stress on Seismic Waves: Validation based on Ab Initio Calculations, J. Geophys. Res.

[153] Lognonne et al., 2019. SEIS: InSight’s Seismic Experiment for Internal Structure of Mars, Space Science Reviews, 215:12.

[152] Lloyd, S.F., Jeong, C., Gharti, H.N., Vignola, J., and Tromp, J., 2019. Spectral-element simulations of acoustic waves induced by a moving un-derwater source, Journal of Theoretical and Computational Acoustics, 27.

[151] Vaaland, U., Gharti, H., and Tromp, J., 2018. Simulations of Seismic Wave Propagation using a Spectral-Element Method in a Lagrangian Frame-work with Logarithmic Strain, Geophys. J. Int., 216, 2,148–2,157.

[150] Gharti, H., Langer, L., and Tromp, J., 2018. Spectral-infinite-element sim-ulations of coseismic and postearthquake deformation, Geophys. J. Int., 216, 1,364–1,393.

[149] Gharti, H., Tromp, J., and Zampine, S., 2018. Spectral-infinite-element simulations of gravity anomalies, Geophys. J. Int., 215, 1,098–1,117.

[148] Crawford, O., Al-Attar, D., Tromp, J., Mitrovica, J.X., Austermann, J., Lau, H.C.P., 2018. Quantifying the sensitivity of post-glacial sea level change to laterally varying viscosity, Geophys. J. Int., 214, 1,324–1,363.

Page 5: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

[147] Tromp, J., and Trampert, J., 2018. Effects of induced stress on seismic forward modeling and inversion, Geophys. J. Int., 213, 851–867.

[146] Modrak, R., Borisov, D., Lefebvre, M., and Tromp, J., 2018. SeisFlows — Flexible waveform inversion software, Computers and Geosciences, 88, 88–95.

[145] Borisov, D., Modrak, R., Gao, F., and Tromp, J., 2018. 3D elastic full-waveform inversion of surface waves in the presence of irregular topography using an envelope-based misfit function, Geophysics, 83, R1–R11.

[144] Clinton, S., Giardini, D., Lognonne, P., Banerdt, W.B., Van Driel, M., Drilleau, M., Murdoch, N., Panning, M., Garcia, R., Mimoun, D., Moc-quet, A., Golombek, M., Tromp, J., Weber, R., Bose, M., Ceylan, S., Daubar, I.J., Kenda, B., Khan, A.M., Murdoch, N., Perrin, Spiga, A., 2017. Preparing for InSight: a Blind Test for Detection and Location of Martian Seismicity, Seism. Res. Lett., 88 (5), 1,290–1,302.

[143] Lloyd, S.F., Jeong, C., Gharti, H.N., and Tromp, J., 2017. Spectral-element simulations of acoustic waves induced by a moving underwater source, Journal of the Acoustical Society of America,, 5, 3,531–3,531.

[142] Lau, H.C.P., Mitrovica, J.X., Davis, J.L., Tromp, J., Yang, H.-S., Al-Attar, D., 2017. Tidal tomography constrains Earth’s deep mantle buoy-ancy, Nature, 551, 321–326.

[141] Bozdag, E., Ruan, Y., Metthez, N., Khan, A., Leng, K., Van Driel, M., Wieczorek, M., Rivoldini, A., Larmat, C., Giardini, D., Tromp, J., Lognonne, P., Banerdt, B., 2017. Simulations of seismic wave propaga-tion on Mars, Space Science Reviews, 211, 571–594.

[140] Panning, M.P., Lognonne, P., Banerdt, B.W., Garcia, R., Golombek, M., Kedar, S., Knapmeyer-Endrun, B., Mocquet, A., Teanby, N.A., Tromp, J., Weber, R., Beucler, E., Blanchette-Guertin, J.-F., Bozdag, E., Drilleau, M., Gudkova, T., Hempel, S., Khan, A., Lekic, V., Plesa, A.-C., Rivoldini, A., Schmerr, N., Ruan, Y., Verhoeven, O., Gao, C., Christensen, U., Clinton, J., Dehant, V., Giardini, D., Mimoun, D., Pike, W.T., Smrekar, S., Wieczorek, M., Knapmeyer, M., Wookey, J., 2017. Planned products of the Mars Structure Service for the InSight mission to Mars, Space Science Reviews, 211, 611–650.

[139] Kedar, S., Andrade, J., Banerdt, B., Delage, P., Golombek, M, Hud-son, T., Kiely, A., Knappmeyer, M., Knapmeyer-Endrun, B., Krause, C., Kawamura, T., Lognonne, P., Pike, T., Ruan, Y., Teanby, N., Tromp, J., Wookey, J., 2017. Analysis of regolith properties using seismic sig-nals generated by InSight’s HP3 penetrator, Space Science Reviews, 211, 315–337

Page 6: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

[138] Lefebvre, M., Chen, Y., Lei, W., Luet, D., Ruan, Y., Bozdag, E., Hill, J., Komatitsch, D., Krisher, L., Peter, D., Podhorszki, N., Smith, J., and Tromp, J., 2017. Data & Workflow Management for Exascale Global Ad-joint Tomography, in Exascale Scientific Applications: Programming Ap-proaches for Scalability, Performance, and Portability, Editors Straatsma, T., and Antypas, K.

[137] Zhu, H., Komatitsch, D., and Tromp, J., 2017. Radial anisotropy of the North American upper mantle based on adjoint tomography with USAr-ray, Geophys. J. Int., 211, 349–377.

[136] Rusmanugroho, H., Modrak, R., and Tromp, J., 2017. Anisotropic full waveform inversion with tilt-angle recovery, Geophysics, 82, R135–R151.

[135] Chen, M., Niu, F., Tromp, J., Lenardic, A., Lee, C.-T., Cao, W., and Ribeiro, J., 2017. Lithospheric foundering and underthrusting imaged beneath Tibet, Nature Comm., 8, 15659, doi:10.1038/ncomms15659.

[134] Crawford, O., Al-Attar, D., Tromp, J., and Mitrovica, J.X., 2017. Forward and inverse modelling of post-seismic deformation, Geophys. J. Int., 208, 845–876.

[133] Lau, H.C.P., Faul, U., Mitrovica, J.X., Al-Attar, D., Tromp, J., and Garapic, G., 2017. Anelasticity across seismic to tidal timescales: a self-consistent approach, Geophys. J. Int., 208, 368–384.

[132] Bozdag, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J., Podhorszki, N., and Pugmire, D., 2016. Global Adjoint Tomography: First-Generation Model, Geophys. J. Int., 207, 1.739–1,766.

[131] Krischer, L., Smith, J., Lei, W., Lefebvre, M., Ruan, Y., Sales de Andrade, E., Podhorszki, N., Bozdag, E., and Tromp, J., 2016. An Adaptable Seismic Data Format, Geophys. J. Int., 207, 1,003–1,011.

[130] Komatitsch, D, Xie, Z., Bozdag, Sales de Andrade, E., Peter, D., Liu, Q., and Tromp, J., 2016. Anelastic sensitivity kernels with parsimonious storage for full waveform inversion and adjoint tomography, Geophys. J. Int., 206, 1,467–1,478.

[129] Yuan, Y., Simons, F.J., and Tromp, J., 2016. Double-difference adjoint seismic tomography, Geophys. J. Int., 206, 1,599–1,618.

[128] Modrak, R., and Tromp, J., 2016. Seismic waveform inversion best prac-tices: regional, global, and exploration test cases, Geophys. J. Int., 208, 1,864–1,889.

[127] Tsuboi, S., Ando, K., Miyoshi, T., Peter, D., Komatitsch, D., and Tromp, J., 2016. A 1.8 trillion degrees-of-freedom, 1.24 petaflops global seismic wave simulation on the K computer, Int. J. High Performance Comp. Appl., doi: 10.1177/1094342016632596.

Page 7: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

[126] Ying, H.-S., and Tromp, J., 2015. Synthetic free-oscillation spectra: An appraisal of various mode-coupling methods, Geophys. J. Int., 203, 1,179– 1,192.

[125] Chen, M., Niu, F., Liu, Q., and Tromp, J., 2015. Mantle-Driven Uplift of Hangai Dome: New Seismological Constraints from Adjoint Tomography, Geophys. Res. Lett., 21, 6,967–6,974.

[124] Lau, H.C.P., Yang, H.-Y., Tromp, J., Mitrovica, J.X., Latychev, K., and Al-Attar, D., 2015. A Normal-Mode Treatment of Semi-Diurnal Body Tides on an Aspherical, Rotating and Anelastic Earth, Geophys. J. Int., 202, 1,392–1,406.

[123] Chen, M., Niu, F., Liu, Q., Tromp, J., and Zheng, X., 2015. Multi pa-rameter adjoint tomography of the crust and upper mantle beneath East Asia: 1. Model construction and comparisons, J. Geophys. Res., 120, 1,762–1,786.

[122] Shaw, J., et al., 2015. Unified Structural Representation of the southern California crust and upper mantle, Earth and Planetary Science Letters, 415, 1–15.

[121] Zhu, H., Bozdag, E., and Tromp, J., 2015. Seismic structure of the Euro-pean crust and upper mantle based on adjoint tomography, Geophys. J. Int., 201, 18–52.

[120] Boxberg, M., Prevost, J.H., and Tromp, J., 2014. Wave propagation in porous media saturated with two fluids: Is it feasible to detect leakage of a CO2 storage site using seismic waves?, Transp. Porous Med., 107, 49–63.

[119] Matharu, G., Bostock, M.G., Christensen, N.I., and Tromp, J., 2014. Crustal anisotropy in a subduction zone forearc: Northern Cascadia, J. Geophys. Res., 119, 7,058–7,078, DOI 10.1002/2014JB011321.

[118] Hanasoge, S.M., and Tromp, J., 2014. Full waveform inversion for time-distance helioseismology, Astrophys. J., 784, 69–80.

[117] Magnoni, F., Casarotti, E., Michelini, A., Piersanti, A., Komatitsch, D.,Peter, D., and Tromp, J., 2014. Spectral-element simulations of seis-mic Waves generated by the 2009 L’Aquila earthquake, Bull. Seism. Soc. Amer., 104, 73–94.

[116] Lee, S.-J., Liu, Q., Tromp, J., Komatitsch, D., Liang, W.-T., and Huang, B.-S., 2014. Toward real-time regional earthquake simulation II: 1 Real-time Online earthquake Simulation (ROS) of Taiwan earthquakes, Journal of Asian Earth Sciences, 87, 56–68.

[115] Tromp, J., 2014. Forward modeling and synthetic seismograms: 3D nu-merical methods, in Treatise on Geophysics, 2nd Edition, editors B. Ro-manowicz and A. Dziewonski, Elsevier.

Page 8: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

[114] Al-Attar, D., and Tromp, J., 2014. Sensitivity kernels for viscoelastic loading based on adjoint methods, Geophys. J. Int., 196, 34–77.

[113] Luo, Y., Modrak, R., and Tromp, J., 2014. Strategies in Adjoint Tomog-raphy, in Handbook of Geomathematics (2nd edition), 1–52, editors W. Freeden, Z. Nahed, and T. Sonar, Springer.

[112] Zhu, H., and Tromp, J., 2013. Mapping Tectonic Deformation in the Crust and Upper Mantle Beneath Europe and the North Atlantic Ocean, Science, 341, 871–875.

[111] Zhu, H., Bozdag, E., Duffy, T.S., and Tromp, J., 2013. Seismic attenuation beneath Europe and the North Atlantic: Implications for water in the mantle, Earth and Planetary Science Letters, 381, 1–11.

[110] Luo, Y., Tromp, J., Denel, B., and Calendra, H., 2013. 3D coupled acoustic-elastic migration with topography and bathymetry based on spectral-element and adjoint methods, Geophysics, 78, S193–S202.

[109] Hanasoge, S.M., Birch, A., Gizon, L., and Tromp, J., 2012. Seismic probes of solar interior magnetic structure, Phys. Rev. Lett., 109.

[108] Zhu, H., Bozdag, E., Peter, D., and Tromp, J., 2012. Seismic wavespeed images across the Iapetus and Tornquist Suture Zones, Geophys. Res. Lett., 39.

[107] Krishnan, S., Casarotti, E., Goltz, J., Ji C., Komatitsch, D., Mourhatch, R., Muto, M., Shaw, J.H., Tape, C., and Tromp, J., 2012. Rapid Estima-tion of Damage to Tall Buildings Using Near Real-Time Earthquake and Archived Structural Simulations. Bull. Seism. Soc. Amer., 102, 2,646– 2,666.

[106] Gharti, H.N., Komatitsch, D., Oye, V., Martin, R., and Tromp, J., 2012. Application of an elastoplastic spectral-element method to 3D slope sta-bility analysis, Int. J. Numer. Meth. Engng , 91, 1–26.

[105] Zhu, H., Bozdag, E., Peter, D., and Tromp, J., 2012. Structure of the Eu-ropean upper mantle revealed by adjoint tomography, Nature Geoscience, 5, 493–498.

[104] Luo, Y., Hanasoge, S., Tromp, J., and Pretorius, F., 2012. Detectable seismic consequences of the interaction of a primordial black hole with Earth, Astrophys. J., 751:16 (13 pp.).

[103] Gharti, H.N., Oye, V., Komatitsch, D., and Tromp, J., 2012. Simulation of multistage excavation based on a 3D spectral-element method, Computers & Structures, 100–101, 54–69.

[102] Hanasoge, S.M., Birch, A., Gizon, L., and Tromp, J., 2011. The Adjoint method applied to time-distance helioseismology, Astrophys. J., 100, 738.

Page 9: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

[101] Zhou, Y., Liu, Q., and Tromp, J., 2011. Surface-wave sensitivity: Mode summation versus adjoint SEM, Geophys. J. Int., 187, 1,560–1,576.

[100] Meshede, M.A., Myhrvold, C.L., and Tromp, J., 2011. Antipodal focusing of seismic waves due to large meteorite impacts on Earth, Geophys. J. Int., 187, 529–537.

[99] Kim, Y., Liu, Q., and Tromp, J., 2011. Adjoint Centroid-Moment Tensor inversions, Geophys. J. Int., 186, 264–278.

[98] Peter, D., Komatitsch, D, Luo, Y., Martin, R., Le Goff, N., Casarotti, E., Le Loher, P., Magnoni, F., Liu, Q., Blitz, C., Nissen-Meyer, T., Basini, P., and Tromp, J., 2011. Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes, Geophys. J. Int., 186, 721–739.

[97] Bozdag, E., Trampert, J., and Tromp, J., 2011. Misfit functions for full waveform inversions based on instantaneous phase and envelope measure-ments, Geophys. J. Int., 185, 845–870.

[96] Morency, C., Luo, Y., and Tromp, J., 2011. Acoustic, elastic and poroe-lastic simulations of CO2 sequestration crosswell monitoring based on spectral-element and adjoint methods, Geophys. J. Int., 185, 955–966.

[95] Douma, H., Yingst, D., Vasconcelos, I., and Tromp, J., 2010. On the connection between artifact filtering in reverse-time migration and adjoint tomography, Geophysics, 75, 219–223.

[94] Tromp, J., Luo, Y., Hanasoge, S., and Peter, D., 2010. Noise cross-correlation sensitivity kernels, Geophys. J. Int., 183, 791–819.

[93] Tromp, J., Komatitsch, D., Hjorleifsdottır, V., Liu, Q., Zhu, H., Peter, D., Bozdag, E., McRitchie, D., Friberg, P., Trabant, C., and Hutko, A., 2010. Near real-time simulations of global CMT earthquakes, Geophys. J. Int., 183, 381–389.

[92] Savage, B., Komatitsch, D., and Tromp, J., 2010. Effects of 3D attenu-ation on seismic wave amplitude and phase measurements, Bull. Seism. Soc. Amer., 100, 1,241–1,251.

[91] Tape, C., Liu, Q., Maggi, A., and Tromp, J., 2010. Seismic tomography of the Southern California crust based upon spectral-element and adjoint methods, Geophys. J. Int., 180, 433–462.

[90] Dunning, T.H., Schulten, K., Tromp, J., et al., 2009. Science and Engi-neering in the Petascale Era, Computing in Science & Engineering ,11(5), 28–36.

[89] Tape, C., Liu, Q., Maggi, A., and Tromp, J., 2009. Adjoint tomography of the Southern California crust, Science, 325, 988–992.

Page 10: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

[88] Sieminski, A., Trampert, J., and Tromp, J., 2009. Principal component analysis of anisotropic finite-frequency sensitivity kernels, Geophys. J. Int., 179, 1,186–1,198.

[87] Zhu, H., Luo, Y., Nissen-Meyer, T., Morency, C., and Tromp, J., 2009. Elastic imaging and time-lapse migration based upon adjoint methods, Geophysics, 74(6), WCA167–WCA177.

[86] Luo, Y., Zhu, H., Nissen-Meyer, T., Morency, C., and Tromp, J., 2009. Seismic modeling and imaging based upon spectral-element and adjoint methods, The Leading Edge, May 2009 , 568–574.

[85] Morency, C., Luo, Y., and Tromp, J., 2009. Finite-Frequency Kernels for Wave Propagation in Porous Media based upon Adjoint Methods, Geo-phys. J. Int., 179, 1,148–1,168.

[84] Maggi, A., Tape, C., Chen, M., Chao, D., and Tromp, J., 2009. An auto-mated time-window selection algorithm for seismic tomography, Geophys. J. Int., 178, 257–281.

[83] Hjorleifsdottır, V., Kanamori, H., and Tromp, J., 2009. Modeling 3D wave propagation and finite slip for the 1998 Balleny Islands earthquake, J. Geophys. Res., 144, B03301.

[82] Pavlov, V., Tromp, J., and Tito, E., 2009. Tsunami generation by ocean floor rupture front propagation: Hamiltonian description, Nat. Hazards and Earth. Sys. Sc., 9, 217–227.

[81] Stich, D., Danecek, P., Morelli, A., and Tromp, J., 2009. Imaging lateral heterogeneity in the northern Apennines from time reversal of reflected surface waves, Geophys. J. Int., 177, 543–554.

[80] Lee, S.-J., Chan, Y.-C., Komatitsch, D., Huang, B.S., and Tromp, J., 2009. Effects of realistic surface topography on seismic ground motion in the Yangminshan region of Taiwan based upon the spectral-element method and LiDAR DTM, Bull. Seism. Soc. Amer., 99, 681–693

[79] Lee, S.-J., Huang, B.S., Komatitsch, D., and Tromp, J., 2008. Effects of topography on seismic wave propagation: An example from northern Taiwan, Bull. Seism. Soc. Amer., 99, 314–325.

[78] Larmat, C., Tromp, J., Liu, Q., Montagner, J.-P., 2008. Time-reversal lo-cation of glacial earthquakes, J. Geophys. Res., 113, B09314, doi:10.1029/2008JB005607.

[77] Morency, C., and Tromp, J., 2008. Spectral-element simulations of wave propagation in porous media, Geophys. J. Int., 175, 301–345.

[76] Sieminski, A., Paulssen, H., Trampert, J., and Tromp, J., 2008. Finite-frequency SKS splitting: Measurement and sensitivity kernels, Bull. Seism. Soc. Amer., 98, 1,797–1,810.

Page 11: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

[75] Liu, Q., and Tromp, J., 2008. Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods, Geophys. J. Int., 174, 265–286.

[74] Lee, S.-J., Chen, H.-W., Liu, Q., Komatitsch, D., Huang, B.S., and Tromp, J., 2008. Three-dimensional simulations of seismic-wave prop-agation in the Taipei Basin with realistic topography based upon the spectral-element method, Bull. Seism. Soc. Amer., 98, 253–264.

[73] Tromp, J., Komatitsch, D., and Liu, Q., 2008. Spectral-element and ad-joint methods in seismology, Commun. in Comput. Phys., 3, 1–32.

[72] Sieminski, A., Liu, Q., Trampert, J., and Tromp, J., 2007. Finite-frequency sensitivity of body waves to anisotropy based upon adjoint methods, Geo-phys. J. Int., 171, 368–389.

[71] Tromp, J., 2007. Forward modeling and synthetic seismograms: 3D nu-merical methods, in Treatise on Geophysics, editors B. Romanowicz and A. Dziewonski, Elsevier.

[70] Sieminski, A., Liu, Q., Trampert, J., and Tromp, J., 2007. Finite-frequency sensitivity of surface waves to anisotropy based upon adjoint methods, Geophys. J. Int., 168, 1,153–1,174.

[69] Chen, M., Tromp, J., Helmberger, D., and Kanamori, H., 2007. Wave-form modeling of the slab beneath Japan, J. Geophys. Res., 112, B02305, doi:10.1029/2006JB004394.

[68] Tape, C.H., Liu, Q., and Tromp, J., 2007. Finite-frequency tomography using adjoint methods — Methodology and examples using membrane surface waves, Geophys. J. Int., 168, 1,105–1,129.

[67] Chen, M., and Tromp, J., 2007. Theoretical and numerical investiga-tions of global and regional seismic wave propagation in weakly anisotropic Earth models, Geophys. J. Int., 168, 1,130–1,152.

[66] Liu, Q., and Tromp, J., 2006. Finite-frequency kernels based upon adjoint methods, Bull. Seism. Soc. Amer., 96, 2,383–2,397.

[65] Krishnan, S., Chen, J., Komatitsch, D., and Tromp, J., 2006. Case Studies of Damage to Tall Steel Moment-Frame Buildings in Southern California during Large San Andreas Earthquakes, Bull. Seism. Soc. Amer., 96, 1,523–1,537.

[64] Krishnan, S., Chen, J., Komatitsch, D., and Tromp, J., 2006. Performance of two 18-story steel moment-frame buildings in Southern California dur-ing two large simulated San Andreas earthquakes, Earthquake Spectra, 22, 1,035–1,061.

Page 12: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

[63] Lovely, P., Shaw, J., Liu, Q., and Tromp, J., 2006. A structural model of the Salton Trough and its implications for seismic hazard, Bull. Seism. Soc. Amer., 96, 1,882–1,896.

[62] Latychev, K., Mitrovica, J.X., Tamisiea, M., Tromp, J., Christara, C., and Moucha, R., 2005. GIA-Induced secular variations in the Earth’s long wavelength gravity field: Influence of 3-D viscosity variations, Earth. Planet. Science Lett., 240, 322–327.

[61] Chen, J., Tsuboi, S., Komatitsch, D., and Tromp, J., 2005. Rayleigh-wave multi-pathing along the west coast of North America, Bull. Seism. Soc. Amer., 95, 2,115–2,124.

[60] Komatitsch, D., Tsuboi, S., and Tromp, J., 2005. The spectral-element method in seismology, in Seismic Earth: Array Analysis of Broadband Seismograms , AGU Monograph, editors A. Levander and G. Nolet.

[59] Park, J., et al , 2005. Excitation of Earth’s free oscillations by the 26 De-cember 2004 Sumatra-Andaman earthquake, Science, 308, 1,139–1,144.

[58] Allen, R., and Tromp, J., 2005. Resolution of regional seismic models: Squeezing the Iceland anomaly, Geophys. J. Int., 161, 373–386.

[57] Latychev, K., Mitrovica, J.X., Tromp, J., Tamisiea, M., Komatitsch, D., and Christara, C., 2005. Glacial Isostatic Adjustment: A Finite-Volume Formulation for Compressible Earth Models, Geophys. J. Int., 161, 421– 444.

[56] Latychev, K., Mitrovica, J.X., Tamisiea, M., Tromp, J., and Moucha, R., 2005. Influence of lithospheric thickness variations on 3-D crustal veloci-ties due to glacial isostatic adjustment, Geophys. Res. Lett., 32, L01304, doi:10.1029/2004GL021454.

[55] Tsuboi, S., Komatitsch, D., and Tromp, J., 2005. Broadband modeling of global seismic wave propagation on the Earth Simulator using the spectral-element method, Journal of the Seismological Society of Japan, 57, 321– 329.

[54] Ni, S., Helmberger, D.V., and Tromp, J., 2005. 3D Structure of the African superplume from waveform modeling, Geophys. J. Int., 161, 283– 294.

[53] Tromp, J., Tape, C., and Liu, Q., 2005. Seismic tomography, adjoint methods, time reversal, and banana-donut kernels, Geophys. J. Int., 160, 195–216.

[52] Van Wijk, K., Komatitsch, D., Scales, J.A., and Tromp, J., 2004. Analysis of strong scattering at the micro-scale, J. Acoust. Soc. Am., 115, 1,006– 1,011.

Page 13: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

[51] Liu, Q., Polet, J., Komatitsch, D., and Tromp, J., 2004. Spectral-element moment-tensor inversions for earthquakes in southern California, Bull. Seism. Soc. Amer., 94, 1,748–1,761.

[50] Ishii, M., and Tromp, J., 2004. Constraining large-scale mantle hetero-geneity using mantle and inner-core sensitive normal modes, Phys. Earth Plan. Int., 146, 113–124.

[49] Komatitsch, D., Liu, Q., Tromp, J., Suss, P., Stidham, C., and Shaw, J., 2004. Simulations of ground motion in the Los Angeles basin based upon the spectral-element method, Bull. Seism. Soc. Amer., 94, 187–206.

[48] Tsuboi, S., Komatitsch, D., Chen, J., and Tromp, J., 2003. Broad-band modeling of the 2002 Denali, Alaska, Mw = 7.9 earthquake on the Earth Simulator, Phys. Earth Plan. Int., 139, 305–312.

[47] Komatitsch, D., and Tromp, J., 2003. A Perfectly Matched Layer absorb-ing condition for the second-order elastic wave equation, Geophys. J. Int., 154, 146–153.

[46] Bunge, P., and Tromp, J., 2003. Supercomputing moves to universities and makes possible new ways to organize computational research, EOS , 84, 30–33.

[45] Tamisiea, M., Mitrovica, J.X., Tromp, J., and Milne, G., 2002. Present-day secular variations in low-degree harmonics of the geopotential: Sensi-tivity analysis on spherically symmetric Earth models, J. Geophys. Res., 10.1029/2001JB000696.

[44] Komatitsch, D., Ritsema, J., and Tromp, J., 2002. The spectral-element method, Beowulf computing, and global seismology, Science, 298, 1,737– 1,742.

[43] Ishii, M., Dziewonski, A.M., Tromp, J., and Ekstrom, G., 2002. Joint inversion of normal-mode and body-wave data for inner-core anisotropy: 2. Possible complexities, J. Geophys. Res., 10.1029/2001JB000713.

[42] Ishii, M., Tromp, J., Dziewonski, A.M., and Ekstrom, G., 2002. Joint in-version of normal-mode and body-wave data for inner-core anisotropy: 1. Laterally homogeneous anisotropy, J. Geophys. Res., 10.1029/2001JB000712.

[41] Ritsema, J., Rivera, L.A., Komatitsch, D., Tromp, J., and van Heijst, H.-J., 2002. Effects of crust and mantle heterogeneity on PP/P and SS/S amplitude ratios, Geophys. Res. Lett., 29.

[40] Komatitsch, D., and Tromp, J., 2002. Spectral-element simulations of global seismic wave propagation -II. 3-D models, oceans, rotation, self-gravitation, Geophys. J. Int., 150, 303–318.

Page 14: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

[39] Komatitsch, D., and Tromp, J., 2002. Spectral-element simulations of global seismic wave propagation -I. Validation, Geophys. J. Int., 149, 390– 412.

[38] Komatitsch, D., Martin, R., Tromp, J., Taylor, M., and Wingate, B., 2001. Elastic wave propagation in 2-D media using a spectral-element method with triangles and quadrangles, J. Comput. Acoust., 9, 703–718.

[37] Ishii, M., and Tromp, J., 2001. Even-degree lateral variations in the Earth’s mantle constrained by free oscillations and the free-air gravity anomaly, Geophys. J. Int., 145, 77–96.

[36] Tromp, J., 2001. Inner-core anisotropy and rotation, Ann. Rev. Earth Planet. Sci., 29, 47–69.

[35] Komatitsch, D., Barnes, C., and Tromp, J., 2000. Simulation of anisotropic wave propagation based upon a spectral element method, Geophysics, 65, 1,251–1,260.

[34] Komatitsch, D., Barnes, C., and Tromp, J., 2000. Wave propagation near a fluid-solid interface: A spectral element approach, Geophysics, 65, 623– 631.

[33] Tromp, J., and Mitrovica, J.X., 2000. Surface loading of a viscoelastic Earth -III. Aspherical models, Geophys. J. Int., 140, 425–441.

[32] Komatitsch, D., and Tromp, J., 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophys. J. Int., 139, 806–822.

[31] Ishii, M., and Tromp, J., 1999. Normal-mode and free-air gravity con-straints on lateral variations in velocity and density, Science, 285, 1,231– 1,236.

[30] Tromp, J., and Mitrovica, J.X., 1999. Surface loading of a viscoelastic Earth -II. Spherical models, Geophys. J. Int., 137, 856–872.

[29] Tromp, J., and Mitrovica, J.X., 1999. Surface loading of a viscoelastic Earth -I. General theory, Geophys. J. Int., 137, 847–855.

[28] Bochi, L., Tromp, J., and O’Connell, R.J., 1999. On Maxwell singularities in post-glacial rebound, Geophys. J. Int., 136, 492–498.

[27] Tromp, J., and Dziewonski, A.M., 1998. Two views of Earth’s lowermost mantle, Science, 281, 655–656.

[26] Liu, X.-F., Tromp, J., and Dziewonski, A.M., 1998. Is there a first-order discontinuity in the lowermost mantle?, Earth. Planet. Science Lett., 160, 343–351.

Page 15: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

[25] Wang, Z., Tromp, J., and Ekstrom, G. 1998. Global and Regional Surface-Wave Inversions: A Spherical-Spline Parameterization, Geophys. Res. Lett., 25, 207–210.

[24] Larson, E., Tromp, J., and Ekstrom, G. 1998. Effects of anisotropy on surface wave propagation, Geophys. J. Int., 132, 654–666.

[23] Russakoff, D., Ekstrom, G., and Tromp, J. 1997. A new analysis of the great 1970 Colombia earthquake and its isotropic component, J. Geophys. Res., 102, 20,423–20,434.

[22] Ekstrom, G., Tromp, J., and Larson, E.W., 1997, Measurements and global models of surface wave propagation, J. Geophys. Res., 102, 8,137– 8,157.

[21] Liu, X.-F., and Tromp, J., 1996, Uniformly-valid body-wave ray theory, Geophys. J. Int., 127, 461–491.

[20] He, X., and Tromp, J.,1996, Normal-mode constraints on the structure of the mantle and core, J. Geophys. Res., 101, 20,053–20,082.

[19] Tromp, J., and Zanzerkia, E., 1995, Toroidal splitting observations from the great 1994 Bolivia and Kuril Islands earthquakes, Geophys. Res. Lett., 22, 2,297–2,300.

[18] Lee, J.K.W., and Tromp, J., 1995, Self-induced fracture generation in zircon, J. Geophys. Res., 100, 17,753–17,770.

[17] Tromp, J., 1995, Seismology of the core, Rev. Geophys., supplement, 329– 333.

[16] Tromp, J., 1995, Normal-mode splitting observations from the great 1994 Bolivia and Kuril Islands earthquakes: Constraints on the structure of the mantle and inner core, GSA Today , 5, 137–151.

[15] Tromp, J., 1995, Normal mode splitting due to inner core anisotropy, Geophys. J. Int., 121, 963–968.

[14] Tromp, J., 1994. Surface wave propagation on a rotating, anisotropic Earth, Geophys. J. Int., 117, 141–152.

[13] Tromp, J., 1994. A coupled local mode analysis of surface wave prop-agation in a laterally heterogeneous waveguide, Geophys. J. Int., 117, 153–164.

[12] Tromp, J., 1993. Support for anisotropy of the Earth’s inner core from free oscillations, Nature, 366, 678–681.

[11] Tromp, J., and Dahlen, F.A., 1993. Maslov theory for surface wave propa-gation on a laterally heterogeneous Earth, Geophys. J. Int., 115, 512–528.

Page 16: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

[10] Tromp, J., 1993. Uniformly valid asymptotic wave propagation based upon variational principles, Wave Motion, 17, 185–196.

[9] Wang, Z., Dahlen, F. A., and Tromp, J., 1993. Surface wave caustics, Geophys. J. Int., 114, 311–324.

[8] Tromp, J., and Dahlen, F.A., 1993. Surface wave propagation in a slowly varying anisotropic waveguide, Geophys. J. Int., 113, 239–249.

[7] Tromp, J., and Dahlen, F.A., 1993. Variational principles for surface wave propagation on a laterally heterogeneous Earth -III. Potential representa-tion, Geophys. J. Int., 112, 195–209.

[6] Tromp, J., and Dahlen, F.A., 1992. The Berry phase of a slowly varying waveguide, Proc. R. Soc Lond. A, 437, 329–342.

[5] Tromp, J., and Dahlen, F.A., 1992. Variational principles for surface wave propagation on a laterally heterogeneous Earth -II. Frequency-domain JWKB theory, Geophys. J. Int., 109, 599–619.

[4] Tromp, J., and Dahlen, F.A., 1992. Variational principles for surface wave propagation on a laterally heterogeneous Earth -I. Time-domain JWKB theory, Geophys. J. Int., 109, 581–598.

[3] Tromp, J., and Dahlen, F.A., 1990. Free oscillations of a spherical anelas-tic Earth, Geophys. J. Int., 103, 707–723.

[2] Tromp, J., and Dahlen, F.A., 1990. Summation of the Born series for the normal modes of the Earth, Geophys. J. Int., 100, 527–533.

[1] Tromp, J., and Snieder, R., 1989. The reflection and transmission of plane P- and S-waves by a continuously stratified band: a new approach using invariant embedding, Geophys. J., 96, 447–456.

Reviewed Conference Proceedings

[32] Sripanich, Y., Vasconcelos, I, Tromp, J., and Trampert, J., 2019. De-scribing stress-dependent elasticity and wave propagation – New insights & connections between approaches, in: SEG Technical Program Expanded Abstracts, 409–413.

[31] Borisov, D., Gao, F., Williamson, P., Simons, F.J., and Tromp, J., 2019. Robust surface-wave full-waveform inversion, in: SEG Technical Program Expanded Abstracts, 5005–5009.

[30] Dimitri Komatitsch (1970–2019), 2019. Tromp, J., and Chevrot, S., EOS , 100.

Page 17: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

[29] Balasubramanian, V., Turilli, M., Huy, W., Lefebvre, M., Lei, W., Cer-voney, G., Tromp, J., and Jha, S., 2017. Harnessing the Power of Many: Extensible Toolkit for Scalable Ensemble Applications, International Par-allel and Distributed Processing Symposium.

[28] Pugmire, D., Bozdag, E., Lefebvre, M., Komatitsch, D., Tromp, J., Pod-horszki, N., Hill, J., and Peter, D., 2017. Pillars of the Mantle: Imaging the Interior of the Earth with Adjoint Tomography, Practice & Expe-rience, in Advanced Research Computing 2017 Conference (PEARC17), July 9–13, New Orleans,USA.

[27] Smith, J., Borisov, D., Modrak, R., Tromp, J., Cudney, H., Moran, M., Sloan, S., Miller, R., and Peterie, S., 2017. Near-surface seismic imaging of tunnels using 3D elastic full-waveform inversion, in: SEG Technical Program Expanded Abstracts, 2,637–2,641.

[26] Chen, Y., Hill, J., Lei, W., Lefebvre, M., Tromp, J., Bozdag, E., Ko-matitsch, D., 2017. Automated time-window selection based on machine learning for full-waveform inversion, in: SEG Technical Program Expanded Abstracts, 1,604–1,609.

[25] Borisov, D., Modrak, R., Rusmanugroho, H., Yuan, Y., Gao, F., Simons, F., and Tromp, J., 2016. Spectral-element based 3D elastic full waveform inversion of surface waves in the presence of complex topography using an envelope-based misfit function, in: SEG Technical Program Expanded Abstracts.

[24] Modrak, R., and Tromp, J., 2016. On the choice of material parame-ters for elastic waveform inversion, in: SEG Technical Program Expanded Abstracts, 1,115–1,119.

[23] Lognonne, P., et al., 2015. Science Goals of SEIS, the InSight Seismometer Package, Lunar and Planetary Science Conference.

[22] Tsuboi, S., Ando, K., Miyoshi, T., Peter, D., Komatitsch, D., and Tromp, J., 2015. A 1.8 trillion degree-of-freedom, 1.24 Petaflops global seismic wave simulation on the K computer, Proceedings of the Supercomputing 2015 Conference.

[21] Rusmanugroho, H., Modrak, R., and Tromp, J., 2015. Anisotropic imag-ing with fast recovery of tilt and azimuthal angles, in: SEG Technical Program Expanded Abstracts, 4,008–4,012.

[20] Modrak, R., and Tromp, J., 2015. Computational efficiency of full wave-form inversion algorithms, in: SEG Technical Program Expanded Ab-stracts, 4,838–4,842.

[19] Banerdt, W.B., Smrekar, S., Lognonne, P., Spohn, T., Asmar, S.W., Ban-field, D., Boschi, L., Christensen, U., Dehant, V., Folkner, W., Giardini,

Page 18: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

D., Goetze, W., Golombek, M., Grott, M., Hudson, T., Johnson, C., Kargl, G., Kobayashi, N., Maki, J., Mimoun, D., Mocquet, A., Morgan, P., Panning, M., Pike, W.T., Tromp, J., van Zoest, T., Weber, R., Wiec-zorek, M.A., Garcia, R., Hurst, K., 2013. InSight: A Discovery Mission to Explore the Interior of Mars, In: Lunar and Planetary Science Conference, Lunar and Planetary Inst. Technical Report , 44, p. 1915.

[18] Lognonne, P., B. W. Banerdt, D. Giardini, U. Christensen, D. Mimoun, S. de Raucourt, A. Spiga, R. Garcia, A. Mocquet, M. Panning, E. Beucler, L. Boschi, W. Goetz, T. Pike, C. Johnson, R. Weber, M. Wieczorek, K. Larmat, N. Kobayashi, and J. Tromp, J., 2012. Insight and Single-Station Broadband Seismology: From Signal and Noise to Interior Structure De-termination. In: Lunar and Planetary Science Conference, Mar. 2012, Lunar and Planetary Inst. Technical Report , 44, p. 1983.

[17] Luo, Y., Tromp, J., Denel, B., and Calandra, H., 2012. 3D elastic migra-tion with topography based on spectral-element and adjoint methods, in: SEG Technical Program Expanded Abstracts, 1–5.

[16] Modrak, R., Luo, Y., and Tromp, J., 2012. Modeling cross-correlations for passive source, controlled source, and drill bit interferometry, in: SEG Technical Program Expanded Abstracts, 1–5.

[15] Rietmann, M., Messmer, P., Nissen-Meyer, T., Peter, D., Basini, P., Ko-matitsch, D., Schenk, O., Tromp, J., Boschi, L., and Giardini, D., 2012. Forward and Adjoint Simulations of Seismic Wave Propagation on Emerg-ing Extreme-Scale Architectures. Proceedings of the Supercomputing 2012 Conference.

[14] Tromp, J., 2010. Imaging and inversion based upon adjoint methods, in: SEG Technical Program Expanded Abstracts, 3,960–3,961.

[13] Luo, Y., Zhu, H., Nissen-Meyer, T., Morency, C., Peter, D. and Tromp, J., 2010. Modeling and imaging based upon spectral-element and adjoint methods, in: SEG Technical Program Expanded Abstracts, 1–5.

[12] Morency, C., Luo, Y., and Tromp, J., 2010. 4D seismic monitoring of CO2 sequestration based upon spectral-element and adjoint methods: compar-ison of acoustic, elastic and poroelastic theories, in: SEG Technical Pro-gram Expanded Abstracts, 4,139–4,144.

[11] Morency, C., Luo, Y., and Tromp, J., 2009. Spectral-Element Simula-tions of Wave Propagation in Porous Media: Finite-Frequency Sensitivity Kernels based upon Adjoint Methods, Proceedings of the Fourth Biot Con-ference on Poromechanics.

[10] Carrington, L., Komatitsch, D., Laurenzano, M., Tikir, M.M., Michea, D., Le Goff, N., Snavely, A., and Tromp, J., 2008. High-frequency simulations of global seismic wave propagation using SPECFEM3D GLOBE on 62K

Page 19: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

processors, Proceedings of the Supercomputing 2008 Conference. Gordon Bell Prize finalist.

[9] Tsuboi, S., Komatitsch, D., Ji, C., and Tromp, J., 2008. Computations of global seismic wave propagation in three-dimensional Earth models, in: Proceedings of the 6th International Symposium on High-Performance Computing, ISHPC 2005, Nara, Japan, Lecture Notes in Computer Sci-ence, vol. 4759, 434–443.

[8] Casarotti, E., Stupazzini, M., Lee, S.-J., Komatitsch, D., Piersanti, A., and Tromp, J., 2007. CUBIT and seismic wave propagation based upon the Spectral-Element Method: An advanced unstructured mesher for com-plex 3D geological media, in: Proceedings of the 16th International Mesh-ing Roundtable, editors M.L. Brewer and D. Marcum, Springer, New York, NY.

[7] Krishnan, S., Chen, J., Komatitisch, D., and Tromp, J., 2006. Impact of a large San Andreas Fault earthquake on tall buildings in Southern California, Proceedings of the 8th National Conference on Earthquake En-gineering, Earthquake Engineering Research Institute, April 18–22, 2006, San Francisco, California, USA, Paper No. 154.

[6] Tsuboi, S., Komatitsch, D., Ji, C., and Tromp, J., 2004. Simulations of global seismic wave propagation for a 3-D earth model, in: Proceedings of the 7th International Conference on High-Performance Computing and Grid in the Asia-Pacific Region (HPCAsia 2004), July 20-22, 2004, Omiya Sonic City, Japan, 496–501.

[5] Komatitsch, D., Tsuboi, S., Chen, J., and Tromp, J., 2003. A 14.6 billion degrees of freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator, Proceedings of the Supercomputing 2003 Conference. Gordon Bell Prize winner.

[4] Komatitsch, D., and Tromp, J., 2001. Modeling of seismic wave propa-gation at the scale of the Earth on a large Beowulf, Proceedings of the Supercomputing 2001 Conference.

[3] Komatitsch, D., and Tromp, J., 2000. The spectral element method for three-dimensional seismic wave propagation, in: SEG Technical Program Expanded Abstracts, 2,197–2,200.

[2] Tromp, J., and Komatitsch, D., 2000. Spectral-element simulations of wave propagation in a laterally homogeneous Earth model, in: Proceedings of the Erice ’99 School of Geophysics, editors G. Ekstrom and A. Morelli, Editrice Compositori.

[1] Komatitsch, D., Tromp, J., and Vilotte, J.-P., 1998. The spectral element method for elastic wave equations: Application to 2D and 3D seismic problems, in: SEG Technical Program Expanded Abstracts, 1460–1463.

Page 20: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

Other Publications

[19] Numerical modeling of seismic wave propagation; gridded two-way wave-equation methods, 2012. Editors: Robertsson, J.O.A., Blanch, J.O., Nihei, K., and Tromp, J., SEG geophysics reprint series 28.

[18] Savage, B., Peter, D., Covellone, B.M., Rodgers, A.J., Tromp, J., 2010. Next-generation, waveform-based, three-dimensional models and metrics to improve nuclear explosion monitoring in the Middle East, Proceedings of the 32nd Monitoring Research Review of Ground-Based Nuclear Explosion Monitoring Technologies.

[17] Oden, J.T., et al., , 2010. NSF-OCI Taskforce on Cyberscience: Grand Challenge Communities and Virtual Organizations, prepared for the U.S. National Science Foundation.

[16] Lay, T., Aster, R.C., Forsyth, D.W., Romanowicz, B., Allen, R,M., Cormier, V.F., Gomberg, J., Hole, J.A., Masters, G., Schutt, D., Sheehan, A., Tromp, J., and Wyssession, M.E., 2009. Seismological grand challenges in understanding Earth’s dynamic systems, Seismology Science Plan pre-pared for the U.S. National Science Foundation.

[15] Savage, B., Peter, D., Covellone, B.M., Rodgers, A.J., Tromp, J., 2009. Progress toward next-generation, waveform-based, three-dimensional mod-els and metrics to improve nuclear explosion monitoring in the Middle East, Proceedings of the 31st Monitoring Research Review of Ground-Based Nuclear Explosion Monitoring Technologies.

[14] Krishnan, S., Chen, J., Komatitsch, D., Tromp, J., Muto, M., Mitrani-Reiser, J., and Beck, J.L., 2008. Simulation of an 1857-like Mw 7.9 San Andreas fault earthquake and the response of tall steel moment frame buildings in southern California — A protorype study, Proceedings of the 14th World Conference on Earthquake Engineering , Beijing, China (Oct. 12–17).

[13] Helmberger, D., Rodgers, A., Ni, S., Wei, S., and Tromp, J., 2008 Ad-vanced Waveform Simulation for Seismic Monitoring Events, Proceedings of the 30th Monitoring Research Review of Ground-Based Nuclear Explo-sion Monitoring Technologies.

[12] Savage, B., Rodgers, A.J., Tromp, J., and Covellone, B., 2008. Initial steps toward next-generation, waveform-based, three-dimensional models and metrics to improve nuclear explosion monitoring in the Middle East, Proceedings of the 30th Monitoring Research Review of Ground-Based Nu-clear Explosion Monitoring Technologies.

[11] Tromp, J., 2007. In Memoriam: Francis Anthony Dahlen (1942–2007). Seism. Res. Lett., 78, 485.

Page 21: Jeroen Tromp CV · 2020-04-21 · structure of Mars from InSight seismic data, Nature Geosciences, 13, 213– 220. [165] Banerdt et al., 2020. Initial results from the InSight mission

[10] Tromp, J., 2007. A basic introduction to quantitative seismic hazard assessment. J. of Earthquake and Tsunami , 1, 99–118.

[9] Butler, R., Lay, T., Creager, C., Earl, P., Fischer, K., Gaherty, J., Laske, G., Leith, B., Park, J., Ritzwoller, M., Tromp, J., and Wen, L., 2004. The Global Seismographic Network surpasses its design goals, EOS , 85, 225–232.

[8] Tsuboi, S., Komatitsch, D, Chen, J., and Tromp, J., 2004. Modeling of global seismic wave propagation on the Earth Simulator, Journal of the Earth Simulator , 1, 57–66.

[7] Tromp, J., 2003. Review of The Seismic Wavefield Volume II: Interpre-tation of Seismograms on Regional and Global Scales by B.L.N. Kennett, EOS , 84, 296.

[6] Tromp, J., 2002. Review of The Seismic Wavefield Volume I: Introduction and Theoretical Development by B.L.N. Kennett, EOS , 83, 296.

[5] Komatitsch, D., and Tromp, J., 2002. Propagacion de ondas sısmicas en modelos de tierra global 3-D usando elementos espectrales, Metodos Numericos en Ingenierıa y Ciencias Aplicadas.

[4] Tromp, J., 2001. Opinion: Dawn of a new era in computational global seismology, Seism. Res. Lett., 72, 639–641.

[3] Komatitsch, D., and Tromp, J., 2001. Modeling seismic wave propagation using Linux on a 156-Gigabyte PC cluster, Linux Journal , October , 38–45.

[2] Komatitsch, D., Barnes, C., and Tromp, J., 1999. A spectral element method for wave propagation simulation near a fluid-solid interface, Pro-ceedings of the First ACES Workshop, editor P. Mora, University of Queens-land, Australia.

[1] Larson, E., Ekstrom, G., and Tromp, J. 1998. Estimates of station mis-orientation from surface-wave arrival-angle data, Report for network and station operators.